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The correlation between the fast cage dynamics and the structural relaxation is investigated
in a model polymer system. It is shown that the cage vibration amplitude, as expressed by the
Debye-Waller factor (DW), and the relaxation time τα collapse on a single universal curve
with a simple analytic form when the temperature, the density, the chain length and the
monomer-monomer interaction potential are changed. For the physical states with the same
τα the coincidence of the mean-square displacement, the intermediate scattering function and
the non-gaussian parameter is observed in a wide time window spanning from the ballistic
regime to the onset of the Rouse dynamics driven by the chain connectivity. The role of the
non-gaussian effects is discussed.
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1. Introduction

There is a growing interest in the relation between the fast vibrational dynamics
and the long-time structural relaxation occurring in viscous systems and super-
cooled liquids close to their glass transition [1–20]. This resulted in studies of the
vibrational dynamics of both glasses [6, 13–17] and fluid systems [9, 12, 20].

Recently, the universal correlation between the amplitude of the caged dynamics,
as expressed by the Debye-Waller factor (DW), and the structural relaxation time
τα has been evidenced by simulations and experiments on several physical systems
including molecular liquids, polymers and metallic alloys in a wide range of fragility
[20]. It was found that the shape of the related scaling function is also controlled
by the non-gaussianity of the kinetic unit displacement [20]. The present paper

presents new numerical results and provides further insight on the role

played by the non-gaussian effects.

2. Theory

The glass transition has been pictured as the freezing of a liquid in an Aperiodic
Crystal Structure (ACS) where the viscous flow is due to activated jumps over
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energy barriers ∆E ∝ kBTa2/〈u2〉 where a is the displacement to overcome the
barrier and 〈u2〉 is the DW factor of the liquid, i.e. the amplitude of the rattling
motion within the cage of the nearest neighbours atoms [3]. The ACS picture leads
to the Hall-Wolynes (HW) equation, τα, η ∝ exp(a2/2〈u2〉), a relation which has
been derived by others too [5, 12, 21]. The HW equation relies on the condition that
τα exceeds the vibrational time scales. When the HW equation is compared with
the experiments, one notes strong deviations from the predicted linear dependence
between log τα and 1/〈u2〉 [12]. To generalize the HW equation, one considers a
distribution p(a2) of the square displacement to overcome the energy barriers [20].
Following the central limit theorem, the gaussian form is adopted, p(a2) = N ·

exp[−(a2 − a2)2/2σ2
a2 ] where N is the normalization constant, a2 and σa2 are the

average and the standard deviation respectively. Note that, since ∆E ∝ a2, this
choice corresponds to a gaussian distribution of energy barriers. The distribution is
taken to be independent of the state parameters because the average displacement
of the kinetic unit within τα is weakly dependent on τα [22]. In contrast, the DW
factor depends on the state parameters [7, 8]. If one averages the HW expression
over p(a2), one obtains the following generalized HW expression (GHW):

τα = τ0 exp

(

a2

2〈u2〉
+

σ2
a2

8〈u2〉2

)

. (1)

Eq. 1 neglects the very weak DW-dependence of τ0. If the linear temperature
dependence of the DW factor is assumed, GHW reduces to other results reported
for supercooled liquids [23], polymers [24] or models of glassy relaxation [25, 26].

3. Model

A coarse-grained model of a linear freely-jointed polymer is used. Non-bonded
monomers interact via a generalized Lennard-Jones pair potential Up,q(r) with

Up,q(r) = ǫ(q − p)−1[p(σ⋆/r)q − q(σ⋆/r)p] + Ucut with σ⋆ = 21/6σ. The parameters
p and q control the stiffness of the attractive and the repulsive part, respectively.
All quantities are in reduced units: length in units of σ, temperature in units of
ǫ/kB , and time in units of σ

√

m/ǫ, where m and kB are the monomer mass and
the Boltzmann constant, respectively. The energy unit is given by the depth of the
potential well ǫ. We also set m = kB = 1. The potential is cut and shifted to zero
by Ucut at r = 2.5. The potential Up,q(r) reduces to the usual Lennard-Jones (LJ)
potential by setting p = 6, q = 12 . Bonded monomers interact with a potential
which is the sum of the FENE (Finitely Extendible Nonlinear Elastic) potential
and the LJ potential (see ref. [20] for further details). This results in a bond length
b = 0.97. Samples with N ≃ 2000 monomers were used. Equilibration runs were
performed in isothermal-isobaric (NPT) or canonical (NTV) ensembles. Data were
collected under microcanonical conditions by integrating the equations of motion
with a reversible multiple time steps algorithm, i.e. the r-RESPA algorithm [27].
Physical states with different values of the temperature T , the density ρ, the chain
length M and the monomer-monomer interaction potential Up,q(r) were studied.
See ref. [20] for further details.
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Figure 1. (a) MSD time-dependence in the selected cases (M, ρ, T, q, p): set A
[(2, 1.086, 0.7, 7, 6), (3, 1.086, 0.7, 7, 6), (10, 1.086, 0.7, 7, 6), (10, 1.033, 0.7, 8, 6)], set B

[(2, 1.033, 0.7, 10, 6), (3, 1.039, 0.7, 11, 6), (3, 1.041, 0.7, 11, 6)], set C
[(2, 1.033, 0.5, 10, 6), (3, 1.056, 0.7, 12, 6), (5, 1.033, 0.6, 12, 6), (10, 1.056, 0.7, 12, 6)], set D

[(3, 1.086, 0.7, 12, 6), (5, 1.086, 0.7, 12, 6), (10, 1.086, 0.7, 12, 6)] and set E [(2, 1.0, 0.7, 12, 11)]. The MSDs
are multiplied by indicated factors. (b) corresponding ISF curves. Four sets of clustered curves (A

through D) show that, if states have equal τα (marked with star on each curve ), the MSD and ISF
curves coincide from times fairly longer than τα down to the crossover to the ballistic regime at least.

Adapted from ref.[20].

4. Results and discussion

In this section the translational dynamics and the relaxation of the monomeric
unit are studied. Changing the state parameters (M,ρ, T, q, p) results in changes of
both the DW factor and the relaxation time τα. It was found that, when different
physical states have the same relaxation time, both their translational dynamics,
as expressed by the mean square displacement (MSD), and their relaxation, as
expressed by the self part of the intermediate scattering function (ISF), are coin-
cident from the ballistic regime up to the onset of the connectivity effects (Rouse
regime) at times fairly longer than τα [20]. The resulting clusters of curves are

shown in Fig.1 for both MSD ( 〈r2(t)〉 = N−1
∑N

1 〈(ri(t) − ri(0))
2〉 ) and ISF (

Fs(qmax, t) = N−1
∑N

1 〈exp[ıqmax(ri(t) − ri(0))]〉, qmax refers to the maximum of
the static structure factor). Fig.1 also shows the definition of τα via the equa-
tion Fs(qmax, τα) = 1/e. The existence of clusters of physical states with similar
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Figure 2. Time-dependence of the the non-gaussian parameter (NGP) for the same states listed in
caption of Fig.1. The stars denote the time t = τα. The plot shows that for states with equal τα not only
MSD and ISF coincide between t⋆ and τα (see Fig.1) but also NGP does the same within the statistical

uncertainty. The inset shows the increase of the maximum of NGP with τα. The dashed line is a
parabolic guide for the eyes.

dynamics over the wide time range from the vibrational regime to the long-time
relaxation suggests that the latter are correlated. To investigate this issue, it was
noted that the location of the inflection point of the MSD does not depend on
the state point, i.e. it always occurs at the same time t = t⋆ in the log-log plot of
MSD [20]. This gives the opportunity of a clear-cut definition of the DW factor as
〈u2〉 ≡ 〈r2(t⋆)〉. The plot of τα vs 〈u2〉 leads to a master curve for the numerical
results well described by the GHW Eq.1 which fits the experimental results over
about eighteen orders of magnitude [20].

We investigated if, in addition to MSD and ISF, other quantities exhibit iden-
tical time-dependence when evaluated for the clusters of states with identical
τα values shown in Fig.1. The results for the non-gaussian parameter (NGP)
α2(t) = (3〈r4(t)〉/5〈r2(t)〉2) − 1, which quantifies the dynamical heterogeneity of
the system at a given time t [28], are shown in Fig.2. NGP vanishes if the monomer
displacement is a gaussian process. Fig.2 shows that NGP increases between the
end of the ballistic regime (t ∼ 0.1) and roughly τα. In principle, the scaling

of both ISF and MSD does not necessarily extend also to either the

higher moments of the monomer displacement, i.e. 〈r2k(t)〉 with k > 1,
or specific functions depending on them, like NGP. In fact, the higher

moments have stronger dependence on the non-gaussian effects, like the

jump processes, which could lead to the violation of the scaling. How-

ever, Fig.2 shows that the physical states with coincident MSD and ISF

shown in Fig.1 have equal NGP up to about τα too. For longer times the
NGP of physical states with equal τα but different chain length differ also due to
the onset of connectivity effects (Rouse regime) [29, 30].

It has been already shown that the magnitude of the non-gaussian parameter
is related to the curvature of the GHW Eq.1 when the plot log τα vs 〈u2〉−1 is
considered [20]. Indeed, the ratio of the quadratic and the linear terms of Eq.1 with

respect to 〈u2〉−1, R ≡ σ2
a2/(4a2〈u2〉) increases with the height of NGP α2 max and,

if the latter vanishes, R does the same [20]. The inset of Fig.2 shows the increase
of α2 max by increasing τα. If the non-gaussian effects are missing, ISF reduces to
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Figure 3. Comparison between the numerical ISF (continuous lines) of Fig.1 and the first correction to

the gaussian approximation F s(qmax, t) (dashed lines). The inset shows the relative error between τα

and the estimate τα, as drawn from F s(qmax, τα) = 1/e. Selected cases (M, ρ, T, q, p): set A
[(2, 1.086, 0.7, 7, 6)], set B [(2, 1.033, 0.7, 10, 6)], set C [(2, 1.033, 0.5, 10, 6)], set D [(3, 1.086, 0.7, 12, 6)]

and set E [(2, 1.0, 0.7, 12, 11)].

F g
s (qmax, t) = exp(−1

6q2
max〈r

2〉). The first correction to F g
s (q, t) due to the non-

gaussian effects depends on NGP and reads [31] :

F s(q, t) = exp

(

−
1

6
q2〈r2〉

)

[

1 +
1

2
α2(t)

(

1

6
q2〈r2〉

)

+ O

(

(

1

6
q2〈r2〉

)2
)]

. (2)

Fig.3 compares the numerical results for ISF with the approximation F s(qmax, t).
It is seen that the first correction to F g

s (qmax, t) is nearly enough to

account for the non-gaussian effects for τα . 102 . This proves that the

scaling of ISF mostly relies on the scaling of the first two moments of the

displacement distribution, 〈r2(t)〉 and 〈r4(t)〉. For longer relaxation times

F s(qmax, t) poorly approximates the numerical results with an unphysical

peak at t ∼ 2 · 102 pointing to the conclusion that However, in spite of the
large deviations of F s(qmax, t) from the exact results, the inset of Fig.3 shows that
the relative error between τα and the approximated estimate τα (to be defined by
the equation F s(qmax, τα) = 1/e) is reasonable.

5. Conclusions

The correlations between the fast dynamics of the monomers within the cage of
the first neighbours and the long-time structural relaxation are studied. It is shown
that physical states with equal τα exhibit coincident MSD, ISF and NGP from the
ballistic regime up to the onset of the connectivity effects (Rouse regime) at times
fairly longer than τα. The first correction to the gaussian approximation

of ISF is enough for τα . 102 but deviates from the numerical results

for longer relaxation times due to the increasing role of the moments of

higher orders, i.e. 〈r2k(t)〉 with k > 2. However, the relative error between τα

and the approximated estimate τα stays within reasonable bounds.
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