The Rowland experiment

This experiment by Henry A. Rowland (1876) aimed to show that moving charges generate magnetic fields. A metallic disk or radius a and thickness $\ll a$ is electrically charged and kept in rotation with period $T=2 \pi / \omega$.
a) To charge the disk up, it is placed between two capacitor plates which are
 separated by $h \simeq 1 \mathrm{~cm}$ and kept at a potential $V_{0}=10^{4} \mathrm{~V}$ with respect to the disk. Find the surface charge density on the disk surfaces.
b) Caclulate the magnetic field \mathbf{B}_{c} near the center of the disk and the magnetic field component \mathbf{B}_{r} parallel and near to the surface, as a function of the distance r from the axis. Typical experimental values were $a=10 \mathrm{~cm}$ e $T=10^{-2} \mathrm{sec}$.
c) The field \mathbf{B} generated by the disk at the more convenient point is measured by orienting the apparatus in order that \mathbf{B} is perpendicular to the Earth's magnetic field \mathbf{B}_{E} of strength $B_{E} \simeq$ $5 \times 10^{-5} \mathrm{~T}$ and measuring the rotation of a magnetic needle when the disk rotates. Find the rotation angle.

Solution

a) Neglecting boundary effects, the electric field \mathbf{E}_{0} in the region between the disk and the electrodes is uniform and perpendicular to the plane surfaces. Since the disk is at a potential V_{0} with respect to both plates which are at a distance $h / 2$, the field value is $E_{0}=V_{0} /(h / 2)=2 V_{0} / h$. The field is zero inside the disk, thus the surface charge density σ on both sides is $\sigma=\varepsilon_{0} E_{0}=2 \varepsilon_{0} V_{0} / h$. Being $\varepsilon_{0}=8.85 \times 10^{-12}$ in SI units we find $\sigma=2 \varepsilon_{0} \times 10^{6} \mathrm{~V} / \mathrm{m}=1.77 \times 10^{-5} \mathrm{C} / \mathrm{m}^{2}$.
b) In order to evaluate \mathbf{B}_{c}, we imagine to divide the disk in rings of radius r (with $0<r<a$) and thickness $\mathrm{d} r$. Thus, each ring contains the charge $\mathrm{d} q=\sigma \mathrm{d} S=2 \pi \sigma r \mathrm{~d} r$. Due to the rotation of the disk, every ring is equivalent to a coil with a current intensity $\mathrm{d} I=q / T$ that generates at its center a magnetic field of modulus $\mathrm{d} B=\mu_{0} \mathrm{~d} I / 2 r$ and perpendicular to the coil plane. The total field is given by the integral

$$
\begin{equation*}
B_{c}=2 \int_{0}^{a} \frac{\mu_{0} \mathrm{~d} I}{2 r}=\frac{2 \pi}{T} \mu_{0} \sigma a \tag{1}
\end{equation*}
$$

where the factor of 2 accounts for the contribution of both surfaces of the disk.
In order to evaluate \mathbf{B}_{r} we use Ampere's law applied to the path C shown in the figure. The path is placed at a distance r from the axis with the sides parallel to the surface having length $\ell \ll r$, to that \mathbf{B}_{r} is approximately constant along the sides. The contribution of the perpendicular sides to the line integral cancel each other, so

$$
\begin{equation*}
\oint_{c} \mathbf{B} \cdot d \mathbf{l} \simeq 2 B_{r} \ell \tag{2}
\end{equation*}
$$

where the antisymmetry of \mathbf{B}_{r} with respect to the midplane has been used. The rotation of the disk leads to a surface current $\iota=\sigma \mathbf{v}_{\phi}=\sigma \omega r \boldsymbol{\phi}$, so that the total current flowing through C is $I_{c}=2 \iota \ell=2 \sigma \omega r$. By posing $2 B_{r} \ell=\mu_{0} I_{c}$ we obtain

$$
\begin{equation*}
B_{r}=\mu_{0} \sigma \omega r=\frac{2 \pi}{T} \mu_{0} \sigma r . \tag{3}
\end{equation*}
$$

We thus obtain that, for $r=a$, the maximum value of $B_{r}=B_{c}$.
Inserting the result of point a) we estimate the field strength as

$$
\begin{equation*}
B=\frac{2 \pi}{T} \mu_{0} a\left(2 \varepsilon_{0} \frac{V}{h}\right)=\frac{4 \pi}{T} \frac{V a}{h c^{2}}=1.4 \times 10^{-9} \text { Tesla } . \tag{4}
\end{equation*}
$$

c) The rotation angle is given by $\tan \theta=B / B_{T}$, then

$$
\begin{equation*}
\theta \simeq \frac{B}{B_{T}}=2.8 \times 10^{-5} \mathrm{rad}=1.6 \times 10^{-3} \mathrm{deg} \tag{5}
\end{equation*}
$$

Thus, a very small angle of rotation is expected, so the experiment required exceptional care to measure it.

