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Abstract

We propose a new ‘hedged’ Monte-Carlo (HMC) method to price �nancial derivatives, which
allows to determine simultaneously the optimal hedge. The inclusion of the optimal hedging
strategy allows one to reduce the �nancial risk associated with option trading, and for the very
same reason reduces considerably the variance of our HMC scheme as compared to previous
methods. The explicit accounting of the hedging cost naturally converts the objective probability
into the ‘risk-neutral’ one. This allows a consistent use of purely historical time series to price
derivatives and obtain their residual risk. The method can be used to price a large class of exotic
options, including those with path dependent and early exercise features. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The Black and Scholes model has options for two truly remarkable properties:
(i) one can �nd a ‘perfect’ hedging strategy that eliminates risk entirely, and (ii)
the option price does not depend at all on the average return of the underlying asset
[1–3]. This last property shows that the option price is not simply the (discounted)
average of the future pay-o� over the objective (or historical) probability distribu-
tion, as one would have naively expected. This is even more striking in the case of
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the Cox–Ross–Rubinstein binomial model [4,2] where the pricing measure is com-
pletely unrelated to the actual distribution of returns. These two models have deeply
in
uenced �nancial mathematics, and have lead to the development of a rather abstract
and general framework for derivative pricing. Within this framework, the fundamental
result is that the requirement of absence of arbitrage opportunities is equivalent to the
existence of a ‘risk-neutral probability measure’ (a priori distinct from the objective
one), such that the price of a derivative is indeed its (discounted) average pay-o�, but
where the average is performed over the risk-neutral distribution rather than over the
objective distribution [5,6]. It is thus a common belief that the knowledge of the ‘true’
probability distribution of returns is a useless information to price options. The cre-
dence is rather that the relevant risk neutral distribution is somehow ‘guessed’ by the
market. A possibility is to reconstruct this risk neutral distribution from quoted option
prices, and to use this information to price other instruments consistently (for example
exotic options) [2,7]. In many cases, however, exact analytical expressions for these
exotic options are not available and numerical methods must be used. A very versatile
method, which allows to price complicated path-dependent options, is the Monte-Carlo
method, where paths are generated with a weight consistent with the risk-neutral dis-
tribution. E�cient numerical techniques have been developed, in particular in Ref. [8],
to implement this ‘risk-neutral Monte-Carlo’ (RNMC).
However, in most models of stock 
uctuations, except for very special cases, risk

in option trading cannot be eliminated, and strict arbitrage opportunities do not exist,
whatever be the price of the option. That risk cannot be eliminated is furthermore the
fundamental reason for the very existence of option markets. It would thus be more
satisfactory to have a theory of options where the objective stochastic process followed
by the underlying asset was used to compute the option price, the hedging strategy, and
the residual risk. The latter is clearly important to estimate for risk control purposes.
A natural framework for this is the risk minimization approach developed by several
authors [9–13], where the optimal trading strategy is determined such that the chosen
measure of risk is minimized (for example, the variance of the wealth balance, although
other choices are possible [12,14,15]). The ‘theoretical’ price is then obtained using
a fair game argument. Interestingly, this framework allows one to recover exactly the
Black–Scholes results when the objective probabilities are log-normal, and when the
continuous-time limit is taken (this is shown in detail in Ref. [12]). In particular,
the average trend indeed completely disappears from the price and hedge.
The aim of this paper is to present a very general Monte-Carlo scheme based on

this approach, that we call HMC. The method, which has been inspired in part by the
least square method LSM of Longsta� and Schwartz [8], shares with it the property that
it can price a wide variety of exotic options including those with path-dependent or
early exercise features. On top of that, the HMC has at least four major advantages over
RNMC:
• The most important one is considerable variance reduction. This is related to the
fact that the �nancial risk arising from the imperfect replication of the option by the
hedging strategy is directly related to the variance of the Monte-Carlo simulation.
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When minimizing the former by choosing the optimal strategy, we automatically
reduce the latter. The standard deviation of our results are typically �ve to ten times
smaller than with RNMC, which means that for the same level of precision, the number
of trajectories needed in the Monte-Carlo is up to a hundred times smaller.

• The HMC method provides not only a numerical estimate of the price of the derivative,
but also of the optimal hedge (which may be di�erent from the Black–Scholes
�-hedge for non-Gaussian statistics) and of the residual risk.

• The method does not rely on the notion of risk neutral measure and can be used
with any model of the true dynamics of the underlying (even very complex), in
particular, those for which the risk neutral measure is unknown and=or not uniquely
de�ned.

• Last, but not least, the HMC method allows one to use purely historical data to price
derivatives, short-circuiting the modeling of the underlying asset 
uctuations. These

uctuations are known to be of a rather complex statistical nature, with fat-tailed
distributions, long-range volatility correlations, negative return-volatility correlations,
etc. [12,16–19]. Within the HMC method, one can directly use the historical time
series of the asset to generate the paths. The fact that a rather small number of
paths are needed to reach good accuracy means that the length of the historical time
series need not be very large.
The idea of ‘hedging’ Monte Carlo simulations was discussed previously in the

literature [20]. However, the present method di�ers from the previous work on several
key aspects: �rst, the hedge used in [20] is an approximate hedge (for example, the
�-hedge corresponding to a similar option for which an analytical formula is known),
and not the optimal hedge for the option and underlying under consideration. Second,
the idea of using the objective (historical) probability distribution is not discussed.
Third, we couple the idea of hedged Monte Carlo with the versatile {LSM} method
of Schwartz and Longsta�.

2. Basic principles of the method

Option pricing always requires to work backwards in time. This is because the
option price is exactly known at maturity, where it is equal to the pay-o�. As with
other schemes, we determine the option price by working step by step for maturity
t = N� to the present time t = 0, the unit of time � being, for example, one day. The
price of the underlying asset at time k� is denoted as xk and the price of the derivative
is Ck . We assume for simplicity that Ck only depends on xk (and of course on k).
However, the method can be generalized to account for a dependence of Ck on the
volatility, interest rate, etc., or to price multi-dimensional options (such as interest rate
derivatives). We, therefore, also introduce the hedge �k(xk), which is the number of
underlying asset in the portfolio at time k when the price is equal to xk . Within a
quadratic measure of risk, the price and the hedging strategy at time k is such that the
variance of the wealth change �Wk between k and k+1 is minimized. More precisely,
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we de�ne the local ‘risk’ Rk as

Rk = 〈(Ck+1(xk+1)− Ck(xk) + �k(xk)[xk − xk+1])2〉o ; (1)

where 〈· · ·〉o means that we average over the objective probability measure (and not
the risk-neutral one!). As shown in Ref. [12], the functional minimization of Rk with
respect to both Ck(xk) and �k(xk) gives equations that allow one determine the price
and hedge, provided Ck+1 is known. Note that we have not included interest rate e�ects
in Eq. (1). When the interest rate r is non-zero, one should consider the following
modi�ed equation

Rk = 〈(e−�Ck+1(xk+1)− Ck(xk) + �k(xk)[xk − e−�xk+1])2〉o ; (2)

where �= r� is the interest rate over an elementary time step �.
In order to implement this numerically, we parallel the LSM method of Longsta�

and Schwartz, developed within a risk-neutral approach [8]. We generate a set of NMC
Monte-Carlo trajectories x‘k , where k is the time index and ‘ the trajectory index. We
decompose the functions Ck and �k over a set of M appropriate basis functions Ca(x)
and Fa(x):2

Ck(x) =
M∑
a=1


kaCa(x); �k(x) =
M∑
a=1

’kaFa(x) : (3)

In other words, we solve the minimization problem with the variational space spanned
by the functions Ca(x) and Fa(x). This leads to a major simpli�cation since now we
have a linear optimization problem in terms of the coe�cients 
ka; ’

k
a, for which e�cient

numerical algorithms are available [21]. These coe�cients must be such that

NMC∑
‘=1

(
e−�Ck+1(x‘k+1)−

M∑
a=1


kaCa(x
‘
k) +

M∑
a=1

’kaFa(x
‘
k)[x

‘
k − e−�x‘k+1]

)2
; (4)

is minimized. Those N minimization problems (one for each k = 0; : : : ; N − 1) are
solved working backwards in time with CN (x) the known �nal pay-o� function.
Although, in general, the optimal strategy is not equal to the Black–Scholes �-hedge,

the di�erence between the two is often small, and only leads to a second order increase
of the risk [12]. Therefore, one can choose to work within a smaller variational space
and impose that:

’ka ≡ 
ka; Fa(x) ≡ dCa(x)
dx

: (5)

This will lead to exact results only for Gaussian processes, but reduces the computation
cost by a factor two.

2 For numerical purposes, these basic functions have been chosen to be piecewise linear for Fa and piecewise
quadratic for Ca, with adaptive breakpoints.
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3. Numerical results for the Black–Scholes model

We have �rst checked our HMC scheme when the paths are realizations of a (dis-
cretized) geometric random walk. We have priced an at the money three month
European option, on an asset with 30% annualized volatility and a drift equal to
the risk-free rate which we set to 5% per annum. The number of time intervals N
is chosen to be 20. The initial stock and strike prices are x0 = xs=100, and the corre-
sponding Black–Scholes price is CBS0 = 6:58. The number of basis functions is M = 8.
We run 500 simulations containing 500 paths each, for which we extract the average
price and standard deviation on the price. An example of the result of linear regression
is plotted in Fig. 1. Each data point corresponds to one trajectory of the Monte-Carlo
at one instant of time k, and represents the quantity:

e−�Ck+1(xk+1) + �k(xk)[xk − e−�xk+1] ; (6)

as a function of xk . The full line represents the result of the least-squared �t, form
which we obtain Ck(xk). We show in the inset the corresponding hedge �k , that was
constrained in this case to be the �-hedge.
We obtain the following numerical results. For the RNMC (unhedged) scheme, we

obtain CRN0 =6:68 with a standard deviation of 0:44. For the HMC, we obtain CH0 =6:55
with a standard deviation of 0:06, seven times smaller than with the RNMC. This variance
reduction is illustrated in Fig. 2, where we show the histogram of the MC results both
for the unhedged case (full bars) and for the hedged case (dotted bars).

Fig. 1. Option price as a function of underlying price for a HMC simulation. The full line corresponds to the
�tted option price C10(x) at the tenth hedging step (k=10) of a simulation of length N=20. Square symbols
correspond to the option price on the next step, corrected by the hedge, Eq. (6) for individual Monte-Carlo
trajectories. Inset: Hedge as a function of underlying price at the tenth step of the same simulation.
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Fig. 2. Histogram of the option price as obtained of 500 MC simulations with di�erent seeds. The dotted
histogram corresponds to the RNMC and the full histogram to the HMC. The dotted line indicates the exact
Black–Scholes price. Note that on average both methods give the correct price, but that the HMC has an
error that is more than seven times smaller than that of the RNMC.

Now, we set the drift to 30% annual. The Black–Scholes price, obviously, is un-
changed. A naive unhedged Monte-Carlo scheme with the objective probabilities would
give a completely wrong price of 10.72, 60% higher than the correct price, with a stan-
dard deviation of 0.56. On the other hand, the HMC indeed produces the correct price
(6:52) with a standard deviation of 0:06. The RNMC scheme in this case simply amounts
to setting ‘by hand’ the drift to risk-free rate, and therefore obviously gives back the
above �gures.
Therefore, we have checked that in the case of a geometric random walk, the HMC

indeed gets rid of the drift and reproduces the usual Black–Scholes results, as it should.
This allows us to con�dently extend the method to other type of options and other
random processes.

4. American and other exotic options

The HMC method can be used to reduce the Monte-Carlo error for all types of exotic
options. We illustrate this point by showing how the method can be extended to price
an American put option. In order to implement the early exercise condition, one can
simply replace Ck+1(xk+1) in Eq. (4) by max(Ck+1(xk+1); xs − xk+1), where xs is the
strike price. We have chosen a slightly di�erent implementation, where we �rst �nd
the early exercise point x∗k+1 and exercise all options for which xk+1¡x∗k+1.
We have tested the method on a one year American put option on a stock following

a standard log-Brownian process. We follow the choice of parameters made in [8]
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in order to compare our results with theirs. The initial price and the strike are set
to x0 = xs = 40, the volatility to 20% annual and the risk-free rate and the drift to
6%. As a benchmark price we use the value 2:314 (quoted in [8]) computed using a
very accurate �nite di�erence method. We computed the price within the HMC using
NMC=500 paths and M=8 basis functions. To measure the accuracy of the method, we
ran the Monte-Carlo 500 times with di�erent random seeds. The average price found
was 2:302 with a standard deviation (around the true value 2:314) of 0:032.
We also used the LSM of [8] with the same parameters (NMC =500 paths and M =8

basis functions). Note that the LSM used in Ref. [8] di�ers from the HMC in the following
way: (i) the hedge is not used in the least-squares �t Eq. (4), (ii) on subsequent
iterations the option price is kept as the discounted pay-o� on that particular path
(�nal pay-o� or early exercise value) and (iii) the �nal option price is given as the
average pay-o� of all paths. In this framework the least-squares �t only serves to �nd
the early exercise point. Therefore, for European options, the LSM is identical to the
standard RNMC.
The average price within the LSM is found to be 2:423 with a standard deviation

around the true value of 0:170, �ve times larger than for the above quoted 0:032 for
the HMC. These numbers are compatible with those found in Ref. [8] where the error
quoted is 0:01, i.e., 17 times smaller but with 200 times more paths and 2:5 times
more intermediate points.
Obviously, the same variance reduction would hold for other exotic paths, as those

discussed in Ref. [8]. We have not investigated in depth the optimal values to be given
to the parameters M and NMC, or the choice of the basis functions that minimize the
computation cost for a given accuracy. These are implementation issues that are beyond
the scope of the present paper.

5. Purely historical option pricing

We now turn to the idea of a purely historical HMC pricing scheme. We price a one
month (21 business days) option on Microsoft Corp., hedged daily, with zero interest
rates. We used 2000 paths of length 21 days, obtained from the time series of Microsoft
during the period May 1992–2000. The initial price is always renormalized to 100. We
use a set of M = 10 basis functions, and keep with the simple �-hedge. From our
numerically determined option prices, we extract an implied Black–Scholes volatility
by inverting the Black–Scholes formula and plot it as a function of the strike, in order
to construct an implied volatility smile. The result is shown in Fig. 3, together with the
error bars, obtained from the residual risk of the hedged options. 3 The residual risk
itself, divided by the call or the put option price (respectively, for out of the money
and in the money call options), is given in the inset. We �nd that the residual risk is

3 The error on the price is given by the residual risk divided by the square root of the number of independent
paths. Since we over-sample the paths, we use 2000× 2=21 ≈ 190 as the e�ective number of paths.
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Fig. 3. Smile curve for a purely historical HMC of a one-month option on Microsoft (volatility as a function
of strike price). The error bars are estimated from the residual Monte-Carlo error. The inset shows the
residual risk as a function of strike normalized by the ‘time-value’ of the option (i.e., by the call or put
price, whichever is out-of-the-money).

around 42% of the option premium at the money, and rapidly reaches 100% when one
goes out of the money. These risk numbers are comparable to those obtained on other
options of similar maturity (see Ref. [12]), and are much larger than the residual risk
that one would get from discrete time hedging e�ects in the Black–Scholes world.
The smile that we obtain has a shape quite typical of those observed on option

markets. However, it should be emphasized that we have neglected the possible de-
pendence of the option price on the local value of the volatility. This could be taken
into account by letting the function Ck depend not only on xk but also on the value
of some �ltered past volatility �k .

6. Conclusion and prospects

We have presented what we believe to be a very useful Monte-Carlo scheme, which
closely follows the actual history of a trader hedged portfolio. The inclusion of the
optimal hedging strategy allows one to reduce the �nancial risk associated with option
trading, and for the very same reason the variance of our HMC scheme as compared
to the previously discussed RNMC schemes. The explicit accounting of the hedging cost
naturally converts the objective probability into the ‘risk-neutral’ one. This allows a
consistent use of purely historical time series to price derivatives and obtain their resid-
ual risk. We believe that there are many extensions and applications of the scheme,
for example to price interest rate derivatives with faithful historical models (such
as the one proposed in Refs. [22,23]), and market hedging instruments. With some
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modi�cations and extra numerical cost, the method presented here could be used to
deal with transaction costs, or with non-quadratic risk measures (VaR hedging).
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