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A numerical technique is introduced that reduces exponentially the time required for Monte Carlo
simulations of nonequilibrium systems. Results for the quasistationary probability distribution in two
model systems are compared with the asymptotically exact theory in the limit of extremely small noise
intensity. Singularities of the nonequilibrium distributions are revealed by the simulations.

DOI: 10.1103/PhysRevLett.90.210201 PACS numbers: 02.50.Ng, 02.70.Tt, 05.40.–a
of a system (e.g., efficient transition path sampling [15] the numerical results with theoretical predictions. To
The understanding of fluctuations in systems away
from thermal equilibrium is a problem of long standing
in statistical physics [1]. Well-known examples of physi-
cal phenomena in which nonequilibrium fluctuations play
a particularly important role include, e.g., switching of
polarization in lasers [2], switching between different
configurations in proteins [3], the transition to instability
in Josephson junctions [4], and chemical reactions [5].

In nonequilibrium systems, where symmetries of de-
tailed balance are broken, no general methods exist for
the calculation of even basic quantities like the probabil-
ity distribution. This is a case where numerical and
asymptotic theoretical methods for investigating the
probability distribution are of particular importance.

Theoretical approaches, such as WKB-like or path-
integral methods, are available in the limit of small noise
intensity, D ! 0 [5–8]. In particular, the theory suggests
that a solution to the problem of nonequilibrium fluctua-
tions requires an understanding of the dynamics of
deviations from the steady state [1] and an analysis of
singularities in the nonequilibrium potential [9,10]. Some
ideas about how to extend the existing (D ! 0 limit)
theory for still small but finite noise intensities have
recently been suggested [11–13].

The main numerical technique used to verify theoreti-
cal predictions, and to analyze the behavior of the dy-
namical system under study, is Monte Carlo simulation.
The theory gives an asymptotically exact solution in the
D ! 0 limit. In contrast, D in the numerical simulations
is necessarily finite. Typically, the time required for
Monte Carlo simulations grows exponentially as D ! 0.
This meant that theoretical predictions of interesting
singular structures, and of the nonequilibrium probability
distribution [9,14], for long remained untested either
experimentally or by numerical simulation. Moreover,
there was no clear understanding of how the picture
changes for small but still finite noise intensities.

Approaches that have been tried to speed up the simu-
lations have focused mainly on finding optimal fluctua-
tional paths and rates of transition between stable states
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and dynamics importance sampling [16], following the
earlier suggestion of [17]). In [18] the path sampling
method was adapted for nonequilibrium systems. Based
on the same idea, the umbrella sampling technique was
suggested to estimate the probability of reaching any
point in the phase space of an equilibrium system starting
from a fixed initial state [15]. A technique for improving
sampling in equilibrium systems by splitting up the
probability packets was introduced in [19]. So far, how-
ever, no general algorithm has been suggested, able to
give both the whole probability distribution and dynami-
cal information like the optimal fluctuational paths for
small noise intensities for nonequilibrium systems.

In this Letter we introduce a numerical method that
enables the time required for Monte Carlo simulations to
be reduced by an exponentially large factor. It is appli-
cable to generic two-dimensional nonequilibrium sys-
tems, does not require any a priori knowledge about the
system apart from its dynamical equations of motion, and
it allows the quasistationary probability distribution to be
computed directly over the whole phase space. Using this
method, we reveal for the first time singular behavior of
the nonequilibrium distribution in numerical simulations,
and we show that the results are in quantitative agreement
with the asymptotic theory.

The central idea is to perform the simulations in se-
quential steps. We construct the quasistationary distribu-
tion, patching together intermediate results: we start
from one of the steady states and gradually move away
from it. We find that the time required for the simulations
at each step is reduced by an exponentially large factor as
compared to the standard technique: if the time necessary
for a conventional Monte Carlo simulation technique is T,
our modified method would require only time Tm �
NTexp��N�1����=D�, where N is the number of steps in-
volved and ���=D� is their separation in terms of the
logarithm of the probability [20].

We first explain the method on a very simple equilib-
rium stochastic system, and then we apply it to two
much-studied nonequilibrium systems and compare
2003 The American Physical Society 210201-1
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FIG. 1. The first [�1�x�, lower curve] and second [�2�x�,
upper curve] pieces of the inferred potential ��x� for the
system (1) with D � 0:005. The discontinuity in the gradient
of �2�x� near xi is an artifact due to a boundary effect in the
calculation of the discrete probability distribution. To avoid this
problem �1�x� and �2�x� are merged at the point xf and the
initial part of �2�x� is discarded. We normalize �1�x� choosing
�1�xm� � 0, and each successive piece of ��x� is normalized in
order to match with the previous one at the point where they
join. Inset: the inferred potential ��x� for the system (1) with
D � 0:005. The new technique (circles) is compared with
standard Monte Carlo simulations (bold line) and with the
Duffing potential U�x� (thin line).
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illustrate the technique, we consider an overdamped
Brownian particle moving in a bistable Duffing potential
U�x� � �x2=2� x4=4

_xx � �U0�x� � ��t�; (1)

where ��t� is zero-mean white Gaussian noise with inten-
sity D and moments

h��t�i � 0; h��t���0�i � 2D��t�:

The probability distribution is completely defined by the
potential U�x�, and is of the Boltzmann form �x� /
exp��U�x�=D: As in the case of a nonequilibrium sys-
tem (where the probability distribution is not defined by a
potential) a standard Monte Carlo technique can be used
to deduce �x�. Numerical integration [21] of the
Langevin Eq. (1), assuming the system to be located
initially at one of the potential minima xm, gives the
discrete probability distribution �x�, peaked at xm. The
potential can be deduced as ��x� / �D ln�x�. If
the noise intensity is very small, the system fluctuates
in a close vicinity of xm and large deviations from it are
extremely rare. Accordingly, the conventional Monte
Carlo technique cannot be used to study the dynamics
of optimal escape paths, or the properties of the proba-
bility distribution far from the potential minima: for
small noise intensities the statistics required cannot in
practice be collected within a realistic time.

In order to overcome this problem, we start from the
distribution already obtained near xm. We fix two proba-
bility levels i and f, lying well within the region where
the numerical  is accurate, with f < i corresponding
to two levels in the potential �i and �f, and two coor-
dinates xi and xf, as shown in Fig. 1. We require the levels
i and f to be fairly different, such that the correspond-
ing xi and xf are sufficiently separated: the distance
between them must exceed

�������

Dh
p

, where h is the integra-
tion time step used in the Monte Carlo simulation, and
must also exceed the discretization step �x in the discrete
probability distribution.

The next step of the simulation is started from the level
�i (putting the system at x � xi as its initial condition). If
the system starts to evolve along a fluctuational trajectory
(towards the boundary of attraction) we just follow its
natural dynamics according to (1) and collect the statis-
tics for building the probability distribution in the usual
way. If the system starts with a relaxation trajectory
(towards xm), or when it crosses the boundary xi due to
relaxation some time later, we stop the simulation and
reinject the system back to the initial state xi. In this way
we simulate the full dynamics of the system at higher
levels of the potential ��x� > �i (in the region of coor-
dinate space x > xi for this particular case). Thus, in the
subsequent simulation step we follow only those fluctua-
tions that have already attained a certain level in the
potential �i, without waiting for this exponentially
210201-2
slow event to happen. In this way, a new piece of the
probability distribution is built with a time saving
� exp�i=D compared to a simulation starting from the
potential minimum xm. The computed new piece of the
potential �2�x� is shown as the upper curve in Fig. 1.

The two pieces of the inferred potential [the original
�1�x� and the new �2�x�] are then merged at xf by a
simple shift. Continuing this procedure, the probability
distribution and the corresponding potential can be built,
step by step, for the whole region of interest. The inset in
Fig. 1 shows the resultant potential, built from 13 such
pieces between the minimum at xm � �1 and the maxi-
mum at x � 0. It coincides closely with the Duffing
potential U�x� itself. The potential ��x� is thus inferred
within a region of coordinate space that is inaccessible in
a conventional simulation (shown as bold curve for com-
parison). We stress that no a priori knowledge of the
dynamics has been used in the simulations, and that the
method is robust to choice of parameters.

In the case of a two-dimensional system, the procedure
remains essentially the same. The main difference is that,
instead of identifying two points xi and xf, we need to
identify two closed lines of constant probability. One line
is a boundary line for starting simulations from, and the
other is a reference line for matching together different
pieces of the probability distribution (see Fig. 2 for
210201-2
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FIG. 2 (color online). The whole inferred ��x; t� for the
system (2) for A � 0:1, � � 1, D � 0:005. Two lines are the
lines of constant probability found after the first step of
simulations. The corresponding levels of probability were
chosen as �i � 3D and �f � 5D.
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FIG. 3. A time section of the inferred ��x; t � 4:1� for the
system (2) with A � 0:1, � � 1, and different noise intensities:
D � 0:005 (diamonds); D � 0:01 (circles); and D � 0:02 (tri-
angles). The theoretical predictions are shown by full lines for
finite noise intensities, and by dashed line for D � 0. Inset:
oscillations of ��x; t� at the boundary of attraction for different
noise intensities.

P H Y S I C A L R E V I E W L E T T E R S week ending
30 MAY 2003VOLUME 90, NUMBER 21
clarification) [22]. The crucial point of our technique is
that, in starting the simulations from the boundary line,
we must not perturb the natural dynamics of the system.
This implies that we should consider the reinjection lo-
cation probability (RLP) along the boundary line corre-
sponding to i. Starting from the second step of the
simulations, the system should be reinjected back accord-
ing to the RLP after it relaxes across the boundary. We
emphasize that the RLP is not the same as the probability
distribution �x�, which is constant on the boundary line.
The RLP is an additional important measure which de-
scribes local discrete dynamics in the neighborhood of
the boundary line. It is a distribution along the boundary
of how often the system crosses it.

In an equilibrium system, detailed balance provides a
symmetry that can be used to reinject the system back at
the boundary level, without any need to compute the RLP.
For nonequilibrium systems, however, this procedure is
inapplicable. The RLP should be considered separately
(and calculated explicitly) for the particular system being
investigated. It can be obtained from an analysis of the
finite difference equation corresponding to the model. In
the limit of small integration time step the probability to
cross the boundary is proportional to the diffusion-
related term in the finite difference equation. Then the
RLP is simply proportional to the projection of the vector
orthogonal to the boundary onto the coordinate affected
by the noise �. It can also be computed numerically.

For nonequilibrium systems, the limit of small noise
intensity is of particular importance. A sufficiently small
D gives rise to the possibility of revealing the nonequili-
brium potential

��x� � lim
D!0

�D ln�x�;

directly through a numerical experiment. Observations of
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the predicted singular shape of ln�x�, and of its depen-
dence on D, are thus of considerable interest.

As a first example of a nonequilibrium system, con-
sider the periodically driven overdamped Duffing oscil-
lator

_xx � �U0�x� � A cos�t� ��t�: (2)

We infer ��x; t� as �D ln�x; t�. This quantity corre-
sponds to the theoretical ‘‘global minimum of the modi-
fied action’’ in the Hamiltonian theory of large
fluctuations [13] and, in the limit D ! 0, it becomes the
nonequilibrium potential.

The complete ��x; t�, constructed from 12 such pieces,
is shown in Fig. 2 and a time section of ��x; t� calculated
for different noise intensities together with the results of
theoretical calculations (Hamiltonian theory including
the prefactor) [13] is shown in Fig. 3. The RLP in the
simulations can be taken as constant if a small enough
integration time step is used in the scheme. A small
difference between the theory and the simulations results
appears for larger noise intensities then the asymptotic
theory starts to break down.

As a second, more complicated, nonequilibrium ex-
ample, consider the inverted Van der Pol oscillator

�xx� 2��1� x2� _xx�!2
0x � ��t�: (3)

Here, in order to be able to merge more easily the differ-
ent pieces of ��x; y�, we apply a coordinate transforma-
tion from x and y � _xx to amplitude A and phase �
[x � A cos���; y � �A!0 sin���]. The probability
�x; y� can be then analyzed in the �A;�� coordinate
space. This makes the problem very similar to the peri-
odically driven Duffing oscillator: the only difference is
210201-3
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FIG. 4. A section �x � y� of the inferred ��A� for the system
(3) with !0 � 1, noise intensity D � 0:01 and � � 0:25
(circles); and � � 0:5 (diamonds). Theoretical predictions are
shown in each case for D � 0 (dashed curves) and D � 0:01
(full curves).
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the RLP which, in the case of the Van der Pol oscillator,
turns out to be strongly modulated. It is essential for this
modulation to be taken into account when reinjecting the
system back to the boundary of constant probability.
Two sections of ��x; y�, obtained from the simulations
for different parameters �, are compared with the theory
in Fig. 4. Again, the agreement between numerics and
theory is excellent.

The nonequilibrium systems considered in this Letter
share the same structure of singularities. Using the fast
Monte Carlo simulations we reveal plateaus, the essen-
tially flat regions in the probability distribution, which
can be observed close to boundaries of attraction. They
result from a purely dynamical effect that is not associ-
ated with the flatness of any potential.We have shown that
its origin is related to switching between different types
of optimal fluctuational path, and it is a general feature of
nonequilibrium systems with metastable states [13,23].
The switching lines [10] are revealed as lines along which
the global minimum of the modified action ��x� exhibits
sharp bends—corresponding to the predicted line at
which the nonequilibrium potential is nondifferentiable.
In the boundary region we found the oscillations of the
probability distribution and their dependence on noise
intensity (see the inset in Fig. 3) discussed in the recent
publications [11,12,24]. Using the simulations we dem-
onstrated noise induced shift of the singularities and the
optimal escape path, which has stimulated a new step in
the development of the theory [13].

We emphasize that the singularities can be confidently
observed only in the limit of extremely small noise in-
tensity, and therefore that the use of our new technique is
crucial in that it reduces by an exponentially large factor
the time required for Monte Carlo simulations. In addi-
tion to being fast, it preserves dynamical information,
210201-4
can be modified to analyze optimal fluctuational paths, is
applicable to the energy-optimal control problem [25],
and can be further extended to encompass higher dimen-
sional systems and maps.
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