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1. Introduction

Stochastic processes, introduced to model a variety of different physical situations,

are ubiquitous in modern science. Unfortunately, the most common situation is

that the “solution” of some quantities connected to the stochastic model cannot be

found theoretically: then, one typically turns to simulations, analogue or digital, of

the system of interest. A very complete review of analogue techniques has recently

appeared, and the interested reader is referred to it for further details 1. We concen-

trate here on simulations of stochastic processes on a computer (digital simulations),

with particular emphasis on simulations of rare fluctuations. Rare fluctuations are

fluctuations which bring the stochastic system very far from the phase space which

the system explores most of the time. It is possible to relate the happening of a rare

fluctuation to some building up of an activation energy (one can think of the energy

necessary to overcome a potential barrier, like in a chemical reaction). The nature

of rare fluctuations is such that we should have algorithms which correctly explore

the tails of the distribution functions: this is so because the “rare fluctuation” ex-

plores the region of low probability. We should be able to stop in a correct way our

simulation when the rare fluctuation we are simulating hits a prescribed boundary

in phase space. We should optimise, if possible, our algorithms to situations when

the system lacks detailed balance, like when the stochastic process driving the sys-

tem is not white. Finally, we should have pseudo random number generators fast

and very reliable, able to provide us with very long random sequences. We will try

to address all these problems in this paper. For further comments and references,

the interested reader can consult, among others, 2,3,4,5,7.



2. The basic algorithm

A stochastic differential equation has the generic form

ẋi = fi(~x) + gi(~x)ξ(t), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t − s), (1)

where we assume that the stochastic process ξ is Gaussian and that only one stochas-

tic forcing is present. In the following, we call h the integration time step, and we

use Stratonovich calculus 4. A simple minded approach to solve Eq. 1 is to formally

integrate it, then to use a Taylor expansion around the point t = 0, to find recur-

sively the various contributions 6. Restricting the discussion to a one dimensional

model, the equation has the form

ẋ = f(x) + g(x)ξ(t) (2)

A formal integration yields

x(h) − x(0) =

∫ h

0

(f(x(t)) + g(x(t))ξ(t)) dt (3)

Define

f0 ≡ f(x(0)) g′
0 ≡ ∂g(x(t))

∂x(t)

∣

∣

∣

∣

x=x(0)

and so on. By Taylor expansion it is meant that the functions are expanded as

ft = f0 + (x(t) − x(0))f ′
0 + . . . . The simple minded lowest order in h seems to be

x(h) − x(0) =

∫ h

0

(f0 + g0ξ(t)) dt = hf0 + g0

∫ h

0

ξ(t)dt. (4)

We will see that this is not the correct lowest order in h. For the moment, note

that on the r.h.s. there is a so called “stochastic integral”

Z1(h) ≡
∫ h

0

ξ(t)dt (5)

which is the integral over the time range (0, h) of the stochastic process ξ(t). This

integral is a stochastic variable, and the integration amounts at adding up some

gaussian variables: as such, Z1(h) is itself a Gaussian variable, or, in other words, its

probability distribution is a Gaussian distribution. This implies that the probability

distribution of Z1(h) is determined once the average and the standard deviation of

the distribution are known. A simple minded numerical integrator would then be,

at each time step:

• generate a random gaussian variable, with appropriate average and standard

deviation (to “simulate” the stochastic integral);

• substitute the stochastic integral on the r.h.s. of Eq. 4 with this random

variable;



• integrate the equation using any standard integrator valid for deterministic

differential equations.

How can we work out the statistical properties of Z1(h)? We only need its average

and its standard deviation. Using 〈...〉 to indicate statistical averages,

〈Z1〉 =

∫ h

0

〈ξ(s)〉ds = 0 (6)

〈Z2
1 (h)〉 =

∫ h

0

∫ h

0

〈ξ(s)ξ(t)〉dsdt =

∫ h

0

∫ h

0

δ(t − s)dsdt =

∫ h

0

ds = h. (7)

If we introduce a stochastic gaussian variable with average zero and standard devi-

ation one, Y1, it follows that we can write the following representation for Z1(h)

Z1(h) =
√

hY1

meaning that, using this definition, Z1(h) has the correct statistical properties. We

can also rewrite Eq. 4 as

x(h) − x(0) = hf0 + Z1(h)g0 = hf0 +
√

hg0Y1. (8)

A problem is apparent: on the r.h.s., the first term is order of h, but the second one

is order of
√

h: in principle, we should insert the x increment from Eq. 4 in Eq. 3,

take one more term in the Taylor expansion, and check the order of the contribution

we get. It turns out that if we did that, the correct algorithm to first order in h

would be

x(h) − x(0) = g0Z1(h) + f0h +
1

2
g′0g0Z1(h)2 (9)

The higher order terms are obtained by recursion, inserting the lower order terms

in Eq. 3 and collecting the different contributions. Before we write the algorithm

at order of h2 (which is the highest order we can get recursively), let us introduce

other stochastic integrals which are relevant in the derivation. In the following, Y1

is the same stochastic variable used for Z1(h), and Y2 and Y3 are two more gaussian

stochastic variables, with average zero and standard deviation one, independent of

each other. We need

Z2(h) =

∫ h

0

Z1(s)ds = h3/2

{

Y1

2
+

Y2

2
√

3

}

Z3(h) =

∫ h

0

Z2
1 (s)ds ≈ h2

3

{

Y1
2 + Y3 +

1

2

}

For additive noise (g(x) =
√

2D), the h2 algorithm reads

x(h) = x(0) +
√

2DZ1(h) + f0h +
√

2DZ2(h)f ′
0 + DZ3(h)f ′′

0 +
h2

2
f ′
0f0 (10)



We will call this the “Full algorithm”. In the n dimensional case, for one external

stochastic forcing which is additive, i.e. for a system described by

ẋi = fi(~x) + giξ(t)

we find (defining here fi,j ≡ ∂fi/∂xj evaluated in xi(t = 0) etc., and assuming a

sum over repeated indeces)

xi(h) = xi(0) + giZ1(h) + fih + Z2(h)fi,kgk +

1

2
fi,jkgjgkZ3(h) +

1

2
h2fi,jfj . (11)

Expressions valid for the more general case can be found in 2. Other integration

schemes which can be found in the literature are (see quoted references):

Euler scheme: Eq. 10, keeping only the first three terms on the r.h.s..

“Exact propagator”: solve exactly ẋ = f(x) and then add Z1(h) to take into

account the noise.

Heun scheme: Use the following integrator:

x1 = x(0) +
√

2DZ1(h) + f0h

x(h) = x(0) +
√

2DZ1(h) +
h

2
(f0 + f(x1))

Some authors have developed Runge-Kutta schemes (see 4). We will see, however,

that the particular nature of a SDE is such that higher order schemes may not lead

to substantial improvements to the integration.

3. Which is the “best” algorithm?

The problem of the “best algorithm” for a SDE has two aspects: deterministic accu-

racy and stochastic behaviour. We depart here very much from standard textbooks

on stochastic integration. The mathematical literature on stochastic processes ((see,

among others, 8) proceeds on introducing a measure of how closely a given numer-

ical integration scheme approximates the stochastic model one is studing: to this

end, the the definitions of weak or strong convergency are introduced. Although

we refer the interested reader to any textbook on stochastic process for a formal

definition of these different convergence criteria, here we will simply say that these

criteria are based on the evaluation, in a statistical sense, of the difference between

the “true” evolution and the “simulated” evolution as function of time; this differ-

ence (which is a statistical quantity, and it is essentially the norm of the difference

between some exact moment and the corresponding evoluted moment) typically in-

creases in time, and its growth is a function of both the integration time step and

the noise intensity; the difference between strong and weak convergence is on how

the converge to the “true” evolution is evaluated. It must be appreciated that this

approach to studying the convergence is only valid for the”short times” dynamics:

although this is normally fine, it is obvious that a good behaviour at short times



does not imply anything at large times, and in particular it does not imply that

the stochastic motion generated by our algorithm faithfully samples the correct

equilibrium distribution. Here, as mentioned, a different approach will be followed:

the different schemes will be first studied in the absence of noise (“deterministic

accuracy”); and subsequently, in the presence of noise, both for short and large

times.

3.1. Deterministic accuracy

In this case, one disregards the stochastic component, and studies only the deter-

ministic integration scheme, using standard techniques. This gives some indications

of the “deterministic accuracy” of the scheme considered. In this case, the usual

machinery (used to work out accuracy, stability etc.) applies. The error associated

with a given integration scheme is easily evaluated; we find the following:

Euler scheme: accurate up to O(h).

Exact propagator: no numerical error associated with this algorithm (by defini-

tion).

Heun scheme: accurate up to O(h2).

Full algorithm: accurate up to O(h2). The “Exact propagator” is in practice

obtained using a very high order integration scheme, for instance a Runge-Kutta.

3.2. Stochastic behaviour

In this case, one can check the Taylor expansion to judge the short times dynamics.

It is clear then that the best algorithm in this time range is the “Full algorithm”,

given that it was derived as a Taylor expansion of the stochastic equations. Alterna-

tively, standard techiques mentioned previously are available: basically, even after

introducing converge in a weak or strong sense, we find that the algorithm which

has the better converge is the “Full algorithm”. Obviously, virtually all of the re-

search in stochastic integration schemes has dealt with the behaviour of the various

algorithms in this limit. Some interesting schemes can for instance be found in 9.

This latter reference does not mean to be exaustive, but simply it points to a couple

of papers where very many integration schemes are introduced and discussed.

The large times behaviour can be studied, on the other hand, deriving the

equilibrium properties from the propagator used in the numerical scheme (there

are other possibilities: for instance, one can consider which scheme is the closest

to the bona fide trajectory under some measure). We have in mind the problem

of rare large fluctuations, so, as a rule of thumb, we should use integrators which

reproduce as closely as possible the large time dynamics, i.e. same equilibrium

quantities. Focusing on the large times dynamics, the idea is to start from a generic

form of the integrator, ~x(t) = ~x(0) + ~F (~x, t), and, for instance, find the equilibrium

distribution it generates; then, compare it to the real one. It follows, writing the



propagator, that 10

P (~x, t + h) − P (~x, t) =

∞
∑

n=1

∑

xi

∂

∂x1
. . .

∂

∂xn
K1...nP (~x, t) (12)

where P (~x, t) is the probability distribution generated in the simulations, starting

from an initial P (~x, 0) and

K1...n ≡ (−1)n 1

n!
〈F1 . . . Fn〉noise.

At equilibrium, the difference on the l.h.s. in Eq. 12 is zero, and the r.h.s. of Eq. 12

becomes an implicit equations for P (x,∞)). In general, for systems in detailed

balance,

P (~x,∞)sim = P (~x,∞)true × exp

∞
∑

n=1

hnSn/D

where all Sn would be zero if the algorithm were exact. Focusing on the system

ẋ = −V ′(x) +
√

2Dξ(t)

which has the exact equilibrium distribution

P (x,∞)true = N exp {−V (x)/D}

and the actual equilibrium distribution (using the different numerical integration

schemes)

P (x,∞)sim = N ′ exp {(−V (x) + hS(h, x)) /D}.

Carrying out the necessary algebra, it is straightforward to find the function S(x)

Euler scheme: S(h, x) = (V ′)
2
/4 − DV ′′/2

Exact propagator: S(h, x) = (V ′)
2
/2 − DV ′′/2

Heun scheme: S(h, x) = O(h)

Full algorithm: S(h, x) = O(h)

The results of simulations using −V ′(x) = x − x3 are summarised in Fig. 1. It is

clear that the “Full algorithm” and the Heun scheme are the algorithms which most

faithfully reproduce the equilibrium distribution: note how they nicely reproduce

the theoretically expected equilibrium distribution. It is also interesting to note that

the “Exact propagator” does not do better than the Euler scheme: this implies that

to derive higher order algorithms it is necessary to deal with the higher order terms

coming both from the deterministic and the stochastic part of the SDE. But, as

we saw in the derivation of the “Full algorithm”, at order h2 we start to have

non gaussian stochastic variables (Z3(h)), so higher order schemes may not be well

founded. Among others, the higher order algorithms of ref. 9 do not do better

(and sometimes they do worse!) than the “Full algorithm” or the “Heun scheme”,

although they are much more expensive in terms of computing power 11.
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Fig. 1. Comparison between equilibrium distributions obtained using different integration schemes.
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4. The
√

h problem and boundaries

Regardless of the integration scheme used to carry out the integration, there is an

intrinsic problem with a SDE, due to the discreteness of the integration and to the

sampling; this is a problem present even with an ideal integrator 13,12. Fig. 2 shows

that a stochastic trajectory appears very different over different time scales (i.e.,

h’s). The problem is most acute when we need to stop the integration because a

boundary is reached (see the dashed line in Fig. 2), like, for instance, in a Mean

First Passage Time (MFPT) evaluation: the “decimated” trajectory (a trajectory

obtained integrating with a larger h) simply misses the transition. The cure is

simple: we need to evaluate the probability that the trajectory hit the boundary

and came back, within an integration time step, and thus stop the simulations.

Following 12, for a system described by the SDE

ẋ = F (x) +
√

2Dξ(t), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t − s) (13)

the probability that the stochastic trajectory, which is at x0 at time t = 0 and at

xh at t = h, hit a boundary xb at an intermediate time is given by

P (hit) = exp

[

− F ′
b

2D
(

e2hF ′

b − 1
)

(

xh − xb + (x0 − xb)e
hF ′

b − Fb

F ′
b

)2

+
1

4Dh

(

x1 −
(

x0 + h
F0 + Fh

2

))2
]

(14)

where Fb = F (xb) etc.. At each integration time step Eq. 14 is evaluated, and a

uniformly distributed random variable is generated in the range (0,1). If the random

variable is smaller that Eq 14, it is assumed that the trajectory hit the boundary



Fig. 2. Comparison between trajectories done with different time steps

and came back, and the appropriate action for reaching the boundary should be

taken.

4.1. Free diffusion with absorbing boundaries

As a test system, take a bunch of particles injected at the x = 0, which can freely

move in one dimension, until they reach the boundaries, located at ±L, where they

are absorbed 13. The ruling SDE is

ẋ =
√

2Dξ(t), 〈ξ(t)〉 = 0, 〈ξ(s)ξ(t)〉 = δ(t − s). (15)

For h = 0, the MFPT to the boundary is τ(0) = L2

2D , whereas, for a finite h, it

becomes 13

τ(h)/τ(0) = 1 +
√

32/9π
√

h/τ(0). (16)

Figure 3 shows that indeed the MFPT’s simulated without correction follow Eq. 16.

As soon as the correction for the finiteness of the integration time step is introduced,

the agreement between simulations and h = 0 theoretical MFPT becomes excellent

(lower circles). Let us stress that the integration of this dynamical system is exact,

due to the structure of Eq. 15, so the discrepancy observed for finite integration

time steps is due to the sampling.

4.2. MFPT in a bistable system

Given that the contribution to the MFPT which goes like
√

h is due to the

finiteness in the sampling of the stochastic trajectory, we expect that a similar

contribution will show up in any MFPT calculation. We plot in Fig. 4 the MFPT



Fig. 3. MFPT for a particle freely diffusing to a boundary

to escape from x = −1 to x = 0 in the system

ẋ = x − x3 +
√

2Dξ(t), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t − s). (17)

Theoretically, the MFPT in the limit of h → 0 should be

MFPT(h = 0) =
π√
2

exp

(

1

4D

)

(18)

From the figure, it is clear that the MFPT’s computed without any correction show

a square root dependence on the integration time step (best fit). However, when

the additional stochastic process to simulate the h → 0 limit is introduced, the

numerical points show no dependence on the integration time step. It is important

to appreciate that from the structure of Eq. 18 one could believe that, as D becomes

smaller, the correction to the MFPT due to the finiteness of h should become

negligible compared to the MFPT itself. Fig. 4 shows that the opposite is actually

true: MFPT’s computed for different h’s and D’s scale on the same curve, when

plotted against h/
√

D: this means that if h is kept constant, the MFPT’s simulated

without corrections differ, proportionally, more and more from the theoretical ones,

as D is made smaller. For more examples, see 12. The SDE in Eq. 17 was integrated

using the Heun algorithm. The statistical error associated with the finite number

of trajectories is order of the symbol dimensions.

5. Non white noise

So far we have considered stochastic differential equations driven by white noise.

Noise in real systems, however, is very often far from white. An interesting class of
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noise correlations is noise which can be written in terms of linearly filtered white

noise. The simplest one of these noises is the exponentially correlated gaussian noise

〈η(t)〉 = 0, 〈η(t)η(s)〉 =
D

τ
exp

(

−|t − s|
τ

)

(19)

or, in term of its spectral density,

|η̂(ω)|2 =
D

π (1 + ω2τ2)
. (20)

The variable η(t) can be written in terms of a filtered white noise as follows 14

η̇ = −1

τ
η +

√
2D

τ
ξ(t), 〈ξ(t)〉 = 0, 〈ξ(t)ξ(s)〉 = δ(t − s) (21)

Suppose we have a dynamical system driven by additive exponentially correlated

gaussian noise (ξ(t) will be the usual white gaussian noise with standard deviation

one)

ẋ = f(x) + y

ẏ = −1

τ
y +

√
2D

τ
ξ(t). (22)

We could use Eq. 11 (or any other algorithm) to integrate Eq. 22. However, if tr

is the shortest time scale of the dynamical system in Eq. 22, the integration time

step h should be chosen so that it is much smaller than both tr and τ . Now, in

cases when τ is much smaller than tr, it is clear that, making h � τ , we would be

using all the computing power to integrate the equation describing the exponentially

correlated noise, rather than the dynamical system itself.



We recall that Z1 (Eq. 5) was obtained adding up some gaussian stochastic

processes: now, the structure of Eq. 22 is such that y is itself a linear combination

of stochastic random gaussian processes (ξ(t)), via a filter with time scale τ . So,

it should be possible to use the “Full algorithm” or the Heun algorithm, but with

a somehow modified Z1(h). This idea has been exploited in 15. Eq. 22 can be

immediately integrated, to yield (exactly)

y(t) = e−
t

τ y(0) +

√
2D

τ

∫ t

0

e
s−t

τ ξ(s) ds. (23)

Let us now define some quantities which will be needed further down, namely

w0 ≡
∫ h

0

e
s−h

τ ξ(s) ds

w1 ≡
∫ h

0

∫ t

0

e
s−t

τ ξ(s) ds dt

α ≡ h

τ
.

Clearly, w0, and w1 are gaussian variables (they are linear combinations of gaussian

variables), with zero average and unknown correlations. Working out the algebra 15,

which parallels the algebra carried out to derive Z1, the result one obtains is sum-

marised in Table 1. From the table, if the correlation of w0 with w0 is needed,

Table 1. Correlations for the stochastic variables in the exponentially correlated algorithm

w0/τ1/2 w1/τ3/2

w0/τ1/2 1

2

(

1− e−2α
)

1

2

(

1− 2e−α + e−2α
)

w1/τ3/2 1

2

(

2α − 3− e−2α + 4e−α
)

taking the quantity where the row and the column labelled w0 cross, one can write

〈 w0

τ1/2

w0

τ1/2
〉 =

1

2

(

1 − e−2α
)

which yields

〈w2
0〉 =

τ

2

(

1− e−2α
)

and so on. We can now write

y(h) = y(0) +

√
2D

τ
w0

Z1(h) ≡
∫ h

0

y(s) ds = τ(1 − e−α)y(0) +

√
2D

τ
w1 (24)

and, if Y0 and Y1 are two independent gaussian variable with zero average and

standard deviation one, we can finally write

w0 =
√

〈w2
0〉Y0



w1 =
〈w0w1〉
√

〈w2
0〉

Y0 +

√

〈w2
1〉 −

〈w1w0〉2
〈w2

0〉
Y1.

In principle, we need the expressions for Z2(h) and Z3(h). Z2(h) was derived in 15:

however, it turns out that for the exponentially correlated noise case the Heun

algorithm is faster than the “Full algorithm”, and have a comparable precision.

So, it is suggested to use the Heun algorithm, integrating Eqs. 24 to get the Z1(h)

needed at each integration time step.

Another interesting correlated noise is the so caller “green noise” (see 16 for

more details and some literature). The spectral density of this noise has the form

S(ω) =
D

2π

ω2

ω2 + γ2
. (25)

Algorithms for the numerical integration in the presence of a gaussian noise of

arbitrary spectral densities are readily built through a Fourier transform (see, among

others, 22,23,4): the idea is to build the needed noisy process (call it ξ(t)) using

ξ(t) =
∑

n

anein∆ωt. (26)

With suitable choices of the coefficients an’s, any spectral distribution can be gener-

ated. It is obvious that the sequence of ξ(t) repeats itself after a time t̄ = 2π/(∆ω);

and that the generation of the sequence is normally handled via an FFT, which

means that the whole sequence is a priori generated, having extimated how long

it needs to be. In a numerical simulation, this implies that using (26) may be far

from optimal. For instance, in case of the passage time to a barrier, one would

have to generate a very long random sequence to make sure that there are enough

random terms to observe the escape, and yet, once the transition has taken place,

what is left of the sequence will have to be rejected. Clearly, this is very inefficient.

A much better approach would be to work out an algorithm to generate the noisy

sequence which is local in time, like shown before for the exponentially correlated

noise case. The characteristic of an algorithm which is local in time is that the

algorithm requires only the noise value at the previous time step (or at a small and

finite number of previous time steps) to generate the noise value for the following

time step. The stochastic differential equation which should be integrated has the

usual form

ẋ = a(x) + f(t) (27)

where a(x) is a deterministic drift, and f(t) is a stochastic random process, with

gaussian statistics, zero average and a spectral density of fluctuations of the form

(25). Eq. (25) implies that the moments of f(t), averaged over the noisy realizations

of f(t) itself, should be

〈f(t)〉 = 0 〈f(t)f(0)〉 = D
[

δ(t) − γ

2
e−γ|t|

]

. (28)



In 17 a representation was found for the green noise f(t), in the form

f(t) = ξ(t) − γe−γt

∫ t

−∞

eγsξ(s)ds (29)

where ξ(t) is a white gaussian process with moments

〈ξ(t)〉 = 0 〈ξ(t)ξ(0)〉 = Dδ(t).

We could directly integrate these equations: introducing the integration time step

h, and defining

g(t) =

∫ t

0

f(s) ds, (30)

using, for instance, the Heun scheme to step the variable x(t) from t = 0 to t = h,

one would compute

x̃ = x(0) + ha(x(0)) + g(h) x(h) =
1

2
[x̃ + x(0) + ha(x̃) + g(h)] . (31)

Although this approach is possible in principle, it is clear that it is very inefficient

from a computational point of view. First, we would be forced to store the whole

history of the process ξ; second, we would have to compute a lengthy time integral

(see Eq. (30)) at each integration time step; and third, this integration would not be

local in time. We note, to derive an algorithm which is local in time and paralleling

the derivation for exponentially correlated noise, that the (stochastic) variable g(t) is

a linear combination of stochastic variables, so that we could approach the problem

in a different way: instead of using the stochastic process g(t), defined in (30), we

could replace it with an appropriate surrogate stochastic process, characterized by

the same statistics and correlation functions.

Let us introduce the quantities

I(t′) = e−γt′
∫ t′

−∞

eγsξ(s)ds (32)

and the stochastic integrals

Z0(t) =

∫ t

0

ξ(s) ds

W0(t) =

∫ t

0

eγ(s−t)ξ(s) ds (33)

W1(t) =

∫ t

0

W0(s) ds

It follows that

I(t′) = e−γt′
∫ t′

−∞

eγsξ(s) ds = e−γt′

(

∫ 0

−∞

eγsξ(s) ds +

∫ t′

0

eγsξ(s) ds

)

= e−γt′I(0) + W0(t
′). (34)



Recalling that in the Heun step we need to evaluate g(h), we start rewriting

g(t) =

∫ t

0

f(t′) dt′ =

∫ t

0

ξ(t′) dt′ − γ

∫ t

0

(

e−γt′
∫ t′

−∞

eγsξ(s) ds

)

dt′

= Z0(t) − γ

∫ t

0

(

e−γt′I(0) + W0(t
′)
)

dt′ (35)

By integration, we readily obtain

g(t) = Z0(t) +
(

e−γt − 1
)

I(0) − γW1(t) (36)

It should be clear how to carry out the integration: at each time step one uses

(34) and (36) to generate the appropriate random variables, which are in turn used

in (31) to step the equation forward. At each time step, the previously computed

x(h) and I(h) become the new x(0) and I(0), respectively, and so on.

It should be appreciated that the memory of the stochastic process is basically

restricted to the term I(0): the quantities W0(t
′) and W1(t) are independent of

the previous history of the stochastic process. The whole problem is to find a

suitable representation of the stochastic integrals in (34), because clearly the various

quantities are not independent of each other.

To find a representation of the stochastic integrals (34), we note first that they

are linear combinations of gaussian variables, hence they can be represented via a

suitable set of random numbers extracted from gaussian distributions of appropriate

averages and standard deviations. This makes the problem much simpler to deal

with. We only need to specify the first and second moments of these variables,

and we should be able to easily generate them. Let us briefly show how to carry

out the calculations, which parallels the similar calculations shown above for the

exponentially correlated noise case, looking at the second moment of the variable

Z0(t). We have, using 〈〉 to indicate averages taken over the noise realizations and

recalling the definition of Z0(t) and the statistical properties of the process ξ(t),

〈Z0(t)
2〉 = 〈

∫ t

0

∫ t

0

ξ(s)ξ(s′) ds ds′〉 =

∫ t

0

∫ t

0

Dδ(s − s′) ds ds′ = Dt

. It is clear by inspection that all stochastic integrals appearing in (34) have zero

average. Their second moments are (we will omit to write the time dependence to

keep the notation simple, and assume that t = h)

〈Z2
0 〉 = Dh

〈W 2
0 〉 =

D

2γ

[

1 − e−2γh
]

〈W 2
1 〉 =

D

2γ3

[

2γh − 3 + 4e−γh − e−2γh
]



〈Z0W0〉 =
D

γ

[

1 − e−γh
]

〈Z0W1〉 =
D

γ2

[

γh − 1 + e−γh
]

〈W0W1〉 =
D

2γ2

[

1 − 2e−γh + e−2γh
]

(37)

Suppose that Y0, Y1 and Y2 are random gaussian variables of zero averages and

standard deviation one, independent of each other, we can represent the stochastic

integrals of (34) as

Z0(h) =
√

〈Z2
0 〉Y0

W0(h) = b0Y0 + b1Y1

W1(h) = c0Y0 + c1Y1 + c2Y2. (38)

The coefficients appearing in (38) are easily obtained by combining the various

quantities appearing in (38), with the help of (37): for example, if we wanted to

work out the value for b0, we would consider

〈W0(h)Z0(h)〉 =
D

γ

[

1 − e−γh
]

= 〈(b0Y0 + b1Y1)
√

〈Z2
0 〉Y0〉 = b0

√

〈Z2
0 〉

and so on.

The analytic expressions for the constants appearing in (38) are cumbersome,

and we will not write them here: it is clearly very easy to numerically compute

them, given (38) and (37).
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Fig. 5. Spectral density of fluctuations for the quantity ġ(t) = f(t), obtained using Eq. (36), for
D = 2π and γ = 10.0 (left), and 0.1 (right). Smooth line: theory (Eq. (25)), jagged line: simulated
spectral densities. Note that the agreement between simulation and theory at small frequencies is
very good, and that the simulated spectral density does go to a constant for larger frequencies.



Fig. 5 shows that the noise generated using the proposed algorithm has the

spectral density (25). Eq. (25) refers to f(t), whereas any integration scheme (like

the Heun scheme) requires g(t). Hence, we really generated g(t), differentiated it

(computing (g(t + h)− g(t))/h), and finally compute the spectral density of fluctu-

ations of the time series obtained. In Figure 5 there are no adjustable parameters.

The agreement between generated spectral density of fluctuations and theory is

extremely good.

Other noise spectral densities were considered in 20,21. For general algorithms

and further comments, see also 4,22,23.

6. Random number generators

It should be born in mind in the integration of a SDE that a good pseudo ran-

dom number generator is more important than an efficient integration algorithm.

So, particular care must be taken when implementing the code, and the literature

should be searched for good generators. There are classical algorithms, like the Box-

Muller algorithm 24, to obtain gaussian random variables from uniformly distributed

generators; an interesting rejection algorithm (which is faster than the Box-Muller)

is the Ziggurath algorithm 25. Algorithms based on adding a number of uniformly

distributed random numbers to obtain a gaussian random number via the central

limit theorem should be avoided: they are slower than the Box-Muller, and the

generated distribution of random numbers shows a clear cutoff in the tails. There

are a number of algorithms to generate a uniformly distributed pseudo random

number. The state of art seems to be algorithms based on the so called subtract

and carry 26,27 or add and carry 28 algorithms: given their characteristics, these

algorithms are particularly well suited in the simulation of rare fluctuations.

7. Conclusions

We have discussed the possibility to have integrators for SDE which are able to

reproduce the equilibrium properties of a dynamical system to a high accuracy in

the integration time step: such integrators are ideal for studying the long times

dynamics of phenomena like a large rare fluctuation. We have shown that it is

possible to simulate properties of a zero integration time step process, which implies

that we are able to determine with high accuracy when a stochastic trajectory

reaches a given threshold. Dedicated algorithms can be derived in case of noise

which is filtered through a n poles filter or, more generally, given in terms of linear

combination of gaussian noises, speeding up the simulation for these special cases.

Finally, some indications as to pseudo random number generators suitable for the

case at hand have been given.
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