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Field-Induced Stabilization of Activation Processes
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An investigation of the noise activated escape from a metastable state and between attractors in
bistable system has been undertaken. It is demonstrated, both theoretically and by means of dig
simulations, that the application of an external time-periodic field can lead to a significant increase i
the lifetime (averaged over one period of the field) of a metastable state and in the residence time
a bistable system. In particular, it is shown that these characteristic times can be increased beyond
inverse Kramers rate calculated in the absence of the field. This effect is observed when the frequen
of the external field is smaller than the unperturbed Kramers rate. [S0031-9007(98)06182-1]
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Thermal and stochastic activation processes are of c
siderable importance in many branches of the physic
sciences and, as such, have been the focus of many theo
ical studies [1,2]. Of particular importance in this contex
is the role of internal fluctuations of the system. The or
gins of internal fluctuations (noise) are numerous, althou
typically thermal in origin, but their effect in multistable
systems is similar—they impose a lower bound on the s
bility of the system. In many cases it is either very di
ficult or fundamentally impossible to remove the sourc
of internal noise—it is an intrinsic feature of the system
The stability (and hence the utility) of systems such
Josephson junctions, lasers, and semiconductor devices
all affected by the level of their internal noise and othe
systems, most notably chemical reactions, are driven
internal fluctuations. The ability to control the affect o
these fluctuations is therefore of some importance.

In this Letter, we discuss a novel field induced effe
that results in a net stabilization of metastable an
bistable systems against fluctuations. Although therm
and stochastic activation processes occur in a dive
range of physical systems, they can generally be trea
as the escape of a Brownian particle over a potent
barrier. Therefore, it is hoped that the simple Brownia
systems studied below, and the subsequent analysis,
have some generality.
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For a Brownian particle the escape rate out of
metastable potential in the low temperature limit is give
by Kramers rate [1]W0 , exps2DEyDd, where DE
is the characteristic activation energy. The quantityD
is related to the temperature through the Boltzma
constantkB, but can more generally be thought of a
a quantity which parametrizes the noise intensity
the system. A measure of the average lifetime of t
state is given byW21

0 . For a system in equilibrium
(or quasiequilibrium within one well) this quantity is o
fundamental importance as it gives a measure of the lo
time stability of the system.

Recently, there has been a lot of interest in the dyna
ics of such systems in the presence of an additional
riodic driving field [3,4]. The most widely studied cas
is for bistable systems which have been studied ext
sively in connection with the phenomenon of stochas
resonance [5]. The frequency of the driving field is ofte
assumed to be small compared to the inverse relaxa
time, t

21
rel , within one of the potential wells. This adia

batic approximation ensures that the system is in therm
equilibrium within one of the potential wells, and henc
the escape rate out of the well, at any instant of time,
still given by Kramers rate.

The external field, which is modeled as an ext
additive time-periodic force, can be viewed as givin
© 1998 The American Physical Society 4835
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rise to a slow modulation of the potential barrier heig
(activation energy), resulting in the modulation of th
escape rates. Consequently, the system is more lik
to make a transition when the Kramers rate is at
maximum—that is, when the potential barrier height is
its minimum. The larger the amplitude of the modulatio
the shallower the minimum potential well depth become
and the greater the probability of escape. An increase
the magnitude of the external field is therefore expect
to lead to an increase in the number of transitions that
made between the two wells, and hence to a reduct
in the time the particle is resident in each well. Th
simple intuitive picture has been used extensively
explain the phenomenon of stochastic resonance. Sim
arguments can also be applied to the case of a metast
state, and, consequently, one would generally expect
enhancement of the escape rate with increasing fi
strength in this case too.

However, it is important to note that the above arg
ments work only within a specific range of time scale
In general, they are valid whenT ø W21

0 , whereT is the
period of the external force. If this is not the case, th
transitions can occur with significant probability at poin
other than when the potential well depth is at its minimu
and, in general, escape events occur at a faster rate
the external forcing frequency. Although a strong sy
chronization of the response to that of the driving field
not possible in this regime, we will show that the field ca
still exert sufficient influence to increase the characteris
lifetime (or residence time) of these systems beyond t
of the inverse Kramers rate.

We will now discuss the metastable case in detail. F
this case, as all cases discussed below, we will assu
that the frequency of the external forcing is sufficient
small that the adiabatic approximation is valid. Th
lifetime of the metastable state can be characterized
terms of the mean first passage time,TMFPT, for the
particle to escape from the well. However, because
the presence of the external field—which will be taken
be A cossVt 1 ud—the MFPT will depend on the initial
phase,u, of the field. The MFPT is obtained from the firs
moment of the escape time distribution2 Ùwst, ud, where
wst, ud is the well population, and can easily be shown
be given by

TMFPTsud 
Z `

0
wst, ud dt . (1)

The well population can be calculated from the ra
equation Ùwst, ud  2Wst, udwst, ud, where W st, ud is
the time dependent Kramers rate. The exact form
W st, ud will depend on the detail of the system unde
investigation, but can be obtained by calculating the tim
dependence of the potential barrier height. How the init
phase is taken into account depends on how the field
applied and how the ensemble of states is formed. O
can envisage two different situations. First, the situati
4836
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where the metastable state already exists when the fi
is applied—in this case the phase is known and can
treated as a parameter; or second, the case where
metastable state is created in the presence of the fie
Given that the creation of a metastable state can
regarded as a random event, the phase of the field att  0
(time of creation of state) is not known. We will conside
the second of these two cases, although the analysis
known phase follows exactly the same methodology. W
will further assume that the state is not created at a
preferential phase. With these considerations in mind t
average lifetimekTMFPTlu is found by averaging over the
initial random phase

kTMFPTlu 
1

2p

Z 2p

0
TMFPTsud du . (2)

In the absence of the external field the Kramers ra
W0  T 21

MFPT. Therefore, it is useful to introduce a rate
W  kTMFPTl21

u so that the affect of the field can
be studied by direct comparison to the Kramers ra
calculated in the absence of the field. We will refer t
W as the field-induced decay rate (FIDR) to distinguis
it from the standard “escape rate,” as this term is usua
reserved to describe the time dependent Kramers ra
It should be noted that our definition of a FIDR is no
unique. In principle, one could take the phase avera
of the Kramers rate instead of the MFPT to give
quantity kW lu and define this to be the FIDR. However
the stability of a metastable state is characterized by
lifetime. Generally, the quantitykW l21

u is not equal to the
lifetime of the state. To illustrate this point, Fig. 1 show
the metastable decay of the population,pstd  kwstdlu ,
from one of the wells of the bistable system introduce
below. Because of the affect of the field, the relaxatio
is nonexponential. For comparison, the approximation
given by the solution ofÙwstd  2W wstd are shown.
The dashed line was calculated using the definitio

1.0

0.5

0.0

ρ(t)

6543210

t Ω

FIG. 1. The metastable decay of the phase averaged popu
tion from one of the wells of the quartic bistable potential fo
an external field strength of 0.2 and frequency1024. The solid
line is the actual relaxation calculated numerically; the dash
line and dotted lines are exponential approximations based
the phase averaged MFPT and Kramers rate, respectively.
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W  kTMFPTl21
u and the dotted line usingW  kW lu.

Clearly, because of the highly nonexponential nature
the relaxation, neither of these two curves yields a go
approximation, but it is important to note that the escap
distribution derived from the dashed line does give th
correct first moment, i.e., it gives the correct lifetime
of the state. This is to be contrasted with the seco
approximation which underestimates the lifetime by a fe
orders of magnitude. We do not believe that, in gener
kW lu offers a useful physical characterization of the deca
process over the whole frequency range of the extern
field. Although, if the probability of escape per cycle is
sufficiently small, thenkW lu , kTMFPTl21

u and therefore,
in this limit, it once again gives a good approximation t
the lifetime.

To illustrate the above arguments, we will now
study the specific case of the quartic bistable potenti
V sxd  2x2y2 1 x4y4, by considering the decay of the
population of one of the wells. The system is prepare
at t  0 with one of the wells fully populated and with
a random initial phase. It is further assumed that aft
escape the particle is removed from the system, i.
there exists an absorbing boundary—this ensures we
considering the metastable properties of the well. Th
calculation is greatly simplified if one considers the stron
adiabatic limit which requiresV ø Wmin, where Wmin
is the minimum Kramers rate attained during one forcin
cycle. Within this approximation, the time dependence
the Kramers rate becomes negligible and integrals (1),
can be solved by a steepest descent method in the li
AyD ¿ 1, yielding

W  Wmin

s
2pAs1 1 3Ay2d

D
. (3)

Given that to second order inA, Wmin  W0 expf2As1 1

3Ay4dyDg, Eq. (3) predicts an exponentially large de
crease inW in comparison toW0, and consequently, the
FIDR has been reduced to below that of the Kramers ra
The lifetime of the metastable state has been considera
increased by the action of the field, and hence the syst
has experienced a net increase in stability.

We now show that this result is not restricted t
metastable states by considering steady state switch
between attractors in the quartic bistable potential.
useful way of characterizing the dynamics is in terms o
the residence time—that is, the average time the syst
spends in each well. For the symmetric bistable syste
studied here, the residence time,Tres, is obviously the
same for both wells and, in the absence of an extern
field, is given by Tres  W21

0 . We therefore have a
similar result as for the metastable case, and it is aga
useful to introduce the concept of a rateW  T21

res .
Physically,W can be interpreted as the total probabilit
current across the potential barrier, i.e., it is the actu
rate at which particles make a transition from one we
to the other—again this should not be confused with th
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Kramers rate. It is possible to use the same procedure f
calculating the residence time as was used for calculatin
the lifetime of a metastable state (although one mus
now average the initial phase over the equilibrium phas
distribution). However, it is easier to calculateW
directly in terms of the total probability current across the
barrier, which can be written as

W 
1
T

Z T

0
fw1stdW12std 1 w2stdW21stdg dt , (4)

where w1std, w2std are the equilibrium well populations
and W12std, W21std are the instantaneous Kramers rates
from well 1 ! 2 and from 2 ! 1, respectively. Physi-
cally, the quantitieswnWnm represent the average number
of transition made per unit time from welln ! m.

The well populations are governed by the rate equatio
[6],

Ùw1  2fW12std 1 W21stdgw1 1 W21std , (5)

andw1 1 w2  1. When the period of the drive is much
longer than any other time scale in the system, it ca
easily be shown that

W 
2
T

Z T

0

W12stdW21std
W12std 1 W21std

dt . (6)

For the specific case of the quartic double well system
the integral can be evaluated analytically in the paramet
range AyD ¿ 1 and for not too largeA. Using the
expressions forWnm given in [7] we find by a steepest
descent method,

W ø
D
A

W0 . (7)

This result not only predicts a field induced reduction o
the total probability current, but also that the rate will
be reduced tobelow the Kramers rate calculated in the
absence of the field. Again, this can be interpreted as
net stabilization of the system, with the residence tim
being increased by a factorAyD by the action of the field.

It is interesting to note that the influence of the field
is not as strong for the bistable system. The differenc
between these two cases can be easily understood
considering the dynamics within their strong adiabatic
approximations and largeAyD. For the metastable state
the largest MFPT is attained when the potential wel
depth is at its maximum. Consequently, when computin
kTMFPTlu, it is these times which dominate the average
and thereforeW is of the order ofWmin. This is quite
different from what occurs in the bistable case. At low
frequencies the bistable system can always be regarded
being in equilibrium; that is, there is nonet probability
current across the barrier. ForAyD ¿ 1, the dynamics
are dominated by the deepest potential well which i
occupied with a probability close to unity. Only when the
well depths are approximately equal, which occurs ove
4837
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FIG. 2. Plot of W against AyD for D  0.03 and V 
1026. The data points are the results of the digital simulatio
and the solid and dashed lines are theoretical results based
Eqs. (6) and (7), respectively.

a time intervaldt, can the population switch to the othe
well—these transitions occur at the equilibrium rateW0.
Consequently, the transition rate averaged over the wh
of the cycle is of the order ofW0dtyT .

These theoretical results have been tested against dig
simulations using the algorithm described in [8]. A
comparison between the simulation and theoretical resu
for the bistable case is shown in Fig. 2. This figur
shows the dependence ofW on the parameterAyD. It
is important to note that these results were obtained
fixing D and increasingA. The quantityAyD only acts
as a scaling parameter over the range of validity of th
steepest descent calculations and not for all values ofA
andD.

It can be seen that there is excellent agreement betwe
the numerical solution of Eq. (6) (solid line) and the
simulation results (circles). The steepest descent res
(7) (dashed line) is also verified for a large range ofAyD.
These results confirm our predictions and indicate that t
application of an external field can be to lead to a n
stabilization of the system.

In Fig. 3 the dependence ofW on V is plotted for both
the metastable and bistable cases. Considering first
simulation results for the bistable case (circles), it can
seen that forV , W0, where the value ofW0 is indicated
by the horizontal short-dashed line,W quickly tends
to its asymptotic value. AsV increases,W increases
rapidly and is seen to be in good agreement with th
relation

W 
V

p
tanh

∑
1
2

Z T

0
Wnm dt

∏
, (8)

which was obtained by calculating the residence tim
from the residence time distribution (see Eq. 27 in [7
in the parameter rangeAyD ¿ 1. The calculation is
based on an adiabatic approximation and therefore bre
down whenV , t

21
rel . The adiabatic results predict tha

W reaches a constant finite value at high frequenci
4838
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FIG. 3. Plot ofW versusV for A  0.2 andD  0.03. The
circular data points are the results of the digital simulation fo
the bistable case and the squares are for the metastable s
The long-dashed lines are the predicted asymptotic values
the two cases. The solid lines are given by Eq. (8) (bistabl
and the numerical evaluation of Eqs. (1) and (2) (metastabl
The short-dash line indicates the value ofW0.

(indicated by the dashed continuation of the solid curve
whereas, in practice,W should tend toW0.

The simulation results for the metastable state (squar
are seen to follow closely those of the bistable case
the parameter rangeV . W0. The main difference is
observed in the limitV ! 0. In this limit a smaller
asymptotic value is reached than for the bistable case. T
value is accurately predicted by Eq. (3), which is shown b
the long-dashed line. As predicted, the stabilization effe
is much stronger for the metastable state.

The results presented in Fig. 3 illustrate nicely the di
ferent time scales involved in these systems and ho
when these time scales are sufficiently well separate
analytical results can be obtained. However, more impo
tantly, the results illustrate how the stability of these sys
tems can be controlled by simply adjusting the frequenc
of the external field. Both enhancements and reductio
in the characteristic rates are observed.

In conclusion, we would like to suggest that these re
sults may have a practical use for the control of activa
tion type processes in metastable and bistable system
Possible applications are the control of reaction rat
in chemical processes and the stabilization of SQUID
against internal fluctuations.
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