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ABSTRACTELECTROWEAK STRUCTURE OF THREE-AND FOUR-BODY NUCLEILaura Elisa MaruiOld Dominion University, 2002Diretor: Dr. Roo ShiavillaThis work reports results for (i) the elasti eletromagneti form fators of the trin-uleons; (ii) the nulear response funtions of interest in ~3He(~e; e0) experiments, atexitation energies below the deuteron breakup threshold; (iii) the astrophysialS-fator for proton weak apture on 3He (the hep reation). The initial and �nalstate wave funtions are alulated using the orrelated hyperspherial harmonismethod, from a realisti Hamiltonian onsisting of the Argonne v18 two-nuleonand Urbana IX three-nuleon interations. The nulear eletroweak harge andurrent operators inlude one- and many-body omponents. The predited mag-neti form fator of 3H, harge form fators and stati properties of both 3H and3He, are in satisfatory agreement with the experimental data. However, the po-sition of the zero in the magneti form fator of 3He is underpredited by theory.The alulated nulear response funtions in 3He eletrodisintegration at thresh-old are in good agreement with the experimental data, whih have however ratherlarge errors. Finally, the astrophysial S-fator for the hep reation is predited' 4.5 larger than the value adopted in the standard-solar-model, with importantonsequenes for the solar neutrino spetrum measured by the Super-Kamiokandeollaboration.
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Chapter 1IntrodutionIn a non-relativisti approah to the study of the struture and dynamis of few-body nulei, these are seen as systems of partiles, the nuleons, interating amongthemselves and, eventually, with external eletroweak probes1. Although basedon a very simple and old idea, this approah has quite a remarkable suess indesribing many nulear properties [1℄. The �rst ondition for suh a suessis the development of aurate models for the interation among the nuleonsin a nuleus. The nulear Hamiltonian is written as sum of a non-relativistikineti energy term and two- and three-nuleon interations. The main featuresof the nuleon-nuleon (NN) interation are a long-range part due to one-pion-exhange (OPE), an intermediate-range attration and a short-range repulsion.While the OPE long-range part is well known, the more ompliated intermediate-and short-range omponents an be either modelled using heavy-meson-exhangemehanisms (like in the CD Bonn interation [2℄), or parametrized in terms ofsuitable funtions and operators (like in the Argonne v18 (AV18) interation [3℄).The oupling onstants and uto� masses at the mesoni verties in the �rstase, or the funtion parameters in the seond ase are then determined by �ttingthe large body of NN experimental data, not only deuteron properties, but alsopp and np sattering data at laboratory energies below ' 400 MeV, where thesattering is predominantly elasti. The AV18 and CD Bonn interations are1The journal model for this thesis is Physial Review C1



CHAPTER 1. INTRODUCTION 2able to desribe the NN database with a �2 per datum of almost 1. A nulearHamiltonian whih inludes only two-nuleon interation is however unable toreprodue the low-lying energy spetra of nulei with A � 8 [4, 5℄. A possiblesolution to this problem is to go beyond two-nuleon interations and introduethree-nuleon interations. A way of onstruting these three-nuleon interationsmakes them arise from the internal struture of the nuleon. The long-range partof the interation an be obtained with the following mehanism: the exhangedpion between two nuleons exites one of them into its lowest exited state, the�-resonane. The �-resonane an then deay again into a nuleon, exhanging apion with a third nuleon. In the Urbana-type models (for instane, the Urbana IX(UIX) [6℄), the long-range part is given by this two-pion-exhange three-nuleoninteration, while the short-range part is onstruted in a pure phenomenologialway. The strengths of the long- and short-range omponents of the interationare then �tted to reprodue the experimental values of the 3H binding energy andnulear matter equilibrium density. The full non-relativisti nulear HamiltonianAV18/UIX has then been found able to desribe with good auray the low-lyingenergy spetra of systems with A � 8 [4, 5℄. These models for the two- and three-nuleon interations, their derivation and their expliit expressions, are brieyreviewed in Chapter 2.The strong orrelations between the nuleon spatial and internal degrees offreedom (spin and isospin) indued by the nulear interation make the solutionof the Shr�odinger equation a hallenging task, even for the three- and four-bodynulei. However, the reent remarkable progress in both methods and omputa-tional failities now allow us to make reliable alulations for ground and satteringstates of light nulei. We have onsidered in partiular the so-alled orrelatedhyperspherial harmonis (CHH) method [7, 8, 9, 10, 11℄. The wave funtion isexpanded on a basis of hyperspherial harmoni funtions, multiplied by appro-priate orrelation fators, whih are introdued to aount for the orrelationsindued by the NN interation. Appropriate variational priniples are then ap-plied to obtain the unknown oeÆients of the expansion. Although variational,and in priniple limited by the maximum number of basis funtions inluded in the



CHAPTER 1. INTRODUCTION 3expansion, the CHH method has ahieved high auray in desribing the three-and four-body bound and sattering states. We review the method in Chapter 3.The approah desribed so-far would be interesting, but of rather limited util-ity, if it ould be tested only omparing the theoretial and experimental bindingenergies of few-body nulei. In fat, many experimental results are available over awide range of energies, from the few keV of astrophysial interest to the hundredsof MeV measured in eletron-sattering experiments. Sine in these proesses nu-lei interat with external eletroweak probes, it is neessary to develop realistimodels for the nulear urrent and harge operators. In fat, the onstrutionof suh models has proven to be essential in the study of low-energy eletroweakproesses [1℄. In our model, the nulear transition operator onsists of one- andmany-body omponents. The one-body term, the so-alled \impulse approxi-mation", arises in the simplest piture in whih the eletroweak probe interatswith the individual protons and neutrons inside the nuleus. This is, however,ertainly inomplete: as disussed above, the nulear interation is mediated, atlong-range, by pion-exhange and seems to be rather well reprodued even atintermediate- and short-range by heavy-meson exhanges. These exhanged par-tiles an themselves interat with the external eletroweak probe, and this leadsto the introdution of many-body urrents. In the eletromagneti ase, the lead-ing two-body terms of the urrent operator are required by gauge invariane, andan be linked to the model of the NN interation by the ontinuity equation.Construting these terms to expliitly satisfy urrent onservation with the givenNN interation leaves no free parameters in their expressions. In the weak ase,instead, the axial urrent operator is not onserved and, as suh, is inherentlymodel dependent. This model dependene of its many-body omponents an beredued by onstraining them to reprodue measured weak transitions, for exam-ple by �tting the Gamow-Teller matrix element in tritium �-deay [12℄. Finally, animportant aspet of the urrent is that the external eletroweak probe an exitethe internal degrees of freedom of the nuleon, spei�ally its lowest exitation,the �-resonane. Our approah has been extended to inlude these additionalontributions arising from �-exitation [13, 14℄, onsistently with the model for



CHAPTER 1. INTRODUCTION 4the long-range part of the three-nuleon interation. These �-ontributions havebeen found rather small in the eletromagneti ase [13℄, but very important inweak proesses [12, 14℄. The model for the nulear transition operator is reviewedin Chapter 4.Within this approah, we have investigated three proesses: elasti eletron-sattering from 3H and 3He [13℄, eletrodisintegration of 3He at threshold [15℄,and p 3He weak apture reation [14, 16℄. For the �rst proess, there is a largebody of experimental results, and a thorough omparison between theory andexperiment an highlight what, in our approah, needs to be improved and re�ned.We have alulated the trinuleon form fators on a wide range of momentumtransfer q (from 0 up to 7 fm�1), and stati properties like magneti moments,and magneti and harge radii. While the 3H and 3He harge form fators andstati properties, and the 3H magneti form fator are quite well reprodued, ouralulation fails to predit the 3He magneti form fator in the �rst di�rationregion (q � 3 � 4 fm�1). This disrepany persists even in the more re�nedpiture of the nuleus, where �-isobar degrees of freedom are inluded. Thishas led, on the theoretial side, to speulations about the need of a more re�nedmodel for the three-nuleon interation, and, on the experimental side, to planfor new more aurate measurements of the 3He magneti form fator at q � 3fm�1 [17℄. These results for the trinuleon elasti form fators are presented inChapter 5, together with de�nitions for the observables of interest and details ofthe alulation.A omparison between theory and experiment an also be performed in thease of the threshold eletrodisintegration of 3He [15℄, although here the avail-able experimental results have rather large errors. Generally, good agreementhas been found between measured and alulated observables, when both one-and two-body ontributions are inluded in the eletromagneti harge and ur-rent operators. Indeed, the alulation in impulse approximation fails ompletelyto reprodue the experimental results, further reemphasizing the importane ofinluding many-body ontributions in the transition operators. We review thisalulation in Chapter 6.



CHAPTER 1. INTRODUCTION 5Unlike the above proesses, there are no diret experimental results for thep 3He weak apture reation, known also as the hep reation{the hep ross setionis too small to be measured experimentally. However, there has been reentlya revival of interest in this proess [18, 19, 20, 21, 22℄, spurred by the Super-Kamiokande (SK) measurement of the energy spetrum of eletrons reoiling fromsattering with solar neutrinos [23℄. Over most of the spetrum, a suppression' 0:5 is observed relative to the standard-solar-model (SSM) preditions [24℄.Above 14 MeV, however, there is an apparent exess of events. The hep proessis the only soure of solar neutrinos with energies larger than about 15 MeV{theirend-point energy is about 19 MeV. The disrepanies between the measured spe-trum and SSM preditions have led to question the reliability of the alulationsfrom whih the SSM derives its hep neutrino ux estimate [25℄. The alulationof the hep reation is rather deliate, sine the S-wave apture indued by theone-body axial urrent is suppressed, and onsequently many-body axial urrentsand P-wave ontributions are highly enhaned. Within the approah desribedso-far, we have performed a alulation of the hep reation, using aurate CHHwave funtions, obtained from the AV18/UIX Hamiltonian model, and inludingall possible transitions between the S- and P-wave initial state apture hannelsand the 4He �nal state. The hief onlusion of this study [14, 16℄ is that thehep reation ross setion is enhaned by a fator of ' 4:5 respet to the SSMpredition, and 40 % of the total alulated value arises from the P-wave ontri-butions, whih were negleted, or at least not suÆiently appreiated, in previousstudies [21, 25℄. The main aspets of this alulation, together with a disussionof the results and their impliations, are given in Chapter 7. Conlusions and �nalremarks are given in Chapter 8.



Chapter 2The Nulear InterationIn the simplest piture, the nuleus is onsidered as a system of interating neu-trons and protons. In a non-relativisti framework, the Hamiltonian is given by:H =Xi p2i2m +Xi<j vij + Xi<j<kVijk + � � � ; (1)where the nuleons interat via two-, three-, and possibly many-body interations.In this Chapter we briey desribe some of the dominant features of the two- andthree-nuleon potential models, fousing on the Argonne v14 [26℄ and v18 [3℄ two-nuleon and Urbana VIII [27℄ and IX [6℄ three-nuleon interations.2.1 Two-Nuleon InterationsThe two-nuleon (NN) interation has an extraordinarily rih struture, as hasbeen reognized for quite a long time. It is desribed in terms of the nuleon'sspin (12�) and isospin (12� ), where both � and � are Pauli matries. The formervariable represents the intrinsi angular momentum (spin) of the nuleon, whilethe latter is a onvenient representation for its two harge states{the proton andneutron. The generalized Pauli priniple in this framework requires that two-nuleon states be antisymmetri with respet to the simultaneous exhange ofthe nuleons' spae, spin, and isospin oordinates. The main part of the NNinteration is isospin-onserving and an be written as linear ombinations of6



CHAPTER 2. THE NUCLEAR INTERACTION 7omponents proportional to the two isosalars, 1 and � i � � j. However, isospin-symmetry-breaking terms are also present in the NN interation: in fat, theyare neessary to reprodue with good auray simultaneously both pp and nplow-energy sattering data. We will return to this point later.It is well known that the long-range omponent of the NN interation is dueto one-pion-exhange (OPE). If isospin-symmetry-breaking terms are ignored, itis given, at long distanes, by:vOPEij = f 2�NN4� m�3 "Y�(rij)�i � �j + T�(rij)Sij#� i � � j; (2)Y�(rij) = e�m�rijm�rij (3)T�(rij) = "1 + 3m�rij + 3(m�rij)2# e�m�rijm�rij ; (4)where m� is the mass of the exhanged pion, f�NN is the �NN oupling onstantand Sij � 3 �i � r̂ij�j � r̂ij � �i � �j (5)is the tensor operator, r̂ij being the relative distane between partiles i and j.At distanes omparable to the inverse pion mass (1=m� � 1:4 fm), OPE leadsto a large tensor omponent in the NN interation. In nulear systems, then, thespatial and spin degrees of freedom are strongly orrelated, and hene nulear few-and many-body problems an be quite di�erent from systems where the dominantinteration is independent of the partiles internal quantum numbers (spin andisospin), suh as the Coulomb interation in atomi and moleular problems.At moderate and short distanes, the NN interation is muh more ompli-ated. In this region, heavy-meson-exhanges and/or subnuleoni degrees of free-dom all play a role, and the interation models an be quite di�erent, ranging fromone-boson-exhange (OBE) models to models with expliit two-pion-exhanges(TPE) to purely phenomenologial parametrizations. The models are then �t toreprodue the available NN experimental data. The Argonne v14 [26℄ interationmodel (AV14), in partiular, falls in the last ategory of purely phenomenologial



CHAPTER 2. THE NUCLEAR INTERACTION 8parametrization and is parametrized as:vij(r) =Xp [vOPEp (r) + vIp(r) + vSp (r)℄Opij ; (6)where Opij is the set of 14 operators given byOpij = h1; �i � �j ; Sij ; (L � S)ij ; L2ij ; L2ij�i � �j ; (L � S)2iji
 [1; � i � � j℄ : (7)Here L is the relative orbital angular momentum and S the spin of the pair. The�rst eight of these operators (those not involving two powers of the momentum) areunique, in the sense that all suh operators are impliitly ontained in any realistiNN interation model. The primary motivation for the hoie of the higher-orderterms is onveniene in few- and many-body alulations: for example, the L2terms do not ontribute in relative S-waves. This set of 14 operators providesuÆient freedom to �t the phase-shift and mixing angle parameters of the 14singlet and triplet relative S-, P-, D- and F-waves.The three radial funtions of Eq. (6) are the long-range OPE part and theintermediate- and short-range parts vIp(r) and vSp (r). The vOPEp (r) funtion on-tributes only for the operators[�i � �j ; Sij ℄
 � i � � j (8)as disussed above, and it is given by Eqs. (2){(4), where Y� and T� are alulatedusing f 2�NN=4� = 0:081 (for the AV14) and are multiplied by smooth Gaussianuto�s that make them vanish at r = 0. The vIp(r) are parametrized as funtionsproportional to T 2� , de�ned in Eqs. (2)-(4), and onsequently of two-pion-exhangerange. The vSp (r) are short-range Woods-Saxon funtions. The parameters ofthe Woods-Saxon funtions, as well as the oeÆient for vIp(r), are adjusted toreprodue the deuteron properties and np sattering data up to 400 MeV.Before the early nineties, all the di�erent NN interation models, the AV14as well as the available models based on OBE or TPE mehanisms, produed aqualitatively similar piture of the NN interation, onsisting of OPE at longrange, an intermediate-range attration and a short-range repulsion. However,



CHAPTER 2. THE NUCLEAR INTERACTION 9quantitatively, all these models were somewhat di�erent. There were several rea-sons for this, hief among them was that they were in fat not all �t to the samedata set. For example, models �t to np data, like the AV14, did not preisely �tthe experimental pp data if only eletromagneti orretions were introdued.When in the early nineties high quality phase shift analyses of the pp andnp data beame available from the Nijmegen and VPI groups [28, 29, 30, 31, 32,33, 34℄, several new NN interation models were onstruted to reprodue thisimproved experimental database. As most important onsequene, all the newgenerationNN interation models whih are still in use today give a quantitativelysimilar piture of the NN interation.Among these new models, the Argonne v18 (AV18) interation [3℄ follows basi-ally along the lines of its predeessor, the AV14. In fat, it an be expressed as thesum of a harge-independent (CI) and a harge-symmetry-breaking (CSB) part.The former has the same 14 operators omponents of the AV14, although thereare some di�erenies: (i) the harged and neutral pion mass splitting is taken intoaount; (ii) the Nijmegen partial-wave analysis has found very little di�erenebetween the oupling onstants f�oNN and f��NN , and therefore f�NN is hosento be harge-independent; its value (f 2�NN=4�=0.075) is somewhat smaller than inthe AV14; (iii) the eletromagneti interation, spei�ed along with the strong in-teration, and treated up to order �2, � being the �ne struture onstant, onsistsof one- and two-photon Coulomb terms, Darwin-Foldy and vauum polarizationontributions, and magneti moment interations [35℄.The CSB term has three harge-dependent and one harge-asymmetri oper-ators: these four operators are the minimal requirement in order to provide apreise �t of the np and pp database simultaneously. They are given by:Op=15:::18ij = Tij ; �i � �jTij ; SijTij ; (�i;z + �j;z) ; (9)where the isotensor operator is de�ned asTij = 3�i;z�j;z � � i � � j : (10)With a total of 40 adjustable parameters, the AV18 interation is able to reproduethe NN database with a �2 per degree of freedom near one. Note that this large



CHAPTER 2. THE NUCLEAR INTERACTION 10number of parameters is a feature ommon to all the interation models of thepast deade.2.2 Three-Nuleon InterationsAll the two-nuleon interations whih ontain non-loalities only at the level oftwo powers of the relative momentum (p2 or L2), as in the ase of the AV14and AV18, have been found to yield nearly idential results for the triton bindingenergy, 7.62�0.01 MeV as ompared to the experimental value of 8.48 MeV [36℄.Furthermore, the equilibrium density of nulear matter is overpredited. One wayto solve this disrepany is to inlude three-nuleon interations in the nulearHamiltonian.A simple model for the three-nuleon interations makes them arise from theinternal struture of the nuleon. Sine all degrees of freedom other than thenuleons have been integrated out, the presene of nulear resonanes, suh asthe �-resonane, indues three-body fores. The long-range term involving theintermediate exitation of a �-isobar, via pion exhanges, is illustrated in Fig. 1.The two-pion-exhange three-nuleon interation (2�TNI) was originally writtendown by Fujita and Miyazawa [37℄:V 2�ijk = A2�" fXij ; Xikg f� i � � j ; � i � � kg+ 14 [Xij ; Xik℄ [� i � � j ; � i � � k℄ # ; (11)where A2� = �f�N�m� �2�f�NNm� �2 1m�m� ; (12)Xij = Y�(rij)�i � �j + T�(rij)Sij : (13)f�N�, m, and m� are respetively the �N� oupling onstant, the nuleon andthe � masses and f� � �g ([� � �℄) denote the antiommutators (ommutators). Thisinteration has been found to be attrative in light nulei.



CHAPTER 2. THE NUCLEAR INTERACTION 11The Urbana models for the three-nuleon interations, the older UrbanaVIII [27℄ (UVIII) and the more reent Urbana IX [6℄ (UIX), are written as thesum of the 2�TNI plus a phenomenologial shorter-range term of the form:V Rijk = U0T 2� (rij)T 2� (rik) : (14)This term is of two-pion-exhange range on eah of the two legs, and is meant tosimulate the dispersive e�ets whih are required when integrating out �-isobardegrees of freedom. This phenomenologial short-range term is repulsive, and ishere taken to be independent of spin and isospin.The onstants A2� and U0 in Eqs. (11) and (14) are adjusted to reprodue thetriton binding energy in \exat" Green's funtion Monte Carlo (GFMC) alula-tions [4℄, and the nulear matter equilibrium density in variational alulationsbased on operator-hain expansion [38℄. Reent GFMC alulations based on theAV18/UIX Hamiltonian model have been shown to provide a reasonable desrip-tion of the low-energy spetra and harge radii of nulei with A �8 [4, 5℄.

FIG. 1: The Fujita and Miyazawa two-pion-exhange three-nuleon interationdiagram. Thin, thik, and dashed lines denote, respetively, nuleons, �-isobarsand pions.



Chapter 3Bound- and Sattering-StateWave FuntionsGiven a model for the nulear Hamiltonian, the next step onsists in obtaining thenulear bound and sattering states, and in omparing the alulated observableswith the available experimental data. Although the nulear interation modelsdesribed in the previous Chapter are quite simple to write down, the solution ofthe Shr�odinger equation, even for the three- and four-nuleon systems, is a veryhallenging task. This is mainly due to the strong orrelation between the spatialand internal degrees of freedom (spin and isospin) of the nuleons present in theseinterations.Several tehniques have been developed through the years to solve this problemand intense e�ort ontinues to go on for their implementation. For the three-nuleon system, there is a long history of numerial methods: one of the mostestablished one is the Faddeev method. The basi idea of this tehnique is torewrite the Shr�odinger equation as a sum of three equations in whih (for two-nuleon interations at least) only one pair interats at a time. The resultingequations are solved in either momentum- or oordinate-spae. The Faddeev(and Faddeev-Yakubovsky) methods have been applied to solve the bound as wellas the sattering states of three- and, reently, four-nuleon systems [39, 40, 41℄.While these tehniques are in priniple \exat", their implementation, partiularly12



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 13in momentum-spae, is diÆult when the Coulomb interation is present, suh as,for example, in the pd and p 3He sattering hannels. In fat, at this point in time,we are not aware of any Faddeev alulation for the p 3He sattering problem.Tehniques based on quantum Monte Carlo methods have been also developedto solve the problem of few-body nulei, with mass number A � 8 [4, 5℄, and areurrently being extended to treat systems with A = 9. These are the variationalMonte Carlo (VMC) and the Green's funtion Monte Carlo (GFMC) tehniques.The VMC is an approximate variational method that uses Monte Carlo tehniquesto perform the spatial integrations. The GFMC method, on the other hand,employs Monte Carlo tehniques to evaluate the imaginary-time path integralsrelevant for a light nuleus. It typially uses the VMC wave funtions as a startingpoint, and ools them in order to measure ground-state observables.More reently, the few-body systems with A � 4 have also been studied witha variational tehnique known as the orrelated-hyperspherial-harmonis (CHH)method, developed by Kievsky, Viviani, and Rosati [7, 8, 9, 10, 11, 15, 42, 43,44, 45, 46, 47℄. This method onsists in expanding the wave funtion over a basisof hyperspherial harmoni funtions multiplied by orrelation fators. Althoughvariational and in priniple limited by the maximum number of basis funtionskept in the expansion, this tehnique has ahieved high auray in desribingthe three- and four-body bound and sattering states. In fat, we have usedthis method to alulate the 3H, 3He and 4He wave funtions and the pd andp 3He sattering-state wave funtions at energies below deuteron and 3He breakupthresholds, respetively.This Chapter is divided into two Setions: in Setion 3.1 we review the CHHmethod for the bound state problem, while in Setion 3.2 we desribe the CHHmethod for the sattering problem.3.1 The Bound-State Wave FuntionsIn this Setion, we desribe the main features of the CHH method, when appliedto alulate the trinuleon wave funtions in Subsetion 3.1.1, and the �-partile



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 14wave funtion in Subsetion 3.1.2.3.1.1 The Three-Nuleon Wave FuntionThe wave funtion 	 of a three-nuleon system with total angular momentum JJzand total isospin TTz an be deomposed as	 = 3Xi=1  (xi;yi) ; (15)where the amplitude  (xi;yi) is a funtion of the Jaobi oordinates xi = rj � rkand yi = (rj + rk � 2 ri) =p3, i,j,k being a yli permutation of 1,2,3. To ensurethe overall antisymmetry of 	, the amplitude  (xi;yi) is antisymmetri withrespet to exhange of nuleons j and k, and is expressed as [8, 9℄ (xi;yi) =X� F���(xi; yi)Y�(j; k; i) ; (16)Y�(j; k; i) = �hY`�(bxi)
 YL�(byi)i�� 
 hSjk� 
 siiS��JJzhT jk� 
 tiiTTz ; (17)where eah hannel � is spei�ed by the orbital angular momenta `�, L� and ��,the spin (isospin) Sjk� (T jk� ) of pair jk and the total spin S�. Orbital and spinangular momenta are oupled, in the LS-oupling sheme, to give total angularmomenta JJz. The orrelation fator F� takes into aount the strong statedependent orrelations indued by the NN interation. Two di�erent forms havebeen employed for F�: F� = f�(rjk) � f�(xi) ; (18)F� = f�(rjk)g�(rij)g�(rik) : (19)In the �rst ase, the wave funtion inludes orrelation e�ets only between nu-leons j and k in the ative pair, while in the seond ase, the wave funtioninludes in addition orrelation e�ets between these and the spetator nuleon i.Traditionally, the method is known as pair-orrelated hyperspherial harmonis(PHH) method when the �rst hoie of the orrelation fator is employed. For



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 15realisti soft-ore potentials, like the AV14 or AV18, the onvergene pattern withrespet to the number of basis funtions appears to be somewhat faster in the PHHexpansion than in the CHH one. This is not true in the ase of the �-partile.Therefore, we have used the PHH expansion to solve the three-body problem andthe CHH one in the study of the �-partile.The (hannel-dependent) orrelation funtions f�(rjk) are obtained with thefollowing proedure: when two of the nuleons are lose to eah other and farremoved from the others, it is expeted that their wave funtion will be pre-dominantly inuened by their mutual interation. The radial wave funtion fortwo partiles in state �=j� l� Sjk� T jk� is then obtained from solutions of two-bodyShr�odinger-like equationsX�0 [T�;�0(r) + v�;�0(r) + ��;�0(r)℄f�0(r) = 0 : (20)T�;�0 and v�;�0 are the kineti and potential energy operators,T�;�0 = �h2m " �2�r2 + 2r ��r � l�(l� + 1)r2 #Æ�;�0 ; (21)v�;�0 = h�jvjkj� 0i (22)and vjk is the NN interation. The term ��;�0(r) in Eq. (20) simulates the e�etof the interation of the ative pair with the remaining partiles in the system andis hosen to be of the simple form��;�0(r) = �0�e�rÆ�;�0 ; (23)where �0� and  are two parameters that allow f�(r) to satisfy appropriate bound-ary onditions. For more details, see Refs. [7, 8℄.Next, we introdue the hyperspherial oordinates � and �i, de�ned as� = qx2i + y2i ; os �i = xi=� : (24)Note that the hyper-radius � is independent on the permutation i onsidered. Thedependene of ��(xi; yi) on � and �i is then made expliit by writing��(xi; yi) = M�Xn=0 u�n(�)�5=2 Z�n (�i) ; (25)



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 16Z�n (�i) = N `�;L�n (os�i)`�(sin�i)L� P `�+ 12 ;L�+ 12n (os 2�i) ; (26)where N `�;L�n are normalization fators, P �;�n are Jaobi polynomials and n isa non-negative integer, n = 0; � � � ;M�, M� being the seleted number of basisfuntions in hannel �. The omplete wave funtion is then written as	 = Xijk yliX� f�(xi)Y�(j; k; i) M�Xn=0 u�n(�)�5=2 Z�n (�i) : (27)The Rayleigh-Ritz variational priniple,hÆu	jH � Ej	i = 0 ; (28)is used to determine the hyper-radial funtions u�n(�) in Eq. (27). Carrying outthe variation Æu	 with respet to the funtions u�n(�), the following equation iseasily derived: Xijk ylihf�(xi)Y�(j; k; i)Z�n (�i)jH � Ej	i j
= 0 ; (29)where 
 denotes the angular variables �i, x̂i and ŷi. Performing the integrationover 
 and spin-isospin sums (as impliitly understood by the notation h� � �i j
)leads to a set of oupled seond order di�erential equations for the u�n(�), whihis then solved by standard numerial tehniques [7, 8℄.The binding energies in MeV of the A=3 nulei obtained with the PHH methodfrom the AV14, AV18, AV14/UVIII and AV18/UIX Hamiltonians are listed in Ta-ble I [9℄. Also listed in Table I are results alulated with onverged on�guration-spae [40℄ and momentum-spae [41℄ Faddeev wave funtions for the AV14, andwith the GFMC method [4℄ for the AV18/UIX potential model. The bindingenergies obtained with the various methods are in exellent agreement with eahother, typially within 10 keV or less.3.1.2 The 4He Wave FuntionThe CHH approah has also been applied to the four-nuleon problem [10, 11,46℄. When studying the 4He nuleus, it is onvenient to onsider the two sets of



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 17TABLE I: Trinuleons binding energies in MeV orresponding to the AV14, AV18,AV14/UVIII and AV18/UIX Hamiltonian models. The PHH results for the AV14potential are ompared with those alulated by solving the Faddeev equations inon�guration- (F/R) and in momentum-spae (F/P). Also we ompare the PHHand the GFMC results when the AV18/UIX potential model is used. The GFMCstatistial errors are shown in parenthesis.Model Method B(3H) B(3He)PHH 7.683 7.032AV14 F/R 7.670 7.014F/P 7.680 {AV18 PHH 7.640 6.930AV14/UVIII PHH 8.47 7.73AV18/UIX PHH 8.49 7.75GFMC 8.47(1) 7.71(1)expt. 8.48 7.72
Jaobi oordinates, whih orrespond to the partitions 1+3 and 2+2. The Jaobivariables orresponding to the partition 1+3 are de�ned asxAp = rj � ri ; (30)yAp = q4=3(rk �Rij) ; (31)zAp = q3=2(rl �Rijk) ; (32)while those orresponding to the partition 2+2 are de�ned asxBp = rj � ri ; (33)yBp = p2(Rkl �Rij) ; (34)zBp = rl � rk ; (35)where Rij (Rkl) and Rijk denote the enter-of-mass positions of partiles ij (kl)and ijk, respetively. The wave funtion 	 is then expanded as	 =Xp h A(xAp;yAp; zAp) +  B(xBp;yBp; zBp)i ; (36)



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 18where the index p runs over the even permutations of partiles ijkl.The proedure is similar to the one used for the three-nuleon problem andthe amplitudes  A and  B are expanded as A(xAp;yAp; zAp) =X� F�;p �A� (xAp; yAp; zAp) Y A�;p ; (37) B(xBp;yBp; zBp) =X� F�;p �B� (xBp; yBp; zBp) Y B�;p ; (38)whereY A�;p = �h[Y`1�(ẑAp)Y`2�(ŷAp)℄`12�Y`3�(x̂Ap)iL��h[sisj℄Sa�skiSb�sl�S��JJz��h[titj℄Ta�tkiTb�tl�TTz ; (39)Y B�;p = �h[Y`1�(ẑBp)Y`2�(ŷBp)℄`12�Y`3�(x̂Bp)iL��[sisj℄Sa�[sksl℄Sb��S��JJz��[titj℄Ta�[tktl℄Tb��TTz : (40)Here a hannel � is spei�ed by: orbital angular momenta `1�, `2�, `3�, `12�, andL�; spin angular momenta Sa�, Sb�, and S�; isospins Ta� and Tb�. The total orbitaland spin angular momenta and luster isospins are then oupled to the assignedJJz and TTz. The overall antisymmetry of the wave funtion 	 is ensured byrequiring that both  A and  B hange sign under the exhange i *) j.The orrelation fators F�;p is written, similarly to Eq. (19), as produt oforrelation funtions, that are obtained from solutions of two-body Shr�odinger-like equations, as disussed in the previous Subsetion and, in more details, inRef. [10℄.The radial amplitudes �A� and �B� are further expanded as�A�(xAp; yAp; zAp) = Xn;m u�nm(�)�4 z`1�Ap y`2�Ap x`3�Ap X�nm(�A2p; �3p) ; (41)�B� (xBp; yBp; zBp) = Xn;m w�nm(�)�4 z`1�Bp y`2�Bp x`3�Bp X�nm(�B2p; �3p) ; (42)



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 19where the magnitudes of the Jaobi variables have been replaed by the hyper-spherial oordinates, whih in the four-body ase are given by:� = qx2Ap + y2Ap + z2Ap = qx2Bp + y2Bp + z2Bp ; (43)os �3p = xAp=� = xBp=� ; (44)os �A2p = yAp=(� sin�3p) ; (45)os �B2p = yBp=(� sin�3p) : (46)As in the three-body ase, the hyper-radius is independent of the permutation ponsidered.Finally, the hyper-angle funtions X�nm onsist of the produt of Jaobi poly-nomialsX�nm(�; ) = N�nm (sin�)2mPK2�;`3�+ 12n (os 2�)P `1�+ 12 ;`2�+ 12m (os 2) ; (47)where the indies m and n run, in priniple, over all non-negative integers, K2� =`1� + `2� + 2m+ 2, and N�nm are normalization fators [10℄.One the expansions for the radial amplitudes �A and �B are inserted intoEqs. (37) and (38), the wave funtion 	 an shematially be written as	 = X�nm z�nm(�)�4 Z�nm(�;
) ; (48)where z(�) stands for either u(�) or w(�) (yet to be determined), depending onwhether hannel � is onstruted with partitions 1+3 or 2+2, and the fator Z�nminludes the dependene upon the hyper-radius � due to the orrelation funtions,and the angles and hyper-angles, denoted olletively by 
.Again, the Rayleigh-Ritz variational priniple given in Eq. (28) is used todetermine the hyper-radial funtions z�nm(�) in Eq. (48) and ground-state energyE: the proedure is exatly the same as in the three-body problem.The present status of 4He [10, 46℄ binding-energy alulations with the CHHmethod is summarized in Table II. The binding energies alulated with the CHH



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 20method using the AV18 or AV18/UIX Hamiltonian models are within 1.5 % oforresponding GFMC results [4℄, and of the experimental value (when the three-nuleon interation is inluded). The agreement between the CHH and GFMCresults is less satisfatory when the AV14 or AV14/UVIII models are onsidered,presumably beause of slower onvergene of the CHH expansions for the AV14interation. This interation has tensor omponents whih do not vanish at theorigin.TABLE II: Binding energies in MeV of 4He alulated with the CHH method usingthe AV18 and AV18/UIX and the older AV14 and AV14/UVIII potential models.Also listed are the orresponding \exat"GFMC results [4℄ and the experimentalvalue. The GFMC statistial errors are shown in parenthesis.Model CHH GFMCAV18 24.01 24.1(1)AV18/UIX 27.89 28.3(1)AV14 23.98 24.2(2)AV14/UVIII 27.50 28.3(2)expt. 28.3
3.2 The Sattering-State Wave FuntionsThe PHH and CHH methods have also been used to alulate the wave funtionsin three- and four-body sattering problems. The three-body sattering problemhas been studied with the PHH method both below and above deuteron breakupthreshold [8, 9, 45℄, while for the four-body sattering problem, only the p 3He andn 3H systems have been studied, below breakup. We disuss here the appliationof the method to the pd (nd) and p 3He (n 3H) ases, below the deuteron and 3He(3H) breakup threshold.In Subsetion 3.2.1 we desribe the tehnique for the sattering-state wavefuntion, and in Subsetion 3.2.2 we present some results for the three- and four-body problems.



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 213.2.1 The Method for Sattering-State Wave FuntionsThe wave funtion 	LSJJz1+A , having inoming orbital angular momentum L andhannel spin S (S = 1=2; 3=2 for Nd and S = 0; 1 for p 3He and n 3H) oupled tototal JJz, is expressed as 	LSJJz1+A = 	JJz +	LSJJza ; (49)where 	 vanishes in the limit of large interluster separation, and hene de-sribes the system in the region where the partiles are lose to eah other andtheir mutual interations are large. In the asymptoti region, where interlusterinterations are negligible, 	LSJJza , in the p+A-luster ase, is written as	LSJJza = Xi XL0S0 h[si 
 �A℄S0 
 YL0(r̂pA)iJJz�"ÆLL0ÆSS0FL0(prpA)prpA +RJLS;L0S0(p)GL0(prpA)prpA g(rpA)# ; (50)where �A, rpA and p are respetively the A-luster wave funtion, the protonand A-luster relative distane and magnitude of the relative momentum. Thefuntions FL and GL are the regular and irregular Coulomb funtions, respetively.Note that for nd and n 3H sattering, FL(x)=x and GL(x)=x are to be replaed bythe regular and irregular spherial Bessel funtions. The funtion g(rpA) modi�esthe GL(prpA) at small rpA by regularizing it at the origin, and g(rpA) ! 1 asrpA � 10� 12 fm, thus not a�eting the asymptoti behavior of 	LSJJz1+A . Finally,the real parameters RJLS;L0S0(p) are the R-matrix elements whih determine phase-shifts and (for oupled hannels) mixing angles at the energy p2=(2�), � being the1+A redued mass. Of ourse, the sum over L0S 0 is over all values ompatiblewith a given J and parity.The \ore" wave funtion 	 is expanded in the same PHH or CHH basis asdisussed in Subsetions 3.1.1 and 3.1.2. Both the matrix elements RJLS;L0S0(p)and the hyper-radial funtions ourring in the expansion of 	 are determinedapplying the Kohn variational priniple, whih states that the funtional[RJLS;L0S0(p)℄ = RJLS;L0S0(p)� h	L0S0JJz1+A jH � EA � p22� j	LSJJz1+A i (51)



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 22has to be stationary with respet to variations in the RJLS;L0S0 and the hyper-radialfuntions. Here EA = �2:225 MeV is the deuteron energy in the three-bodyproblem and EA = �7:72 MeV (EA = �8:48 MeV) is the 3He (3H) energy in thefour-body problem.3.2.2 Results for Three- and Four-Body Sattering Prob-lemsTo hek the validity of the CHH approah for the sattering problem, phase-shiftsand mixing angles for nd sattering at energies below the three-body breakupthreshold obtained from the AV14 have been ompared with the orrespondingFaddeev-Yakubovsky results [47℄. The agreement between these two tehniqueshas been found exellent, thus establishing the high auray of the CHH methodfor the sattering problem. It is important to reemphasize that this sheme,in ontrast to momentum-spae Faddeev methods, permits the straightforwardinlusion of Coulomb distortion e�ets in the pd hannel. Therefore, the resultsfor pd elasti sattering are presumably as aurate as those for nd sattering.Several results have been obtained in the last few years for the satteringobservables of the three-body problem. Here we only list in Table III the ndand pd doublet and quartet sattering lengths predited by the AV18/UIX model,whih are found to be in exellent agreement with the available experimentalvalues.TABLE III: Preditions obtained from the AV18/UIX Hamiltonian model withthe PHH method for the nd and pd doublet and quartet sattering lengths a2 anda4. a2 (fm) a4 (fm)PHH expt. PHH expt.nd 0.63 0.65 � 0.04 6.33 6.35 � 0.02pd {0.02 13.7A similar omparison between the CHH and Faddeev-Yakubovsky methods



CHAPTER 3. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS 23an be done for the four-body problem, omparing the singlet and triplet sat-tering lengths for the n 3H zero-energy sattering problem alulated with theAV14. These results are given in Table IV. Also listed there, are the p 3He singletand triplet sattering lengths predited by the AV18, AV18/UIX and the olderAV14/UVIII models, ompared with the orresponding experimental values. Thelatter, however, have rather large errors. In fat, these p 3He data have been ex-trapolated to zero energy from measured data taken above 1 MeV, and thereforeould su�er also of large systemati unertainties.The lowest energy measurements for p 3He elasti sattering have been taken ata enter-of-mass (.m.) energy of 1:2 MeV, and onsist in di�erential ross setion�(�) [48℄ and proton analyzing power Ay(�) [49℄ data (� is the .m. satteringangle). The theoretial predition for �(�) obtained from the AV18 and AV18/UIXinterations, is ompared with the orresponding experimental data in Fig. 2.Inspetion of the �gure shows that the di�erential ross setion alulated withthe AV18/UIX model is in exellent agreement with the data, exept at bakwardangles, where the experimental ross setion is slightly underpredited. A detailedstudy of p 3He elasti sattering is urrently underway [50℄.TABLE IV: Singlet as and triplet at S-wave sattering lengths (fm) for n 3H sat-tering alulated with the AV14 and p 3He sattering alulated with the AV18,AV18/UIX and the older AV14/UVIII potential models. The n 3H Faddeev resultsand the p 3He experimental values are also listed.Method Model n 3H p 3Heas at as atCHH AV14 4.32 3.80Faddeev AV14 4.31 3.79CHH AV18 12.9 10.0CHH AV18/UIX 11.5 9.13CHH AV14/UVIII 9.24expt. 10.8�2.6 8.1�0.510.2�1.5
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FIG. 2: Di�erential ross setion �(�) as funtion of the .m. sattering angle �,at .m. energy of 1:2 MeV. The experimental data are taken from Ref. [48℄. Thelong-dashed and solid lines orrespond, respetively, to the CHH alulations withthe AV18 and AV18/UIX Hamiltonian models.



Chapter 4The Nulear Transition OperatorsIn studying proesses where the struture of the nuleus is investigated using ele-tromagneti or weak probes, the onstrution of a realisti model for the nuleareletroweak urrent and harge operators beomes a fundamental aspet of thealulation. When suh studies are arried out in the simplest piture of the nu-leus, a non-relativisti many-body theory of interating nuleons, the eletroweakurrent and harge operators are expressed in terms of those assoiated with theindividual protons and neutrons, the so-alled \impulse approximation"(IA) (wewill refer to these also as \one-body"operators). Suh a desription, however, isertainly inomplete. As already disussed in Chapter 2, the NN interation ismediated, at long distanes, by pion-exhange, and seems to be rather well de-sribed by a boson-exhange piture even at intermediate- and short-range. Thusthe eletroweak probe an interat with these exhanged partiles, and this leadsto the introdution of e�etive many-body urrent and harge operators. It shouldbe realized that these many-body operators arise, as does the NN interation it-self, as a onsequene of the elimination of the mesoni degrees of freedom fromthe nulear state vetor. Clearly, suh an approah is justi�ed only at energiesbelow the threshold for meson (spei�ally, pion) prodution, sine above thisthreshold these non-nuleoni degrees of freedom have to be expliitly inluded inthe state vetor.Although very suessful in giving a quantitative predition of many nulear25



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 26observables [1℄, this piture of the nuleus has to be onsidered greatly simpli-�ed. The nuleons, whih are taken as e�etive onstituents of the nuleus, arein fat omposite partiles (lusters of quark and gluons, in quantum hromo-dynamis), and the eletromagneti and weak probes an therefore exite theirinternal degrees of freedom. To investigate the ontribution from these proesses,we have inluded in our approah the lowest exitation of the nuleon, the �-resonane [13, 14℄. Although these �-ontributions have been found to be rathersmall in the eletromagneti ase [13℄, they are very important in weak proesses,espeially in the hep reation [14, 16, 25, 51℄. We will return to these issues inmore detail below and in the next Chapters.This Chapter is divided into two main parts: in the �rst one, we desribe theeletromagneti urrent and harge operators, in the seond we disuss the modelfor the weak transition operator, both its vetor and axial-vetor omponents.4.1 The Eletromagneti Transition OperatorsIn this setion we desribe the model for the eletromagneti urrent and hargeoperators. First, we disuss the model when only nuleoni degrees of freedomare onsidered (Subsetions 4.1.1{4.1.4). In the seond part of this Setion, wedesribe the extended model wave funtion and urrent operators that inlude�-isobar degrees of freedom (Subsetions 4.1.5 and 4.1.6).4.1.1 Nulear Current and Charge OperatorsThe nulear urrent and harge operators are expanded into a sum of one-, two-and, in the ase of the urrent, three-body terms:j(q) = Xi j(1)i (q) +Xi<j j(2)ij (q) + Xi<j<k j(3)ijk(q) ; (52)�(q) = Xi �(1)i (q) + Xi<j �(2)ij (q) ; (53)where q is the momentum transfer. The one-body operators j(1) and �(1) have thestandard expressions obtained from a non-relativisti redution of the ovariant



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 27single-nuleon urrent, and are given byj(1)i (q) = 12m�i npi; eiq�rio� i2m�i q� �ieiq�ri ; (54)�(1)i (q) = �(1)i;NR(q) + �(1)i;RC(q) ; (55)where f� � � ; � � �g denotes the antiommutator, and�(1)i;NR(q) = �i eiq�ri ; (56)�(1)i;RC(q) = 0� 1q1 + q2�=4m2 � 11A �ieiq�ri� i4m2 (2�i � �i)q � (�i � pi)eiq�ri : (57)The following de�nitions have been introdued:�i � 12 hGSE(q2�) +GVE(q2�)�i;zi ; (58)�i � 12 hGSM(q2�) +GVM(q2�)�i;zi ; (59)and p, �, and � are the nuleon's momentum, Pauli spin and isospin operators,respetively. The two terms proportional to 1=m2 in �(1)i;RC are the well knownDarwin-Foldy and spin-orbit relativisti orretions [52, 53℄, respetively. TheGS=VE=M(q2�) are the eletri/magneti (E=M) isosalar/isovetor (S=V ) form fatorsof the nuleon, taken as funtion of the four-momentum transferq2� = q2 � !2 > 0 ; (60)where, for example, the energy transfer ! = qq2 +m2T �mT for elasti satteringon a target of mass mT initially at rest in the lab. These form fators are relatedto the standard Pauli and Dira form fators by:GS=VE (q2�) = F S=V1 (q2�)� q2�4m2F S=V2 (q2�) ; (61)GS=VM (q2�) = F S=V1 (q2�) + F S=V2 (q2�) ; (62)and are normalized as GSE(0) = GVE(0) = 1 ;GSM(0) = 0:880�N ;GVM(0) = 4:706�N ; (63)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 28�N being the nulear magneton (n.m.). The q�-dependene is onstrained by an-alyzing eletron-proton and eletron-deuteron sattering data. While the protoneletri and magneti form fators are experimentally fairly well known over a widerange of momentum transfers, there is signi�ant unertainty in the neutron formfators, partiularly the eletri one, whih are obtained from model-dependentanalyses of ed data. Until this unertainty in the detailed behaviour of the ele-tromagneti form fators of the nuleon is narrowed, quantitative preditions ofeletro-nulear observables at high momentum transfers will remain rather tenta-tive.In the next Subsetions we desribe: (i) the two-body nulear urrent oper-ators; (ii) the three-body nulear urrent operators assoiated with S-wave pionresattering; (iii) the two-body nulear harge operators; (iv) the inlusion of �-isobar omponents in the wave funtions, and (v) the �-isobar urrent operators.4.1.2 The Two-Body Current OperatorsTwo-body eletromagneti urrent operators have onventionally been derived asthe non-relativisti limit of Feynman diagrams, in whih the meson-baryon ou-plings have been obtained from either e�etive hiral Lagrangians [54℄ or semi-empirial models for the o�-shell pion-nuleon amplitude [55℄. These methodsof onstruting e�etive urrent operators, however, do not address the problemof how to model the omposite struture of the hadrons in the phenomenologi-al meson-baryon verties. This struture is often parametrized in terms of formfators. For the eletromagneti ase, however, gauge invariane atually putsonstraints on these form fators by linking the divergene of the two-body ur-rents to the ommutator of the harge operator with the NN interation. Thelatter ontains form fators too, but these are determined phenomenologially by�tting NN data. Thus the ontinuity equation redues the model dependene ofthe two-body urrents by relating them to the form of the interation. This pointof view has been emphasized by Riska and ollaborators [56, 57, 58, 59, 60℄ andothers [61, 62, 63℄, and is adopted in the treatment of two-body urrents that we



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 29disuss here. We will refer to it as the so-alled Riska-presription.The eletromagneti urrent operator must satisfy the ontinuity equationq � j(q) = [H ; �(q)℄ ; (64)where the HamiltonianH inludes two- and three-nuleon interations and is givenin Eq. (1). To lowest order in 1=m, the ontinuity equation (64) separates intoseparate ontinuity equations for the one-, two-, and many-body urrent operatorsq � j(1)i (q) = " p2i2m ; �(1)i;NR(q)# ; (65)q � j(2)ij (q) = hvij ; �(1)i;NR(q) + �(1)j;NR(q)i ; (66)and a similar equation involving three-nuleon urrents and interations.The one-body urrent in Eq. (54) is easily shown to satisfy Eq. (65). Theisospin- and momentum-dependene of the two- and three-nuleon interations,however, lead to non-vanishing ommutators with the non-relativisti one-bodyharge operator, and thus link the longitudinal part of the orresponding two-and three-body urrents to the form of these interations. At the moment we willlimit our disussion to two-body urrents; the investigation of three-body urrentoperators is presented in Subsetions 4.1.3 and 4.1.6.The two-body urrent operator has been separated into model-independent(MI) and model-dependent (MD) terms. The former are onstruted to expliitlysatisfy urrent onservation with a given interation model, and are determinedfrom the interation model itself (in the present ase, the AV14 or the harge-independent part of the AV18 model) following the Riska-presription; the latterare the purely transverse urrents assoiated with the �� and !� eletromag-neti ouplings of Fig. 3, and are therefore unonstrained by the NN interation.Their expliit expressions are [1℄j��(ki;kj) = i f�NNg�NNG��(q2�)m�m� � i � � j ki � kjh �i � ki(k2i +m2�)(k2j +m2�)f�(ki)f�(kj)
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FIG. 3: Feynman diagram representation of the �� and !� transition operators.Solid, dashed, thik-dashed and wavy lines denote respetively nuleons, pions,vetor-mesons and photons. � �j � kj(k2i +m2�)(k2j +m2�)f�(ki)f�(kj)i ; (67)j!�(ki;kj) = i f�NNg!NNG!�(q2�)m!m� ki � kjh�i;z �i � ki(k2i +m2�)(k2j +m2!)f�(ki)f!(kj)��j;z �j � kj(k2i +m2!)(k2j +m2�)f!(ki)f�(kj)i ; (68)where ki and kj are the frational momenta delivered to nuleons i and j with q =ki + kj, m�, m� and m! are the pion, �-meson and !-meson masses, respetively,and g�NN and g!NN are the vetor �NN and !NN ouplings. The q�-dependeneof the transition form fators G��(q2�) and G!�(q2�) is modeled, using vetor-dominane, as: G��(q2�) = g��=(1 + q2�=m2!) ; (69)G!�(q2�) = g!�=(1 + q2�=m2�) : (70)The values of G��(q2�) and G!�(q2�) at the photon point are known to beG��(0) = g�� = 0:56, Ref. [64℄, and G!�(0) = g!� = 0:68, Ref. [55℄, fromthe measured widths of the �! � and ! ! � deays.Finally, f�(k), f�(k) and f!(k) are monopole form fators introdued to takeinto aount the omposite nature of nuleons and mesons. They are given by:f�(k) = �2� �m2��2� + k2 ; (71)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 31with � = �; �; !. The uto� parameters ��, �� and �! in these form fatorsare not known. We use the values �� = 3:8 fm�1 and �� = �! = 6:3 fm�1obtained from studies of the deuteron eletromagneti form fators, in partiularthe B-struture funtion [65℄.The MI two-body urrents are obtained using the Riska-presription. In thisapproah it is assumed that for a givenNN interation vNN , the isospin-dependententral (v� ), spin-spin (v�� ) and tensor (vt� ) omponents an be attributed toexhanges of \�-like"pseudosalar (PS) and \�-like"vetor (V) mesons. Workingin momentum-spae, we havevNN (k) = [v� (k) + v�� (k)�i � �j + vt� (k)Sij(k)℄� i � � j ; (72)where v� (k), v�� (k) and vt� (k) are related to their on�guration-spae orrespon-dents by the relations:v� (k) = 4� Z 10 r2dr j0(kr)v�(r) ; (73)v�� (k) = 4�k2 Z 10 r2dr [j0(kr)� 1℄ v�� (r) ; (74)vt� (k) = 4�k2 Z 10 r2dr j2(kr)vt� (r) : (75)The fator j0(kr)� 1 in the expression for v�� (k) ensures that its volume integralvanishes. The tensor operator in momentum-spae isSij(k) = k2(�i � �j)� 3(�i � k)(�j � k) : (76)At intermediate and long range, the v� , v�� and vt� interations an be obtainedby �-meson and �-meson exhanges. The �NN and �NN e�etive Lagrangiansare: L�NN = �f�NNm�  5�� � ��� ; (77)L�NN = g�NN ��� � ��2m��������� � � (78)where  , � and � are the T = 1=2 nuleon and the T = 1 pion and �-meson�elds, respetively. The Bjorken and Drell onventions are used for the -matries



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 32and the metri tensor g�� [66℄. f�NN , g�NN and �� are the pseudovetor �NN ,the vetor and tensor �NN oupling onstants, respetively. For example, inthe CD-Bonn OBE model [2℄ the values for these ouplings are: f 2�=4� = 0:075,g2�=4� = 0:84, �� = 6:1. By performing a non-relativisti redution of the Feynmandiagram of Fig. 4(a), with �- and �-meson exhange, one obtains:v�;�NN(k) = �v�S(k)+[v�(k)+2v�(k)℄k2(�i��j)�[v�(k)�v�(k)℄Sij(k)�(� i�� j) ; (79)with v�(k) = �f 2�NN3m2� f 2�(k)k2 +m2� ; (80)v�(k) = �g2�NN(1 + ��)212m2 f 2� (k)k2 +m2� ; (81)v�S = g2�NN f 2� (k)k2 +m2� ; (82)and f�(k) (f�(k)) denotes �NN (�NN) monopole form fators as de�ned inEq. (71). In the CD-Bonn potential the uto� parameters are �� = 8:61 fm�1and �� = 6:64 fm�1. By omparison of Eqs. (72) and (79), we have:v�(k)! vPS(k) = [v�� (k)� 2 vt� (k)℄=3 ; (83)v�(k)! vV (k) = [v�� (k) + vt� (k)℄=3 ; (84)v�S(k)! vV S(k) = v�(k) : (85)Even though the AV14 and AV18 are not OBE models, the funtions vPS(k)and, to a less extent, vV (k) and vV S(k) projeted out from their v� , v�� , and vt�omponents are quite similar to those of �- and �-meson exhanges in Eqs. (80){(82) (with uto� masses of order 5 fm�1), as shown in Refs. [67, 68℄.The \�-like"(PS) and \�-like"(V) urrents are then obtained in two steps: �rst,minimal substitution �� ! ��� iA� in the Lagrangians of Eqs. (77) and (78), andin the free �-meson and �-meson Lagrangians leads to the expressions (for �-likeas an example): L�NN = �f�NNm�  5�A�(� � �)z ; (86)L�� = �A�(� � ���)z : (87)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 33Then, the PS and V MI two-body urrents are alulated performing a non-relativisti redution of the Feynman amplitudes of Fig. 4(b).
(a) (b)FIG. 4: (a) OBE Feynman diagram representation; (b) Feynman diagram repre-sentation of the two-body urrents assoiated with meson-exhange. Solid, dashedand wavy lines denote respetively nuleons, mesons and photons.The momentum-spae expressions for these urrents are:j(2)ij (ki;kj; PS) = 3iGVE(q2�)(� i � � j)z�vPS(kj)�i(�j � kj)� vPS(ki)�j(�i � ki)+ki � kjk2i � k2j [vPS(ki)� vPS(kj)℄(�i � ki)(�j � kj)� ; (88)j(2)ij (ki;kj; V) = �3iGVE(q2�)(� i � � j)z �vV (kj)�i � (�j � kj)� vV (ki)�j � (�i � ki)�vV (ki)� vV (kj)k2i � k2j [(ki � kj)(�i � ki) � (�j � kj)+(�i � ki) �j � (ki � kj) + (�j � kj) �i � (ki � kj)℄+13 ki � kjk2i � k2j [vV S(ki)� vV S(kj)℄� ; (89)Con�guration-spae expressions are obtained fromj(2)ij (q; a) = Z dx eiq�x Z dki(2�)3 dkj(2�)3 eiki�(ri�x)eikj �(rj�x)j(2)ij (ki;kj; a) ; (90)where a=PS or V. Tehniques to arry out the Fourier transforms above aredisussed in Ref. [67℄.We reemphasize: (i) the PS and V two-body urrents have no free parametersand, by onstrution, satisfy the ontinuity equation with the given realisti in-teration (here the AV14 or the harge-independent part of AV18 model); (ii) the



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 34ontinuity equation requires the same form fator be used to desribe the eletro-magneti struture of the hadrons in the longitudinal part of the urrent operatorand in the harge operator, while it plaes no restritions on the eletromagnetiform fators whih may be used in the transverse parts of the urrent. Ignoringthis ambiguity, the form fator GVE(q2�) is used in the PS and V urrents operators,in line with the \minimal" requirements of urrent onservation.There are additional two-body urrents assoiated with the momentum de-pendene of the interation, but their onstrution is less straightforward. Aproedure similar to that used to derive the PS and V urrents has been gen-eralized to the ase of the urrents from spin-orbit omponents of the intera-tion [69℄. It onsists, in essene, of attributing these to exhanges of �-like and!-like mesons for the isospin-independent terms, and to �-like mesons for theisospin-dependent ones. The expliit form of the resulting urrents, denoted asSO, an be found in Refs. [68, 69℄. The two-body urrents from the quadratimomentum dependene of the interation are obtained by minimal substitutionpi ! pi � 12 hGSE(q2�) + GVE(q2�)�i;zi A(ri), A(ri) being the vetor potential, intothe orresponding omponents. In the ase of the AV14 and AV18 model, the p2-dependene is via L2 and (L ��1 L ��2 + h::) terms, and the assoiated urrentsare denoted respetively as LL and SO2 [67, 68℄.We note that the SO, LL and SO2 urrents are fairly short-ranged, and haveboth isosalar and isovetor terms. Their ontribution to isovetor observablesis found to be numerially muh smaller than that due to the leading PS (�-like) urrent. However, these urrents give non-negligible orretions to isosalarobservables, suh as the deuteron magneti moment and B-struture funtion [65℄.Finally it is worth emphasizing that, while the Riska-presription is not unique, ithas nevertheless been shown to provide, at low and moderate values of momentumtransfer, a satisfatory desription of most observables where the isovetor two-body urrents play a large (if not dominant) role, suh as the deuteron thresholdeletrodisintegration [65℄, the neutron and proton radiative aptures on protonsand deuterons at low energies [65, 68℄, and the magneti moments and form fatorsof the trinuleons [13℄, as will be shown in Chapter 5.



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 354.1.3 The Three-Body Exhange Current Assoiated withS-wave Pion ResatteringIn this Subsetion we desribe the three-body exhange urrent whih orrespondsto the main nonresonant two-pion exhange three-nuleon interation. Althoughthis term is not inluded in the Urbana VIII and IX interations, it should beinluded in any omplete three-nuleon interation model, as it is implied bye�etive Lagrangians for the pion-nuleon system. Ignoring this inonsisteny, inthe present work we study the e�ets of the urrent operators assoiated with thisthree-nuleon interation.The isospin odd \large" omponent of the S-wave pion-nuleon (�N) satteringamplitude at low energy and momentum transfer may be desribed by the e�etiveinteration [70℄: L��NN = � 14f 2� �� �  � � ��� : (91)Here f� is the pion deay onstant ('93 MeV). This e�etive Lagrangian impliesthe \Weinberg-Tomozawa" relation for the isospin odd ombination of the �NS-wave sattering lengths a1; a3:�2 = 16 �1 + m�m � (a1 � a3) = 116�  m�f� !2 ; (92)whih agrees well with the experimental sattering length values. Combined withthe pseudovetor �NN e�etive Lagrangian of Eq. (77), this e�etive Lagrangiangives rise to the three-body interation:VS = � 14m 1f 2�  f�NNm� !2 Xijk yli � i � � j � � k�i � ki�k � kkDiDk� (�j � ki � kk + i2 [ki � [Pi �Pj℄� kk � [Pk �Pj℄℄) ; (93)diagrammatially shown in Fig. 5. Here we have de�ned Pi � p0i + pi pi and p0ibeing the initial and �nal momentum of nuleon i, respetively. The denominatorfators Di are de�ned as Di = k2i +m2� : (94)
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FIG. 5: Feynman diagram representation of the three-nuleon two-pion exhangeinteration. Solid and dashed lines denote respetively nuleons and pions. Thedashed irle orresponds to the ��NN vertex.The derivative oupling in the Lagrangian of Eq. (91) leads to an eletromag-neti ontat term, that an be onstruted by minimal substitution, and has theexpression L��NN = � 14f 2� �A�[�z(� � �)� �z�2℄ : (95)Together with the e�etive Lagrangians of Eqs. (86) and (87), this proeduregives rise to the following set of three-nuleon exhange urrent operators shownin Fig. 6: (a) a ontat urrent at the S-wave resattering vertex, (b) two ontaturrents at the two aompanying pseudovetor �NN verties and () two pionurrent terms.The expliit expressions for these are orrespondingly:jaijk(q) = i8m 1f 2�  f�NNm� !2 [� k � (� j � � i) + � i � (� j � � k)℄z(�i � ki)(�k � kk)DiDk [�j � (q� ki � kk)� iPj℄ ; (96)jbijk(q) = i4m 1f 2�  f�NNm� !2 [� i � (� j � � k)℄z�i(�k � kk)DkDi0([�j � (ki � q)� kk℄ + i2 [ki � [Pi �Pj℄�kk � [Pk �Pj℄� 2m! + q �Pj℄)+ (i *) k) ; (97)
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(b)

(a)

(c)FIG. 6: Feynman diagram representation of the three-nuleon exhange urrentoperators. Solid, dashed and wavy lines denote respetively nuleons, pions andphotons. The dashed irle orresponds to the ��NN vertex.
jijk(q) = � i4m 1f2�  f�NNm� !2 [� i � (� j � � k)℄z (�i � ki)(�k � kk)DiDk 2ki � qDi0([�j � (ki � q)� kk℄ + i2 [ki � [Pi �Pj℄� kk � [Pk �Pj℄� 2m! + q �Pj℄)+ (i *) k) : (98)In these exhange urrent operators, the frations of the total momentum transferq imparted to the three nuleons are denoted ki respetively, so that q = k1+k2+k3. The denominator fators Di are de�ned in Eq. (94), while the denominatorfators Di0 are de�ned as Di0 = (q� ki)2 +m2� : (99)The ombined three-nuleon exhange urrent operator ja + jb + j satis�esthe ontinuity equation with the three-nuleon interation VS of Eq. (93), Thesetwo-pion exhange three-nuleon urrents will be labelled as ��S in Chapter 5.



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 384.1.4 Two-Body Charge OperatorsWhile the MI two-body urrents are linked to the form of NN interation via theontinuity equation, the most important two-body harge operators are model de-pendent and may be viewed as relativisti orretions. They fall into two lasses:the �rst lass inludes those e�etive operators that represent non-nuleoni de-grees of freedom, suh as nuleon-antinuleon pairs or nuleon-resonanes, andwhih arise when these degrees of freedom are eliminated from the state vetor;to the seond lass belong those dynamial exhange harge e�ets that wouldappear even in a desription expliitly inluding non-nuleoni exitations in thestate vetor, suh as the �� and !� transition ouplings. The proper formsof the former operators depend on the method of eliminating the non-nuleonidegrees of freedom [65, 71, 72℄. There are nevertheless rather lear indiations forthe relevane of two-body harge operators from the failure of alulations basedon the one-body operator in Eq. (55) in prediting the harge form fators of thethree- and four-nuleon systems [13, 73℄, and the deuteron A-struture funtionand tensor polarization observable [65℄.The two-body model used in the present work onsists of the �-, �- and !-meson exhange harge operators, as well as of the �� and !� harge tran-sition ouplings. The former are derived by onsidering the low-energy limit ofthe relativisti Born diagrams assoiated with the virtual meson photoprodutionamplitude. The �� and !� operators are the leading orretions obtained in anon-relativisti redution of the orresponding Feynman diagrams of Fig. 3. Toredue their model dependene, the �- and �-meson-exhange harge operators,the former of whih gives by far the dominant ontribution, are onstruted usingthe PS (�-like) and V (�-like) omponents projeted out of the isospin-dependentspin-spin and tensor terms of the interation [73℄. The resulting two-body op-erators are denoted as PS and V, and are here obtained from either the AV14or the harge-independent part of the AV18. The momentum-spae expressionsof the PS, V, !, �� and !� harge operators, �(2)ij (ki;kj; PS), �(2)ij (ki;kj; V),



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 39�(2)ij (ki;kj;!), ���(ki;kj) and �!�(ki;kj) respetively, are:�(2)ij (ki;kj; PS) = � 32m" hF S1 (q2�)� i � � j + F V1 (q2�)�j;zi vPS(kj)�i � q�j � kj+ hF S1 (q2�)� i � � j + F V1 (q2�)�i;zi vPS(ki)�i � ki �j � q# ; (100)�(2)ij (ki;kj; V) = � 32m" hF S1 (q2�)� i � � j + F V1 (q2�)�j;zi� vV (kj)(�i � q) � (�j � kj)+ hF S1 (q2�)� i � � j + F V1 (q2�)�i;zi� vV (ki)(�j � q) � (�i � ki)# ; (101)�(2)ij (ki;kj;!) = g2!NN8m3 " hF S1 (q2�)(� i � � j) + F V1 (q2�)�i;zi� (�i � q) � (�j � kj)k2j +m2! f!(kj)+ hF S1 (q2�)(� i � � j) + F V1 (q2�)�j;zi� (�j � q) � (�i � ki)k2i +m2! f!(ki)# ; (102)���(ki;kj) = �f�NNg�NN(1 + ��)2m�m�m G��(q2�) � i � � j"�i � ki(�j � kj) � (ki � kj)(k2i +m2�)(k2j +m2�) f�(ki) f�(kj)��j � kj(�i � ki) � (ki � kj)(k2i +m2�)(k2j +m2�) f�(ki) f�(kj)# ; (103)�!�(ki;kj) = �f�NNg!NN2m�m!m G!�(q2�)"�i;z�i � ki(�j � kj) � (ki � kj)(k2i +m2�)(k2j +m2!) f�(ki) f!(kj)��j;z�j � kj(�i � ki) � (ki � kj)(k2i +m2!)(k2j +m2�) f!(ki) f�(kj)# ; (104)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 40where F S=V1 (q2�) are the standard Dira and Pauli form fators, m is the nuleonmass and vPS and vV are given in Eqs. (83) and (84). Coupling onstants anduto� parameters are disussed in Subsetion 4.1.2.We note �nally that in the pion (as well as vetor meson) harge operators thereare additional ontributions due to the energy dependene of the pion propagatorand diret oupling of the photon to the exhanged pion (�-meson). However,these operators give rise to non-loal isovetor ontributions whih are expetedto provide only small orretions to the leading loal terms. For example theseoperators would only ontribute to the isovetor ombination of the 3He and 3Hharge form fators, whih is anyway a fator of three smaller than the isosalar.Thus they are negleted in the present model.4.1.5 �-Isobar Components in the Wave Funtions: theTCO MethodWhen �-isobar degrees of freedom are onsidered, the nulear wave funtion iswritten as	N+� = 	(NNN � � �) + 	(1)(NN� � � �) + 	(2)(N�� � � �) + � � � ; (105)where 	 is that part of the total wave funtion onsisting only of nuleons, theterm 	(1) is the omponent in whih a single nuleon has been onverted into a�-isobar, and so on. The nulear two-body interation is taken asvij = vij(NN ! NN) + [vij(NN ! N�) + vij(NN ! ��) + H::℄ ; (106)where vij(NN ! NN) is the nulear interation studied in Chapter 2, and thetransition interations vij(NN ! N�) and vij(NN ! ��) are responsible forgenerating �-isobar admixtures in the wave funtion. The long-range part of vijis due to pion-exhange. In an e�etive Lagrangian approah, the �N� vertexinteration is written as:L�N� = f�N�m�  �T � ��� +H:: ; (107)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 41where  � is the isospin-spin 3/2 �eld of the �, T is the isospin-transition operatorwhih onvert the nuleon into a � isobar, and f�N� is the �N� oupling onstant.The non-relativisti redution of the Feynman amplitudes in Fig. 7 leads toNN !N� and NN ! �� interations vij(NN ! N�) and vij(NN ! ��) of theform: vij(NN ! N�) = hv��II(rij)�i � Sj + vt�II(rij)SIIij i � i �Tj ; (108)vij(��! ��) = hv��III(rij)Si � Sj + vt�III(rij)SIIIij i Ti �Tj : (109)Here, Si is the spin-transition operator, and SIIij and SIIIij are tensor operators inwhih, respetively, the Pauli spin operators of either partile i or j, and bothpartiles i and j are replaed by orresponding spin-transition operators. Thefuntions v��II(r), et., are given by:v���(r) = (ff)�4� m�3 e�xx C(x) ; (110)vt��(r) = (ff)�4� m�3 �1 + 3x + 3x2� e�xx C2(x) ; (111)where � = II, III, x � m�r, (ff)� = f�NNf�N�, f�N�f�N�, for � = II, III,respetively, and the uto� funtion C(x) = 1� e��x2 . In the Argonne v28Q [77℄(AV28Q) interation, whih ontains expliitN and � degrees of freedom, f�N� =(6p2=5)f�NN , as obtained in the quark model, and � = 4.09.
(a) (b)FIG. 7: Feynman diagram representation of the NN ! N� and NN ! ��transition interations due to one pion exhange. Solid, thik-solid, and dashedlines denote nuleons, �-isobars, and pions, respetively.The short- and intermediate-range parts of vij, inuened by more omplexdynamis, are onstrained by �tting NN sattering data at lab energy � 400 MeVand deuteron properties [26℄, as earlier disussed in Chapter 2.



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 42One the NN , N� and �� interations have been determined, the problem isredued to solving the N -� oupled-hannel Shr�odinger equation. In priniple,at least for the A=3 systems, Faddeev and hyperspherial-harmonis tehniquesan be used (and, indeed, Faddeev methods have been used in the past [74, 75℄) tothis end, although the large number of N -� hannels involved makes the pratialimplementation of these methods diÆult. A somewhat simpler approah onsistsof a generalization of the orrelation operator tehnique [76℄, whih has provenvery useful in the variational theory of light nulei, partiularly in the ontext ofvariational Monte Carlo alulations [4, 27℄. In the transition orrelation operator(TCO) approah, as this method is known [25℄, the nulear wave funtion iswritten as 	N+� = 24SYi<j �1 + UTRij �35 	 ; (112)where 	 is the purely nuleoni omponent, S is the symmetrizer, and the tran-sition operators UTRij onvert NN pairs into N� and �� pairs. The latter arede�ned as UTRij = UN�ij + U�Nij + U��ij ; (113)with UN�ij and U��ij given in Eqs. (108)-(109), where the funtions v��� and vt��are replaed by transition orrelation funtions u��� and ut��, respetively, yet tobe determined. In the present study the 	 is taken from CHH solutions of theAV14/UVIII or AV18/UIX Hamiltonians with nuleons only interations, whilethe transition orrelation funtions u��� et. are obtained solving the two-bodybound and low-energy sattering-state problem with the AV28Q interation. Theorrelation funtions u��II(r), et. are shown in Fig. 8.The validity of the approximation inherent to Eq. (112) was disussed at lengthin the original work [25℄, and has been reviewed more reently in Ref. [13℄. Here weonly note that: (i) sine the orrelation funtions u��II(r), et. are short-ranged(see Fig. 8), they are expeted to have a rather weak dependene on A; this shouldallow us to use orrelation funtions obtained solving a two-body problem also forproesses involving three and four nuleons. (ii) The AV28Q interation providedan exellent desription of the NN database available in the early eighties, but



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 43

0 1 2 3 4
r(fm)

−0.08

−0.06

−0.04

−0.02

0.00

T
ra

ns
iti

on
 C

or
re

la
tio

ns
u

tτII

u
tτIII

u
στIII

u
στII

u
στIII,PT

u
στII,PT

u
tτIII,PT

u
tτII,PT

FIG. 8: Transition orrelation funtions u��II(r), ut�II(r), et. obtained for theAV28Q model [77℄, and perturbation theory equivalents u��II;PT(r), ut�II;PT(r),et.no attempt has been made to re�t this model to the more reent and muh moreextensive Nijmegen database [78℄.We �nally note that the normalization of the full wave funtion 	N+� in theTCO approah an be written:h	N+� j	N+�i = h	 j 1 + Xi<j[ 2U�Nij yU�Nij + U��ij yU��ij ℄+ Xi<j ; k 6=i;j[U�Nij yU�Nik + UN�ij yUN�kj ℄ j	i+ : : : ; (114)where we have retained two- and three-body ontributions. The wave funtionnormalization ratios h	N+� j	N+�i=h	 j	i, obtained for the bound three- andfour-nuleon systems, are listed in Table V. Thus, the probability P� of �-omponents in the nulear wave funtion is about 2 % and 6 % in three- and four-body nulei, respetively. As a omparison, P� = 0:5 % in the deuteron [26, 77℄.



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 44TABLE V: The wave funtion normalization ratios h	N+� j	N+�i=h	 j	i ob-tained for the bound three- and four-nuleon systems, when the TCO alulationis based on the AV28Q interation. The purely nuleoni CHH wave funtionsj	i orrespond to the AV18/UIX Hamiltonian model.Model 3H 3He 4HeAV28Q 1.0238 1.0234 1.0650
The more traditional way of estimating the importane of the �-isobar degreesof freedom in eletroweak observables, is the so-alled �rst-order perturbationtheory (PT). In suh an approah, the �-isobar admixtures in the wave funtionsare generated via	(1) = 1m�m� Xi<j [vij(NN ! N�) + vij(NN ! �N)℄ 	 ; (115)	(2) = 12(m�m�)Xi<j vij(NN ! ��)	 ; (116)where the �-isobar kineti energy ontributions in the denominators of Eqs. (115)and (116) have been negleted (stati � approximation).When ompared to the TCO approah, the PT approximation produes N�and �� admixtures that are too large at short distanes, and therefore leads to asubstantial overpredition of the e�ets assoiated with � isobars in eletroweakobservables [25℄, as an be seen in Fig. 8.4.1.6 Eletromagneti �-CurrentsIn a full desription in whih also �-isobar degrees of freedom are inluded, theone-body urrent is written asj(1)i (q) = XB;B0=N;� ji(q;B ! B0) ; (117)where ji(q;N ! N) is the nuleoni urrent omponent given in Eq. (54) andji(q;N ! �) = � i2mGN�(q2�)eiq�riq� SiTi;z ; (118)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 45ji(q; �! �) = � i24mG��(q2�)eiq�riq��i(1 + �i;z) : (119)Here � (�) is the Pauli operator for the � spin 3/2 (isospin 3/2), and the ex-pression for ji(q; �! N) is obtained from that for ji(q;N ! �) by replaing thetransition spin and isospin operators by their Hermitian onjugates. The N�-transition and � eletromagneti form fators, respetively GN� and G��, areparametrized asGN�(q2�) = �N��1 + q2�=�2N�;1�2q1 + q2�=�2N�;2 ; (120)G��(q2�) = ����1 + q2�=�2���2 : (121)The N�-transition magneti moment �N� is taken equal to 3 n.m., as obtainedfrom an analysis of N data in the �-resonane region [79℄; this analysis also gives�N�;1 = 0.84 GeV and �N�;2 = 1.2 GeV. The value used for the � magnetimoment ��� is 4.35 n.m. by averaging results of a soft-photon analysis of pion-proton bremsstrahlung data near the �++ resonane [80℄, and ��� = 0.84 GeVas in the dipole parametrization of the nuleon form fator. In priniple, N to �exitation an also our via an eletri quadrupole transition. Its ontribution,however, has been ignored, sine the assoiated pion photoprodution amplitudeis found to be experimentally small at resonane [81℄. Also negleted is the �onvetion urrent.The N�-transition two-body urrents are written asj(2)ij (q) = X0Bi;Bj=N;�X0B0i ;B0j=N;� jij(q;BiBj ! B0iB0j) ; (122)where the prime over the summation symbols indiates that terms involving morethan a single � have been negleted in the present study. The NN ! NN two-body terms have already been disussed. The two-body terms involving at mosta single � are expliitly given byjij(q;NN ! N�) = (� i �Tj)z" h�i(Sj � r̂ij)eiq�ri + (�i � r̂ij)Sjeiq�rji h(rij)+ eiq�Rij(�i � ri)(Sj � rj)r̂ijh(rij)# ; (123)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 46where rij = ri�rj, Rij = (ri+rj)=2, and the funtions h(r) and h(r) are de�ned,respetively, as h(r) � � f�NNf�N�4� ! 1x2 (1 + x)e�x ; (124)�h(r) �  f�NNf�N�4� ! 1m2� Z + 12� 12 dz e�izq�re�rL(z) ; (125)with x = m�r and L(z) = [m2� + q2(1=4 � z2)℄1=2. Terms expliitly proportionalto q in Eq. (123) have been dropped, sine in appliations only the transverseomponents of j(q) our. The three terms in Eq. (123) are assoiated withdiagrams (a), (b) and () in Fig. 9, respetively, and an be obtained from thewell known expression of the two-body nuleoni urrents due to pion-exhangeby replaing �j and � j with Sj and Tj, respetively.
(a) (b) (c)FIG. 9: N�-transition two-body urrents due to pion exhange.To aount for the hadron ompositeness, form fators must be introdued atthe �NN and �N� verties. In the ase of vij(NN ! N�) interation, an r-spae Gaussian uto� has been used. However, for the j(NN ! N�) above it hasbeen found onvenient to introdue monopole form fators given in Eq. (71) with� = � and ��=4.56 fm�1. This value for �� is onsistent with that obtained fromthe tensor omponent of vij(NN ! N�). Finally, the expression in Eq. (123) ismultiplied by the isovetor form fator GVE(q2�).4.2 The Weak Transition OperatorsWe desribe here the model for the weak urrent and harge operators. As for theeletromagneti ase, in the �rst part we disuss the model when only nuleonidegrees of freedom are inluded. In the seond part we desribe the �-isobarontributions.



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 474.2.1 The Nulear Weak Current and Charge OperatorsThe nulear weak urrent and harge operators have polar-vetor/salar (V) andaxial-vetor/pseudosalar (A) omponentsj�(q) = j�(q; V) + j�(q; A) ; (126)��(q) = ��(q; V) + ��(q; A) ; (127)where q is the momentum transfer, and the subsripts � denote harge raising(+) or lowering ({) isospin indies. Eah omponent, in turn, onsists of one-,two-, and many-body terms that operate on the nuleon degrees of freedom:j(q; a) = Xi j(1)i (q; a) +Xi<j j(2)ij (q; a) + : : : ; (128)�(q; a) = Xi �(1)i (q; a) +Xi<j �(2)ij (q; a) + : : : ; (129)where a=V, A and the isospin indies have been suppressed to simplify the nota-tion. The one-body operators j(1)i and �(1)i have the standard expressions obtainedfrom a non-relativisti redution of the ovariant single-nuleon V and A urrents,and are listed below for onveniene. The V-harge operator is written as�(1)i (q; V) = �(1)i;NR(q; V) + �(1)i;RC(q; V) ; (130)with �(1)i;NR(q; V) = �i;� eiq�ri ; (131)�(1)i;RC(q; V) = �i (2�v � 1)4m2 �i;� q � (�i � pi) eiq�ri : (132)The V-urrent operator is expressed asj(1)i (q; V) = 12m�i;� fpi ; eiq�rig � i �v2m�i;� q� �i eiq�ri ; (133)where �v is the isovetor nuleon magneti moment (�v = 4:709 n.m.). Finally,the isospin raising and lowering operators are de�ned as�i;� � (�i;x � i �i;y)=2 : (134)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 48The term proportional to 1=m2 in �(1)i;RC(q; V) is the well known [52, 53℄ spin-orbitrelativisti orretion. The vetor harge and urrent operators above are simplyobtained from the orresponding isovetor eletromagneti operators of Eqs. (54)-(59), by the replaement �i;z=2 ! �i;�, in aordane with the onserved-vetor-urrent (CVC) hypothesis. The q�-dependene of the nuleon's vetor form fators(and, in fat, axial-vetor form fators below) has been ignored, sine in this workwe are interested in weak proesses involving very small momentum transfers.For this same reason, the Darwin-Foldy relativisti orretion proportional toq2=(8m2) in �(1)i;RC(q; V) has also been negleted.The A-harge operator is given, to leading order, by�(1)i (q; A) = � gA2m �i;��i � fpi ; eiq�rig ; (135)while the A-urrent operator onsidered in the present work inludes leading andnext-to-leading order orretions in an expansion in powers of p=m, i.e.j(1)i (q; A) = j(1)i;NR(q; A) + j(1)i;RC(q; A) ; (136)with j(1)i;NR(q; A) = �gA �i;� �i eiq�ri ; (137)j(1)i;RC(q; A) = gA4m2 �i;�  �ifp2i ; eiq�rig � f�i � pi pi ; eiq�rig� 12�i � q fpi ; eiq�rig � 12q f�i � pi ; eiq�rig+ i q� pi eiq�ri!� gP2mm� �i;�q�i � q eiq�ri : (138)The axial oupling onstant gA is taken to be [82℄ 1.2654�0.0042, by averagingvalues obtained, respetively, from the beta asymmetry in the deay of polarizedneutrons (1.2626�0.0033 [83, 84℄) and the half-lives of the neutron and superal-lowed 0+ ! 0+ transitions, i.e. [2ft(0+ ! 0+)=ft(n) � 1℄=1.2681�0.0033 [82℄.The last term in Eq. (138) is the indued pseudosalar ontribution (m� is the



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 49muon mass), for whih the oupling onstant gP is taken as [85℄ gP={6.78 gA.Note that in the limit q=0, the expressions for �(1)i;NR(q; V) and j(1)i;NR(q; A) redueto the familiar Fermi and Gamow-Teller operators.In the next �ve Subsetions we desribe: (i) the two-body V-urrent and V-harge operators, required by the CVC hypothesis; (ii) the two-body A-urrentand A-harge operators due to �- and �-meson exhanges, and the �� mehanism;(iii) the V and A urrent and harge operators assoiated with exitation of �-isobar resonanes [14℄.4.2.2 Two-Body Weak Vetor Current and Charge Oper-atorsThe weak vetor (V) urrent and harge operators are derived from the orre-sponding eletromagneti operators by making use of the CVC hypothesis, whihfor two-body terms implies�12(�i;a + �j;a) ; j(2)ij;z(q; )� = i �azb j(2)ij;b(q; V) ; (139)where j(2)ij;z(q; ) are the isovetor (harge-onserving) two-body eletromagnetiurrents, and a; b = x; y; z are isospin Cartesian omponents. A similar relationholds between the eletromagneti harge operators and its weak vetor ounter-parts. The harge-raising or lowering weak vetor urrent (or harge) operatorsare then simply obtained from the linear ombinationsj(2)ij;�(q; V) = j(2)ij;x(q; V)� i j(2)ij;y(q; V) : (140)Using Eq. (139), it is easy to see that the two-body vetor urrent and hargeoperators are simply obtained from the orresponding isovetor eletromagnetiterms by making the substitutions �i;z ! �i;� and (� i � � j)z ! (� i � � j)� inEqs. (67)-(68), (88)-(89) and (100)-(101). Here we have de�ned(� i � � j)� � (� i � � j)x � i(� i � � j)y : (141)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 50Although our model for the MI eletromagneti urrent operator inludes PS(\�-like"), V (\�-like"), SO, LL and SO2 urrents, as already disussed in Se-tion 4.1.2, we inluded in the weak vetor urrent operator only the PS and Vomponents, whih are expeted to give the leading ontributions, as already ver-i�ed in the eletromagneti ase.Among the MD terms of the weak vetor urrent operator, the !� ontribu-tion has been found negligible, while the �-urrents have been found to give thelargest MD ontribution, whih, however, is still small respet to that due to theleading MI terms. For the �-ontributions, see Subsetion 4.2.5.Finally, the weak vetor harge operator onsists only of the \�-like"and \�-like"terms, already disussed in Setion. 4.1.4, whih were found to give the largesttwo-body ontributions.4.2.3 Two-Body Weak Axial Current OperatorsIn ontrast to the eletromagneti ase, the axial urrent operator is not on-served. Its two-body omponents annot be linked to the NN interation and,in this sense, should be viewed as model dependent. Among the two-body axialurrent operators, the leading term is that assoiated with exitation of �-isobarresonanes. We defer its disussion to Setion 4.2.5. In the present Setion wepresent the two-body axial urrent operators due to �- and �-meson exhanges(the �A and �A urrents, respetively), and the ��-transition mehanism (the��A urrent). Their individual ontributions have been found numerially far lessimportant than those from �-exitation urrents in studies of weak transitionsinvolving light nulei [12, 14, 51℄. These studies [12, 14, 51℄ have also found thatthe �A and �A urrent ontributions interfere destrutively, making their om-bined ontribution almost entirely negligible. These onlusions are on�rmed inthe present work.The �A, �A, and ��A urrent operators were �rst desribed in a systematiway by Chemtob and Rho [55℄. Their derivation has been given in a numberof artiles, inluding the original referene mentioned above and the more reent



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 51review by Towner [86℄. Their momentum-spae expressions are :j(2)ij (ki;kj; �A) = � gA2m (� i � � j)� v�(kj)�i � kj �j � kj+ gAm �j;� v�(kj) (q + i�i �Pi) �j � kj + (i *) j) ; (142)j(2)ij (ki;kj; �A) = gA2m(� i � � j)� v�(kj) hq �i � (�j � kj) + i(�j � kj)�Pi�[�i � (�j � kj)℄� kji+ gAm�j;� v�(kj) h(�j � kj)� kj � i[�i � (�j � kj)℄�Pii+ (i *) j) ; (143)j(2)ij (ki;kj; ��A) = �gAm g2� (� i � � j)� f�(ki)k2i +m2� f�(kj)k2j +m2� �j � kj�h(1 + ��)�i � ki � iPii+ (i *) j) ; (144)where the funtions v�(k) and v�(k) have already been de�ned in Eqs. (80){(81),and the monopole form fators are given in Eq. (71).Note that the values used for the �NN and �NN oupling onstants and uto�masses are the following: f 2�=4� = 0:075, g2�=4� = 0:5, �� = 6:6, �� = 4:8 fm�1,and �� = 6:8 fm�1. The �-meson oupling onstants are taken from the olderBonn OBE model [87℄, rather than from the more reent CD-Bonn interation [2℄(g2�=4� = 0:81 and �� = 6:1). This unertainty has in fat essentially no impat onthe results reported in the present work for two reasons. Firstly, the ontributionfrom �A urrents, as already mentioned above, is very small. Seondly, the om-plete two-body axial urrent model, inluding the urrents due to �-exitationdisussed below, is onstrained to reprodue the Gamow-Teller matrix elementin tritium �-deay by appropriately tuning the value of the N�-transition axialoupling g�A. Hene hanges in g� and �� only require a slight readjustament ofthe g�A value.4.2.4 Two-Body Weak Axial Charge OperatorsThe model for the two-body weak axial harge operators adopted here inludesa term of pion-range as well as short-range terms assoiated with salar- and



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 52vetor-meson exhanges [88℄. The experimental evidene for the presene of thesetwo-body axial harge mehanisms rests on studies of 0+ *) 0� weak transitions,suh as the proesses 16N(0�,120 keV)!16O(0+) and 16O(0+)+��!16N(0�,120keV)+��, and �rst-forbidden �-deays in the lead region [89℄. Shell-model al-ulations of these transitions suggest that the e�etive axial harge oupling ofa bound nuleon may be enhaned by roughly a fator of two over its free nu-leon value. There are rather strong indiations that suh an enhanement anbe explained by two-body axial harge ontributions [88℄.The pion-range operator is taken as�(2)ij (ki;kj; �A) = �i gA4 f2� (� i � � j)� f 2�(ki)k2i +m2� �i � ki + (i *) j) ; (145)where f� is the pion deay onstant (f� '93 MeV), ki is the momentum transferto nuleon i, and f�(k) is the monopole form fator given by Eq. (71) with ��=4.8fm�1. The struture and overall strength of this operator are determined by softpion theorem and urrent algebra arguments [90, 91℄, and should therefore beviewed as \model independent". It an also be derived, however, by onsideringnuleon-antinuleon pair ontributions with pseudosalar �N oupling.The short-range axial harge operators an be obtained in a \model-independent"way, onsistently with the NN interation model. The proedureis desribed in Ref. [88℄, and is similar to the Riska-presription used to derivethe \model-independent"eletromagneti urrents. Here we onsider the hargeoperators assoiated only with the entral and spin-orbit omponents of the inter-ation, sine they are expeted to give the largest ontributions, after the �(2)(�A)operator above. This expetation is in fat on�rmed in the present study. Themomentum-spae expressions are given by�(2)ij (ki;kj; sA) = gA2m2 [�i;� v s(kj) + �j;� v s� (kj)℄�i �Pi + (i *) j) ; (146)�(2)ij (ki;kj; vA) = gA2m2 [�i;� v v(kj) + �j;� v v� (kj)℄ [�i �Pj + i (�i � �j) � kj℄� i gA4m2 (� i � � j)� v v� (kj)�i � ki + (i *) j) ; (147)



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 53where Pi = pi + p0i, andv �(k) = 4� Z 10 dr r2 j0(kr) v �(r) ; (148)with �=s, s� , v, and v� . The following de�nitions have been introduedv s(r) = 34v(r) + m22 Z 1r dr0 r0 �vb(r0)� 12vbb(r0)�v v(r) = 14v(r)� m22 Z 1r dr0 r0 �vb(r0)� 12vbb(r0)� ; (149)where v(r), vb(r) and vbb(r) are the isospin-independent entral, spin-orbit, and(L�S)2 omponents of the AV14 or AV18 interations, respetively. The de�nitionsfor v s� (r) and v v� (r) an be obtained from those above, by replaing the isospin-independent v(r), vb(r) and vbb(r) with the isospin-dependent v� (r), vb� (r) andvbb� (r).4.2.5 Weak �-ContributionsIn this Subsetion we review the weak urrent and harge operators assoiatedwith exitation of � isobars. A disussion of the TCO method used to inludeexpliitly �-isobar degrees of freedom in the wave funtions has been given inSubsetion 4.1.5.The axial urrent and harge operators assoiated with exitation of � isobarsare modeled as j(1)i (q;N ! �;A) = �g�A Ti;� Si eiq�ri ; (150)j(1)i (q; �! �;A) = �gA�i;��i eiq�ri ; (151)and �(1)i (q;N ! �;A) = � g�Am� Ti;� Si � pi eiq�ri (152)�(1)i (q; �! �;A) = � gA2m� �i;��i � fpi ; eiq�rig ; (153)where m� is the �-isobar mass, � (�) is the Pauli operator for the � spin3/2 (isospin 3/2), and Ti;� and �i;� are de�ned in analogy to Eq. (134). The



CHAPTER 4. THE NUCLEAR TRANSITION OPERATORS 54expression for j(1)i (q; � ! N;A) (�(1)i (q; � ! N;A)) is obtained from that forj(1)i (q;N ! �;A) (�(1)i (q;N ! �;A)) by Hermitian onjugation and replaing qwith �q.The oupling onstants g�A and gA are not well known. In the quark-model,they are related to the axial oupling onstant of the nuleon by the relations g�A =(6p2=5)gA and gA = (1=5)gA. These values have often been used in the literaturein the alulation of �-indued axial urrent ontributions to weak transitions.However, given the unertainties inherent to quark-model preditions, a morereliable estimate for g�A is obtained by determining its value phenomenologiallyto reprodue the measured Gamow-Teller matrix element in tritium �-deay [12℄.This proedure is disussed in Chapter 7.The N ! � and �! � weak vetor urrents are modeled, onsistently withthe CVC hypothesis, asj(1)i (q;N ! �;V) = �i ��m Ti;� q� Si eiq�ri ; (154)j(1)i (q; �! �;V) = �i �12m �i;� q��i eiq�ri ; (155)where �� � �N� = 3 n.m. and � � ��� = 4:35 n.m., as given in Setion 4.1.6.



Chapter 5Trinuleon Form FatorsIn the previous Chapters, we have desribed models for the nulear Hamiltonian,pratial omputational methods for the aurate numerial alulation of wavefuntions, and models for the eletroweak urrent and harge operators. A thor-ough testing of these models an be performed studying observables for whihexperimental results are available. Eletron-sattering, in partiular, provides anexellent tool for probing the eletromagneti struture of nulei over a wide rangeof momentum transfer.In this Chapter, we present results for the trinuleon elasti form fators,magneti moments and magneti and harge radii. These observables are de�nedin Setion 5.1, while the Monte Carlo tehnique used to alulate them is reviewedin Setion 5.2. Finally, in Setion 5.3 we disuss our results, omparing them withthe available experimental data.5.1 Eletron-Sattering from NuleiIn the one-photon-exhange approximation the eletron-sattering ross setioninvolving a transition from an initial nulear state jJii of spin Ji and rest massmi to a �nal nulear state jJfi of spin Jf , rest mass mf and reoiling energy Ef
55



CHAPTER 5. TRINUCLEON FORM FACTORS 56an be expressed in the laboratory frame as [1, 52, 92, 93℄d�d
 = 4��M f�1re �vLF 2L(q) + vTF 2T (q)� ; (156)where �M =  � os�=22�i sin2�=2!2 ; (157)vL = �q2�q2�2 ; (158)vT = tan2 �2 + q2�2 q2 ; (159)and the reoil fator fre is given byfre = 1 + �f � �i os �Ef ' 1 + 2�imi sin2 �2 : (160)The eletron kinematial variables are de�ned in Fig. 10, � is the angle betweenki and kj, and q2� is de�ned in Eq. (60). The last expression for fre in Eq. (160)
εf,kf
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FIG. 10: Elasti sattering in one-photon exhange approximation. Solid, thik-solid and wavy lines denote respetively eletrons, hadrons and photons.is obtained by negleting terms of order (!=mi)2 and higher, where!mi = q2� +m2f �m2i2m2i : (161)



CHAPTER 5. TRINUCLEON FORM FACTORS 57The nulear struture information is ontained in the longitudinal and transverseform fators denoted, respetively, by FL(q) and FT (q). By �xing q and ! andvarying �, it is possible to separate FL(q) from FT (q) in a proedure known asa Rosenbluth separation. Alternatively, by working at �=180Æ one ensures thatonly the transverse form fator ontributes to the ross setion and so may beisolated (in this ase, we observe that the ombination �M tan2 �=2! (�=2�i)2 as� ! 180Æ, and is therefore �nite in this limit).The longitudinal and transverse form fators are expressed in terms of reduedmatrix elements of Coulomb (C), transverse eletri (E), and transverse magneti(M) multipole operators as [1, 52, 92, 93℄F 2L(q) = 12Ji + 1 1XJ=0 jhJfkCJ(q)kJiij2 ; (162)F 2T (q) = 12Ji + 1 1XJ=1 �jhJfkEJ(q)kJiij2 + jhJfkMJ(q)kJiij2� ; (163)where we have de�nedCJM(q) � Z dx jJ(qx)YJM(x̂)�(x) ; (164)EJM(q) � 1q Z dx hr� jJ(qx)YMJJ1(x̂)i � j(x) ; (165)MJM(q) � Z dx jJ(qx)YMJJ1(x̂) � j(x) ; (166)with YMJL1(x̂) � XML;�hLML; 1�jJMiYLML(x̂) ê� ; (167)ê0 � êz, and ê�1 � �(êx � iêy)=p2. Here �(x) and j(x) are the nulear hargeand urrent density operators, and jJ(qx) are spherial Bessel funtions. Theredued matrix elements in Eqs. (162){(163) are related to the matrix elementsof the Fourier transforms �(q) and j(q), introdued in Chapter 4, via [1, 52℄:hJfMf j�(q)jJiMii = 4� 1XJ=0 JXM=�J iJY �JM(q̂)hJiMi; JM jJfMf iq2Jf + 1� hJfkCJ(q)kJii ; (168)



CHAPTER 5. TRINUCLEON FORM FACTORS 58hJfMf jê�(q) � j(q)jJiMii = �p2� 1XJ=1 JXM=�J iJp2J + 1DJ�M(��q; �q; �q)� hJiMi; JM jJfMf iq2Jf + 1� �� hJfkMJ(q)kJii+ hJfkEJ(q)kJii� ; (169)where � = �1, ê�(q) are the spherial omponents of the virtual photon transversepolarization vetor, and the DJ�M are standard rotation matries [93, 94℄. Theexpressions above orrespond to the virtual photon being absorbed at an angle�q, �q with respet to the quantization axis of the nulear spins, the ẑ-axis. Theyan be obtained expressing the states quantized along ẑ as linear ombinations ofthose quantized along q̂:jJ Jziẑ =XJ 0z DJJ 0zJz(��q; �q; �q) jJ J 0ziq̂ : (170)The more familiar expressions for the multipole expansion of the harge andurrent matrix elements are reovered by taking q along the ẑ-axis, so thatY �JM(q̂)! ÆM;0p2J + 1=p4� and DJ�M(��q; �q; �q)! Æ�;M .It is useful to onsider the parity and time-reversal properties of the multipoleoperators [1, 52℄. The salar and polar vetor harater of, respetively, the hargeand urrent density operators under parity transformations implies that CJM andEJM have parity (�1)J , while MJM has parity (�1)J+1. The resulting seletionrules are �i�f = (�1)J (�i�f = (�1)J+1) for Coulomb and transverse eletri(magneti) transitions, where �i and �f are the parities of the initial and �nalstates.The Hermitian harater of the operators �(x) and j(x) as well as their trans-formation properties under time-reversal, �(x)! �(x) and j(x)! �j(x), an beshown to lead to the following relations:hJf jjCJ(q)jjJii = (�1)Jf+J�JihJijjCJ(q)jjJfi ; (171)hJf jjEJ=MJ(q)jjJii = (�1)Jf+J�Ji+1hJijjEJ=MJ(q)jjJfi : (172)These relations along with the parity seletion rules stated above require, in par-tiular, that elasti transitions, for whih Jf=Ji, an only be indued by even-J



CHAPTER 5. TRINUCLEON FORM FACTORS 59Coulomb and odd-J magneti multipole operators.In the ase of elasti sattering from the 3H and 3He nulei, for whih Ji =Jf = 1=2, the only ontributing multipoles are C0 and M1, and from Eqs. (162)and (163), we obtain: F 2L(q) = 12 j h12kC0k12i j2 ; (173)F 2T (q) = 12 j h12kM1k12i j2 : (174)From Eqs. (168) and (169), we have thatj h12kC0k12i j2 = 12� j h	+j�(qẑ)j	+i j2 ; (175)j h12kM1k12i j2 = 1� j h	+jjx(qẑ)j	�i j2 ; (176)where we have set q along the spin-quantization axis (the z-axis), 	+=� denotethe normalized trinuleon wave funtions with total angular momentum projetionJz = �1=2, respetively, and jx(qẑ) is the x-omponent of the urrent operator.Finally it an be shown [1, 93℄ that, for q ! 0h12kC0(q)k12i ' Zp2� ; (177)h12kM1(q)k12i ' ip� q�2m ; (178)where � is the trinuleon magneti moment in nulear magnetons. Therefore weobtain for q ! 0 FL(q) ! Zp4� ; (179)FT (q) ! 1p2� q�2m : (180)The magneti and harge form fators are then de�ned asFC(q) � p4�Z FL(q) ; (181)FM(q) � p2�2mq� FT (q) ; (182)



CHAPTER 5. TRINUCLEON FORM FACTORS 60so that FC=M(q = 0) = 1. From Eqs. (173)-(176), (181) and (182), we obtain thatFM(q) = 2m� 1q h	+ j jx(qẑ) j	�i ; (183)FC(q) = 1Z h	+ j �(qẑ) j	+i : (184)The harge and magneti radii hr2Ci and hr2Mi are �nally de�ned by the relationFC=M (q) ' 1� q2hr2C=Mi6 ; (185)whih an be easily obtained from the the de�nitions of the form fators in thelimit q ! 0, keeping the leading and next-to-leading order term in the expansionof the Bessel funtions in Eqs. (164){(166). The harge and magneti radii asde�ned above are proportional to the \slopes"of the form fators at q2 = 0.5.2 Calulation DetailsThe matrix elements of the harge and urrent operators of Eqs. (183) and (184)are evaluated, without any approximation, by Monte Carlo integration based onthe Metropolis et al. algorithm [95℄. We desribe here the main steps of themethod. For more details see Refs. [67, 73, 76℄. A proof of the Metropolis algo-rithm is given in Ref. [93℄. We proeed as follows: (i) from a given starting spatialon�guration of the three nuleons R0 = (r1; r2; r3), we generate randomly theon�guration R0 = (r01; r02; r03). (ii) The probability density W (R) for any given Ris de�ned as W (R) / 12 �h	y�(R)	�(R)i+ h	y+(R)	+(R)i� ; (186)where the notation h� � �i implies sums over the spin-isospin states of the wavefuntions 	�. (iii) We alulate the ratior � W (R0)W (R0) ; (187)and generate a random number a between 0 and 1. If a � r, then R0 is a-epted, otherwise is rejeted. (iv) The proedure is repeated N times and the



CHAPTER 5. TRINUCLEON FORM FACTORS 61aepted spatial on�gurations are stored. (v) For eah of them, the state vetorsjx(qẑ) j	�i and �(qẑ) j	+i are alulated, by performing exatly the spin-isospinalgebra, as desribed in Refs. [67, 73, 76℄. The momentum-dependent terms injx(qẑ) and �(qẑ) are alulated numerially; for exampleri;�	(R) = 12Æi;� [	(R+ Æi;�)� 	(R� Æi;�)℄ ; (188)where Æi;� is a small inrement in the ri;� omponent ofR. (vi) The spatial integralis then given by (for jx(qẑ), as an example)Z dr1 dr2 dr3	y+(r1 r2 r3) jx(qẑ)	�(r1 r2 r3) '1N NXp=1 1W (Rp)h	y+(Rp) jx(qẑ)	�(Rp)i ; (189)where the spin-isospin dependene is understood.The statistial error is proportional to 1=pN . Typially, in the trinuleon formfator alulation reported here, 400,000 on�gurations are enough to ahieve arelative error of a few % at low and moderate values of momentum transfer q (q �5 fm�1), inreasing to �30% at the highest q-values.The evaluation of the matrix element of Eq. (183) when also �-isobar degreesof freedom are onsidered, is more ompliated. In this ase, it is onvenient toexpand the full wave funtion 	N+�;Jz as	N+�;Jz = 	Jz +Xi<j UTRij 	Jz + : : : ; (190)and write, in a shemati notation:h	N+�;f j j j	N+�;ii = h	f j j(N only) j	ii + h	f j j(�) j	ii ; (191)where j(N only) denotes all one- and two-body ontributions to j(q) whih onlyinvolve nuleon degrees of freedom, i.e., j(N only) = j(1)(N ! N) + j(2)(NN !NN). The operator j(�) inludes terms involving the �-isobar degrees offreedom, assoiated with the expliit � urrents j(1)(N *) �), j(1)(� ! �),j(2)(NN *) N�), and with the transition operators UTRij introdued in Subse-tion 4.1.5. The operator j(�) is illustrated diagrammatially in Figs. 11 and 12.



CHAPTER 5. TRINUCLEON FORM FACTORS 62The terms (a){(g) in Fig. 11 and (a){(f) in Fig. 12 are two-body urrent oper-ators. The terms (g){(l) in Fig. 12 are three-body urrent operators, while theterms (f) and (h){(j) in Fig. 11 are to be interpreted as renormalization orre-tions to the \nuleoni" matrix elements h	f j j(Nonly) j	ii, due to the preseneof �-admixtures in the wave funtions.
(a) (b) (c) (d)

(e) (f) (g)

(h) (i)  (j)FIG. 11: Diagrammati representation of operators inluded in j(�) due to one-body urrents j(1)(N ! �), j(1)(� ! �), et., transition orrelations UN�,U��, and orresponding Hermitian onjugates. Wavy, thin, thik, dashed andross-dashed lines denote photons, nuleons, �-isobars and transition orrelationsUBB0 and UBB0 y, respetively.There are, however, additional, onneted three-body terms in j(�) that arenegleted in the present work. A number of these are illustrated in Fig. 13. Theirontribution is expeted to be signi�antly smaller than that from the terms inFigs. 11 and 12 involving transition orrelations between two partiles only, of thetype UBB0ij y UBB0ij , but omparable to that from the three-body terms in Fig. 12having UBB0ij y UBB0jk . These have been found to be very small.The terms in Fig. 11 are expanded as operators ating on the nuleons' o-ordinates. For example, the terms (a) and (e) in Fig. 11 have the struture,respetively, (a) = j(1)i (�! N)U�Nij ; (192)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)  (j) (k) (l)FIG. 12: Diagrammati representation of operators inluded in j(�) due to two-body urrents j(2)(NN ! N�), j(2)(NN ! �N), et., transition orrelationsUN�, U��, and orresponding Hermitian onjugates. Wavy, thin, thik, dashedand ross-dashed lines denote photons, nuleons, �-isobars and transition orre-lations UBB0 and UBB0 y, respetively.(e) = U�Nij y j(1)i (�! �)U�Nij ; (193)whih an be redued to operators involving only Pauli spin and isospin matriesby using the identitiesSy �AS �B = 23A �B� i3� � (A�B) ; (194)Sy �A� �BS �C = 53 iA � (B�C)� 13� �AB �C�13A �BC � � + 43A � (B � �)C ; (195)where A, B and C are vetor operators that ommute with �, but not neessarilyamong themselves.While the terms in Fig. 12 ould have been redued in preisely the sameway, the resulting expressions in terms of � and � Pauli matries beome tooumbersome. Thus, for these it was found to be more onvenient to retain theexpliit representation of S (Sy) as a 4� 2 (2� 4) matrix
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(a) (b) (c)FIG. 13: Diagrams assoiated with onneted three-body terms, whih are ne-gleted in the present work. Wavy, thin, thik, dashed, ross-dashed and dottedlines denote photons, nuleons, �-isobars, transition orrelations UBB0 and UBB0 y,and the two-body urrent j(2)(NN ! NN), respetively.

S = 0BBBBBB� �ê� 0q23 ê0 � 1p3 ê�� 1p3 ê+ q23 ê00 �ê+
1CCCCCCA ;

where ê� = �(x̂ � iŷ)=p2, ê0 = ẑ, and ê�� = (�)�ê�� and derive the resultof terms suh as (a)+()+(e)=UN�ij y j(2)ij (NN ! N�) on the state j	i by �rstoperating with j(2) and then with UN�y. The Monte Carlo evaluation of thematrix element is then performed with methods similar to those desribed above.We �nally note that perturbation theory (PT) estimates of the �-isobar ex-itation urrents in photo- and eletro-nulear observables typially inlude onlythe ontribution from single N *) � transitions (namely diagrams (a) and (b)in Fig. 11) and ignore the hange in the wave funtion normalization. In par-tiular, the PT expressions for the three-body terms in Fig. 12, diagrams (g)-(l)along with those in whih the �rst and third legs are exhanged, an easily beshown to satisfy urrent onservation with the Fujita-Miyazawa two-pion exhangethree-nuleon interation (2�TNI) [37℄ desribed in Chapter 2, whih provides the\long-range"omponent of the three-nuleon interation.



CHAPTER 5. TRINUCLEON FORM FACTORS 655.3 ResultsIn this Setion we present results for the magneti moments, harge and magnetiform fators and radii of 3H and 3He. In Subsetion 5.3.1 we present the resultsobtained when only the nuleoni degrees of freedom are onsidered, while inSubsetion 5.3.2 we present the results obtained by inluding also the �-isobardegrees of freedom. The nulear ground states are desribed by the PHH wavefuntions obtained from the AV18/UIX Hamiltonian model. A disussion of theeletromagneti urrent and harge operators has been given in Chapter 4.5.3.1 Nuleons OnlyWe present here our results for the magneti and harge form fators when purelynuleoni wave funtions are used.The Magneti Form FatorsThe urrent operator inludes, in addition to the one-body urrent in Eq. (54),the model-independent (MI) two-body urrents PS, V, SO, LL and SO2, ob-tained from the harge-independent part of the AV18 interation, the model-dependent (MD) �� and !� two-body urrents, and �nally the loal terms ofthe ��S three-body urrent assoiated with the S-wave two-pion exhange three-nuleon interation of Eq. (93). Beause of destrutive interferene between theS- and D-state omponents of the wave funtion, the one-body preditions forthe 3H and 3He magneti form fators (MFF) have distint minima at around�3.5 fm�1 and �2.5 fm�1, respetively, in disagreement with the experimentaldata [96, 97, 98, 99, 100, 101, 102, 103, 104, 105℄, as shown in Fig. 14. Inlusionof the ontributions from the two- and ��S three-body urrents shifts the zerosin the alulated MFF to higher q-values. While the experimental 3H MFF isin good agreement with theory over a wide range of momentum transfers, thereis a signi�ant disrepany between the measured and alulated values of the3He MFF in the region of the �rst di�ration minimum. As pointed out alreadyin Chapter 4, this alulation is a�eted by the rather poor knowledge of the



CHAPTER 5. TRINUCLEON FORM FACTORS 66neutron eletromagneti form fators. In Fig. 14 we show also the results ob-tained with the Gari-Kr�umpelmann (GK) parametrization [106℄ of the nuleoneletromagneti form fators, to hek whether this disrepany between theoryand experiment persists when di�erent parametrizations of the nuleon eletro-magneti form fators are used. No improvement in desribing the experimentalresults has been found. To fully investigate this aspet, however, the most reentresults for the nuleon (in partiular proton) eletromagneti form fators [107℄should be onsidered.
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FIG. 14: The magneti form fators of 3H and 3He, obtained with single-nuleonurrents (1-N), and with inlusion of two-nuleon urrent ((1+2)-N) and ��Sthree-nuleon (TOT-N(D)) urrent ontributions, are ompared with data (shadedarea) from Amroun et al: [105℄. Theoretial results orrespond to the AV18/UIXPHH wave funtions, and employ the dipole parametrization (inluding the Gal-ster fator for GE(q2�)) for the nuleon eletromagneti form fators. Note thatthe Sahs form fator GVE(q2�) is used in the model-independent isovetor two-bodyurrents obtained from the harge-independent part of the AV18 interation. Alsoshown are the total results orresponding to the Gari-Kr�umpelmann parametriza-tion [106℄ of the nuleon eletromagneti form fator (TOT-N(GK)).To have a better insight into the eletromagneti urrent operator and thestruture of the three-nuleon systems, it is useful to de�ne the quantitiesF S;VM (q) = 12 [�(3He)FM(q; 3He)� �(3H)FM(q; 3H)℄ ; (196)



CHAPTER 5. TRINUCLEON FORM FACTORS 67where �(3He) and �(3H) are the magneti moments of 3He and 3H respetively.In fat, if the 3H and 3He ground states were pure T=1/2 states, then the F SMand F VM linear ombinations of the three-nuleon MFF would be only inuenedby, respetively, the isosalar (S) and isovetor (V ) parts of the urrent operator.For example, the one-body urrent has the isospin struturej(1)i = jSi + jVi �i;z : (197)From Eq. (196), using the de�nition of Eq. (183), we obtainF SM(q) / hXi jSi i ; (198)F VM(q) / hXi jVi i ; (199)in a shemati notation. However, the 3H and 3He ground states are not pureT=1/2 states; in fat, the eletromagneti and isospin-symmetry breaking termspresent in the AV18 interation, generate small isospin admixtures with T >1/2.As a onsequene, purely isosalar (isovetor) urrent operators give small, oth-erwise vanishing, ontributions to the F VM (F SM) MFF.Among the two- and three-body urrent operators desribed in Chapter 4, thePS, V, !� and ��S urrents are purely isovetor, while �� is purely isosalar.As already pointed out in Setion 4.1.2, the momentum-dependent urrents SO,LL, SO2 have both isosalar and isovetor terms. The one-body urrent has also,as already disussed, both isosalar and isovetor omponents.The ontributions of the individual omponents of the two- and three-nuleon(��S term) urrents to the F SM and F VM ombinations are shown in Fig. 15. In thedi�ration region the PS isovetor urrent gives the dominant ontribution to F VM ,while the ontributions from remaining urrents are about one order of magnitudeor more smaller. The ��S urrent is found to give a very small orretion.Among the two-body ontributions to F SM , the most important is that dueto the SO urrents, the remaining operators produing a very small orretion.Note that the isovetor PS and V urrents ontribute to F SM beause of the smallisospin-symmetry breaking omponents present in the 3H and 3He wave funtionsindued by the AV18 model, as mentioned earlier.
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FIG. 15: Individual ontributions to the F SM(q�) and F VM(q�) ombinations,Eq. (196), of the 3H and 3He magneti form fators, obtained with the dipoleparametrization of the nuleon eletromagneti form fators. The sign of eah on-tribution is given in parenthesis. Note that, beause of isospin-symmetry breakingomponents present in the 3H and 3He wave funtions, the purely isovetor PS, Vand ��S urrents (purely isosalar �� urrent) give non vanishing ontributionsto the F SM(q�) (F VM(q�)) ombination. However as the ��S (��) ontribution isvery small, is not shown.Finally, the umulative ontributions to the F SM and F VM ombinations areompared with the experimental data [105℄ in Fig. 16. The isosalar form fatorF SM(q) is rather poorly known, espeially at higher q-values. Some disrepaniesare present between the full alulation (urve labelled TOT-N) and the experi-mental results at moderate q-values. For the isovetor form fator F VM , the zerois alulated to our at lower q-value than experimentally observed. As shownin the next Setion, this disrepany between theory and experiment remains un-resolved even when �-isobar degrees of freedom are inluded in both the nulearwave funtions and urrents.Preditions for the magneti moments are given in Tables VII and VIII, whilethose for the magneti radii are listed in Table IX. These results are disussed inSubsetion 5.3.2.
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FIG. 17: The harge form fators of 3H and 3He, obtained with a single-nuleonharge operator (1-N) and with inlusion of two-nuleon harge operator ontribu-tions (TOT-N), are ompared with data (shaded area) from Amroun et al: [105℄.Note that the 1-N results also inlude the Darwin-Foldy and spin-orbit orre-tions. Theoretial results orrespond to the AV18/UIX PHH wave funtions, andemploy the dipole parametrization of the nuleon eletromagneti form fators.of these relativisti e�ets would require, for example, inlusion of the boost or-retions on the nulear wave funtions [71, 72, 108℄. Yet, the exellent agreementbetween the alulated and measured CFF suggests that these orretions maybe negligible in the q-range explored so far.For ompleteness, we show in Fig. 18 the ontributions from the individualomponents of the harge operator to the isosalar (S) and isovetor (V ) formfators, de�ned, similarly to Eq. (196), asF S;VC (q) = 12 h2FC(q;3He)� FC(q;3H)i : (200)Similar observations to the ones made for F S=VM (q) are valid also for F S;VC (q). Wenote that the PS, V and ! harge operators ontain both isosalar and isovetoromponents, see Eqs. (100){(102), while the !� and �� harge operators are,respetively, purely isovetor and isosalar.Finally, values for the harge radii of 3H and 3He are listed in Table VI. Theresults inluding the ontributions assoiated with the two-body harge operators
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FIG. 18: Individual ontributions to the F SC (q�) and F VC (q�) ombinations,Eq. (200), of the 3H and 3He harge form fators, obtained with the dipoleparametrization of the nuleon eletromagneti form fators. The sign of eahombination is given in parenthesis. Note that, beause of isospin-symmetrybreaking omponents present in the 3H and 3He wave funtions, the purely isove-tor !� (isosalar ��) harge operator gives a non vanishing ontribution to theF SC (q�) (F VC (q�)) ombination.are found to be in exellent agreement with experimental data.5.3.2 Nuleons and �'sThe 3H and 3He magneti form fators obtained by inluding nuleon and �-isobar degrees of freedom in the nulear wave funtions and urrents are shown inFig. 19; individual ontributions to the ombinations F SM and F VM are displayedin Fig. 20. Finally, individual and umulative ontributions to the magneti mo-ments and umulative ontributions to the magneti radii of the trinuleons arelisted in Tables VII, VIII and IX, respetively. Note that in Fig. 20 and Ta-ble VII the ontributions labelled 1-� and 2-� are assoiated with the diagramsin Figs. 11 and 12, respetively. Also note that the individual nuleoni and �-isobar ontributions in Fig. 20 and Table VII are normalized as, in a shemati



CHAPTER 5. TRINUCLEON FORM FACTORS 72TABLE VI: Cumulative and normalized ontributions to the 3H and 3He r.m.s.harge radii, in fm, ompared with the experimental data.3H 3He1-N 1.711 1.919TOT 1.725 1.928expt. 1.755�0.086 1.959�0.030
notation, [O℄ = h	 j jO j	ih	 j	i : (201)However, the umulative ontributions in Fig. 19 and Table VIII and IX arenormalized as [TOT�N℄ = h	 j j(N only) j	ih	 j	i ; (202)when \nuleons only" terms are retained, and as[TOT�(N +�)℄ = h	N+� j j(N +�) j	N+�ih	N+� j	N+�i ; (203)when, in addition, the � terms are inluded. This last expression takes into a-ount the hange in wave funtion normalization indued when the �-admixturesare inluded.The MFF of 3H and 3He, when the full model for the urrent operator is used(urves labelled TOT-(N+�)) are in rather good agreement with experiment upto q-values of ' 4 fm�1 and ' 3 fm�1, respetively. The disrepany betweentheory and experiment, espeially in the 3He MFF �rst di�ration region, remainsunsolved. In fat, the �-ontributions have been found to be rather small, as anbe seen in Fig. 19 omparing the urves labelled TOT-N and TOT-(N+�), andin Fig. 20, omparing the 1-N with the 1-� and 2-� ontributions. This is inontrast with earlier studies [109℄, where it was suggested that the inlusion of�-isobar degrees of freedom ould reprodue the experimental data in the regionof the �rst zero. In fat, the 2-� ontribution obtained in that study [109℄ hadthe wrong sign (opposite to that obtained here).
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FIG. 19: The magneti form fators of 3H and 3He, obtained with single-nuleonurrents (1-N), and with inlusion of two- and three-nuleon urrent (TOT-N)and � (TOT-(N+�)) ontributions.The predited magneti moments of the trinuleons are within less than 1% ofthe experimental values. The predominantly isovetor �-isobar ontributions leadto an inrease (in magnitude) of the 3H and 3He magneti moments alulatedwith nuleons only degrees of freedom of, respetively, 1.1% and 1.7%. We notethat perturbation theory estimates of the �-isobar ontributions are found to besigni�antly larger than obtained here [67℄.The predited magneti radii of 3H and 3He are, respetively, 2% and 3%smaller than the experimental values, but still within experimental errors. Inlu-sion of the ontributions due to two- and three-body exhange urrents leads toa derease of the 3H and 3He magneti radii by, respetively, 5% and 6%.
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FIG. 20: The single-nuleon ontribution to the F SM(q�) and F VM(q�) ombinationof the 3H and 3He magneti form fators is ompared with the 1-� and 2-�ontributions, assoiated respetively with diagrams of Fig. 11 and 12.TABLE VII: Individual ontributions from the di�erent omponents of the nuleareletromagneti urrent operator to the 3H and 3He magneti moments and their�S and �V ombinations, in nulear magnetons (n.m.). Note that, beause ofisospin-symmetry breaking omponents present in the PHH 3H and 3He wavefuntions, purely isosalar (isovetor) urrents give non vanishing ontributionsto the �V (�S) ombination. The ontributions to �S due to the ��S and 2-�urrents and those to �V due to the SO2+LL urrents are very small and are notlisted. �(3H) �(3He) �S �V1-N 2.571 {1.757 0.407 2.164PS 0.274 {0.269 0.002 0.271V 0.046 {0.044 0.001 0.045SO 0.057 0.010 0.033 0.023SO2+LL {0.005 {0.006 {0.005��+!� 0.016 {0.009 0.003 0.012��S 0.002 {0.002 0.0021-� 0.084 {0.064 0.010 0.0742-� 0.024 {0.024 0.024
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TABLE VIII: Cumulative and normalized ontributions to the 3H and 3He mag-neti moments and their �S and �V ombinations, in nulear magnetons (n.m.),ompared with the experimental data.�(3H) �(3He) �S �V1-N 2.571 {1.757 0.407 2.164TOT-N 2.961 {2.077 0.442 2.519TOT-N+1-� 2.971 {2.089 0.441 2.530TOT-(N+�) 2.994 {2.112 0.441 2.553expt. 2.979 {2.127 0.426 2.553

TABLE IX: Cumulative and normalized ontributions to the 3H and 3He r.m.s.magneti radii, in fm, ompared with the experimental data.3H 3He1-N 1.895 2.040TOT-N 1.810 1.925TOT-N+1-� 1.804 1.916TOT-(N+�) 1.800 1.909expt. 1.840�0.181 1.965�0.153



Chapter 6The 3He ThresholdEletrodisintegrationRadiative apture, photodisintegration and eletrodisintegration reations areother useful tools for exploring the struture of nulei and their eletromagnetiresponses, besides elasti eletron-sattering. In the partiular ase of the three-nuleon systems, there is a large body of experimental results for pd radiativefusion and 3He photodisintegration and eletrodisintegration at threshold. Forthe 3He eletrodisintegration reation, however, the data are still quite unertain.A systemati study of these proesses using AV18/UIX PHH wave funtions andinluding one- and two-body omponents in the model of the eletromagnetitransition operators, has been performed in Ref. [15℄.In this Chapter we limit our disussion to the 3He threshold eletrodisintegra-tion reation. In Setion 6.1 we de�ne the observables of interest for the reation~3He(~e; e0)pd at threshold. In Setion 6.2 we list the terms inluded in the ele-tromagneti urrent and harge operators and desribe some alulation details.Finally in Setion 6.3 we present and disuss our results.
76



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 776.1 The ~3He(~e; e0)pd Reation at ThresholdThe inlusive ross setion for polarized eletron sattering from a polarized spin1/2 target an be written as [15, 110℄d3�d
d! = �(q; !) + h�(q; !) ; (204)�(q; !) = �M [vLRL(q; !) + vTRT (q; !)℄ ; (205)�(q; !) = �M [vLT 0RLT 0(q; !) sin �� os�� + vT 0RT 0(q; !) os ��℄ ; (206)where �M is the Mott ross setion de�ned in Eq. (157), the oeÆients v� arefuntions of the eletron kinemati variables, h = �1 is the heliity of the inidenteletron, and the angles �� and �� speify the diretion of the target polarizationwith respet to q̂, see Fig. 21.
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FIG. 21: Kinemati and oordinate system for sattering of polarized eletronsfrom a polarized target.The kinemati funtions vL and vT are de�ned in Eqs. (158) and (159), whilevLT 0 and vT 0 are given byvLT 0 = � 1p2 q2�q2 tan �2 ; (207)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 78vT 0 = vuutq2�q2 + tan2 �2 tan �2 : (208)The response funtions R� ontain the nulear struture information. They arede�ned in terms of the nulear harge and urrent operators �(q) and j(q) as:RL � Xf j hf j �(q) j	3; 12�3i j2 ; (209)RT � Xf j hf j j(q) j	3; 12�3i j2 ; (210)RLT 0 � �2X� <fXf hf j �(q) j	3; 12�3i� hf j j�(q) j	3; 12�3ig ; (211)RT 0 � X� Xf [� j hf j j�(q) j	3; 12�3i j2 ℄ ; (212)where 	3; 12�3 is the initial 3He bound state wave funtion with spin projetion �3,and � = �1 denote the spherial omponents of the urrent operator. We notethat the sum over the three-nuleon �nal states jfi is in fat restrited to inludeonly the pd ontinuum, sine the exitation energies of interest here are below thethreshold for the three-body breakup. Finally, note that the unpolarized rosssetion is obtained from Eq. (204), summing over the eletron heliities. Thelongitudinal-transverse and transverse-transverse asymmetries ALT 0 and AT 0 arerelated to the funtions v� and R� via the relations:ALT 0(q; !) = vLT 0RLT 0(q; !)vLRL(q; !) + vTRT (q; !) ;AT 0(q; !) = vT 0RT 0(q; !)vLRL(q; !) + vTRT (q; !) : (213)To obtain expliit expressions for the response funtions R� in terms of theredued matrix elements of Coulomb (C), transverse eletri (E) and transversemagneti (M) multipole operators, already de�ned in Eqs. (164){(166), we �rstintrodue the eletromagneti transition amplitudes between the initial 3He boundstate and the �nal pd ontinuum state having proton and deuteron with relativemomentum p and spin projetions, respetively, �2 and �. These transition am-plitudes are given by ���2�3(p;q) = h	(�)p;��2 j�(q)j	3; 12�3i ; (214)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 79j���2�3(p;q) = h	(�)p;��2 j�̂�(q) � j(q)j	3; 12�3i ; (215)where q is the momentum transfer and �̂�(q), � = �1, are the transverse polariza-tions of the virtual photon. The wave funtion 	(�)p;��2 with ingoing-wave boundaryondition is expanded as	(�)p;��2 = 4�XSSzh12�; 1�2jSSzi XLLzJJz iL hSSz; LLzjJJziY �LLz(p̂)	LSJJz(�)1+2 ; (216)where the 	LSJJz(�)1+2 are related to the 	LSJJz1+2 introdued in Setion 3.2 via	LSJJz(�)1+2 = e�i�L XL0S0 h1 + iRJi�1LS;L0S0 	L0S0JJz1+2 : (217)Here RJ is the R-matrix in hannel J and �L is the Coulomb phase shift, givenby �L = arg[�(L + 1 + i�)℄ ; (218)with � de�ned as � = 2�vrel ; (219)� being the �ne struture onstant and vrel the pd relative veloity. Introduingthe expansion of Eqs. (216) and (217) into the matrix elements of Eqs. (214){(215),one �nds:j���2�3(p;q) = 4� XLLzSSzJJz(�i)Lh12�; 1�2jSSzihSSz; LLzjJJziYLLz(p̂) jLSJJz��3(q) ;(220)jLSJJz��3(q) = h	LSJJz(�)1+2 j�̂�(q) � j(q)j	3; 12�3i ; (221)and similar expressions hold for the ���2�3(p;q) amplitudes. When q̂ is takenalong the z-axis, i.e. the spin-quantization axis, standard tehniques [93℄ lead tothe following expansions for the amplitudes �LSJJz�3(q) and jLSJJz��3(q) in terms ofredued matrix elements of Coulomb, transverse eletri and transverse magnetimultipoles: �LSJJz�3(qẑ) = p4� 1X̀=0 i`s 2`+ 12J + 1h12�3; `0jJJzi CLSJ` (q) ; (222)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 80jLSJJz��3(qẑ) = �p2� 1X̀=1 i`s 2`+ 12J + 1h12�3; `�jJJzi [�MLSJ` (q) + ELSJ` (q)℄ : (223)Here TLSJ` (q) is a short notation for h	LSJ(�)1+2 kT`(q)k	3; 12 i, with T � C, E, M .The alulation of the matrix elements �LSJJz�3(qẑ) and jLSJJz��3(qẑ) is desribed inthe next Setion. Given �LSJJz�3(qẑ) and jLSJJz��3(qẑ), the redued matrix elementsCLSJ` (q), MLSJ` (q) and ELSJ` (q) are obtained inverting Eqs. (222) and (223). Forexample we have: CLS 120 (q) = 1p2��LS 1212 12 (qẑ) ; (224)MLS 321 (q) = ip2� �p3jLS 3232 1 12 (qẑ)� jLS 32� 12 �1 12 (qẑ)� : (225)Using Eqs. (214){(223), the expliit expressions for the response funtions R�in terms of the redued matrix elements of the multipole operators are given by:RL = fpd XLSJ` jCLSJ` j2 ; (226)RT = fpd XLSJ`(jELSJ` j2 + jMLSJ` j2) ; (227)RLT 0 = 2p2 fpd XLSJ qJ+1=22J+1 <"�CLSJ� + iCLSJ+ ��hqJ�1=2 (MLSJ� + ELSJ� )�iqJ+3=2 (MLSJ+ + ELSJ+ )i# ; (228)RT 0 = 2 fpd XLSJ 12J + 1"jMLSJ� + ELSJ� j2 � jMLSJ+ + ELSJ+ j2� 2q(J+3=2)(J�1=2)= h(MLSJ� + ELSJ� )�(MLSJ+ + ELSJ+ )i# ; (229)where the phase-spae fator fpd is given by fpd = 4�p, and in the interfereneresponse funtions the notation TLSJ� for the redued matrix elements meansTLSJ`=J�1=2. The magnitude of the relative momentum p is �xed by energy on-servation ! + E3 = E2 + q22(m2 +m) + p22� ; (230)



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 81where E2 and E3 are the two- and three-body ground-state energies, m2 is thedeuteron mass and � is the 1+2 redued mass. We will refer to the term p2=(2�)as exitation energy and it will be indiated with !X below.6.2 CalulationThe model for the urrent operator in the matrix element j���2�3(p;q) of Eq. (215)inludes, besides the standard one-body term of Eq. (54), also the model-independent (MI) two-body operators PS, V, SO, LL and SO2, obtained from theharge-independent part of the AV18 interation, the model-dependent (MD) ��and !� two-body urrents, and �nally the two-body �-ontributions arising fromthe ji(q;N *) �) and ji(q; �! �) operators de�ned in Eqs. (118) and (119), re-spetively. The three-body urrents assoiated with the S-wave two-pion exhangethree-nuleon interation (terms labelled ��S in the previous Chapters) and withthe NN *) N� transition have not been inluded. The ontributions of theseterms were found already small in the trinuleon form fator alulations [13℄, asdisussed in Chapter 5.The model for the harge operator in the matrix element ���2�3(p;q) ofEq. (214), ontains the standard one-body term of Eq. (55), and the two-bodyontributions PS, V, !, �� and !�.The matrix elements of Eqs. (214) and (215) are alulated using the sameMonte Carlo tehniques based on the Metropolis et al. algorithm [95℄ as the onesdisussed in Setion 5.2. We have again used the probability density W (R) ofEq. (186), with 	� � 	3; 12 � 12 .Due to the restrited model for the �-urrents, whih inludes only ji(q;N *)�) and j(q; � ! �), we do not retain the �-ontributions assoiated with thediagrams of Fig. 12. Instead, only the terms shown in Fig. 11 have been onsidered.These have been alulated with the tehniques desribed in Setion 5.2.



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 826.3 ResultsThe most reent and systemati experimental study of the unpolarized thresholdeletrodisintegration of 3He and 3H we are aware of was arried out by Retzla� etal. [111℄ at the MIT/Bates Linear Aelerator Center. The longitudinal and trans-verse response funtions RL and RT were obtained using Rosenbluth separationsfor three-momentum transfers in the range 0.88{2.87 fm�1 and exitation energiesfrom two-body thresholds up to 18 MeV. We are interested here to the inlusive3He eletron sattering data, whih are in agreement with the measurements ofearlier experiments [112℄, after saling for the slightly di�erent kinematis. Noalulations of the 3H response funtions have been arried out in the presentstudy.
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FIG. 22: The longitudinal and transverse response funtions of 3He, obtained withthe AV18/UIX Hamiltonian model and one-body only (dashed lines) or both one-and two-body (solid lines) harge and urrent operators, are ompared with thedata of Ref. [111℄ at exitation energies below the ppn breakup threshold.The 3He RL and RT results at momentum transfer values q=0.88, 1.64 and



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 832.47 fm�1 are shown in Fig. 22, where the data are ompared with our alulationsperformed using one-body only (dashed lines) or both one- and two-body (solidlines) harge and urrent operators. We have here retained the ontributions fromL=0{5 pd sattering states (see Eqs. (226) and (227)), and we have veri�ed thatthe expansion is then fully onverged. There is satisfatory agreement betweentheory and experiment for all ases, but for the longitudinal response at q=2.47fm�1. The data are a�eted however by rather large errors. The two-body om-ponents of the transition operator play an important role, partiularly for thetransverse response at the highest q-values. The relative sign between the one-and two-body ontributions is onsistent with that expeted from elasti formfator studies of 3He [13℄. As already seen in Setion 5.3, the two-body urrent(harge) operators inrease (derease) the one-body preditions for the magneti(harge) form fator at q � 3 fm�1.In Fig. 23 we show the RL, RLT 0, RT and RT 0 response funtions at a �xedexitation energy !X = 1 MeV above the pd threshold, in the three-momentumtransfer range 0{5 fm�1. In RL and RLT 0 the L = 0 pd ontinuum states givethe dominant ontribution, while in RT and RT 0 both L = 0 and L = 1 statesgive equally important ontributions over the whole q range. As an be seenomparing the urves where only one-body ontributions are retained (labelled\IA") and those with both one- and two-body ontributions (labelled \FULL"),all response funtions are substantially a�eted by two-body urrents, espeiallyRLT 0 and RT 0 .Finally, in Fig. 24 we show the unpolarized ross setion, and the ALT 0 and AT 0asymmetries in the threshold region at an inident eletron energy of 4 GeV. Theasymmetries are relatively large at high q, and partiularly sensitive to two-bodyurrents. The ross setion for the hosen kinematis (inident eletron energyof 4 GeV, �xed pd exitation energy of 1 MeV, and 0Æ < � < 14Æ) is dominatedby the longitudinal response funtion. Note that in Fig. 24 we also show theplane-wave-impulse-approximation (PWIA) results. These have been alulated



CHAPTER 6. THE 3HE THRESHOLD ELECTRODISINTEGRATION 84by approximating the wave funtion as	LSJJz1+2 (PWIA) = Xyli ijk h[si 
 �d(xi)℄S 
 YL(ŷi)iJJz FL(prpd)prpd : (231)See Setion 3.2 for notations. The large di�erene between the PWIA and theIA and FULL results indiates that the �nal-state interation between the protonand the deuteron plays an important role.
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FIG. 23: The longitudinal (RL), longitudinal-transverse (RLT 0), transverse (RT )and transverse-transverse (RT 0) response funtions of 3He, obtained with theAV18/UIX Hamiltonian model and one-body only (thik dashed lines) or bothone- and two-body (thik solid lines) harge and urrent operators, are displayedat a �xed exitation energy of 1 MeV for three-momentum transfers in the range0{5 fm�1. In RL and RLT 0 we show the ontributions assoiated with the (dom-inant) S-wave pd sattering states, while in RT and RT 0 both S- and P-waveontributions are shown.
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FIG. 24: The inlusive ross setion, and the ALT 0 and AT 0 asymmetries, obtainedwith the AV18/UIX Hamiltonian model and one-body only (dashed lines) or bothone- and two-body (solid lines) harge and urrent operators, are displayed for3He at a �xed exitation energy of 1 MeV for three-momentum transfers in therange 0{5 fm�1. The results in PWIA (dotted lines) are also shown. The inidenteletron energy is 4 GeV, and the eletron sattering angle is in the range 0{14Æ.



Chapter 7The hep ReationThere has been reently a revival of interest in the proess 3He(p,e+�e)4He [18, 19,20, 21, 22℄, known as the hep reation. This interest has been spurred by the Super-Kamiokande (SK) ollaboration measurements of the energy spetrum of eletronsreoiling from sattering with solar neutrinos [23, 113, 114℄. At energies largerthan 14 MeV, more reoil eletrons have been observed than expeted relativeto standard-solar-model (SSM) preditions [24℄, redued by a fator of ' 0:5 to�t the lower-energy bins. The hep proess is the only soure of solar neutrinoswith energies larger than 15 MeV{their end-point energy is about 19 MeV. TheSSM neutrino ux spetra [24℄ are shown in Fig. 25. Sine the hep proess hastoo small a ross setion to be studied experimentally, the assoiated neutrinoux is based only on theoretial alulations [25℄. The disrepany between theobserved and SSM energy spetra has therefore led to question the reliability ofthese hep ross setion alulations. In partiular, the SK ollaboration [23℄ hasshown that a large enhanement, by a fator of about 17, of the hep ontributionwould essentially �t the observed exess of reoiling eletrons.The theoretial desription of the hep proess onstitutes a hallenging prob-lem from the standpoint of nulear few-body theory, as disussed in Refs. [14, 16℄.To explain this aspet, we onsider the limit in whih the momentum transferq of the reation is set to zero. This approximation was taken in all previousalulations, and it an appear to be adequate, sine, for the hep reation, q �87
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FIG. 25: The SSM solar neutrino energy spetrum. The ontinuum neutrinouxes are given in m�2 se�1 MeV�1, the lines in m�2 se�1.20 MeV/. Introduing the 2S+1LJ notation for the p 3He initial state (S=0,1is the hannel spin, L the two lusters relative orbital angular momentum andJ = L + S), in the q = 0 limit the hep reation is indued only by the axial ur-rent and axial harge operators, ating, respetively, between the initial 3S1 and3P0 apture hannels and the �nal J� = 0+ 4He ground state. When P-wave on-tributions are negleted, therefore, only the axial urrent operator matrix elementbetween the 3S1 initial state and the 4He �nal state needs to be onsidered. Thenon-relativisti one-body axial urrent operator has been disussed in Chapter 4(see Eq. (137)), and, in its q=0 limit, is known as Gamow-Teller (GT) opera-tor. If the 4He wave funtion were to onsist of a symmetri S-state term only,namely 	4 = �4(S) det[p "1; p #2; n "3; n #4℄, then it would be an eigenfuntion ofthe GT operator. Of ourse, tensor omponents in the nulear interations gen-erate signi�ant D-state admixtures, that partially spoil this eigenstate property.To the extent that this property is approximately satis�ed, though, the matrixelement of the GT operator between the 3S1 p 3He and 4He states vanishes due



CHAPTER 7. THE HEP REACTION 89to orthogonality between the initial and �nal states. Therefore, this transitionwhih is expeted to give the leading ontribution, is instead suppressed. Thus,to obtain a reliable estimate, one needs: (i) an aurate desription of the smallomponents of the 3He and 4He wave funtions, in partiular the D-state admix-tures; (ii) inlusion in the model for the axial urrent operator of both relativistiorretions and many-body ontributions; (iii) inlusion in the p 3He initial stateof all L = 0 and L = 1 apture hannels. These are in fat the main features ofthe alulation presented here. In Setion 7.1 we de�ne the astrophysial S-fatorand the ross setion of the hep reation, while in Setion 7.2 we give some detailsof the alulation. Finally, in Setion 7.3 we present and disuss our results.7.1 The hep Cross Setion and Astrophysial S-fatorThe astrophysial S-fator at enter-of-mass (.m.) energy E is de�ned asS(E) = E �(E) e2� � ; (232)where �(E) is the hep ross setion and � has been given in Eq. (219). The terme2� � is the inverse of the so-alled Gamow penetration fator, proportional tothe probability that the proton and 3He moving with relative veloity vrel, willpenetrate their eletrostati repulsion. The de�nition above fators out the strongenergy-dependent terms of �(E), so that S(E) is weakly dependent on E. The.m. energies of interest involved in the p 3He weak apture reation, are of theorder of 10 keV: the energy at whih the reation is most probable to our, knownas the Gamow-peak energy, is in fat 10.7 keV.In this Setion we sketh the derivation of the ross setion �(E) for the hepreation. We proeed in three steps: in Subsetion 7.1.1 we de�ne the transitionamplitude of the proess, performing a partial-wave expansion of the p 3He initialsattering state, similar to what was done in Setion 6.1; in Subsetion 7.1.2we disuss the multipole deomposition of the nulear weak harge and urrent



CHAPTER 7. THE HEP REACTION 90operators, and in Subsetion 7.1.3 we give the �nal expression for the total rosssetion �(E).7.1.1 The Transition AmplitudeThe apture proess 3He(p,e+�e)4He is indued by the weak interation Hamilto-nian [14, 93℄ HW = GVp2 Z dx e�i(pe+p�)�x l� j�(x) ; (233)where GV is the Fermi oupling onstant (GV=1.14939 10�5 GeV�2 [115℄), l� isthe leptoni weak urrentl� = u��(1� 5)ve � ( l0;�l) ; (234)and j�(x) is the hadroni weak urrent density. The positron and (eletron)neutrino momenta and spinors are denoted, respetively, by pe and p�, and veand u�. The Bjorken and Drell [66℄ onventions are used for the metri tensorg�� and -matries; however, the spinors are normalized as vyeve = uy�u� = 1. Thereation and its kinemati are desribed shematially in Fig. 26.
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CHAPTER 7. THE HEP REACTION 91The transition amplitude in the .m. frame is then given byhf jHW jii = GVp2 l�h�q; 4Hejjy�(q)jp; p 3Hei ; (235)where q = pe + p�, jp; p 3Hei and j � q; 4Hei represent the p 3He sattering statewith relative momentum p and 4He bound state reoiling with momentum �q,respetively, and j�(q) = Z dx eiq�x j�(x) � (�(q); j(q)) : (236)The dependene of the amplitude upon the spin-projetions of the proton and 3Heis understood. Sine the energies of interest are of the order of 10 keV, it is usefulto perform a partial-wave expansion of the p 3He sattering wave funtion	(+)p;s1s3 = p4� XLSJJzp2L + 1 iLh12s1; 12s3jSJzihSJz; L0jJJzi	LSJJz1+3 ; (237)with 	LSJJz1+3 = ei�L XL0S0[1� iRJ ℄�1LS;L0S0	L0S0JJz1+3 ; (238)where s1 and s3 are the proton and 3He spin projetions, L, S, and J are therelative orbital angular momentum, hannel spin (S=0,1), and total angular mo-mentum (J = L+S), respetively, RJ is the R-matrix in hannel J , and �L is theCoulomb phase shift, as de�ned in Eq. (218). Note that 	(+) has been onstrutedto satisfy outgoing wave boundary onditions, and that the spin quantization axishas been hosen to lie along p̂, whih de�nes the z-axis. The sattering wave fun-tion 	LSJJz1+3 as well as the 4He wave funtion 	4 have been disussed in Chapter 3.Introduing the expansion of Eqs. (237) and (238) in Eq. (235), we obtain:hf jHW jii = GVp2p4� XLSJJzp2L+ 1 iLh12s1; 12s3jSJzihSJz; L0jJJzi� "l0h	4j�y(q)j	LSJJz1+3 i �X�=0;�1 l�h	4jê�q� � jy(q)j	LSJJz1+3 i# ; (239)



CHAPTER 7. THE HEP REACTION 92where, with the future aim of a multipole deomposition of the weak transitionoperators, the lepton vetor l has been expanded asl = X�=0;�1 l�ê�q� ; (240)with l� = êq� � l ; and êq0 � êq3 ; (241)êq�1 � � 1p2(êq1 � i êq2) : (242)The orthonormal basis êq1, êq2, êq3 is de�ned by êq3 = q̂, êq2 = p � q=jp � qj,êq1 = êq2 � êq3, and is shown in Fig. 26.7.1.2 The Multipole ExpansionStandard tehniques [93℄ an now be used to perform the multipole expansion ofthe weak harge and urrent matrix elements ourring in Eq. (239). In fat, theproedure is quite similar to the one disussed in Setion 5.2, for the eletromag-neti ase. Two main di�erenes need, however, to be taken into aount. Firstly,the spin quantization axis is here along p̂ rather than along q̂. Seondly, andmost importantly, the longitudinal omponent of the weak urrent operator hasto be treated expliitly, sine its axial-vetor part is not onserved. This leadsto the introdution of a fourth multipole operator, whih we will refer to as thelongitudinal (L) multipole (its de�nition is given below).To address these ompliations, we �rst express the states quantized along p̂as linear ombinations of those quantized along q̂, using Eq. (170). For ease ofpresentation, we de�ne here � and � the angles whih speify the diretion q̂ (seeFig. 26). Then, using the transformation properties under rotations of irreduibletensor operators, we an obtain the following expressions for the matrix elementsof harge and urrent operators:h	4 j �y(q) j	LSJJz1+3 i = p4�(�i)J(�)J�JzDJ�Jz;0(��;��; �) CLSJJ (q) ; (243)h	4 j ê�q0 � jy(q) j	LSJJz1+3 i = p4�(�i)J(�)J�JzDJ�Jz ;0(��;��; �) LLSJJ (q) ; (244)



CHAPTER 7. THE HEP REACTION 93h	4 j ê�q� � jy(q) j	LSJJz1+3 i = � p2�(�i)J(�)J�JzDJ�Jz;��(��;��; �)� h�MLSJJ (q) + ELSJJ (q)i : (245)Here � = �1, and CLSJJ , LLSJJ , ELSJJ and MLSJJ denote the redued matrix ele-ments of the Coulomb (C), longitudinal (L), transverse eletri (E) and transversemagneti (M) multipole operators, following the same notation introdued in Se-tion 6.1. The expliit expressions for the C, E and M multipole operators havebeen given in Eqs. (164){(166), while the longitudinal multipole is de�ned as [93℄Lllz(q) = iq Z dx j(x) � rjl(qx)Yllz(x̂) ; (246)where j(x) is the nulear urrent density and jl(qx) are spherial Bessel funtions.Finally, it is useful to onsider the transformation properties under parity ofthe multipole operators. The weak harge/urrent operators have omponentsof both salar/polar-vetor (V) and pseudosalar/axial-vetor (A) harater, andhene Tllz = Tllz(V) + Tllz(A) ; (247)where Tllz is any of the multipole operators above. Obviously, the parity of lth-poleV-operators is opposite of that of lth-pole A-operators. The parity of Coulomb,longitudinal, and eletri lth-pole V-operators is (�)l, while that of magnetilth-pole V-operators is (�)l+1, in analogy to the orresponding eletromagnetimultipoles (see Setion 5.1).7.1.3 The Cross SetionThe ross setion for the 3He(p,e+�e)4He reation at a .m. energy E is given by�(E) = Z 2� Æ  �m + E � q22m4 � Ee � E�! 1vrel� 14 Xses� Xs1s3 jhf jHW j iij2 dpe(2�)3 dp�(2�)3 ; (248)where �m = m +m3 �m4 = 19.287 MeV (m, m3 and m4 are, respetively, theproton, the 3He and the 4He rest masses), and vrel is the p 3He relative veloity,



CHAPTER 7. THE HEP REACTION 94vrel = p=�, � being the redued mass, � = mm3=(m + m3). It is onvenient towrite: 14 Xses� Xs1s3 jhf jHW j iij2 = (2�)2 G2V L�� N�� ; (249)where the lepton tensor L�� is de�ned asL�� � 12 Xses� l�l� � = 12tr��(1� 5)( 6 pe �me)2Ee � (1� 5) 6 p�2E� �= v�e v�� + v��v�e � g��ve � v� + i �����ve;�v�;� ; (250)with �0123 = �1, v�e = p�e=Ee and v�� = p��=E� are the lepton four-veloities. Thenulear tensor N�� is de�ned asN�� � Xs1s3W �(q; s1s3)W ��(q; s1s3) ; (251)where W �=0(q; s1s3) = XLSJXLSJ0 (q̂; s1s3)CLSJJ (q) ; (252)W �=3(q; s1s3) = XLSJXLSJ0 (q̂; s1s3)LLSJJ (q) ; (253)W �=�1(q; s1s3) = � 1p2 XLSJXLSJ�1 (q̂; s1s3) h�MLSJJ (q) + ELSJJ (q)i : (254)The dependene upon the diretion q̂ and proton and 3He spin projetions s1 ands3 is ontained in the funtions XLSJ� given byXLSJ� (q̂; s1s3) = XJz p2L+ 1 iL(�i)J(�)J�Jzh12s1; 12s3jSJzihSJz; L0jJJzi� DJ�Jz;�(��;��; �) ; (255)with � = 0;�1. Note that the Cartesian omponents of the lepton and nuleartensors (�; � = 1; 2; 3) are relative to the orthonormal basis êq1, êq2, êq3, de�nedat the end of Setion 7.1.1.The expression for the nulear tensor an be further simpli�ed by making useof the redution formulas for the produt of rotation matries [94℄. In fat, it aneasily be shown that the dependene of N�� upon the angle os � = p̂ � q̂ anbe expressed in terms of Legendre polynomials Pn(os �) and assoiated Legendre



CHAPTER 7. THE HEP REACTION 95funtions Pmn (os �) with m = 1; 2. However, given the large number of hannelsinluded in the present study (all L=0 and L=1 apture states), the resultingequations for N�� are not partiularly illuminating. Indeed, the alulation of theross setion, Eq. (248), is arried out numerially with the tehniques disussedin Subsetion 7.2.2.A thorough disussion of the ross setion expression of Eq. (248) and its long-wavelength-approximation has been given in Ref. [14℄. Here, we only remark thatthe long-wavelength-approximation for the ross setion, ommonly used in allprevious studies, leads to inaurate results.7.2 CalulationThe alulation of the p 3He weak apture ross setion proeeds in two steps: �rst,we evaluate, via Monte Carlo tehniques, the weak harge and urrent operatormatrix elements, and by inverting Eqs. (243){(245), we deompose these in termsof the redued matrix elements of the multipole operators. Seond, we evaluatethe ross setion by arrying out numerially the integrations of Eq. (248). Thesetwo steps are disussed in Subsetions 7.2.1 and 7.2.2, respetively. The modelfor the weak harge and urrent operators has been desribed in Chapter 4.7.2.1 Monte Carlo Calulation of Matrix ElementsIn a frame where the diretion of the momentum transfer q̂ also de�nes the quan-tization axis of the nulear spins, the matrix elements of the weak harge andurrent operators have the multipole expansionh	4 j �y(q) j	LSJ;Jz=01+3 i = p4� iJCLSJJ (q) ; (256)h	4 j ê�q0 � jy(q) j	LSJ;Jz=01+3 i = p4� iJLLSJJ (q) ; (257)h	4 j ê�q� � jy(q) j	LSJ;Jz=�1+3 i = p2� iJ h�MLSJJ (q) + ELSJJ (q)i ; (258)with � = �1. The expressions above an easily be obtained from those inEqs. (243){(245), by setting �=�=0 and using DJJ 0z;Jz(0; 0; 0) = ÆJ 0z;Jz . The re-dued matrix elements of the multipole operators are then obtained inverting



CHAPTER 7. THE HEP REACTION 96Eqs. (256){(258). As an example, the redued matrix element of the axial eletrimultipole involving a transition from the p 3He 3S1 state is simply given byE0111 (q; A) = � ip2� h	4 j ê�q� � jy(q; A) j	011;Jz=�1+3 i : (259)The problem is now redued to evaluate matrix elements of the same typeas on the right-hand-side of Eq. (259). Similarly to the proedure desribed inSetion 5.2, we shematially write these matrix elements ash	4;N+� jO j	1+3;N+�i[h	4;N+� j	4;N+�ih	1+3;N+� j	1+3;N+�i℄1=2 ; (260)where the initial and �nal states wave funtions ontain both nuleon and �-isobardegrees of freedom and are obtained using the transition orrelation operatormethod (TCO) desribed in Subsetion 4.1.5. When the full wave funtions areexpanded as in Eq. (190), the numerator of Eq. (260) an be expressed ash	4;N+� jO j	1+3;N+�i = h	4 jO(N only) j	1+3i + h	4 jO(�) j	1+3i ; (261)where the operator O(N only) denotes all one- and two-body ontributions to theweak harge or urrent operator O, involving only nuleon degrees of freedom,while O(�) inludes terms that involve the �-isobar degrees of freedom. A di-agrammatial illustration of the terms ontributing to O(�) is given in Fig. 27.Conneted three-body terms ontaining more than a single � isobar have beenignored, sine their ontributions are expeted to be negligible. Indeed, the on-tribution from diagram (d) of Fig. 27 has already been found numerially verysmall.The two-body terms of Fig. 27 are expanded as operators ating on the nule-ons' oordinates with the same proedure desribed in Setion 5.2 for the termsof Fig. 11. The three- and four-body terms instead have been alulated retainingthe expliit representation of S (Sy) as a 4 � 2 (2 � 4) matrix (see Setion 5.2),
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a) b) c) d)

h) i) j)FIG. 27: Diagrammati representation of the operators inluded in O(�), due tothe one-body urrent and harge operators, to the transition orrelations UN� andU�� and the orresponding Hermitian onjugates. Thin, thik, dashed and ross-dashed lines denote, respetively, nuleons, �-isobars, and transition orrelationsUBB0 and UBB0 y.and of � as a 4� 4 matrix � = 0BBBBBB� 3ê0 p6ê� 0 0�p6ê+ ê0 p8ê� 00 �p8ê+ �ê0 p6ê�0 0 �p6ê+ �3ê0
1CCCCCCA ;

where ê� = �(x̂ � iŷ)=p2, ê0 = ẑ, and ê�� = (�)�ê��. The result of terms suhas (f)=UN�ij yO(1)j (� ! �)U�Njk on the nuleon-only state j	i has been derivedby �rst operating with U�Njk , then with O(1)j (� ! �), and �nally with UN�ij y.The terms assoiated with diagrams (f), (g) and (j) were negleted in previousalulations [25℄.The matrix elements in Eq. (261) are omputed, without any approximation,by Monte Carlo integrations, aording to the Metropolis et al. algorithm [95℄



CHAPTER 7. THE HEP REACTION 98as desribed in Setion 5.2. It has been found however more onvenient to use aprobability density W (R) proportional toW (R) / qh	y4(R)	4(R)i ; (262)where the notation h� � �i implies sums over the spin-isospin states of the 4He wavefuntion. Typially, 200,000 on�gurations are enough to ahieve a relative error� 5 % on the total S-fator.We �nally disuss here an important aspet of the model for the axial transitionoperators. As already pointed out in Subsetion 4.2.5, in the model for the N�and �� weak axial harge and urrent operators, the axial oupling onstantsg�A and gA, see Eqs. (150){(153), are not well known. In the quark-model, theyare related to the axial oupling onstant of the nuleon by the relations g�A =(6p2=5)gA and gA = (1=5)gA. However, given the unertainties inherent to quark-model preditions, a more reliable estimate for g�A is obtained by determining itsvalue phenomenologially in the following way. It is well established by now [12℄that the one-body axial urrent of Eq. (137) leads to a ' 4 % underpredition ofthe measured Gamow-Teller matrix element in tritium �-deay, see Table X. Sinethe ontributions of �! � axial urrents (as well as those due to the two-bodyoperators of Subsetion 4.2.3) are found to be numerially very small, as an beseen again from Table X, this 4 % disrepany an then be used to determine g�A.Obviously, this proedure produes di�erent values for g�A depending on how the�-isobar degrees of freedom are treated. These values are listed in Table XI foromparison. The g�A value that is determined in the ontext of a TCO alulationbased on the AV28Q interation, is about 40 % larger than the naive quark-modelestimate. However, when perturbation theory is used for the treatment of the �isobars, the g�A value required to reprodue the Gamow-Teller matrix element oftritium �-deay is muh smaller than the TCO estimate.7.2.2 Calulation of the Cross SetionOne the redued matrix elements (RMEs) in Eqs. (256){(258) have been ob-tained, the alulation of the ross setion �(E) is redued to performing the
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TABLE X: Contributions to the Gamow-Teller (GT) matrix element of tritium�-deay, obtained with the PHH trinuleon wave funtions orresponding to theAV18/UIX Hamiltonian model. The rows labelled \one-body NR"and \one-bodyRC"list the ontributions assoiated with the single-nuleon axial urrent opera-tors of Eq. (137) and Eq. (138), respetively, while the row labelled \mesoni"liststhe sum of the ontributions due to the �-, �-, and ��-exhange axial urrentoperators of Eqs. (142){(144). The rows labelled \�-g�A"and \�-gA"list the on-tributions arising from the one-body �-urrents of Eqs. (150) and (151), respe-tively. The row labelled \�-renormalization"lists the ontributions assoiatedwith renormalization orretions to the \nuleoni"matrix element of j(1)i (q; A),due to the presene of �-admixtures in the wave funtions. The umulative resultreprodues the \experimental value"0.957 for the GT matrix element [12℄, one thehange in the wave funtions normalization due to the presene of �-omponentsis taken into aount. GT matrix elementone-body NR 0.9218one-body RC {0.0084mesoni 0.0050�-g�A 0.0509�-gA 0.0028�-renormalization 0.0074
TABLE XI: The values of the N!� axial oupling onstant g�A in units of gA,when the �-isobar degrees of freedom are treated in perturbation theory (PT), orin the ontext of a TCO alulation based on the AV28Q interation. The purelynuleoni CHH wave funtions orrespond to the AV18/UIX Hamiltonian model.�-isobar treatment g�A=gAPT 1.224TCO 2.868



CHAPTER 7. THE HEP REACTION 100integrations over the eletron and neutrino momenta in Eq. (248) numerially.We write�(E) = 1(2 �)2 G2Vvrel Z p�e0 dpe p2e Z 1�1 dxe Z 1�1 dx� Z 2�0 d� p2� f�1 L��N�� ; (263)where one of the azimuthal integrations has been arried out, sine the integrandonly depends on the di�erene � = �e��� . The Æ-funtion ourring in Eq. (248)has also been integrated out resulting in the fator f�1, withf = ����1 + pe xe�m4 + p�m4 ���� : (264)The magnitude of the neutrino momentum is �xed by energy onservation to bep� = 2�1 + pe xe�=m4 +q(1 + pe xe�=m4)2 + 2�=m4 ; (265)where � = �m + E � Ee � p2e=2m4. The variable xe� is de�ned asxe� = p̂e � p̂� = xe x� +q1� x2eq1� x2� os � ; (266)where xe = os �e and x� = os �� . Finally, the integration over the magnitude ofthe eletron momentum extends from zero up top�e = s�qm24 +m2e + 2m4 (�m + E) � m24�2 �m2e : (267)The lepton tensor is expliitly given by Eq. (250), while the nulear tensor isonstruted using Eqs. (251){(255). Computer odes have been developed toalulate the required rotation matries orresponding to the q̂-diretion (�; �)with os � = ẑ � q̂ = ẑ � (pe + p�)jpe + p� j= pe xe + p� x�qp2e + p2� + 2 pe p� xe� : (268)Finally, note that the nulear tensor requires the values of the RMEs at themomentum transfer q, with q = qp2e + p2� + 2 pe p� xe�. To make the dependene



CHAPTER 7. THE HEP REACTION 101upon q of the RMEs expliit, we have performed an expansion for q ! 0 of themultipole operators given in Eqs. (164){(166) and (246). Given the low momen-tum transfers involved, q � 20 MeV/, the leading and next-to-leading order termsare suÆient in the expansion. The multipoles are therefore expliitly written asTLSJJ (q) = qm (tLSJ0 + tLSJ2 q2) ; (269)where m = J for the Coulomb CJ and magneti MJ multipole operators, andm = J � 1 for the eletri EJ and longitudinal LJ ones. However, when J = 0,the leading-order term of the expansion of the longitudinal operator L0 is of orderof q [93℄. Note that the long-wavelength-approximation orresponds, typially, toretaining only the t0 term.A moderate number of Gauss points (of the order of 10) for eah of the integra-tions in Eq. (263) is suÆient to ahieve onvergene within better than one partin 103. The omputer program has been suessfully tested by reproduing theresult obtained analytially, when only the 3S1 E1(A) and L1(A) and 3P0 C0(A)RMEs are retained.7.3 ResultsIn this Setion we present our main results, for a more detailed disussion, seeRef. [14℄. In Subsetion 7.3.1 we give the results of the astrophysial S-fator, atthree di�erent energies. In Subsetion 7.3.2 we disuss the RME values for twoof the initial apture hannels, the 3S1 and 3P0. The former ase is onsideredto ompare with previous alulations [25, 51℄, while the latter is disussed asan example of one of the P-wave ontributions. Finally, in Subsetion 7.3.3, weonsider the impliations to the SK neutrino spetrum.7.3.1 Results for the S-fatorOur results for the astrophysial S-fator, alulated using CHH wave funtionswith the AV18/UIX Hamiltonian model, at three di�erent .m. energies, are given



CHAPTER 7. THE HEP REACTION 102in Table XII. By inspetion of the table, we note that: (i) the energy dependeneis rather weak: the value at 10 keV is only about 4 % larger than that at 0 keV;(ii) the P-wave apture states are found to be important, ontributing about 40% of the alulated S-fator. However, the ontributions from D-wave hannelsare expeted to be very small. It has been expliitly veri�ed that they are indeedsmall in 3D1 apture. (iii) The many-body axial urrents play a ruial role in the(dominant) 3S1 apture, where they redue the S-fator by more than a fator offour.TABLE XII: The hep S-fator, in units of 10�20 keV b, alulated with CHHwave funtions orresponding to the AV18/UIX Hamiltonian model, at p 3He .m.energies E=0, 5, and 10 keV. The rows labelled \one-body"and \full"list theontributions obtained by retaining the one-body only and both one- and many-body terms in the nulear weak urrent. The ontributions due the 3S1 hannelonly and all S- and P-wave hannels are listed separately.E=0 keV E=5 keV E=10 keV3S1 S+P 3S1 S+P 3S1 S+Pone-body 26.4 29.0 25.9 28.7 26.2 29.3full 6.38 9.64 6.20 9.70 6.36 10.1The di�erent ontributions from the S- and P-wave apture hannels to thezero energy S-fator are listed in Table XIII. Note that the sum of the hannelontributions is a few % smaller than the total result reported at the bottomof the table, due to the presene of interferene terms among multipole opera-tors onneting di�erent apture hannels [14℄. The results obtained using thetwo-nuleon AV18 and the older two- and three-nuleon AV14/UVIII interationmodels are also listed. The dominant ontribution to the S-fator is obtained fromthe 3S1 apture hannel. The 3P0 apture hannel ontribution is not the largestP-wave ontribution, as instead expeted in previous studies [21℄, although it isthe only one surviving at q=0. A detailed analysis of the 3S1 and 3P0 RMEs isgiven in the next Subsetion.By omparing the AV18 and AV18/UIX results, we note that inlusion of the



CHAPTER 7. THE HEP REACTION 103TABLE XIII: Contributions of the S- and P-wave apture hannels to the hepS-fator at zero p 3He .m. energy in 10�20 keV b. The results orrespond to theAV18/UIX, AV18 and AV14/UVIII Hamiltonian models.AV18/UIX AV18 AV14/UVIII1S0 0.02 0.01 0.013S1 6.38 7.69 6.603P0 0.82 0.89 0.791P1 1.00 1.14 1.053P1 0.30 0.52 0.383P2 0.97 1.78 1.24TOTAL 9.64 12.1 10.1
three-nuleon interation redues the total S-fator by about 20 %. This dereaseis mostly in the 3S1 ontribution, and an be traed bak to a orresponding redu-tion in the magnitude of the one-body axial urrent matrix elements. The latterare sensitive to the triplet sattering length, for whih the AV18 and AV18/UIXmodels predit, respetively, 10.0 fm and 9.13 fm (see Table IV). This 20 % di�er-ene in the total S-fator values for AV18 and AV18/UIX emphasizes the need forperforming the alulation using a Hamiltonian model that reprodues the bind-ing energies and low-energy sattering parameters for the three- and four-nuleonsystems. This is true for the AV18/UIX model, but not for the AV18 model.The di�erent ontributions to the astrophysial S-fator when the olderAV14/UVIII potential model is used are given in the last olumn of Table XIII.By omparing these results with the ones obtained with the AV18/UIX, we ob-serve that both the S- and P-wave ontributions are not signi�antly hanged; inpartiular, the 3S1 apture S-fator values di�er for only about 3 %. This is dueto our proedure of onstraining the model dependent two-body axial urrents by�tting the Gamow-Teller matrix element of tritium �-deay, as disussed at theend of Subsetion 7.2.1. Note that the AV14/UVIII Hamiltonian also reproduesthe low-energy properties for the three- and four-nuleon systems.



CHAPTER 7. THE HEP REACTION 104The hief onlusion of this Subsetion is that our best estimate for the S-fator at 10 keV, lose to the Gamow-peak energy, is 10.1 �10�20 keV b. Thisvalue is ' 4.5 times larger than the value adopted in SSM, based on Ref. [25℄, of2.3 �10�20 keV b. It is therefore important to point out the di�erenes betweenthe present and the previous study of Ref. [25℄: (i) we have inluded all P-waveontributions; (ii) we have retained the full dependene on the momentum transferq; (iii) we have used the CHH method to desribe the initial and �nal state wavefuntions, orresponding to the latest generation of realisti interations. TheCHH method is known to be more aurate than the variational Monte Carlo(VMC) tehnique used in Ref. [25℄, and it better desribes the small omponentsof the wave funtion to whih the GT operator is most sensitive. (iv) We haveinluded the 1=m2 relativisti orretions in the one-body axial urrent operator.In 3S1 apture, for example, these terms inrease by 25 % the L1 and E1 matrixelements alulated with the GT operator (see below).7.3.2 The 3S1 and 3P0 CapturesThe 3S1 apture is indued by the weak axial harge and urrent, and weak vetorurrent operators via the multipoles C1(A), L1(A), E1(A), and M1(V), while the3P0 apture is indued by the weak axial harge and the longitudinal omponent ofthe weak axial urrent operators via the multipoles C0(A) and L0(A), respetively.The umulative ontributions to the RMEs of these multipoles obtained withAV18/UIX CHH wave funtions, at zero .m. energy and at a lepton momentumtransfer q=19.2 MeV/ are listed in Tables XIV and XVI. Note that the RMEslisted in all tables are related to those de�ned in Eqs. (243){(245) viaTJLSJ = r vrel4�� [e2�� � 1℄TLSJJ ; (270)whih an be shown to remain �nite in the limit vrel ! 0, orresponding to zeroenergy. The umulative nuleoni ontributions are normalized as[one�body+mesoni℄ = h	4jO(N only)j	1+3i[h	4j	4ih	1+3j	1+3i℄1=2 : (271)



CHAPTER 7. THE HEP REACTION 105However, when the �-isobar ontributions are added to the umulative sum, thenormalization hanges to[one�body+mesoni+�℄ = h	4;N+�jO(N only) +O(�)j	1+3;N+�i[h	4;N+�j	4;N+�ih	1+3;N+�j	1+3;N+�i℄1=2 : (272)The normalization of the initial sattering state 	1+3 is the same as that of 3He,up to orretions of order (volume)�1. The three- and four-body normalizationratios h	N+�j	N+�i=h	j	i have been given in Chapter 4, Table V.TABLE XIV: Cumulative ontributions to the redued matrix elements (RMEs)C1(q; A), L1(q; A), E1(q; A) and M1(q; V) in 3S1 apture at zero p 3He .m. en-ergy. The momentum transfer q is 19.2 MeV/, and the results orrespond tothe AV18/UIX Hamiltonian model. The row labelled \one-body"lists the on-tributions assoiated with the operators in Eq. (135) for the weak axial harge�(A), Eq. (136) for the weak axial urrent j(A), and Eq. (133) for the weak vetorurrent j(V); the row labelled \mesoni"lists the results obtained by inluding, inaddition, the ontributions assoiated with the operators in Eqs. (145){(147) for�(A), Eqs. (142){(144) for j(A), and Eqs. (88){(89) for j(V), with the substitu-tions �i;z ! �i;� and (� i�� j)z ! (� i�� j)� (see Subsetion 4.2.2); �nally, the rowlabelled \�"lists the results obtained by also inluding the ontributions of theoperators in Eqs. (152){(153) for �(A), Eqs. (150){(151) for j(A), and Eqs. (154){(155) for j(V). The � ontributions in both �(A) and j(A) are alulated withthe TCO method, and take into aount the hange in normalization of the wavefuntions due to the presene of �-omponents. Those in j(V) are alulated inperturbation theory. Note that the RMEs are purely imaginary and in fm3=2 units.C1(q; A) L1(q; A) E1(q; A) M1(q; V)one-body 0:147� 10�1 �0:730� 10�1 �0:106 0:333� 10�2mesoni 0:156� 10�1 �0:679� 10�1 �0:984� 10�1 �0:263� 10�2� 0:155� 10�1 �0:293� 10�1 �0:440� 10�1 �0:484� 10�2Inspetion of the 3S1 apture RMEs of Table XIV, shows that: (i) the C1(A)RMEs are not small, ompared to the dominant L1(A) and E1(A) terms. (ii)There is destrutive interferene between the one- and many-body axial urrentontributions to the L1(A) and E1(A) RMEs, as it was �rst obtained in Ref. [51℄,using VMC wave funtions. (iii) Among the many-body axial urrent ontribu-tions, those assoiated with �-exitation are the largest.



CHAPTER 7. THE HEP REACTION 106TABLE XV: Cumulative ontributions, at momentum transfers q=0 and 19.2MeV/, to the redued matrix elements (RMEs) L1(q; A) and E1(q; A) of the weakaxial urrent in 3S1 apture at zero p 3He .m. energy. The results orrespond tothe AV18/UIX Hamiltonian model. Notations as in Table XIV for \one-body",\mesoni"and \�-TCO", whih there was labelled \�". Finally, the row labelled\�-PT"lists the results obtained by inluding the ontributions of the operator inEq. (150), alulated in perturbation theory (PT). The �-TCO results also takeinto aount the hange in normalization of the wave funtions due to the preseneof �-omponents. Note that the RMEs are purely imaginary and in fm3=2 units.L1(q; A) E1(q; A)q=0 MeV/ q=19.2 MeV/ q=0 MeV/ q=19.2 MeV/one-body �0:880� 10�1 �0:730� 10�1 {0.125 {0.106mesoni �0:829� 10�1 �0:679� 10�1 {0.117 �0:984� 10�1�-TCO �0:440� 10�1 �0:293� 10�1 �0:625� 10�1 �0:440� 10�1�-PT �0:447� 10�1 �0:298� 10�1 �0:631� 10�1 �0:443� 10�1
To study the q-dependene of the dominant L1(A) and E1(A) multipoles, wehave listed in Table XV the umulative ontributions to the multipoles RMEs attwo di�erent momentum transfers q=0 and q=19.2 MeV/. The q-dependene isimportant only for the one-body ontribution. In fat, the di�erene between theq=0 and q=19.2 MeV/ RMEs is onstant for all the umulative ontributions(0.015 and 0.019 for L1(A) and E1(A), respetively). The last row of Table XV,labelled \�{PT", lists the RMEs obtained using perturbation theory in the treat-ment of the �-isobar degrees of freedom (see Subsetion 4.1.5). Note that in thisase, the results have been normalized aording to Eq. (271). Comparing theseRMEs with the ones obtained in the TCO ontext (row labelled \�{TCO"), wesee a di�erene of only 1{2 %. This is due to the fat that in both ases the N�axial oupling onstant g�A is obtained by �tting the Gamow-Teller matrix elementin tritium �-deay, as disussed in Setion 7.2. The dependene of our alulationon the �-isobar degrees of freedom treatment is therefore strongly redued.The 3P0 apture RMEs are presented in Table XVI. We �rst note that the 3P0



CHAPTER 7. THE HEP REACTION 107multipoles are in fat not small: both the C0(A) and L0(A) RMEs are of the sameorder of magnitude as the E1(A) and L1(A) RMEs in 3S1 apture. Furthermore,there is onstrutive interferene between the one- and many-body ontributionsto both the axial harge and urrent operators. In partiular, the two-body axialharge operators of Subsetion 4.2.4, among whih the pion-exhange term isdominant, give a ' 20 % orretion to the one-body ontribution in the C0(A)RME. The L0(A) RME is about 40 % of, and has the same sign as, the C0(A)RME. This positive relative sign produes a destrutive interferene between theseRMEs in the ross setion, substantially reduing the 3P0 overall ontribution tothe S-fator [14℄. The C0(A) and L0(A) RMEs are in fat expeted to be of thesame sign, as disussed in Ref. [14℄.TABLE XVI: Cumulative ontributions to the redued matrix elements (RMEs)C0(q; A) and L0(q; A) in 3P0 apture at zero p 3He .m. energy. The momentumtransfer q is 19.2 MeV/, and the results orrespond to the AV18/UIX Hamiltonianmodel. Notations as in Table XIV. Note that the RMEs are purely imaginaryand in fm3=2 units. C0(q; A) L0(q; A)one-body 0:371� 10�1 0:182� 10�1mesoni 0:444� 10�1 0:183� 10�1� 0:459� 10�1 0:188� 10�1
7.3.3 Impliations for the Super-Kamiokande Solar Neu-trino SpetrumThe Super-Kamiokande (SK) experiment detets solar neutrinos by neutrino-eletron sattering. It is sensitive, aording to the SSM (see Fig. 25), to thevery energeti neutrinos from the 8B weak deay (8B! 4He+ 4He+ e++ �e) andfrom the hep reation. In the SSM the hep neutrinos ontribution is expeted tobe very small. However, due to a larger end-point energy respet to the 8B weakdeay, the hep reation is the only soure of solar neutrinos at energies larger than



CHAPTER 7. THE HEP REACTION 108' 15 MeV.The SK results are presented as ratio of the measured to the SSM preditedevents when no neutrino osillations are inluded, as funtion of the reoil eletronenergy. Over most of the spetrum, this ratio is onstant at ' 0:5 [23℄. At thehighest energies, however, there is an exess of events relative to the 0:5�SSMpredition. This is seen in Fig. 28 where the SK results from 825 days of dataaquisition [23℄ are shown by the points (the error bars denote the ombinedstatistial and systemati error); the dotted line is the 0:5�SSM predition.To study the e�ets of our new value for the S-fator, 10.1 �10�20 keV b (seeTable XII) to the SK spetrum, we introdue the ratio � of the hep ux to itsSSM value as � � SnewSSSM � Pos ; (273)where Pos is the observed suppression fator due to neutrino osillations. There-fore, if hep neutrino osillations are ignored, then � = (10:1�10�20 keV b)=(2:3�10�20 keV b) = 4:4, while if the hep neutrinos are suppressed by ' 0:5, then� = 2:2. The long-dashed and solid lines in Fig. 28 indiate the e�et of thesetwo di�erent values of � on the ratio of the eletron spetrum with both 8B andhep to that with only 8B (the SSM). Two other arbitrary values of � (10 and 20)are shown for omparison.From Fig. 28, we an onlude that the enhanement of the S-fator found inthis alulation, although large, is not enough to ompletely resolve the disrep-anies between the present SK results and the SSM preditions. However, thisaurate alulation of the S-fator, and the onsequent absolute predition forthe hep neutrino ux, will allow muh greater disrimination among the proposedsolutions to this problem, based on di�erent solar neutrino osillation senarios.



CHAPTER 7. THE HEP REACTION 109

5 6 7 8 9 10 11 12 13 14 15
Ee  [MeV]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

a
ta

/S
S

M

α=2.2
α=4.4
α=10
α=20

FIG. 28: Eletron energy spetrum for the ratio between the Super-Kamiokande825-days data and the expetation based on unosillated 8B neutrinos [24℄. Thedata are taken from Ref. [23℄. The 5 urves from the bottom to the top orrespondrespetively to no hep ontribution (dotted line), �=2.2, 4.4, 10, 20, with � de�nedin Eq. (273).



Chapter 8ConlusionsIn the present thesis, we have reported on aurate alulations for three nulearproesses: elasti eletron-sattering on 3H and 3He [13℄, 3He eletrodisintegrationat threshold [15℄, and the hep reation [14, 16℄. We have used a non-relativistiapproah, based on latest generation models for the nulear Hamiltonian andeletroweak urrents.For the �rst two proesses, we have ompared our preditions with the availableexperimental data. Generally, the alulated observables agree well with the mea-sured ones. It should be reemphasized that, in order to ahieve suh agreement,realisti models for both the nulear Hamiltonian and eletromagneti transitionoperators must be used. Indeed, the impulse approximation ompletely fails toreprodue the experimental results, and many-body ontributions to the eletro-magneti harge and urrent operators need to be inluded to ahieve agreementwith the data.Some disrepanies, however, still remain unresolved: the 3He magneti formfator �rst zero ours at lower momentum transfer q than experimentally ob-served. Furthermore, the 3He longitudinal response funtion at high q seems tobe overpredited by theory. These disrepanies provide important motivationsto (i) look for improvements and re�nements to models of nulear interationsand/or eletroweak urrents, and (ii) perform more aurate experiments in order110



CHAPTER 8. CONCLUSIONS 111to on�rm the existing data, some of whih have large errors. Indeed, new exper-imental proposals to investigate these disrepanies are urrently under study atthe Thomas Je�erson National Aelerator Faility [17℄.Finally, the hep reation alulation provides an example of how our approahan be applied to study reations, whih our in stellar interiors at very low en-ergies and have too small a ross setion to be measured experimentally. Some ofthese proesses are very important in determining solar fusion rates and primor-dial abundanes of elements; the importane of aurate theoretial preditions istherefore evident. A systemati study of eletroweak apture reations involvingnulei up to A � 8 will be the objet of future work.
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