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Chapter 1

Python Basics and the Interactive Mode

1.1 Using the Command Line
When you start writing your own computer programs it can be useful, even if not mandatory, to
interact with your computer via the command line. Since nowadays the overwhelming majority of the
computer users ignore even the existence of the command line, we discuss it briefly in this section.

In order to use the command line you start by opening a window, sometimes called terminal,
shell or console, in the computer monitor. The terminal contains a command prompt compris-
ing a sequence of characters indicating readiness to accept commands. The actual prompt is dif-
ferent from one operating system to another, and some operating systems allow you to customize
it. In the rest of this book the prompt will be represented by the two-character sequence $>. The

Figure 1.1 A Linux terminal. Here the prompt is
the sequence giovanni@moruzzi1:∼>

command prompt literally prompts the user to take
action. Figure 1.1 shows a typical terminal, and its
prompt, on Ubuntu Linux. Terminals of other oper-
ating systems look similar. A simple way to open
a terminal under Linux is pressing Ctrl+Alt+T
(pressing the keys Ctrl, Alt and T simultane-
ously on the keyboard).

If you are using macOS, the Terminal app is
in the Utilities folder in Applications. To
open it, either open your Applications folder,
then open Utilities and double-click on Ter-
minal, or press Command-spacebar to launch Spotlight and type ”Terminal,” then double-
click the search result.

Under Windows you can open a terminal by clicking the Start button, typing cmd and pressing
the <Enter> key.

The command line on a terminal was the primary means of interaction with most computer sys-
tems in the mid-1960s. In those times the “terminal” initially consisted of a teleprinter, later replaced
by a keyboard and cathode-ray monitor. The command line continued to be used throughout the
1970s and 1980s on personal computer systems including MS-DOS, CP/M and Apple DOS, the “ter-
minal” being replaced by a “terminal emulator”, a window on the computer monitor where you could
type your commands. The interface between your commands and the computer actions is usually
implemented with a command line shell, a program that accepts commands as text input and converts

1
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commands into appropriate operating system functions.

Once you have opened a terminal you can start typing commands, hitting <Enter> at the end of
each. Each operating system has its own list of native commands, and you can add your personal
commands. For instance, if you type “ls -l” in a Linux or Mac terminal, you will get the list of
the contents of the current directory. The same result is obtained by typing “dir” in a Windows
terminal. In this context you don’t need to learn the whole lists of available commands for your
operating system: when the command line is needed, we shall tell you what to type.

1.2 Installing Python

1.2.1 General

Obviously, in order use Python you must have Python (we shall use the Python 3 version) installed in
your computer. The Ubuntu and Debian distributions of Linux come with both Python 2 and Python
3 already installed by default, thus you can skip the following Subsections 1.2.2 and 1.2.3 if you use
Ubuntu or Debian. If you have Windows or macOS (previously Mac OS X and later OS X) you will
probably need to install Python 3. In this case Subsections 1.2.2 and 1.2.3 tell you how to do it.

However, even if you are a Linux user, you might be interested in using Python in an integrated
development environment (IDE) rather than through the command line in a terminal (particularly if
Section 1.1 has scared you!) An IDE is a software application that provides comprehensive facilities
to computer programmers for software development. An IDE normally consists of a source-code ed-
itor for typing your program code, build automation tools, and a debugger. By build automation we
mean the combined processes of compiling computer source code into binary code, packaging binary
code, and running automated tests. A very good option for Python is Anaconda, a free and open-
source distribution of the Python and R programming languages for scientific computing. Anaconda
is available for Linux, Windows and macOS, and you can easily download it from their site

https://www.anaconda.com/distribution/
whatever your operating system. Choose the Python 3 version for your operating system, and follow
the download instructions on your browser. Installing Anaconda automatically installs also a version
of Python, thus, if Anaconda is your choice, you can skip Subsections 1.2.2 and 1.2.3 even if you
are a Windows or Mac user. Once Anaconda is installed, launch Spyder 3, and you obtain the win-
dow shown in Fig. 1.2. The Spyder window is divided into three rectangular subwindows: the left
subwindow is an editor for typing programs, or scripts, see Chapter 2; the lower-right subwindow is
a console where you can use Python interactively, as discussed in this chapter starting from Section
1.3. An alternative good IDE is IDLE (Integrated Development and Learning Environment), which is
also available for Windows, Linux and macOS. However, in the present book we shall discuss only
Spyder and the command-line terminal
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Figure 1.2 The Spyder3 integrated development environment.
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1.2.2 Downloading Python for Windows

Step 1: Download the Python 3 Installer

Open a browser window and navigate to the Download page for Windows at python.org. Underneath
the heading at the top that says Python Releases for Windows, click on the link for the Latest Python
3 Release - Python 3.x.x. Scroll to the bottom and select either Windows x86-64 executable installer
for 64-bit or Windows x86 executable installer for 32-bit.

Step 2: Run the Installer

Figure 1.3 Python installer for Windows.

Once you have chosen and downloaded
the installer of your choice, simply
run it by double-clicking on the down-
loaded file. You should see a dialog
similar to Fig. 1.3 on your computer
monitor.

Then just click Install Now.
This will download Python 3, the pip
Python package manager and Python
documentation. That should be all there
is to do. A few minutes later you should
have a working Python 3 installation on
your Window system.

1.2.3 Downloading Python for macOS

In the following, the symbol $> stands for the command prompt on the terminal, while a backslash
(\) will mean that a long single command, that actually you must type in a single line, has been split
into two lines to fit the page.

Step 1: Confirm your Python version

Although Python 2 is installed by default on Apple computers, Python 3 is not. You can confirm this
by typing in Terminal

$> py thon −−v e r s i o n
Python 2 . 7 . 1 5

To check if Python 3 is already installed try running the command

$>python3 −−v e r s i o n .

Most likely you will see an error message, but it is worth checking. Even if you have a version of
Python 3, we want to be on the most recent release, which is 3.7.0 at this point in 2018.
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Step 2: Install Xcode and Homebrew

It is advisable to use the package manager Homebrew to install Python 3. Homebrew depends on
Apples Xcode package, so run the following command to install it

$> xcode− s e l e c t −− i n s t a l l

Click through all the confirmation commands (Xcode is a large program so this might take a while to
install depending on your internet connection).
Next, install Homebrew with the following (long) command:

/ u s r / bin / ruby −e ” \$ ( c u r l −fsSL \
h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com / Homebrew / i n s t a l l / m a s t e r / i n s t a l l ) ”

Note: You can also find this command on the homepage of the Homebrew website. It is easier to copy
and paste rather than typing, since its a long command.

To confirm that Homebrew installed correctly, run this command:

$> brew d o c t o r

Your system is ready to brew.

Step 3: Install Python 3

To install the latest version of Python, run the following command:

$> brew i n s t a l l py thon3

Now let’s confirm which version was installed:

$> python3 −−v e r s i o n
Python 3 . 7 . 0

To open a Python 3 shell from the command line type python3:

$> python3
Python 3 . 7 . 0 ( d e f a u l t , Jun 29 2018 , 2 0 : 1 3 : 1 3 )
{ [ Clang 9 . 1 . 0 ( c l ang − 9 0 2 . 0 . 3 9 . 2 ) ] } on darwin
Type ” h e l p ” , ” c o p y r i g h t ” , ” c r e d i t s ” or ” l i c e n s e ” f o r more i n f o r m a t i o n .
>>>

When you want to exit, type exit() and then Return, or Ctrl-D (press the Control and D keys at
the same time).

1.3 Using Python in Interactive Mode
Once you have installed Python in your computer, or a friend has installed it for you, you have the
two possibilities discussed above:

1. You can open a terminal and access Python through the command line, provided that Section
1.1 did not scare you.

2. You can start using Python through an IDE, here we shall consider Spyder.
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Python programs, or Python commands, are executed by an interpreter. There are two ways of using
Python: i) the interactive mode, which we discuss in the rest of the present chapter, and ii) Python
programs (also called Python scripts), which we shall discuss in the rest of the book.

When working in the interactive mode you type Python commands one by one (or small groups
of commands, as we shall see below) at the Python prompts, and Python immediately interprets what
you wrote and executes your commands. This is what you must do according to your choice between
command-line terminal or Spyder IDE,

1. If you choose the command line in a terminal, you start the Python interactive mode by simply
typing python3, and pressing <Enter>, at the command prompt. Immediately after entering
the interactive mode you see something like this on your monitor

$> python3
Python 3 . 5 . 2 ( d e f a u l t , Nov 17 2016 , 1 7 : 0 5 : 2 3 )
[GCC 5 . 4 . 0 20160609] on l i n u x
Type ” h e l p ” , ” c o p y r i g h t ” , ” c r e d i t s ” or ” l i c e n s e ” f o r more \
i n f o r m a t i o n .
>>>

Obviously some of what you see above will change according the Python version installed in
your computer and to your operating system. The back slash (\) at the end of the fourth line
means that the whole line was too long to fit in the page of the book, so it was split and continued
below. The symbol >>> in the last line is the Python prompt, prompting you to enter your first
Python command.

2. Alternatively, if you choose Anaconda and Spyder, the interactive mode is available in the
bottom-right subwindow of Fig. 1.2, called the IPython console (IPython stands for “Interactive
Python”). You type your first Python command at the prompt “In [1]:”.

The advantage of the interactive mode is that you can immediately see how Python reacts to your
commands, and discover possible errors immediately. On the other hand, the interactive mode be-
comes uncomfortable when you write long codes, that are better handled by Python scripts, to be
introduced in Chapter 2.

This is what you see if you type, for instance, “print(’Hello World!!!’)” at the Python
prompt in the terminal

>>> p r i n t ( ’ H e l l o World ! ! ! ’ )
H e l l o World ! ! !
>>>

while this is what you see in the IPython console of Spyder

In [ 1 ] : p r i n t ( ’ H e l l o World ! ! ! ’ )
H e l l o World ! ! !

In [ 2 ] :

print() is a command (actually, a function, to be discussed in Section 2.2) that tells Python to print
the content of the parentheses (the argument of the function). The single quotes (’) tell Python to
interpret their content as a sequence of printable characters (a string) to be printed as they are, not as
a variable (see Section 1.4). A string can also be delimited by double quotes, "also this is a
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string": single quotes and double quotes are fully equivalent in Python. The final prompts, >>>
in the terminal, and In [2]: in the IPython console, tell you that Python is waiting for your next
command. In the examples of the rest of this chapter we shall show only the terminal prompt “>>>”,
if you use Spyder this will be replaced by the prompt “In [n]”, where n is a progressive natural
number.

Python in interactive mode can be used as a desktop calculator, for instance:
>>> 15+16
31
>>> +9
40
>>>

the underscore ( ) in the command +9 means that 9 must be added to the previous result. This works
only in interactive mode, not in scripts.

1.4 Variables

1.4.1 Variable Types
In computer programming, a variable is a memory storage location associated to a symbolic name (its
identifier), which contains some quantity of information (the variable value). Differently from other
programming languages, Python variables do not need explicit declaration to reserve memory space.
The memory allocation (or variable declaration) occurs automatically the first time the variable ap-
pears at the left of an equal sign (=), which serves as assignment operator. In other words, the equal
sign assigns values from its right side to the variable at its left side. When choosing the name for a
new variable remember that

1. The name of a variable must begin with a letter (a-z, A-Z) or underscore ( ).

2. The following characters of the name can be letters, numbers or underscores.

3. Variable names are case sensitive, for instance, cat, Cat and CAt are three different variables.

4. Variable names can have any (reasonable) length.

5. There are reserved words, or keywords, used by Python to define the syntax and structure of the
Python language. You cannot use keywords as variable names.

The first time a variable is used, it must appear at the left side of an assignment operation. The
assignment first reserves space for the variable in the computer memory, then copies what is at the
right side of the = sign into the variable storage location. Successive assignments involving the same
variable only change its previous value, keeping its memory location.

Python variables belong to five standard data types:

1. Numbers
2. Strings
3. Lists
4. Tuples
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5. Dictionaries

Numbers can be integers like 10, long integers like 51924361L, floats like 132.57, and complex
like 13.2+2.5j (j standing for the imaginary unit). We have already met strings in Section 1.3:
strings are sequences of characters enclosed in quotation marks. As mentioned above, both pairs of
single quotes and pairs of double quotes are allowed: ’platypus’ and "platypus" are equiva-
lent. Lists and tuples are discussed in Section 1.10, dictionaries in Section 1.14, below. In this section
we handle strings and numbers. For example you can type

>>> c o u n t e r =100 # An i n t e g e r a s s i g n m e n t
>>> mass =10.0 # A f l o a t i n g p o i n t
>>> v e l o c i t y =15.22 # A f l o a t i n g p o i n t
>>> name=” John ” # A s t r i n g

>>> p r i n t ( name )
John
>>> p r i n t ( mass * v e l o c i t y )
152.20000000000002
>>> p r i n t ( format ( mass * v e l o c i t y , ” 1 0 . 3 f ” ) )
152 .200
>>> momentum=mass * v e l o c i t y
>>> p r i n t ( momentum )
152.20000000000002

You have to type only what follows the Python interpreter prompts (>>>), while all the lines not
starting with prompts are printed by Python automatically. Note the presence of rounding errors.
This is due to the fact that all numbers, integers or float, are stored in binary form in a computer
memory. While this does not give problems with integers, you must remember that binary fractions
only terminate if the denominator has 2 as the only prime factor. Thus, most rational numbers (and
all irrational numbers) need an infinite number of bits for an exact binary representation. However,
obviously, only a finite number of bits is available for storing a variable, and this leads to round-
ing errors. This is the reason for the apparently strange value of the product mass*velocity.
Often a formatted output leads to a more “aesthetic” result (see Section 1.15). Here, the command
print(format(mass*velocity,"10.3f")) tells Python to print the result as a 10 charac-
ter number, with 3 digits after the decimal point. The 10 characters include all digits before and after
the decimal point, leading blanks, the decimal point itself and, in the case of a negative number, the
minus sign (see Section 1.15).

As in most other programming languages the asterisk, or star, sign (*) is used for multiplication
(see Section 1.5 below). In Python, the hash symbol (#) and everything that follows it in a same
line are considered a comment, and are ignored in the program execution. A multiline comment is
delimited by triple quotes

’ ’ ’
t h i s i s a m u l t i l i n e
comment
’ ’ ’

also triple double quotes """ work as comment delimiters.
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1.4.2 Variable-Type Conversion
Sometimes it is necessary to perform conversions between the built-in variable types, in order to
manipulate values in a different way. To convert between variable types you simply use the type
name as a function. In addition, Python provides several built-in functions to perform special kinds
of conversions. All of these functions return a new object representing the converted value. The most
relevant examples follow.

Conversions between Integers and Floats

When you type a sequence of digit not containing a decimal point, Python interprets it as an integer.
This will be often what you wish, but you might need your number stored in memory as a float. The
conversion is achieved through the function float(), this is how it works

>>> x=35
>>> xf= f l o a t ( x )
>>> p r i n t ( x , x f )
35 3 5 . 0

here the variable x is stored in memory as an integer, xf as a float. Conversion from float to integer
is achieved through the function int()

>>> y =48.9
>>> y i= i n t ( y )
>>> p r i n t ( y , y i )
4 8 . 9 48

note that this conversion does not round y to the nearest integer: the function int() simply cuts off

the decimal point and the following digits. If what you want is rounding to the nearest integer, you
can simply add 0.5 to the float

>>> yr= i n t ( y +0 . 5 )
>>> p r i n t ( y r )
49

Remember that you must add −0.5 if the float to be rounded is negative.
>>> y=−15.8
>>> yr1= i n t ( y +0 . 5 )
>>> yr2= i n t ( y −0 . 5 )
>>> p r i n t ( y , yr1 , y r2 )
−15.8 −15 −16

Conversions between Numbers and Strings

A string is a sequence of characters. Thus, for instance, the two consecutive characters 35 might be
stored in the computer memory as an integer, as a float, or as a string comprising the two characters
’3’ and ’5’. As we have seen above, the command x=35 assigns the value 35 to the integer variable
x. This can be converted to a string variable, say xs, by the str() function:

>>> x=35
>>> xs= s t r ( x )
>>> xs
’ 35 ’
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>>> p r i n t ( xs )
35

note that, when you simply type xs in Python interactive mode, Python prints the string in quotes,
while the string is printed without quotes by the command print(xs). However, see the effect of
the format type r on the print() function in Subsection 1.15.3. Converting an integer to a string
can be useful, for instance, for counting its digits through the len() function

>>> x=23457439
>>> xs= s t r ( x )
>>> p r i n t ( l e n ( xs ) )
8

Conversion of strings to integers is done by the int() function, from string to floats by the float()
function, for instance

>>> xs= ’ 542 ’
>>> x i= i n t ( xs )
>>> xf= f l o a t ( xs )
>>> p r i n t ( xs , x i , x f )
542 542 542 .0

If a string contains a character that is not a digit, a decimal point, a leading minus or plus sign, or
leading and/or trailing blanks, it cannot be converted into a number, and Python will report an error

>>> xs= ’ 543 f ’
>>> x= i n t ( xs )
T raceback ( most r e c e n t c a l l l a s t ) :
F i l e ”< s t d i n >” , l i n e 1 , in <module>
V a l u e E r r o r : i n v a l i d l i t e r a l f o r i n t ( ) w i th base 1 0 : ’ 543 f ’

Here, and in following Python error messages, File "<stdin>"means that the error was found in
the standard input, i.e., in what you typed from the computer keyboard. Analogously, "<stdout>"
stands for standard output , which is the computer monitor.

1.5 Arithmetic Operators
The basic arithmetic operators that can be applied to numeric variables are

+ addition 2.5 + 3.0 = 5.5 − subtraction 2.5 − 3.0 = −0.5
∗ multiplication 2.5 ∗ 3.0 = 7.5 / division 2.5/2 = 1.25
// floor division 7//2 = 3; −7//2 = −4 % modulus 11%3 = 2
∗∗ exponentiation 11 ∗ ∗2 = 121

Note that the floor of -3.5 is -4, since −4 < −3.5.

1.6 Assignment operators
Apart from the already discussed = operator, other assignment operators are obtained by combining
the basic arithmetic operators with the = operator as follows



1.7. COMPARISON AND LOGICAL OPERATORS 11

+= c+=a is equivalent to c=c+a -= c-=a is equivalent to c=c-a

*= c*=a is equivalent to c=c*a /= c/=a is equivalent to c=c/a
%= c%=a is equivalent to c=c%a **= c**=a is equivalent to c=c**a
//= c//=a is equivalent to c=c//a

For instance, you can type

>>> a=8
>>> b=3
>>> b+=a
>>> p r i n t ( a , b )
8 11
>>>

1.7 Comparison and Logical Operators
The comparison operators are

> greater than < less than == equal to
! = not equal to >= greater than or equal to <= less than or equal to.

The result of a comparison is a Boolean value, denoted by either True or False in Python. For instance
you can type

>>> p r i n t ( ’ 10>15 i s ’ ,10 >15)
10>15 i s F a l s e

Note that here the print() function has two arguments, the first being the string ’10>15 is ’,
which is printed as is, the second being the expression 10>15, without quotes, which is evaluated to
False before being printed.

The logical operators are

and True if both the operands are true
or True if either of the operands is true
not True if operand is false (complements the operand)

for instance

>>> x=10
>>> y=15
>>> z=20
>>> p r i n t ( ’ x==y i s ’ , x==y )
x==y i s F a l s e
>>> p r i n t ( ’ n o t x==y i s ’ , not x==y )
not x==y i s True
>>> p r i n t ( x !=y and y != z )
True
>>> p r i n t ( x<y or y>z )
True
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1.8 Python Packages and the import Statement
We have already met a few Python built-in functions, like print(), int(), float(), . . . , that
we can use as soon as we enter Python’s interactive mode. Python comes with a huge number of
such predefined function which, apart from saving us the time of writing the functions ourselves (see
Section 2.2), have the further, important advantage that they are optimized and stored in machine
language, so that they are executed much faster than user-defined code. This is one of the strengths
of Python. The number of Python predefined functions is so large that it would not be convenient to
have all of them always automatically accessible. The functions are thus grouped into separate mod-
ules, which, in turn, may be grouped into packages, and one must import them from their respective
packages before use. This is done with the import statement. The packages from which we shall
import functions more often are called math (mathematical functions), numpy (the numerical pack-
age), scipy (the scientific package), and matplotlib (the plotting package). Packages scipy
and matplotlib are further divided into subpackages. As an example, suppose that you need the
square root of 5. If, after entering the interactive mode, you simply type sqrt(5) you get an error
message

>>> s q r t ( 5 )
T raceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
NameError : name ’ s q r t ’ i s not d e f i n e d

because the function sqrt() does not belong to the set of automatically available Python functions:
you must import it from math (or from numpy) before use. For this you have the following three
possibilities:

>>> import math as mt
>>> mt . s q r t ( 5 )
2 .23606797749979

here we have imported the whole math package under the name mt, and from now on we have access
to all math functions by preceding their names with the prefix “mt.”. Obviously you can replace the
name mtwith any name of your choice, provided you use it consistently in your following commands.
After importing you can access any other math function, for instance you can type

>>> mt . cos ( mt . p i )
−1.0

and get the cosine of π, mt.pi being the value of π stored in the math package (usually 3.141592653589793).
Another import possibility is

>>> from math import s q r t
>>> s q r t ( 5 )
2 .23606797749979
>>> cos ( p i )
T raceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
NameError : name ’ cos ’ i s not d e f i n e d
>>>

here we have imported only the function sqrt() from math, and we can used it without prefix.
All other math functions have not been imported, therefore, for instance, the function cos() is
not defined. You can use this method to import as many functions as you wish simultaneously, for
instance
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>>> from math import s q r t , cos , s i n
>>> p r i n t ( s q r t ( 5 ) , cos ( 0 ) , s i n ( 0 . 3 ) )
2 .2360679775 1 . 0 0 .295520206661

Finally we can type

>>> from math import *
>>> s q r t ( 5 )
2 .2360679774997898
>>> cos ( p i )
−1.0

where the asterisk (*) stands for “everything”. This command imports everything from math, and
gives us access to all math functions without prefixes. However, this method is discouraged because
it can lead to name collisions if used for more packages in the same session, or if a predefined variable
of the imported package has the same name as one of your variables. The functions defined in math
are listed in Appendix A, as well as the packages of the cmath module, comprising the definitions of
the complex functions.

Other packages, like numpy and scipy, comprise huge numbers of functions and definitions
each, and we cannot list them all in the present book. You can easily find the complete lists on the
internet. Remember that often the same function is defined in different packages.

1.9 Conditional Statements
The comparison and logical operators usually appear in conditional statements. Conditional state-
ments are vital in any programming language: they are needed whenever, starting from a given point
of the program, we must follow different algorithms depending on whether, at that point, a condi-
tion evaluates to True or False. Conditional statements are written through the if, elif and else
statements, which operate as you would expect from their names, elif standing for else if. This is a
simple example

>>> from math import s q r t
>>> x=−5
>>> i f x>0:
. . . p r i n t ( ” x i s p o s i t i v e ” )
. . . p r i n t ( s q r t ( x ) )
. . . e l i f x<0:
. . . p r i n t ( ” x i s n e g a t i v e ” )
. . . p r i n t ( s q r t (−x ) )
. . . e l s e :
. . . p r i n t ( ” x i s z e r o ” )
. . . p r i n t ( 0 )
. . .
x i s n e g a t i v e
2 .2360679775
>>>

Note that all conditional statements end with a colon “:”, and that the lines to be executed if the
condition is true (the conditioned commands) are indented by the same amount of space with respect
to the conditional statement. You can use spaces or tabs for indentation, but you are advised not to
mix them: use only tabs, or only spaces, according to your taste. Now to the code. At the first prompt



14 CHAPTER 1. PYTHON BASICS AND THE INTERACTIVE MODE

we import the function sqrt() from the math package. At the second prompt we create a variable
x to which we assign a negative value. Starting from the third prompt we build an if-elif-else
sequence that determines what to do if x is greater than, smaller than, or equal to 0. If x is greater than
zero the two indented lines following the condition “if x>0:” are executed, and the rest of the code
is ignored. If x is not greater than zero, the elif (else if ) condition is checked, and if the condition
is met, the elif conditioned code (the two following lines, indented relative to the statement “elif
x<0:”) are executed, and the following code is skipped. If neither the if nor the elif conditions
are met, the code conditioned by else is executed. In an if, elif, else sequence there may
be only one if (and there must be one!), there may be any number of elif conditions (including
zero), and only one, or zero final else.

1.10 Lists and Tuples
A list is a a set of values (items), which is written as a sequence of comma-separated items between
square brackets. The items in a list need not be of the same type.

Creating a list can be done by typing different comma-separated values between square brackets.
For example

>>> l i s t 1 = [ ’ p h y s i c s ’ , ’ c h e m i s t r y ’ , 1997 , 2000]
>>> l i s t 2 = [ 1 , 2 , 3 , 4 , 5 ]
>>> l i s t 3 = [ ” a ” , ” b ” , ” c ” , ” d ” ]
>>> p r i n t ( l i s t 2 , l i s t 3 )
[ 1 , 2 , 3 , 4 , 5 ] [ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ ]
>>> p r i n t ( l i s t 3 [ 1 ] )
b
>>> l i s t 2 [3]=10
>>> p r i n t ( l i s t 2 )
{ [ 1 , 2 , 3 , 10 , 5 ] }
>>> l i s t 2 =[ ’ c a t ’ , ’ p l a t y p u s ’ ]
>>> p r i n t ( l i s t 2 [ 1 ] )
p l a t y p u s
>>>

Similar to string indices, list indices start at 0, and lists can be sliced, concatenated and so on. Single
list elements are accessed by indexing, like list2[3] above.

A tuple is a sequence of immutable Python objects. Tuples are sequences, just like lists. The
relevant difference between tuples and lists is that a tuple, and its elements, cannot be changed. Syn-
tactically, a tuple is declared by typing its comma-separated items between parentheses (round brack-
ets, which, however, are not mandatory in the declaration), whereas lists use square brackets (which
are mandatory). Thus you can create a tuple simply by typing different comma-separated variables,
within parentheses or not.

>>> t u p l e 1 =4 ,5 ,6
>>> t u p l e 2 =( ’ mee rka t ’ , ’ w a l r u s ’ , ’ c a r p e n t e r ’ )
>>> p r i n t ( t u p l e 1 )
( 4 , 5 , 6 )
>>> p r i n t ( t u p l e 2 [ 0 ] )
mee rka t
>>> t u p l e 2 [2 ]= ’ e l e p h a n t ’
T raceback ( most r e c e n t c a l l l a s t ) :
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F i l e ”< s t d i n >” , l i n e 1 , in <module>
TypeEr ro r : ’ t u p l e ’ o b j e c t does not s u p p o r t i t em a s s i g n m e n t
>>>

As stated above, changing a tuple is not allowed. However, it is possible to convert lists to tuples,
and tuples to lists, analogously to what can be done between different number types or strings. For
instance

>>> a n i m a l s= l i s t ( t u p l e 2 )
>>> a n i m a l s [2 ]= ’ e l e p h a n t ’
>>> p r i n t ( a n i m a l s )
[ ’ mee rka t ’ , ’ w a l r u s ’ , ’ e l e p h a n t ’ ]
>>>

here the elements of tuple2 are copied into the list animals, which, being a list, is not immutable.
If, eventually, we type

1 >>> t u p l e 2 = t u p l e ( a n i m a l s )
2 >>> t u p l e 2
3 ( ’ mee rka t ’ , ’ w a l r u s ’ , ’ e l e p h a n t ’ )
4 >>>

we see that, apparently, we have changed the tuple! Actually, Line 1 has destroyed the original tuple
and created a new one with the same name, comprising the elements of the list animals.

1.11 List Methods
Python methods are functions that belong to Python objects. In Chapter 8 we shall meet methods
belonging to instances of a class, here we consider methods belonging to list instances. Python
includes the following list methods, that can change list instances (lists)
append() index() remove()
count() insert() reverse()
extend() pop() sort()

All above methods do what you can expect from their names, here are examples of how they operate

>>> a n i m a l s =[ ” c a t ” , ” dog ” , ” goose ” ]
>>> a n i m a l s . append ( ” mee rka t ” )
>>> a n i m a l s
[ ’ c a t ’ , ’ dog ’ , ’ goose ’ , ’ mee rka t ’ ]
>>> a n i m a l s . c o u n t ( ” goose ” )
1
>>> a n i m a l s . i n s e r t ( 2 , ” duck ” )
>>> a n i m a l s
[ ’ c a t ’ , ’ dog ’ , ’ duck ’ , ’ goose ’ , ’ mee rka t ’ ]
>>> a n i m a l s . i n s e r t ( 0 , ” b e a r ” )
>>> a n i m a l s
[ ’ b e a r ’ , ’ c a t ’ , ’ dog ’ , ’ duck ’ , ’ goose ’ , ’ mee rka t ’ ]
>>> a n i m a l s . i n d e x ( ’ dog ’ )
2
>>> a n i m a l s . i n d e x ( ” s n a i l ” )
T raceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
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V a l u e E r r o r : ’ s n a i l ’ i s not in l i s t
>>> popped=a n i m a l s . pop ( )
>>> popped
’ mee rka t ’
>>> a n i m a l s
[ ’ b e a r ’ , ’ c a t ’ , ’ dog ’ , ’ duck ’ , ’ goose ’ ]
>>>a n i m a l s . r e v e r s e ( )
>>> a n i m a l s
[ ’ goose ’ , ’ duck ’ , ’ dog ’ , ’ c a t ’ , ’ b e a r ’ ]
>>> a n i m a l s 2 =[ ” mee rka t ” , ” e l e p h a n t ” , ” pengu in ” ]
>>> a n i m a l s . e x t e n d ( a n i m a l s 2 )
>>> a n i m a l s
[ ’ goose ’ , ’ duck ’ , ’ dog ’ , ’ c a t ’ , ’ b e a r ’ , ’ mee rka t ’ , ’ e l e p h a n t ’ ,\
’ pengu in ’ ]
>>> a n i m a l s . s o r t ( )
>>> a n i m a l s
[ ’ b e a r ’ , ’ c a t ’ , ’ dog ’ , ’ duck ’ , ’ e l e p h a n t ’ , ’ goose ’ , ’ mee rka t ’ ,\
’ pengu in ’ ]
>>>

Method append() appends a new element at the end of the list, count() returns the number of
times the argument occurs in the list, extend() appends another list at the end of the list, in-
dex(obj) returns the lowest index of obj in the list (remember that indices start from 0), in-
sert(index,obj) inserts obj at position index, pop() returns the last item of the list and
erases it from the list, remove(obj) removes obj from the list, reverse() reverses the list
order and sort() sorts the list elements.

1.12 Lists and the = Assignment Operator

1.12.1 Copying Lists
Some care must be taken when using the = assignment operator with lists:

>>> a = [ 3 , 4 , 5 , 6 ]
>>> p r i n t ( a )
[ 3 , 4 , 5 , 6 ]
>>> b=a
>>> p r i n t ( b )
[ 3 , 4 , 5 , 6 ]
>>> a [0]=127
p r i n t ( ’ a= ’ , a , ’ b= ’ , b )
a= [ 1 2 7 , 4 , 5 , 6 ] b= [ 1 2 7 , 4 , 5 , 6 ]
>>>

The first statement creates a list comprising the numbers 3, 4, 5 and 6 as elements, and the variable a
points to it. The statement b=a makes b point to exactly the same memory location as a. Thus, when
the first element of the list is changed by the statement a[0]=127, the change affects both a and b.
If you want to handle two independent lists, you must proceed this way

>>> a = [ 3 , 4 , 5 , 6 ]
>>> b=a . copy ( )
>>> a [0]=127
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>>> p r i n t ( ’ a= ’ , a , ’ b= ’ , b )
a= [ 1 2 7 , 4 , 5 , 6 ] b= [ 3 , 4 , 5 , 6 ]

The method .copy() makes b point to an independent list, initially identical to the list pointed to
by a, but any subsequent change to a does not affect b, and vice versa. Another possibility is

a = [ 3 , 4 , 5 , 6 ]
>>> b=a [ : ]
>>> a [0]=10
>>> p r i n t ( ’ a= ’ , a , ’ b= ’ , b )
a= [ 1 0 , 4 , 5 , 6 ] b= [ 3 , 4 , 5 , 6 ]
>>>

When in doubt, you can use the id() function, which returns the “identity” of its argument. An
object identity is an integer unique for the given object, which remains constant during the object
lifetime

>>> a = [ 3 , 4 , 5 , 6 ]
>>> b=a
>>> c=a . copy ( )
>>> p r i n t ( id ( a ) , id ( b ) , id ( c ) )
140402853321544 140402853321544 140402912014856
>>>

As stated above, the statement b=a makes b point to the same memory location as a, thus b and a
have the same identity, while c points to an independent copy of a, thus its identity is different.

1.12.2 Copying the Elements of Lists and Tuples
It is possible to use the = assignment operator to copy the values of the elements of lists and tuples to
separate variables in a single command. For instance, if you type

>>> a = [ 1 0 , 2 0 , 3 0 ]
>>> x1 , x2 , x3=a
>>> p r i n t ( x2 )
20
>>>

the variables x1, x2 and x3 are assigned the values of the three elements of the list a. The number of
comma-separated values on the left-hand side must equal the number of elements of the list, or tuple,
on the right-hand side, otherwise Python will report an error

>>> x4 , x5=a
Traceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
V a l u e E r r o r : t o o many v a l u e s t o unpack ( e x p e c t e d 2 )
>>>

As we know from Section1.10, the use of parentheses is optional when assigning a tuple. Thus in the
following code

>>> x1 , x2 , x3 =15 , ’ w a l r u s ’ ,25
>>> p r i n t ( x1 , x2 , x3 )
15 w a l r u s 25
%>>>
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the first command can be considered both as a tuple unpacking or as a multiple assignment.
A list can comprise any number of elements, including 0 (empty list) and 1 (single-element list).

Some care must be taken when unpacking a single-element list:

1 >>> a = [15]
2 >>> b=a
3 >>> c ,= a
4 >>> p r i n t ( b )
5 [ 1 5 ]
6 >>> p r i n t ( c )
7 15
8 >>>

The first command creates the list a, comprising the single element 15. The command b=a does
not copy the single element of a to a single variable b, rather, it makes b point to the same memory
location as a, as we saw in Subsection 1.12.1. In order to copy the only element of a into a variable
c we need the command at Line 3, c,=a. The comma after c tells Python that we are extracting the
elements of the list a, the absence of further variables after the comma tells that the list comprises a
single element.

1.13 Slicing Lists and Strings
When you have a list, a tuple or an array it is possible to extract or modify specific sets of sub-elements
without recurring to the loops that we shall encounter in Section 1.16. For instance, consider the list

a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 ]

and assume that you need a list b comprising the first 6 elements of a. This is how to do it in Python

>>> b=a [ : 6 ]
>>> b
[ 0 , 1 , 2 , 3 , 4 , 5 ]
>>>

this command generates a new list b comprising a slice of a containing its first 6 elements. You can
also type

>>> c=a [ 3 : 8 ]
>>> c
[ 3 , 4 , 5 , 6 , 7 ]
>>> d=a [ 4 : ]
>>> d
[ 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12]
>>>

copying into c the slice of a from element number 3 (remember that the first element of the list is
element number 0) up to, but not including, element number 8. For d we obtain the slice of the
elements from the fifth (labeled by number 4) to the end. The lower and upper limits of the slice are
separated by a colon inside the square brackets. The default values are 0 for the lower limit, and the
whole list for the upper limit. Thus, b=a[:] copies the whole list a into b, as seen at the end of
Section 1.12. Slicing can use a third argument (separated by a second colon), corresponding to a step.
For instance
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>>> a [ : : 3 ]
[ 0 , 3 , 6 , 9 , 12]
>>>

here we have simply printed out the result, without storing it in a new variable. What we have got is
a sublist of every third element of the list, starting from element 0 up to the last element. We can also
use all the three arguments, for instance if we type

>>> a [ 1 : 1 1 : 2 ]
[ 1 , 3 , 5 , 7 , 9 ]
>>>

we select every second element (the third slicing argument is 2) starting from element number 1 (the
second element of the list, specified by the first slicing argument), up to, but not including element
number 11, specified by the second slicing argument.

Slicing of strings is perfectly analogous to slicing of lists:
>>> s t r = ’ once upon a t ime ’
>>> s t r [ 5 : 9 ]
’ upon ’
>>> s t r [ : : 2 ]
’ oc pnatm ’
>>> s t r [ : : − 1 ]
’ emi t a nopu ecno ’
>>>

In the last case a negative step means going backwards, considering the string (or the list) as extended
cyclically, and what we get is the string in reverse order.

Slicing can also be used to modify selected elements of lists. For instance, if we type
>>> t h i s l i s t = [ 3 , 6 , 9 , 1 2 , 1 5 , 1 8 , 2 1 ]
>>> t h i s l i s t [ : : 3 ] = [ 2 4 , 9 6 , 1 6 8 ]
>>> t h i s l i s t
[ 2 4 , 6 , 9 , 96 , 15 , 18 , 168]
>>>

every third element of thislist has been replaced by an element of the list [24,96,68]. It is
important that the number of elements selected by slicing the list on the left hand side must exactly
match the number of elements of the list at the right, otherwise Python reports an error

>>> t h i s l i s t [ : : 3 ] = [ 3 , 1 2 , 2 1 , 8 5 ]
Traceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
V a l u e E r r o r : a t t e m p t t o a s s i g n s e q u e n c e o f s i z e 4 t o e x t e n d e d s l i c e \
of s i z e 3
>>>

1.14 Dictionaries
A Python dictionary is an unordered collection of items. Each dictionary item is a pair consisting of a
key and a value, with the requirement that the keys must be unique within one dictionary. The key and
value of a dictionary item are separated by a colon (:), different items (different pairs) are separated
by commas. A dictionary is created by writing its items within braces
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>>> MyDict ={ ’ g a t t o ’ : ’ c a t ’ , ’ cane ’ : ’ dog ’ , ’ o r n i t o r i n c o ’ : ’ p l a t y p u s ’ }
>>> p r i n t ( MyDict [ ’ cane ’ ] )
dog
>>>

a value of the dictionary MyDict can be retrieved by indexing MyDict with the corresponding key
in square brackets. An alternative way of creating a dictionary is through the dict() function. For
instance:

>>> MyOtherDict= d i c t ( Katze= ’ c a t ’ , Hund= ’ dog ’ , S c h n a b e l t i e r = ’ p l a t y p u s ’ )
>>> MyOtherDict
{ ’ Katze ’ : ’ c a t ’ , ’Hund ’ : ’ dog ’ , ’ S c h n a b e l t i e r ’ : ’ p l a t y p u s ’ }
>>> p r i n t ( MyOtherDict [ ’ Katze ’ ] )
’ c a t ’
>>>

In this case the arguments of the dict() function are written within parentheses, as usual for func-
tions. Keys are not written within quotes, each key is separated by the corresponding value by an
equal sign (=) rather than by a colon (:).

A new dictionary item is added by simply assigning it

>>> MyDict [ ’ ape ’ ]= ’ bee ’
>>> p r i n t ( MyDict )
{ ’ ape ’ : ’ bee ’ , ’ o r n i t o r i n c o ’ : ’ p l a t y p u s ’ , ’ cane ’ : ’ dog ’ ,\
’ g a t t o ’ : ’ c a t ’ }
>>>

A dictionary item can be removed with the del statement

>>> d e l MyDict [ ’ o r n i t o r i n c o ’ ]
>>> p r i n t ( MyDict )
{ ’ ape ’ : ’ bee ’ , ’ cane ’ : ’ dog ’ , ’ g a t t o ’ : ’ c a t ’ }
>>>

you can modify an existing item by reassigning it

>>> MyDict [ ’ cane ’ ]= ’ hound ’
>>> p r i n t ( MyDict )
{ ’ ape ’ : ’ bee ’ , ’ cane ’ : ’ hound ’ , ’ g a t t o ’ : ’ c a t ’ }
>>>

Dictionary values have no restrictions: a dictionary item can be any arbitrary Python object, either a
standard object or a user-defined object. However, the same is not true for the keys: duplicate keys
are not allowed, and keys are immutable. This means that you can use strings, numbers or tuples as
dictionary keys, but not, for instance, lists.

1.15 The print() Function and Formatting
We have already met the print() function with single and multiple arguments of different types
(integer and float numbers, strings, lists, . . . ) in the previous sections of this chapter. Its purpose is to
print its arguments on the terminal. Note that in interactive mode the value of any variable can also be
printed by simply typing its name at the Python prompt, as we have seen in many previous examples.
Here follows an example of the use of the print() function
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>>> an im a l= ’ p l a t y p u s ’
>>> num=4.5
>>> p r i n t ( an imal , num , 2 7 , 4 / 3 )
p l a t y p u s 4 . 5 27 1.3333333333333333
>>>

Often we need a more refined way of printing, which, for instance, allows us to control the number
of digits printed after the decimal point for a float number like 4/3. Or we might want to align
the decimal points of numbers printed in successive lines. All this, and more, is achieved through
formatted printing. For this Python offers two possibilities.

1.15.1 Old Style

The old style format is very similar to the C/C++ format, for instance:

>>> from math import s q r t
>>> num=15 /7
>>> p r i n t ( ’ t h e s q u a r e r o o t o f %.5 f i s %.5 f ’%(num , s q r t ( num ) ) )
t h e s q u a r e r o o t o f 2 .14286 i s 1 .46385
>>>

The string ’the square root of %.5f is %.5f’ appearing as argument of the print()
function at the third line is a format string. A format string, written within quotes like all strings,
is printed by the print() function on the terminal as is, character by character, except for the
placeholders it may contain. Placeholders are substrings beginning with the % character, here we
have two of them, both in the form %.5f. The format string is followed by a string modulo opera-
tor, represented by a % character, which couples the format string to a following tuple. The tuple,
(num,sqrt(num)) in our case, comprises the values to be inserted at the locations of the place-
holders. Thus, the number of elements of the tuple must equal the number of placeholders in the
format string. The general syntax for a placeholder is

%[flags][width][.precision]type
The parts within square brackets are optional, while the leading % and the type are mandatory. In
the case of %.5f neither flags nor width are given, while the precision, .5, requires 5 digits after
the decimal point. The type f indicates that the tuple elements to be printed are float numbers. The
following lines show how formatted printing can be used for aligning numbers of successive lines

>>> p r i n t ( ”%5d%10.5 f \n%5d%10.5 f ” %(11 , s q r t ( 1 1 ) , 1 5 2 5 , s q r t ( 1 5 2 5 ) ) )
11 3 .31662

1525 39 .05125
>>>

here the placeholder %5d requires 5 characters of width for an integer number (type d), while the
placeholder %10.5f requires a width of 10 characters (characters include the decimal point, and, for
a negative number, the minus sign), with 5 digits after the decimal point (precision) for a float number
(type f). When the width is specified, the numbers are right-justified within the reserved space (10
characters in the case of %10.5f), with trailing blanks added at the left in order to complete the
width. The newline code \n in the format inserts a new line command, thus splitting the output into
two consecutive lines.
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1.15.2 New Style
Also the new-style format makes use of a format string as argument of the print() function. But
the format string is not coupled to a tuple of variables via the string modulo operator. Rather, the
.format() method (we recall that a Python method is a function belonging to the object preceding
the dot) is applied to the format string. The format string still has placeholders for the variables to be
inserted. The syntax of the placeholders is similar to the old-style syntax, but the percent character,
%, is replaced by a colon character, :, and placeholders are written within braces. This is an example

>>> x=1525
>>> p r i n t ( ” t h e s q u a r e r o o t o f { : 5 d } i s { : 1 0 . 5 f } ” . format ( x , s q r t ( x ) ) )
t h e s q u a r e r o o t o f 1525 i s 39 .05125
>>>

The new-style allows us to use optional positional parameters before the colons in the placeholders,
so that the format arguments can be written in any order

>>> x=1525
>>> p r i n t ( ” t h e s q u a r e r o o t o f { a : 5 d } i s { b : 1 0 . 5 f } ” . format ( b= s q r t ( x ) , a=x ) )
t h e s q u a r e r o o t o f 1525 i s 39 .05125

where a and b are positional parameters. Any number of positional parameters is allowed. Positional
parameters also make multiple use of a single variable possible:

>>> p r i n t ( ” { k : . 2 f } , or , more p r e c i s e l y , { k : . 1 0 f } ” . format ( k = 1 7 / 1 3 ) )
1 . 3 1 , or , more p r e c i s e l y , 1 .3076923077

1.15.3 Format Types and Flags
These are the meanings of the conversion types appearing in the format placeholders

d signed integer decimal f floating point decimal format
i signed integer decimal F floating point decimal format
o unsigned octal g same as e or f, see below
x unsigned hexadecimal (lower case) G same as E or F, see below
X unsigned hexadecimal (upper case) c single character
e floating point exponential (lower case) r string
E floating point exponential (upper case) s string

Types d, i, o, x and X refer to integer numbers. Types d and i print signed integers in decimal
format, and are fully equivalent. Type o prints unsigned integers in octal format, while types x and X
print unsigned numbers in hexadecimal format, x prints the hexadecimal digits A-F in lower case, X
prints the same hexadecimal digits in upper case. This is an example

>>> p r i n t ( ” { a : d } { a : o } { a : x } { a :X} ” . format ( a =254) )
254 376 f e FE
>>>

Note that 3 × 82 + 7 × 8 + 6 = 254, and 15 × 16 + 14 = 254. Types e, E, f, F, g and G are for
float numbers. A placeholder {:w.pe}, or {:w.pE}, w being the required width and p the required
precision, causes the corresponding number to be printed in scientific notation , i.e., in the form
x × 10n, where n is an integer, and x is a real number such that 1 6 |x| < 10. A placeholder {:w.pf}
prints the number in normal float representation. For instance
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>>> p r i n t ( ” { b : 1 0 . 4 f } { b : 1 0 . 4 e } { b : 1 0 . 4 E } ” . format ( b =1 5 2 7 . 4 2 ) )
1527 .4200 1 .5274 e+03 1 .5274E+03

>>>

The width includes the characters needed for the decimal point, the minus sign if the number is
negative, and, in the case of scientific notation, also the exponent. The only difference between e and
E types is the case of the letter e (E). There is no difference between f and F. Type g (G) is equivalent
to type e (E) if the exponent is greater than −4 or less than p, equivalent to f (F) otherwise. See the
following two examples

>>> p r i n t ( ” { a : 1 5 . 5 f } { a : 1 5 . 5 e } { a : 1 5 . 5 g } ” . format ( a = 5 0 0 0 / 3 ) )
1666 .66667 1 .66667 e+03 1666 .7

>>> p r i n t ( ” { a : 1 5 . 5 f } \ { a : 1 5 . 5 e } { a : 1 5 . 5 g } ” . format ( a=5e −5 / 3 ) )
0 .00002 1 .66667 e−05 1 .6667 e−05

>>>

Type c prints a single character, and accepts an integer (ASCII or UTF-8 character encoding) as
format argument

>>> f o r i in range ( 6 5 , 7 0 ) : p r i n t ( ” { : c } ” . format ( i ) )
. . .

A
B
C
D
E
>>>

Here we have used a for loop, to be discussed in Section 1.16. Types r and s refer to strings.

>>> p r i n t ( ” { : s } ” . format ( ” Have a good day ! ” ) )
Have a good day !
>>> p r i n t ( ” { ! r } ” . format ( ” Have a good day ! ” ) )
’ Have a good day ! ’
>>>

Note that the string is printed within quotes if you use the r code, and that the r code must be preceded
by an exclamation mark, !, rather than by a colon, :.

1.16 Loops
Loops are extremely important in computer programming. Python has two types of loops: the for
and the while loop.

1.16.1 The for Loop
It is important to realize that the Python for loop behaves differently from the for loop of other pro-
gramming languages, notably C/C++. For using the Python for loop you must first have a sequence
of elements, for instance a list or a tuple, and the for loop iterates over the elements of the sequence.
This is an example

>>> f l o w e r s =[ ” r o s e ” , ” cyclamen ” , ” d a i s y ” , ” t u l i p ” ]
>>> f o r x in f l o w e r s :



24 CHAPTER 1. PYTHON BASICS AND THE INTERACTIVE MODE

. . . p r i n t ( x )

. . .
r o s e
cyclamen
d a i s y
t u l i p
>>> from math import s q r t
>>> numbers = [533 ,712 ,925 ]
>>> f o r x in numbers :
. . . p r i n t ( ” { : 1 0 . 4 f } ” . format ( s q r t ( x ) ) )
. . . p r i n t ( ” t h i s was t h e s q u a r e r o o t o f { : 1 0 . 4 f } ” . format ( x ) ) \
. . .

23 .0868
t h i s was t h e s q u a r e r o o t o f 533 .0000

26 .6833
t h i s was t h e s q u a r e r o o t o f 712 .0000

30 .4138
t h i s was t h e s q u a r e r o o t o f 925 .0000
>>>

The declaration of a for loop must terminate with a colon (:), and all commands of the loop must be
indented, for instance by a tab, or by an arbitrary, but fixed number of spaces, relatively to the line
of the loop declaration. In interactive mode, the command sequence of a for loop (or of a while
loop) is terminated by typing an unindented empty line. The iteration sequence of a for loop can be
provided by the range() function, which accepts up to three arguments

>>> f o r x in range ( 5 ) :
. . . p r i n t ( x )
. . .
0
1
2
3
4
>>> f o r x in range ( 6 , 1 0 ) :
. . . p r i n t ( x )
. . .
6
7
8
9
>>> f o r x in range ( 6 , 1 2 , 3 ) :
. . . p r i n t ( x )
. . .
6
9
>>>

Note that the range() function is zero-based, thus, range(5) generates the list of the first 5
integer numbers [0, 1, . . . 4], while the expression range(n1,n2) generates the list of the n2 − n1

integers [n1, n1 + 1, . . . , n2 − 1]. Finally, in the case of three arguments, range(n1,n2,n3), the
third argument is interpreted as the constant spacing between successive numbers of the list. The last
number of the list is the highest number smaller than n2. This behavior is anologous to the behavior
of slicing that we met in Section 1.13
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It is also important to remember that the range() function is not part of the for syntax. Rather,
range() is a built-in Python function that creates a number list. The number list is created before
the loop is executed, and it cannot be changed during the loop execution. Thus, for instance, if you
type

>>> a=3
>>> f o r i in range ( a ) :
. . . p r i n t ( i )
. . . i f i ==0:
. . . a=10
. . .
0
1
2
>>> p r i n t ( a )
10
>>>

the loop iterates over the list [0,1,2] in spite of the fact that the value of a is changed at the first
iteration. However, the for loop can be interrupted by a break statement, as discussed in Subsection
1.16.3 below.

Another important built-in Python function, particularly useful when associated to a for loop,
is enumerate(). It allows us to loop over a sequence and have a simultaneous automatic counter.
Here is an example of its use

>>> f l o w e r s =[ ro se , cyclamen , d a i s y , t u l i p ]
>>> f o r i , x in enumerate ( f l o w e r s ) :
. . . p r i n t ( i , x )
. . .
0 r o s e
1 cyclamen
2 d a i s y
3 t u l i p
>>>

It is also possible to have the counter starting from any given integer value, by adding an optional
argument to enumerate()

>>> f o r i , x in enumerate ( f l o w e r s , 1 5 ) :
. . . p r i n t ( i , x )
. . .
15 r o s e
16 cyclamen
17 d a i s y
18 t u l i p
>>>

Obviously, variables i and x are available for any possible use in the loop commands.

1.16.2 The while Loop

A while loop iterates as long as a specified Boolean condition is true. For example:
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>>> i =5
>>> whi le i <=8:
. . . p r i n t ( i )
. . . i +=1
. . .
5
6
7
8
>>>

Here the variable i is set equal to 5 before the loop begins. The loop is iterated till i is smaller than,
or equal to 8, each iteration prints the value of i, then increments it by 1.

1.16.3 Breaking a Loop
A loop can be interrupted by a break statement. For instance, we might write for a for loop

>>> f o r j in range ( 1 0 ) :
. . . i f j >3:
. . . break
. . . p r i n t ( j )
. . .
0
1
2
3
>>>

The break is executed when the condition j>3 is met. Note the double indentation before the
break command: an indentation relative to the loop, plus an indentation relative to the if statement.
The print(j) line has a single indentation, since it is part of the loop, but it is not conditioned by
the if statement.

The break statement has an interesting application in the while loop:
>>> c o u n t =0
>>> whi le True :
. . . p r i n t ( c o u n t )
. . . c o u n t +=1
. . . i f count >2:
. . . break
. . .
0
1
2
>>>

Here the Boolean condition for the while loop is always true by definition, being the Boolean
constant True itself. Thus, the loop would go on forever if it did not contain the break condition.

1.16.4 The continue Statement
The continue statement is used to skip the part of the loop (either for or while) that follows it,
without interrupting the loop itself, but passing to the following iteration. For instance, the following
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code skips all odd numbers, printing only the even ones
>>> f o r i in range ( 5 ) :
. . . i f i %2>0:
. . . c o n t in u e
. . . p r i n t ( i )
. . .
0
2
4

If the condition i%2>0 is met, i.e., if the remainder of the division of i by 2 is greater than zero (i
is odd), the print function is skipped, and the next iteration is started.

1.17 Operations with Matrices and Vectors

1.17.1 Lists and Arrays
In a sense, a vector is a list of numbers, and a matrix is a list of lists of numbers, so, we can write

>>> v1 = [ 1 , 2 , 3 ]
>>> v2 = [ 4 , 5 , 6 ]
>>> a1 = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ]
>>> a2 = [ [ 9 , 8 , 7 ] , [ 6 , 5 , 4 ] , [ 3 , 2 , 1 ] ]
>>> p r i n t ( v1 )
[ 1 , 2 , 3 ]
>>> p r i n t ( a1 )
[ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ]

However, we get a surprise if we add two such vectors, or two such matrices,
>>> p r i n t ( v1+v2 )
[ 1 , 2 , 3 , 4 , 5 , 6 ]
>>> p r i n t ( a1+a2 )
[ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] , [ 9 , 8 , 7 ] , [ 6 , 5 , 4 ] , [ 3 , 2 , 1 ] ]

the surprise being due to the fact that, when two Python lists are added, the result is a new list
comprising the elements of both lists. If we want the usual mathematical operations on matrices and
vectors, we need numpy.array objects instead of lists. Thus, first we must import numpy, then
declare vectors and matrices as numpy.arrays

>>> import numpy as np
>>> v1=np . a r r a y ( [ 1 , 2 , 3 ] )
>>> v2=np . a r r a y ( [ 4 , 5 , 6 ] )
>>> a1=np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
>>> a2=np . a r r a y ( [ [ 9 , 8 , 7 ] , [ 6 , 5 , 4 ] , [ 3 , 3 , 1 ] ] )
>>> p r i n t ( a1 )
[ [ 1 2 3]

[4 5 6]
[7 8 9 ] ]

>>> a1
a r r a y ( [ [ 1 , 2 , 3 ] ,

[ 4 , 5 , 6 ] ,
[ 7 , 8 , 9 ] ] )

>>> p r i n t ( v1+v2 )
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[5 7 9 ]
>>> p r i n t ( a1+a2 )
[ [ 1 0 10 10]

[10 10 10]
[10 11 1 0 ] ]

>>> p r i n t ( a1+v1 )
[ [ 2 4 6]

[5 7 9]
[8 10 1 2 ] ]

Note the output difference after typing print(a1) and simply typing a1: in the latter case, the
word array() appears, and commas are printed between row elements. Adding two arrays leads
to the expected result if the two arrays have the same dimensions. However it is possible to add a
matrix and a vector, an operation not allowed in usual matrix algebra, provided that the number of
columns of the matrix equals the number of elements of the vector. The vector elements are added to
the corresponding elements of each matrix row.

This is a first step into matrix algebra, but we still get a surprise if we multiply two arrays by using
the usual * multiplication operator, met in Section 1.5

>>> p r i n t ( v1*v2 )
[ 4 10 18]
>>> p r i n t ( a1 * a2 )
[ [ 9 16 21]

[24 25 24]
[21 24 9 ] ]

>>> p r i n t ( a1 *v1 )
[ [ 1 4 9 ]

[ 4 10 18]
[ 7 16 2 7 ] ]

what we get is actually an element by element multiplication (sometimes called Hadamard product),
as shown above. Note that the * multiplication of a matrix by a vector multiplies the elements of each
row of the matrix by the corresponding elements of the vector. It is also possible to obtain a Hadamard
element by element division, using either the / operator or the numpy.divide() function

>>> np . d i v i d e ( v1 , v2 )
a r r a y ( [ 0 . 2 5 , 0 . 4 , 0 . 5 ] )
>>> p r i n t ( v1 / v2 )
[ 0 . 2 5 0 . 4 0 . 5 ]

Note that the numpy package contains also many mathematical functions, sharing the names with the
math functions. If you apply these numpy functions to scalar quantities, their behavior is analogous
to the behavior of their math counterparts, with a possible difference in precision

>>> import numpy as np
>>> import math as mt
>>> p r i n t ( mt . s q r t ( 5 ) , np . s q r t ( 5 ) )
2 .23606797749979 2.2360679775
>>> p r i n t ( mt . s i n ( mt . p i / 4 ) , np . s i n ( np . p i / 4 ) )
0 .7071067811865475 0.707106781187

But there is an important difference: the numpy mathematical functions can take arrays, or lists, as
arguments , while the math functions can’t,

>>> a = [ 5 , 6 , 7 , 8 ]
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>>> np . s q r t ( a )
a r r a y ( [ 2 .23606798 , 2 .44948974 , 2 .64575131 , 2 . 8 2 8 4 2 7 1 2 ] )
>>> mt . s q r t ( a )
T raceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
TypeEr ro r : must be r e a l number , not l i s t

We shall see the importance of the numpy mathematical functions in Chapter 3, where we shall
discuss how to plot functions. As an example, consider the following commands

>>> import numpy as np
>>> x=np . a r a n g e ( 0 , 3 . 6 , 0 . 5 )
>>> x
a r r a y ( [ 0 . , 0 . 5 , 1 . , 1 . 5 , 2 . , 2 . 5 , 3 . , 3 . 5 ] )
>>> y=np . s i n ( x )
>>> y
a r r a y ( [ 0 . , 0 .47942554 , 0 .84147098 , 0 .99749499 , 0 . 90 9 29 7 43 ,\

0 .59847214 , 0 .14112001 , −0 .35078323] )

Command x=np.arange(0,3.6,0.5) generates an array x of floats ranging from 0.0 to 3.5,
which we could use as abscissae of a plot. Command y=np.sin(x) generates an array y such that
each of its elements is the sine of the corresponding element of x. Thus, the elements of y can be
used as ordinates of our plot.

1.17.2 Slicing out Rows and Columns from a Matrix
Slicing out a row from a matrix is obvious:

>>> a1=np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
>>> a1
a r r a y ( [ [ 1 , 2 , 3 ] ,

[ 4 , 5 , 6 ] ,
[ 7 , 8 , 9 ] ] )

>>> row0=a1 [ 0 ]
>>> row0
a r r a y ( [ 1 , 2 , 3 ] )
>>> row1=a1 [ 1 ]
>>> row1
a r r a y ( [ 4 , 5 , 6 ] )

Slicing out a column is slightly less obvious:
>>> column0=a1 [ : , 0 ]
>>> column0
a r r a y ( [ 1 , 4 , 7 ] )
>>> column2=a1 [ : , 2 ]
>>> column2
a r r a y ( [ 3 , 6 , 9 ] )

note the comma before the index.

1.17.3 Arrays and Matrix Arithmetics
If what we want is the usual row-by-column matrix multiplication we must use the numpy.dot()
function, which performs the scalar (or dot) product of two arrays. A few examples follow
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>>> c=np . d o t ( v1 , v2 )
>>> p r i n t ( c )
32
>>> a3=np . d o t ( a1 , a2 )
>>> p r i n t ( a3 )
[ [ 30 27 18]

[ 84 75 54]
[138 123 9 0 ] ]

>>> v3=np . d o t ( a1 , v1 )
>>> p r i n t ( v3 )
[14 32 50]
>>> v4=np . d o t ( v1 , a1 )
>>> p r i n t ( v4 )
[30 36 42]

Once we have an array awe can use the function numpy.tile() to obtain a new array by repeating
a a given number of times

>>> from numpy import t i l e
>>> a = [ 1 , 2 , 3 , 4 ]
>>> b= t i l e ( a , 3 )
>>> b
a r r a y ( [ 1 , 2 , 3 , 4 , 1 , 2 , 3 , 4 , 1 , 2 , 3 , 4 ] )
>>> c = [ [ 1 , 2 ] , [ 3 , 4 ] ]
>>> d= t i l e ( c , 3 )
>>> d
a r r a y ( [ [ 1 , 2 , 1 , 2 , 1 , 2 ] ,

[ 3 , 4 , 3 , 4 , 3 , 4 ] ] )

the second argument of tile() giving the number of repetitions. Note that we built a and c as lists,
but b and d are arrays. We can obtain a matrix from a vector, or, more generally, a final array of
higher dimension than the start array, by using a tuple as second argument of tile():

>>> c= t i l e ( a , ( l e n ( a ) , 1 ) )
>>> c
a r r a y ( [ [ 1 , 2 , 3 , 4 ] ,

[ 1 , 2 , 3 , 4 ] ,
[ 1 , 2 , 3 , 4 ] ,
[ 1 , 2 , 3 , 4 ] ] )

the first item of the tuple (len(a),1) telling how many rows the matrix will have (here we are
generating a square matrix), and the second how many times the array a is repeated in each row, here
only once.

1.17.4 Further Matrix Operations
Transpose

We can transpose a matrix by using the .transpose() method:

d=c . t r a n s p o s e ( )
>>> d
a r r a y ( [ [ 1 , 1 , 1 , 1 ] ,



1.17. OPERATIONS WITH MATRICES AND VECTORS 31

[ 2 , 2 , 2 , 2 ] ,
[ 3 , 3 , 3 , 3 ] ,
[ 4 , 4 , 4 , 4 ] ] )

The same result can be obtained by typing
>>> d=c . T

the .T operator being a shorthand for the .transpose() operator. Finally, we can generate a
symmetric matrix e by typing, for instance

>>> e=d* a
>>> e
a r r a y ( [ [ 1 , 2 , 3 , 4 ] ,

[ 2 , 4 , 6 , 8 ] ,
[ 3 , 6 , 9 , 1 2 ] ,
[ 4 , 8 , 12 , 1 6 ] ] )

where ei j = aia j, since the * product multiplies each element of each row of d by the corresponding
element of a, as discussed in Subsection 1.17.1. Analogously, we can generate a skew-symmetric
matrix f by typing, for instance

>>> f=d−a
>>> f
a r r a y ( [ [ 0 , −1 , −2 , −3] ,

[ 1 , 0 , −1 , −2] ,
[ 2 , 1 , 0 , −1] ,
[ 3 , 2 , 1 , 0 ] ] )

where fi j = ai − a j, since the - operator subtracts the elements of a from the corresponding elements
of each row of d. Obviously, all the above operations can be obtained also by using nested for or
while loops. For instance, our skew-symmetric matrix can be generated by the nested loops

>>> d=np . empty ( [ l e n ( a ) , l e n ( a ) ] )
>>> f o r i in range ( l e n ( a ) ) :
. . . f o r j in range ( l e n ( a ) ) :
. . . d [ i , j ]= a [ i ]− a [ j ]
. . .

where the numpy.empty() function returns a new array of given dimensions, without initializing
the entries. Note that the function numpy.empty() has a single argument, which must be a tuple if
a multidimensional array is needed. The matrix elements are then initialized by the nested loops. A
more efficient way of writing the nested loops could be

>>> d=np . z e r o s ( [ l e n ( a ) , l e n ( a ) ] )
>>> i =0
>>> whi le i < l e n ( a ) :
. . . j =0
. . . whi le j < i :
. . . d [ i , j ]= a [ i ]− a [ j ]
. . . d [ j , i ]=−d [ i , j ]
. . . j +=1
. . . i +=1
. . .

where the function numpy.zeros() returns a new array of given dimensions whose elements are all
zero. As for function numpy.empty(), the single argument of numpy.zeros() must be a tuple
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if what we want is a multidimensional array. The skew symmetry of the matrix is exploited in order
to skip the calculation of the diagonal elements and not to repeat the off-diagonal calculations twice.
However, it is important to remember that Python array-manipulation functions are pre-compiled and
optimized, thus they run much faster than the loops that a user can write in Python.

Sum the Elements over a Given Axis

Function numpy.sum() sums the elements of an array over a given axis.

>>> a=np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
>>> a
a r r a y ( [ [ 1 , 2 , 3 ] ,

[ 4 , 5 , 6 ] ,
[ 7 , 8 , 9 ] ] )

>>> np . sum ( a , a x i s =0)
a r r a y ( [ 1 2 , 15 , 1 8 ] )
>>> np . sum ( a , a x i s =1)
a r r a y ( [ 6 , 15 , 2 4 ] )

axis 0 is the horizontal axis, parallel to the matrix rows, and axis 1 is the vertical axis, parallel to the
matrix columns. Note that the argument axis=0 in the sum() function indicates that columns
are added, leaving a single, collapsed row. This can seem misleading when working with two-
dimensional arrays (matrices), since axis=0means that sums are performed column-wise. However,
this is the most straightforward definition when working with three- or higher-dimensional arrays.

Trace

The trace of a matrix is calculated by the numpy.trace() operator

>>> np . t r a c e ( a )
15
>>>

Determinant and Inverse

The determinant of a matrix is calculated by the numpy.linalg.det() operator, while the in-
verse of a matrix is evaluated by the numpy.linalg.inv() function

>>> a=np . a r r a y ( [ [ 1 , 3 , 3 ] , [ 3 , 2 , 1 ] , [ 1 8 , 1 6 , 1 4 ] ] )
>>> a
a r r a y ( [ [ 1 , 3 , 3 ] ,

[ 3 , 2 , 1 ] ,
[ 1 8 , 16 , 1 4 ] ] )

>>> np . l i n a l g . d e t ( a )
−23.999999999999993
>>> b=np . l i n a l g . i n v ( a )
>>> b
a r r a y ( [ [ −0 . 5 , −0.25 , 0 .125 ] ,

[ 1 . , 1 .66666667 , −0 .33333333] ,
[ −0.5 , −1.58333333 , 0 . 2 9 1 6 6 6 6 7 ] ] )

>>> np . d o t ( a , b )
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a r r a y ( [ [ 1 .00000000 e +00 , 8 .88178420 e−16 , 0 .00000000 e +00] ,
[ 0 .00000000 e +00 , 1 .00000000 e +00 , 5 .55111512 e −17] ,
[ 0 .00000000 e +00 , 0 .00000000 e +00 , 1 .00000000 e + 0 0 ] ] )

>>>

Note the effects of rounding.

Diagonalization

The diagonalization of a matrix can be performed by the function numpy.linalg.eig(), which
returns a tuple consisting of a vector and an array. The vector contains the eigenvalues in arbitrary
order, while the array contains the corresponding eigenvectors, organized in a matrix, one eigenvector
per column. The eigenvectors are normalized so their Euclidean norms are 1. An example of the use
of numpy.linalg.eig() follows

1 >>> import numpy as np
2 >>> a=np . a r r a y ( [ [ 1 , 2 , 3 , 4 ] , [ 2 , 2 , 4 , 8 ] , [ 3 , 4 , 5 , 6 ] , [ 4 , 9 , 6 , 8 ] ] )
3 >>> a
4 a r r a y ( [ [ 1 , 2 , 3 , 4 ] ,
5 [ 2 , 2 , 4 , 8 ] ,
6 [ 3 , 4 , 5 , 6 ] ,
7 [ 4 , 9 , 6 , 8 ] ] )
8 >>> e i g v a l , e i g v e c=np . l i n a l g . e i g ( a )
9 >>> e i g v a l

10 a r r a y ( [ 1 9 . 5 3 2 4 1 8 3 5 , −4.10596077 , −0.56799313 , 1 . 1 4 1 5 3 5 5 6 ] )
11 >>> e i g v e c
12 a r r a y ( [ [ 0 .27701336 , 0 .18643609 , −0.90273601 , −0 .26017229] ,
13 [ 0 .45869181 , 0 .75119053 , 0 .15881403 , 0 . 3 2 1 3 7 1 6 1 ] ,
14 [ 0 .47236893 , 0 .02548963 , 0 .39903646 , −0 .80179608] ,
15 [ 0 .69980927 , −0.63269633 , −0.0248134 , 0 . 4 3 1 4 5 5 3 5 ] ] )
16 >>> np . d o t ( a , e i g v e c [ : , 0 ] )
17 a r r a y ( [ 5 .41074085 , 8 .95936022 , 9 .22650759 , 1 3 . 6 6 8 9 6 7 4 7 ] )
18 >>>

In the above example, Line 8 unpacks the output of numpy.linalg.eig(), storing the eigen-
values of the matrix a defined at Line 2 in the array eigval, and the eignevectors in the array
eigvec. Line 16 multiplies matrix a by its first eigenvector (the first column of eigvec), sliced
out of eigvec, see Section 1.13 on slicing. The result shown in Line 17 is the first eigenvector itself
multiplied by the first eigenvalue (19.53241835). We can check this by typing the command

>>> np . d o t ( e i g v e c [ : , 0 ] , e i g v a l [ 0 ] )
a r r a y ( [ 5 .41074086 , 8 .95936024 , 9 .2265076 , 1 3 . 6 6 8 9 6 7 4 6 ] )

which multiplies the first eigenvector by the first eigenvalue.

1.18 Exiting Interactive Mode
We exit from the Python interactive mode by typing either quit() (the parentheses are mandatory,
in order to tell the interpreter that we are referring to a function), or Ctrl-D at the Pythonprompt.
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Chapter 2

Python Scripts

2.1 Scripts
A Python script is an ASCII file containing your Python code, that you can write with your favorite
text editor (provided that you use it in plain text mode) and store in the computer memory. Python
reads the file as a whole, and then executes its commands, rather than reading and executing the lines
you type one by one, as it does when you work in interactive mode. Scripts have some important
advantages over the interactive mode: for instance you do not have to retype a long code that you
use in separate work sessions, and you can easily change a line of code without retyping all the rest.
It is customary, and convenient, to give script files names with a final “.py” extension, for instance
myprogram.py. Once you have typed and saved a script, you can run it simply by typing
python3 myprogram.py
The command python3 followed by a file name does not enter the interactive mode, but reads the
file, interprets and executes it. In Linux, an alternative is making your script file directly executable.
For this, the first line of your file must be
#!/usr/bin/env python3
which states that the file must be handled by the python3 interpreter. The file, once written, is made
executable by typing
chmod +x myprogram.py
on the terminal, where chmod stands for “change mode” (change the access permissions) in Unix-
like operating systems, and +x stand for “add the execute permission”. Obviously, you must replace
myprogram.py by the actual name of your script! Once the script is made executable, you run it
simply by typing its name
myprogram.py
An executable script is executed also if you type python3 myprogram.py. In fact python3, if
called directly, interprets the first line, beginning with a hash sign (#), as a comment, and ignores it.
If you are using Python 2 instead of Python 3, it is convenient to add a second “commented” line to
the file
#coding: utf8
this tells the interpreter to use the more complete UTF-8 character encoding rather than plain ASCII
characters. Python 3 uses UTF-8 encoding by default.

As an example, let us write a script that evaluates the prime factors of an integer number. We can
call the script factorize.py. As we already know, a hash symbol (#) followed by any character

35
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sequence is considered as a comment and ignored by Python. Thus, you can omit all the lines com-
prising only a hash symbol when you copy the file. We have inserted them only to separate code parts
visually, in order to make the script more “human understandable”. Further, if you copy this script, or
any script listed in the rest of this book, you should not type the numbers at the beginning of each line:
they are not part of the code. We have inserted them only to identify the lines in the code discussion.

Listing 2.1 factorize.py
1 # ! / u s r / b i n / env py thon3
2 import math
3 import t ime
4 from s y s import a rgv
5 #

We import the libraries math and time, and the list argv from the library sys. We shall see in the
following why we need this stuff.

6 num = a rgv [ 1 ]
7 s t a r t = t ime . t ime ( )
8 #

Variable argv is a list of strings comprising everything that you typed in the command line when
calling the script, including the script name. Thus, if we typed, for instance
factorize.py 3512
element argv[0] contains the string ’factorize.py’, and argv[1] contains the string ’3512’.
The second string, argv[1], is copied into the variable num at Line 6. Only num will be used by
our program. At Line 7, the function time.time() returns the time in seconds elapsed since a
platform-dependent starting instant, as a floating point number. The starting instant (time origin) for
Unix and Unix-like systems is January 1st, 1970, at 00:00:00 (UTC). In any case, the actual time
origin is not relevant: we are interested only in the time difference between the start and the end
instants of the execution of our program, in order to know how long the program runs.

9 n= i n t ( num )
10 p r i n t ( ” d i g i t s : { : d } ” . format ( l e n ( num ) ) )
11 #

At line 9 the string num (the UTF-8 string ’3512’ in our case) is converted into the integer variable
n, which shall be used for computation. Line 10 counts the number of digits in the number to be
factorized (4 in our case), and prints it on the terminal. Note that the symbol stands for a space (a
blank).
12 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
13 #
14 f a c t o r s = [ ]
15 #

Line 12 stores in sqnf the maximum integer which can be a prime factor of n, i.e., the smallest
integer greater than

√
n. Line 14 creates the empty list factors, that we shall fill with the prime

factors of our number.
16 whi le n%2==0:
17 f a c t o r s . append ( 2 )
18 n=n / / 2
19 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
20 #
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The while loop 16-18 stores 2 into factors if n is even. In this case n is replaced by its half,
and Line 19 replaces sqnf by the value of the new largest possible remaining prime factor. The
procedure is iterated as long as the resulting n is even, and each time a copy of the number 2 is stored
into factors.

21 i =3
22 whi le i<=s q n f :
23 whi le n%i ==0:
24 f a c t o r s . append ( i )
25 n=n / / i
26 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
27 i +=2
28 #

Line 21 assigns the integer value 3 to i. Lines 22-27 are two while nested loops: the loop 23-26 is
nested inside the loop 22-27. The loop of lines 23-26 is analogous to the loop 16-19, with 2 replaced
by the successive odd numbers i generated at line 27, belonging to the external while loop. Of
course, not all odd numbers are primes!!! But, if an odd number i is not prime, n has already been
divided by the prime factors of i, and is no longer divisible by i. Thus, checking divisibility by all
odd numbers is, in a sense, a more or less unavoidable waste of time, but does not lead to errors.
Number i is stored into factors as long as i divides n.

29 i f n !=1 :
30 f a c t o r s . append ( n )
31 #

Now we are out of all factorizing loops. If the last value of n is different from 1, it must be a prime
number, and must be stored into factors.

32 p r i n t ( f a c t o r s )
33 e l a p s e d = t ime . t ime ( ) − s t a r t
34 p r i n t ( ” e l a p s e d t ime : { : f } s \n ” . format ( e l a p s e d ) )

Line 32 prints the list factors, i.e., the list of the prime factors of the initial value of n. Line 33
stores the time elapsed during the program execution into the variable elapsed, which is printed on
the terminal at line 34.

Thus, if you type, for instance factorize.py 3512 at the terminal prompt, you get
$>factorize.py 3512
digits: 4
[2, 2, 2, 439]
elapsed time: 0.000120 s
the second line (first output line) tells you that you are factorizing a 4-digit integer, the third line gives
you the actual factorization, 3512 = 23 × 439, and the last line tells you that the computer needed
1.2 × 10−4 s for computation. Obviously the factorization time is strongly computer-dependent! It is
interesting to experiment with integers of different size on the same computer:

$>factorize.py 3891252771
digits: 10
[3, 3, 3, 7, 20588639]
elapsed time: 0.001096 s
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$>factorize.py 348961235247715
digits: 15
[5, 131, 532765244653]
elapsed time: 0.118137 s

$>factorize.py 348961223452477159
digits: 18
[1831, 190585048308289]
elapsed time 1.443072 s

$>factorize.py 655449788001142878671 digits: 21
[655449788001142878671]
elapsed time: 3280.387602 s

Obviously the simple algorithm presented above can be improved, but the computation time of all
known algorithms increases approximately exponentially with the number of digits of the integer to
be factorized. For a given number of digits of n we observe the longest factorization time if n is prime.
In the last example above 655449788001142878671 is a prime number.

The security of all current cryptographic algorithms relies on the fact that the factorization of large
integers takes a long time.

2.2 Functions

2.2.1 General

As in all programming languages, in Python a function is a block of code that performs a specific
task, and that can be called several times by other parts of the program. Python comes with a huge
amount of built-in (prewritten, precompiled and optimized) functions, some immediately available,
and some packed into separate libraries, organized in modules and packages, that you must import
into your code before use. We have already met the import command in several occasions. Some
relevant mathematical functions available in Python are listed in Appendix A.

You can also write your own functions to perform specialized tasks. Unlike older high-level
programming languages, and as in C/C++, in Python there is no distinction between functions and
subroutines. The code of a Python function begins with a def statement and, if it must return values,
ends with a return statement. The commands in the function definition are not executed as Python
first passes over the lines, but only when the function is called by another part of the script. A function
can have any number of arguments, including zero. A function with zero arguments is the equivalent
of what, in other programming languages, is called a subroutine.

As a simple example, we can turn script 2.1 into a function coded inside a larger script that checks
which of the first 20 natural numbers are prime:

Listing 2.2 FuncFactorize.py
1 # ! / u s r / b i n / env py thon3
2 import math
3 #
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4 def f a c t o r i z e ( n ) :
5 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
6 f a c t o r s = [ ]
7 whi le n%2==0:
8 f a c t o r s . append ( 2 )
9 n=n / / 2

10 i =3
11 whi le i<=s q n f :
12 whi le n%i ==0:
13 f a c t o r s . append ( i )
14 n=n / / i
15 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
16 i +=2
17 i f n !=1 :
18 f a c t o r s . append ( n )
19 re turn f a c t o r s
20 #

Lines 4-19 define the function factorize(), which has the single argument n (the integer number
to be factorized), and outputs the list of the factors of n. As stated above, a function can have any
number of arguments, and the arguments are not restricted to belong to the same data type, they can
be integers, floats, lists, strings, . . . , mixed in any possible way. In the present case we have a single
integer argument, and the code of the function is identical to the corresponding code of Script 2.1.
Line 19 returns the list of the prime factors of the argument n.
21 f o r i in range ( 2 , 2 1 ) :
22 f a c t = f a c t o r i z e ( i )
23 i f l e n ( f a c t )==1:
24 p r i n t ( i , ” i s pr ime ” )
25 e l s e :
26 p r i n t ( i , f a c t )

The loop at Lines 21-26 is the main part of the script. Line 22 calls function factorize() with
successive integer numbers i as arguments, and the factors of i are stored into the list fact. Line 23
checks if fact has only one element: in this case, i is prime, and this is stated by line 24. Otherwise
i and its prime factors are printed by line 26. The output of the script follows:
$>FuncFactorize.py
2 is prime
3 is prime
4 [2, 2]
5 is prime
6 [2, 3]
7 is prime
8 [2, 2, 2]
9 [3, 3]
10 [2, 5]
11 is prime
12 [2, 2, 3]
13 is prime
14 [2, 7]
15 [3, 5]
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16 [2, 2, 2, 2]
17 is prime
18 [2, 3, 3]
19 is prime
20 [2, 2, 5]

2.2.2 Local and Global Variables

The variables of a function can be either local or global. All variables defined inside a function
definition are local to the function by default. This means that whatever happens to this variable in
the body of the function will have no effect on other variables of the same name outside of the function
definition, if they exist. Thus, for instance, the variables n, sqnf and factors in Script 2.2 are local
to the function factorize(). Line 22 copies the value of the variable i, local to the main body
of the script, into the variable n, local to the function factorize(), and, after the function has
been called, copies the output of the function (the list factors, local to factorize()), into the
list fact, local to the main body of the script. Things can be made clearer by the simple examples
discussed below.

Listing 2.3 GlobLoc0.py
1 # ! / u s r / b i n / env py thon3
2 import math
3 #
4 def f unc ( ) :
5 p r i n t ( math . s q r t ( x ) )
6 #
7 func ( )

Listing 2.4 GlobLoc1.py
1 # ! / u s r / b i n / env py thon3
2 import math
3 #
4 def f unc ( ) :
5 p r i n t ( math . s q r t ( x ) )
6 #
7 x =5.0
8 func ( )

In the case of Listing 2.3 the function func() prints
the square root of the variable x, that has not been de-
fined anywhere. Thus, this is the output when the script is
called

$>GlobLoc0.py
Traceback (most recent call last):
File "./GlobLoc0.py", line 7, in <module>
func()
File "./GlobLoc0.py", line 5, in func
print(math.sqrt(x))
NameError: name ’x’ is not defined

Python warns that Line 7 of the script calls the function
func(), which prints the square root of variable x at Line 5,
leading to an error because x has not been defined anywhere.

Listing 2.4 defines the variable x at Line 7, thus outside of
the definition of func(). When Line 8 calls func(), Python
interprets x as a global variable defined in the main body of the script because a variable named x
local to func() does not exist. Thus, no error is found, and the square root of 5 is printed in the
output, which reads

$>GlobLoc1.py
2.23606797749979

Finally, Script 2.5 defines both a variable named x inside the function definition, at Line 5, and an-
other variable, also named x, in the main body of the script, at Line 8. In this case two separate
non-interacting variables, both named x, one local to the main body and the other local to function
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func(), coexist in the script. The output, when the script is called, is

Listing 2.5 GlobLoc2.py
1 # ! / u s r / b i n / env py thon3
2 import math
3 #
4 def f unc ( ) :
5 x =3.0
6 p r i n t ( math . s q r t ( x ) )
7 #
8 x =5.0
9 func ( )

10 p r i n t ( math . s q r t ( x ) )

$>GlobLoc2.py
1.7320508075688772
2.23606797749979

Line 9 calls func(), which, at Line 6, prints the square root
of its local variable x, i.e., x = 3.0, ignoring the variable x
local to the main body of the script. Finally, Line 10, being
outside of the function definition, ignores the variables local to
the function, and prints the square root of the variable x local to
the main body of the script, i.e., x = 5.0.

2.3 Reading and Writing Files

Up to now we have passed data to Python by typing values on the keyboard, thus through the standard
input, and we read the results of Python elaborations on the computer monitor, or standard output.
This is convenient for small tasks, but is absolutely not convenient for the elaboration of large data
sets, as is almost always the case when we are dealing, for instance, with experimental results. When
we must elaborate large amounts of data, it is convenient to read data stored in input files (this also
avoids retyping all the data if our program crashes!), and have the computation results written into
other, output files.

We start with a simple example. First, we write a text file containing one number per line with our
favorite editor, and name it numdata.txt. For instance:

2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
20.0

The following simple script reads numdata.txt and displays the read data on the terminal

Listing 2.6 ReadFile0.py
1 # ! / u s r / b i n / env py thon3
2 #
3 hnd=open ( ” numdata . t x t ” , ” r ” )
4 num=hnd . r e a d l i n e s ( )
5 p r i n t ( num )
6 hnd . c l o s e ( )
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Line 3 opens the file in read mode. The name of the file, being a string, must be within quotes. The
argument "r" stands for read mode, meaning that the script can read, but not in any way modify,
the file. The variable hnd is the file handler , a pointer to the file in the computer memory. All suc-
cessive operations on the file go through this handler. Line 4 creates the list num, where the method
hnd.readlines() copies all the lines of the file. Line 6 closes the file, so that the file is no longer
accessible to the script. It is very important to always close a file that has been opened, in order to
avoid that it may be corrupted. This is what we see when we run the script

$>ReadFile0.py
[’2.0\n’, ’4.0\n’, ’6.0\n’, ’8.0\n’, ’10.0\n’, ’12.0\n’, ’14.0\n’,
’16.0\n’, ’18.0\n’, ’20.0\n’, ’\n’]

All items of the list are within quotes because they are interpreted as strings, not as numbers, and
all of them end with a newline sign \n because we wrote one number per line. The last \n means
that we typed a blank line at the end of the file. If we want to elaborate these numbers, we must first
convert them to regular floats. The script that follows does the job

Listing 2.7 ReadFile.py
1 # ! / u s r / b i n / env py thon3
2 from math import s q r t
3 #
4 num= [ ]
5 hnd=open ( ” numdata . t x t ” , ” r ” )
6 whi le True :
7 b u f f=hnd . r e a d l i n e ( )
8 i f not b u f f :
9 break

10 t r y :
11 num . append ( f l o a t ( b u f f . s t r i p ( ) ) )
12 e xc ep t V a l u e E r r o r :
13 pass
14 hnd . c l o s e ( )
15 #
16 hnd=open ( ” s q r t d a t a . t x t ” , ”w” )
17 f o r i in range ( l e n ( num ) ) :
18 hnd . w r i t e ( ’ { : 6 . 2 f } { : 1 2 . 4 f } \ n ’ . format ( num [ i ] , s q r t ( num [ i ] ) ) )
19 hnd . c l o s e ( )

Line 2 imports the function sqrt() from math, we shall need it for evaluating square roots. Line 4
creates the list num where we shall store the numbers read from the file. Line 5 opens the file in read
mode. Lines 6-13 define an infinite loop for reading the file. We use an infinite loop because we don’t
know the length of the file before reading it. At each loop iteration, Line 7 copies successive lines
of the file into the list buff. Note that, while the method readlines() encountered in Script 2.6
reads all the lines of the file in a single step, the method readline() reads a single line at a time.
When the end of the file is reached, readline() returns an empty string, which is considered as
equivalent to False by the if statement of line 8. Thus, the loop is interrupted when the end of the
file is reached. Lines 10-13 check if it is possible to convert each line into a float number. The method
strip() strips all blank and newline characters from the beginning and end of each string (thus,
for instance, the newline characters \n at the end of each line are stripped). What remains of each
string is converted to a float and appended to the list num. If the conversion to float fails (for instance,
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there is nothing to convert at the last line, which comprises only a \n character), a ValueError ex-
ception is raised, and the try. . .except statement simply skips the action, and nothing is appended
to num. Line 14 closes the input file, and frees the file handler hnd. Line 16 opens an output file
named sqrtdata.txt in write mode (argument "w"). Write mode means that a file named sqrt-
data.txt will be created on the disk if it does not exist already. If a file of that name exists, it will
be overwritten, and its previous content will be permanently lost. The loop at lines 16-17 writes lines
one by one into the output file, each line comprising a number of the input file and its square root.
Finally, line 19 closes the output file. When you run Script 2.7 you don’t see anything on the termi-
nal, but a file named sqrtdata.txt is created, and you can read it with an editor. This is its content

2.00 1.4142
4.00 2.0000
6.00 2.4495
8.00 2.8284
10.00 3.1623
12.00 3.4641
14.00 3.7417
16.00 4.0000
18.00 4.2426
20.00 4.4721

2.4 Calling External Commands from Python Scripts
It is possible to call external (operating-system) commands from Python, and to write Python scripts
more or less equivalent to Unix Bash files and Windows batch files. This can be done through methods
of the os and subprocess modules. For instance, line 3 of Listing 2.8 calls the VLC media player,
available for Linux, Windows and Mac OSX.

Listing 2.8 Calling VLC Media Player
1 # ! / u s r / b i n / env py thon3
2 import os
3 os . sys tem ( ’ v l c ’ )

The external command vlc is inserted into a string, which is passed as argument to the method
os.system().

It is often necessary to pass parameters to an external commands. This is done by inserting the
parameters into the string argument. For instance, under Linux, when you wish the list of the contents
of a a directory, you can type ls -latr in a terminal. Here, ls is the command that lists the
directory contents. The meanings of the four letters in the option string are: l: use a long listing
format, a: include entries starting with “.” (“hidden” files), t: sort by modification time, newest first,
r: reverse order while sorting (i.e., newest last). The result is similar to what you obtain by typing
the command dir in a Windows terminal.
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Listing 2.9 Listing the contents of a directory
1 # ! / u s r / b i n / env py thon3
2 import os
3 os . sys tem ( ’ l s − l a t r ’ )

The os.system() method can also launch multiple commands separately. This is done by writing
each command, with its parameters, in a separate string, and then passing the string commands, joined
by vertical bars, “ |”, as argument to os.system().

Listing 2.10 Calling VLC and Listing a Directory
1 # ! / u s r / b i n / env py thon3
2 import os
3 os . sys tem ( ’ l s − l a t r ’ | ’ v l c ’ )

Thus, Listing 2.10 simultaneously lists the contents of the directory and calls the VLC media player.
Obviously this is of no practical interest whatsoever here, but we shall see later on that this trick can
be used, for instance, for performing calculations in parallel on multi-processor computers.



Chapter 3

Plotting with Matplotlib

3.1 Pyplot
Pyplot is a collection of command-style functions that make Matplotlib work like MATLAB. Each
pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure,
plots lines in a plotting area, adds labels (text) to the plot itself or to the horizontal and vertical axes
of the figure, . . . Successive calls to different pyplot functions preserve what done in the figure by the
previously called functions, so that the complete figure can be drawn in successive steps.

3.2 Plotting Lists of Numbers
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Figure 3.1

As a first, simple example let us see what happens if
we plot a single list of numbers, for instance the list
[1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0]. We can do this by
writing the following listing

Listing 3.1 Plot1List.py
1 # ! / u s r / b i n / env py thon3
2 import m a t p l o t l i b . p y p l o t a s p l t
3 #
4 p l t . p l o t ( [ 1 . 0 , 2 . 0 , 4 . 0 , 8 . 0 , 1 6 . 0 , 3 2 . 0 , 6 4 . 0 ] )
5 p l t . show ( )

Line 2 imports matplotlib.pyplot as plt. The
function plot() is called at Line 4, and generates the polyline shown in Fig. 3.1. Note that, if
we provide a single list, or array, of numbers to the plot() function, matplotlib assumes that we are
giving a sequence of ordinates (y values), and the corresponding x values are generated automatically.
The default list of x values has the same length as the list of y values, and comprises successive nat-
ural numbers starting with 0. In the present case, this leads to the correct plot, since we are actually
plotting y = 2x. In the more general case, we pass plot() two lists of equal length, the first of which
will be considered as the list of the abscissae, and the second as the list of the ordinates of the points
to be plotted. The figure will be scaled accordingly. We can also pass an optional third argument
which is a format string indicating the color and line type of the plot. The default format string is
’b-’, which generates a solid blue line as in Fig. 3.1. Listing 3.2 gives a further example.

45
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Listing 3.2 Plot2Lists.py
1 # ! / u s r / b i n / env py thon3
2 import m a t p l o t l i b . p y p l o t a s p l t
3 #
4 p l t . p l o t ( [ 3 . 0 , 4 . 0 , 5 . 0 , 6 . 0 , 7 . 0 , 8 . 0 ] , [ 8 . 0 , 1 6 . 0 , 3 2 . 0 , 6 4 . 0 , 1 2 8 . 0 , 2 5 6 . 0 ] , ’ ro ’ )
5 p l t . show ( )
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Line 4 passes the two x and y lists to plot(), while
the third argument, the string ’ro’, asks for the plot
to be represented by red (r) circles (o). The default
value of this argument is ’b-’, corresponding to a
blue (b) continuous line (-), as in the case of Fig. 3.1.
Matplotlib is not limited to working with lists: this
would be definitely uncomfortable for numeric pro-
cessing. Rather, we shall normally use numpy arrays
instead of hand-written lists. In fact, all sequences are
converted to numpy arrays internally. Listing 3.3 plots
three different lines, with different format styles, in a
single command using arrays.

Listing 3.3 multiplot.py
1 # ! / u s r / b i n / env py thon3
2 import m a t p l o t l i b . p y p l o t a s p l t
3 import numpy as np
4 #
5 x=np . a r a n g e ( 0 . 0 , 2 . 0 , 0 . 0 5 )
6 p l t . p l o t ( x , x , x , np . s q r t ( x ) , ’ ro ’ , x , x **2 , ’ g ˆ ’ )
7 p l t . show ( )

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 3.3

Line 5 creates the array x comprising the 40 elements
0.0, 0.05, 0.1, . . . , 1.95. The first two arguments of the
plot() function at line 6 plot the array y = x as
a function of x, thus resulting in a straight line. No
format string is given, consequently the default blue
continuous line is used for the plot. The three follow-
ing arguments, x, np.sqrt(x) and the format string
’ro’, plot y =

√
x as a function of x, using red cir-

cles. Finally, the last three arguments x, x**2 and the
string ’gˆ’, plot y = x2 vs x using green triangles.
The three plots are superposed in Fig. 3.3.

3.3 Plotting Functions
We can plot all the functions supplied by, for instance, the numpy and scipy packages, as well as any
user-defined function, by first sampling x and y coordinates into two numpy arrays, and then passing
the arrays to plot(). As a first example we plot a sine curve using Listing 3.4
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Listing 3.4 PlotSin.py
1 # ! / u s r / b i n / env py thon3
2 import numpy as np
3 import m a t p l o t l i b . p y p l o t a s p l t
4 #
5 x = np . a r a n g e ( 0 , 6 . 4 , 0 . 1 ) ;
6 y = np . s i n ( x )
7 p l t . p l o t ( x , y )
8 p l t . show ( )
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Line 2 imports numpy. Line 5 creates the x ar-
ray, comprising the 64 numbers 0, 0.1, 0.2, . . . , 6.3.
Line 6 creates the y array, comprising the 64 val-
ues yi = sin(xi). Line 7 creates the plot of y vs x,
and line 8 displays the plot on the computer moni-
tor, as shown in Fig. 3.4. The plot can be refined by
calling further pyplot functions. A slightly modified
version of Listing 3.4 follows

Listing 3.5 PlotSinFig2.py
1 # ! / u s r / b i n / env py thon3
2 import numpy as np
3 import m a t p l o t l i b . p y p l o t a s p l t
4 #
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5 x = np . a r a n g e ( 0 , 6 . 4 , 0 . 1 ) ;
6 y = np . s i n ( x )
7 p l t . p l o t ( x , y )
8 p l t . g r i d ( True )
9 p l t . x t i c k s ( f o n t s i z e =14)

10 p l t . y t i c k s ( f o n t s i z e =14)
11 p l t . y l a b e l ( r ’ $\ s i n ( x ) $ ’ , f o n t s i z e =24)
12 p l t . x l a b e l ( r ’ $x / { \ rm r a d } $ ’ , f o n t s i z e =24)
13 p l t . t i g h t l a y o u t ( )
14 p l t . s a v e f i g ( ’ S i n e G r i d . eps ’ , format= ’ eps ’ ,\
15 d p i =1000)
16 p l t . show ( )

Line 8 adds a grid to the plot, Lines 9 and 10 change
the default font sizes of the x and y scales of the
grid, respectively. Lines 11 and 12 write labels for
the y and x axes of the plot, respectively. The labels
must be enclosed in single or double quotes (’ or ”). Labels can be in plain text, but LATEX text,
enclosed between $ signs, can also be used. In this case the text string must be preceded by an r. The
leading r is important: it signifies that the string is a raw string, where, for instance, backslashes must
not be interpreted as python escapes. Again, the font size of a label can be specified. It is advisable
to experiment a little bit with different font sizes at lines 9-13 in order to obtain an aesthetically
satisfactory result. Line 13 adjusts the layout of the figure in order to include the grid ticks and labels:
as an experiment, see what happens if you move line 13 immediately after line 8, or 9. Line 14-15
creates an Encapsulated PostScript figure named ’SineGrid.eps’. The supported formats for the output
figure are .png, .pdf, .ps, .eps and .svg. The result is shown in Fig. 3.5.
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3.4 Multiple Figures
A single Python script can generate a figure comprising more than one separate plots (subplots). An
example is shown in Listing 3.6

Listing 3.6 SubPlots.py
1 # ! / u s r / b i n / env py thon3
2 import m a t p l o t l i b . p y p l o t a s p l t
3 import numpy as np
4
5 def fun1 ( t , omega , t au , ampl ) :
6 y=ampl *np . cos ( omega* t )* np . exp (− t / t a u )
7 re turn y
8 def fun2 ( t , omega , omega2 , ampl ) :
9 y=ampl *np . s i n ( omega2* t )* np . s i n ( omega* t )

10 re turn y
11 #

Lines 5-7 and 8-10 define the two functions fun1(t,omega,tau,ampl) and fun2(t,omega,
omega2,ampl), in mathematical form they are

f1(t, ω, τ, A) = A cos(ωt) e−t/τ and f2(t, ω, ω2, B) = B sin(ω2t) sin(ωt) , (3.1)

respectively. These two functions will be plotted in the following.
12 omega =32.0
13 omega2=np . p i / 2 . 0
14 t a u =1.0
15 ampl =5.0
16 ampl2 =10.0

Lines 12-16 assign numerical values to parameters of the two functions f1 and f2 of (3.1), namely
ω = 32, ω2 = π/2, τ = 1.0, A = 5.0 and B = 10.0.
17 t =np . a r a n g e ( 0 . 0 , 2 . 0 , 0 . 0 1 )
18 s1=fun1 ( t , omega , t au , ampl )
19 s2=fun2 ( t , omega , omega2 , ampl2 )
20 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 p l t . f i g u r e ( f i g s i z e = ( 1 0 , 4 ) )

Line 17 creates the array t, comprising the 200 numbers [0.00, 0.001, 0.002, . . . , 0.199] that will be
used as abscissae for the plots. Lines 18 and 19 create the two arrays s1 and s2, used as ordinates
in the plots. Line 21 creates a figure 10 inches wide and 4 inches high. The absolute values (or units)
are actually not relevant, since the figure will be scaled both on the computer monitor or in printing,
but the width/height ratio is relevant.
22 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b p l o t 1
23 p l t . s u b p l o t ( 1 , 2 , 1 )
24 p l t . p l o t ( t , s1 )
25 p l t . p l o t ( t , ampl *np . exp (− t / t a u ) )
26 p l t . g r i d ( True )
27 p l t . x t i c k s ( f o n t s i z e =14)
28 p l t . y t i c k s ( f o n t s i z e =14)
29 p l t . y l a b e l ( r ’$A\ , \ cos ( \ omega t ) \ , { \ rm e } ˆ { − t / \ t a u } $ ’ , f o n t s i z e =24)
30 p l t . x l a b e l ( r ’ $ t $ ’ , f o n t s i z e =24)
31 p l t . t i g h t l a y o u t ( )
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Line 23 creates the first subplot. The arguments 1,2,1 of the function subplot() assign 1 row and
2 columns to the complete figure, thus the two subplots will be located side by side on the same row.
The last argument, 1, tells that what follows will be drawn in the first (left) subplot. Line 24 plots the
array s1 vs the array t, i.e., f1 vs t. Line 25 adds the plot of the exponential A e−t/τ vs t. The rest is
analogous to lines 8-13 of Listing 3.5. The two superposed plots are shown in the left part of Fig. 3.6

32 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b p l o t 2
33 p l t . s u b p l o t ( 1 , 2 , 2 )
34 p l t . p l o t ( t , s2 )
35 p l t . p l o t ( t , ampl2 *np . s i n ( omega2* t ) )
36 p l t . g r i d ( True )
37 p l t . x t i c k s ( f o n t s i z e =14)
38 p l t . y t i c k s ( f o n t s i z e =14)
39 p l t . y l a b e l ( r ’$B \ , \ s i n ( \ omega t ) \ , \ s i n ( \ omega 2 t ) $ ’ , f o n t s i z e =24)
40 p l t . x l a b e l ( r ’ $ t $ ’ , f o n t s i z e =24)
41 p l t . t i g h t l a y o u t ( )
42 #

Line 33 creates the second subplot, located on the second column of the first (and only) row of the
figure, i.e., at the right. Line 34 plots the array s2 vs the array t, i.e., f2 vs t. Line 35 adds the plot
of the low-frequency sine B sin(ω2t) vs t. Lines 36-41 add grid and axis labels, and adjust the font
sizes. The plot is shown in the right part of Fig. 3.6.

43 p l t . s a v e f i g ( ’ M u l t i P l o t 0 . eps ’ , format= ’ eps ’ , d p i =1000)
44 p l t . show ( )

A figure in Encapsulated PostScript is created, and the two plots are shown on the computer monitor.
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3.5 Logarithmic Axis Scales

Pyplot supports not only linear axis scales, but also logarithmic and logit scales. This can be useful
when data span many orders of magnitude. Listing 3.7 gives an example.
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Listing 3.7 LogPlot.py
1 # ! / u s r / b i n / env py thon3
2 import m a t p l o t l i b . p y p l o t a s p l t
3 import numpy as np
4 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f u n c t i o n s
5 x=np . a r a n g e ( 1 . 0 , 2 0 . 5 , 1 . 0 )
6 y1=x **2
7 y2=np . s q r t ( x )

Line 5 creates the array x= [1.0, 2.0, . . . , 20.0]. Lines 6 and 7 create the arrays y1 and y2, with
y(1)

i = x2
i and y(2)

i =
√

xi.

8 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 p l t . f i g u r e ( f i g s i z e = ( 1 0 , 8 ) )

Analogous to Line 21 of Listing 3.6. Again, only the width/height ratio of the whole figure is relevant
to us.
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10 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b p l o t 1
11 p l t . s u b p l o t ( 2 , 2 , 1 )
12 p l t . p l o t ( x , y1 , ’ ro ’ )
13 p l t . p l o t ( x , y2 , ’ bo ’ )
14 p l t . g r i d ( True )
15 p l t . x t i c k s ( f o n t s i z e =14)
16 p l t . y t i c k s ( f o n t s i z e =14)
17 p l t . x l a b e l ( ’ l i n e a r ’ , f o n t s i z e =16)
18 p l t . y l a b e l ( ’ l i n e a r ’ , f o n t s i z e =16)
19 p l t . t i g h t l a y o u t ( )
20 p l t . y l im ( −10 ,420)
21 p l t . x l im ( 0 , 2 1 )

This is the first of four sublopts, located in the first position, (1, 1) or upper left, of our 2×2 plot array
shown in Fig. 3.7. All four plots display the same data, i.e., y1 vs x superposed to y2 vs x. The y1
data are represented by red circles, the y2 data by blue circles in all plots. In this first plot both the x
and the y scales are linear, and the plot of the square root data results very flat. Lines 20 and 21 set
the limits of the x and y values, slightly extending their default values. This is done in order to keep
the circles representing the extreme data points within the plot frame. As an experiment, see what
happens if you comment out these lines.

22 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b p l o t 2
23 p l t . s u b p l o t ( 2 , 2 , 2 )
24 p l t . p l o t ( x , y1 , ’ ro ’ )
25 p l t . p l o t ( x , y2 , ’ bo ’ )
26 p l t . g r i d ( True )
27 p l t . y s c a l e ( ’ l o g ’ )
28 p l t . x t i c k s ( f o n t s i z e =14)
29 p l t . y t i c k s ( f o n t s i z e =14)
30 p l t . x l a b e l ( ’ l i n e a r ’ , f o n t s i z e =16)
31 p l t . y l a b e l ( r ’ $\ l og$ ’ , f o n t s i z e =20)
32 p l t . t i g h t l a y o u t ( )
33 p l t . y l im ( 0 . 8 , 5 0 0 )
34 p l t . x l im ( −0 . 8 , 2 1 )

This is the second (upper right) subplot. Line 27 makes the y scale logarithmic, with this choice the
plot of the square roots is no longer flat. Remember that, when you use a logarithmic scale, negative
and zero coordinate values must be avoided.

35 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b p l o t 3
36 p l t . s u b p l o t ( 2 , 2 , 3 )
37 p l t . p l o t ( x , y1 , ’ ro ’ )
38 p l t . p l o t ( x , y2 , ’ bo ’ )
39 p l t . g r i d ( True )
40 p l t . x s c a l e ( ’ l o g ’ )
41 p l t . x t i c k s ( f o n t s i z e =14)
42 p l t . y t i c k s ( f o n t s i z e =14)
43 p l t . x l a b e l ( r ’ $\ l og$ ’ , f o n t s i z e =20)
44 p l t . y l a b e l ( ’ l i n e a r ’ , f o n t s i z e =16)
45 p l t . t i g h t l a y o u t ( )
46 p l t . y l im ( −1 0 . 8 , 4 2 0 )
47 p l t . x l im ( 0 . 8 , 2 2 )

This is the third (lower left) subplot. Line 40 makes the x scale logarithmic, while the y scale is linear.
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48 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b p l o t 4
49 p l t . s u b p l o t ( 2 , 2 , 4 )
50 p l t . p l o t ( x , y1 , ’ ro ’ )
51 p l t . p l o t ( x , y2 , ’ bo ’ )
52 p l t . g r i d ( True )
53 p l t . x s c a l e ( ’ l o g ’ )
54 p l t . y s c a l e ( ’ l o g ’ )
55 p l t . x t i c k s ( f o n t s i z e =14)
56 p l t . y t i c k s ( f o n t s i z e =14)
57 p l t . x l a b e l ( r ’ $\ l og$ ’ , f o n t s i z e =20)
58 p l t . y l a b e l ( r ’ $\ l og$ ’ , f o n t s i z e =20)
59 p l t . t i g h t l a y o u t ( )
60 p l t . y l im ( 0 . 8 , 5 0 0 )
61 p l t . x l im ( 0 . 8 , 2 5 )

This is the fourth (lower right) subplot. Lines 53 and 54 make the scales of both axes logarithmic.
The circles representing both data sets lie on straight lines, because we have

log y(1) = log x2 = 2 log x and log y(2) = log
√

x =
1
2

log x . (3.2)

62 #
63 p l t . s a v e f i g ( ’ LogPlo t0 . eps ’ , format= ’ eps ’ , d p i =1000)
64 p l t . show ( )

3.6 Plotting Field Lines
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In this section we consider how to plot field lines, specifically
how to plot the field lines of an electric dipole. Our dipole con-
sists of two charges, +q and −q, located at (0,+h) and (0,−h)
in a Cartesian reference frame, respectively, as shown in Fig
3.8. Extensions to the field lines generated by more complicated
charge configurations should be straightforward. The idea is us-
ing a method analogous to the Euler method for solving ordi-
nary differential equations, discussed later on in Section 5.2. In
other words, we approximate each field line by a polyline com-
prising very short line segments of equal length. Each polyline
starts from an initial point P0 ≡ (x0, y0), close to, but obviously

not coinciding with, one of the two charges ±q generating the field. Once chosen the start point P0 of
a field line, we evaluate the electric field E0 in it. What is relevant for our method is not the intensity
of the field, but only its direction, which forms an angle γ0 = arctan(E0y/E0x) (negative in the case of
Fig. 3.8) with the x direction. Once determined the angle γ0, we choose a small length δ`, which will
be the common length of all the single line segments forming the polyline approximating the field
line. In general, some experimenting on the most convenient value for δ` can be needed. The second
vertex of our polyline is the point P1 ≡ (x1, y1) = (x0 + δ` cos γ0, y0 + δ` sin γ0). The next step is the
evaluation of the electric field E1 in P1 and its angle γ1 with the x direction, which determines the
point P2. The procedure is iterated for finding the successive vertices Pm of the polyline. We shall
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stop when the polyline gets to close to the other point charge, or when it exits our intended plotting
region. A possible procedure is shown in Listing 3.8.

Listing 3.8 PlotDipoleField.py
1 # ! / u s r / b i n / env py thon3
2 import m a t p l o t l i b . p y p l o t a s p l t
3 import numpy as np
4 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . charge l o c a t i o n s
5 y p l u s =1.0
6 yminus =−1.0
7 x p l u s=xminus =0.0
8 r a d =0.1
9 l im =30

10 nLin =60
11 p l t . a x i s ( ’ o f f ’ )

Quantities xplus (yminus) and yplus (yminus) are the x and y coordinates of the positive
(negative) charge of the dipole, in arbitrary units. Quantity rad is the radius of a circle around
the positive charge +q, from where our field lines will start, see Fig. 3.9. We stop the evaluation
of a field line when the x, or y coordinate of the current vertex is greater than lim, or smaller than
-lim. Both rad and lim are expressed in the same arbitrary units as xplus, xminus, yplus
and yminus. Quantity nLin is the number n of field lines starting from the positive charge. Line 11
removes the axes from the figure. You can comment this line out, and see what happens.

12 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f i e l d l i n e s
13 i =0
14 d e l t a =0.05

Variable i is a counter for the field lines, while delta is the length δ` of the line segments.

15 whi le i <nLin :
16 x l i s t = [ ]
17 y l i s t = [ ]
18 a l p h a 0= i *2* np . p i / f l o a t ( nLin )
19 x=x p l u s+ r a d *np . cos ( a l p h a 0 )
20 y=y p l u s+ r a d *np . s i n ( a l p h a 0 )
21 x l i s t . append ( x )
22 y l i s t . append ( y )
23 whi le True :
24 a l p h a=np . a r c t a n 2 ( ( y−y p l u s ) , ( x−x p l u s ) )
25 b e t a=np . a r c t a n 2 ( ( y−yminus ) , ( x−xminus ) )
26 Ep lus = 1 . 0 / ( ( x−x p l u s )**2+ ( y−y p l u s ) * * 2 )
27 Eminus = −1 . 0 / ( ( x−xminus )**2+ ( y−yminus ) * * 2 )
28 Ex=Eplus *np . cos ( a l p h a )+ Eminus *np . cos ( b e t a )
29 Ey=Eplus *np . s i n ( a l p h a )+ Eminus *np . s i n ( b e t a )
30 gamma=np . a r c t a n 2 ( Ey , Ex )
31 x=x+ d e l t a *np . cos ( gamma )
32 y=y+ d e l t a *np . s i n ( gamma )
33 i f x> l im or x<− l im or y> l im or y<0:
34 break
35 x l i s t . append ( x )
36 y l i s t . append ( y )
37 p l t . p l o t ( x l i s t , y l i s t , ’ k− ’ , l i n e w i d t h =0 . 5 )
38 y l i s t =−np . a r r a y ( y l i s t )
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39 p l t . p l o t ( x l i s t , y l i s t , ’ k− ’ , l i n e w i d t h =0 . 5 )
40 i +=1
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Figure 3.9

Loop 15-40 draws a single field line at each iteration. Lines
16 and 17 create the (initially empty) lists of the x and y co-
ordinates of the vertices of the approximating polyline. Angle
alpha0, α0 = 2πi/n (n being the number of plotted field lines),
defined at Line 18 and shown in Fig. 3.9, determines the posi-
tion of the start point P0 of the current field line. All field lines
start from points equally spaced on a small circumference of ra-
dius rad (r in the figure) centered around the positive charge
+q. The x and y coordinates of P0 are evaluated at lines 19 and
20, respectively, and inserted into xlist and ylist at lines
21 and 22. The loop 23-36 evaluates the successive vertices of
the field line, Pm, as shown in Fig. 3.10. Variables alpha and
beta at Lines 24 and 25 are the angles αm and βm of Fig. 3.10.
Lines 26-29 evaluate the x and y components of the electric field
Em at Pm, and Line 30 the angle γm that Em forms with the x
axis. Lines 31 and 32 evaluate the coordinates of the successive

point of the “field polyline”, Pm+1. Lines 33 and 34 break the loop if either the x or the y coordinate is
out of range. Only positive y coordinates are accepted, since we can exploit the mirror symmetry of
the figure about the x axis. Line 37 plots the field line in the upper half-plane y > 0. Line 38 changes
the signs of ylist, and line 39 draws the symmetric field line in the lower half-plane.
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Figure 3.10 Figure 3.11

41 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 p l t . s a v e f i g ( ’ D i p o l e F i e l d . pdf ’ , format= ’ pdf ’ )
43 p l t . show ( )

Line 42 saves the plot into a pdf file named DipoleField.pdf, shown in Fig. 3.11.
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3.7 Pyplot Animation
The matplotlib library provides the possibility to produce animations on the computer monitor. The
easiest way is to use one of the following two animation classes

FuncAnimation: makes an animation by repeatedly calling a provided function func().

ArtistAnimation: this animation uses a fixed set of Artist objects.

In the present context we shall consider the class FuncAnimation only, which is of more interest for a
physicist. As a simple example, we shall write a script displaying a horizontally translating (panning)
plot of an exponentially damped sine curve.

Listing 3.9 SineDecay.py
1 # ! / u s r / b i n / env py thon3
2 #
3 import numpy as np
4 import m a t p l o t l i b . p y p l o t a s p l t
5 import m a t p l o t l i b . a n i m a t i o n as a n i m a t i o n
6 #
7 f i g , ax= p l t . s u b p l o t s ( f i g s i z e = ( 1 0 , 6 ) )
8 ax . s e t ( y l im = ( −1 ,1 ) )
9 #

Line 7 creates a figure of sizes 10 × 6 inches with a single subplot ax. Line 8 sets the limits of the
y axis of the subplot. This is needed to prevent pyplot from rescaling the vertical axis of the plot
when the amplitude of the plotted function diminishes.

10 def f unc ( x ) :
11 re turn np . s i n (8* x )* np . exp ( −0.1* x )
12 #
13 x=np . a r a n g e ( 0 , 1 0 , 0 . 0 1 )
14 l i n e ,= ax . p l o t ( x , func ( x ) )
15 #

Lines 10-11 define the function f (x) = sin(8x) e−0.1x, that we are going to plot. Line 13 stores the
initial 100 x values at which the function is to be evaluated, namely [0, 0.01, 0.02, . . . , 9.99], into the
list x. Line 14 creates the object line, belonging to class matplotlib.lines.Line2D, in the subplot ax.
Object line has the list x as xdata, and the list func(x) as ydata.

16 def a n i m a t e ( i ) :
17 xx=x+ i /10 0
18 l i n e . s e t x d a t a ( xx )
19 l i n e . s e t y d a t a ( func ( xx ) )
20 ax . s e t ( x l im =( xx [ 0 ] , xx [ 9 9 9 ] ) )
21 re turn l i n e ,
22 #

Lines 16-21 define the function animate(), which updates the plot at each animation “frame”. The
function has the single argument i, which will be increased by 1 at each animation step. Line 17
creates the list xx, whose elements are obtained from the corresponding elements of the original list
x by adding i/100. Lines 18 and 19 update the x and y values of the object line, respectively. Line
20 updates the limits of the x axis of the plot. Line 21 returns the object line.
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23 a n i=a n i m a t i o n . FuncAnimat ion ( f i g , an imate , i n t e r v a l =20)
24 p l t . show ( )

Figure 3.12

At line 23, the function FuncAnima-
tion() creates the plot animation by re-
peatedly calling the function animate().
The mandatory arguments of FuncAnima-
tion() are two: the figure where to draw,
fig in our case, and the updating func-
tion, here animate. Function FuncAni-
mation() has many optional further argu-
ments, here we use only one, namely in-
terval, the delay time between consecutive
frames in milliseconds, the default value is
200 ms. Here we have chosen a delay of 20
ms. The result is shown in Fig. 3.12. When
you actually observe the computer monitor

rather than a figure on paper you see the damped sine wave moving toward the left. It is also possible
to record the animation into an .mp4 video by inserting the line
ani.save(’test.mp4’, fps=30)
between lines 23 and 24. The first argument of ani.save() is the name of the mp4 file, the second
argument is the number of frames per second.



Chapter 4

Numerical Solution of Equations

4.1 Introduction
Solving equations, and systems of equations, of all kinds, both algebraic and transcendental, is a very
frequent task in a physicist’s life. Very often equations, particularly algebraic nonlinear equations and
transcendental equations, have no analytical solutions. In this case we look for approximate numerical
solutions. Some equations do not even admit solutions at all, but, of course, we shall not deal this case
here! However, when tackling equations we must consider the unlucky possibility that its solution
simply does not exist. In this chapter we shall consider the numerical solution of equations and
systems of equations not involving the derivatives of the unknowns. Ordinary differential equations
are left to Chapter 5.

4.2 Systems of Linear Equations
In this section we consider the simplest case: the solution of a system of linear equations. A linear
equation is an algebraic equation in which each term is either a constant or the product of a constant
and the first power of a single variable. A system of linear equations is a collection of two or more
linear equations involving the same set of unknowns. The word system indicates that the equations are
to be considered collectively, rather than individually. As an example, consider the following system
of three equations in the three unknowns x1, x2, and x3

3x1 −2x2 −x3 = 2
2x1 −2x2 +4x3 = 0
−x1 +0.5x2 −1.5x3 = −1

(4.1)

which can be written, in matrix form,

Ax = b , where A =

 3 −2 −1
2 −2 4
−1 0.5 −1.5

 , x =

 x1

x2

x3

 , and b =

 2
0
−1

 . (4.2)

If we want to solve the system “by hand”, we can use one of several methods, for instance elimination
of variables, row reduction, Cramer’s rule, . . .

57
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Python provides the function numpy.linalg.solve(), which computes the “exact” solu-
tion, x, of the linear matrix equation Ax = b, provided that the determinant of A is different from
zero. Listing 4.1 shows how it works

Listing 4.1 LinearSyst.py
1 # ! / u s r / b i n / env py thon3
2 import numpy as np
3 #
4 A=np . a r r a y ( [ [ 3 . 0 , − 2 . 0 , − 1 . 0 ] , [ 2 . 0 , − 2 . 0 , 4 . 0 ] , [ − 1 . 0 , 0 . 5 , − 1 . 5 ] ] )
5 b=np . a r r a y ( [ 2 . 0 , 0 . 0 , − 1 . 0 ] )
6 x=np . l i n a l g . s o l v e (A, b )
7 p r i n t ( ’ x = ’ , x )
8 bb=np . d o t (A, x )
9 p r i n t ( ’ bb = ’ , bb )

Line 4 creates matrix A as an array of arrays: the single subarrays of the argument of the function
array() are the lines of the matrix A of (4.2). Line 5 stores the vector of the constant terms into
the array b. Finally, Line 6 solves the equations system by calling solve() and stores the solution
into the array x. Line 7 prints the solution. Line 8 multiplies the matrix A by the vector x using the
function dot() and stores the resulting vector into the array bb. Line 9 prints the array bb, which,
if the solution is correct, must equal the array b. This is what you see when you run the script

$>LinearSyst.py
x = [ 2.00000000e+00 2.00000000e+00 5.55111512e-17]
bb = [ 2.00000000e+00 2.22044605e-16 -1.00000000e+00]
Thus x1 = 2, x2 = 2, x3 = 0 is the solution of the system (4.1). Unavoidable rounding errors in
numerical methods lead to 5.5 × 10−17 instead of 0 in the solution, and to 2.2 × 10−16 in the check.

4.3 Systems of Nonlinear Equations

We are used to see most equations having both a right-hand side and a left-hand side, but here it is
convenient to move all nonzero terms to the left of the equal sign, leaving only a zero at the right side
and obtaining an equation of the form

f (x) = 0 , (4.3)

whose solution, or set of solutions, we are searching. For nonlinear problems a root finding algorithm
proceeds by iteration, starting from some approximate trial solution and improving it until some
convergence criterion is satisfied. Success strongly depends on having a good first guess for the
solution, and this guess usually relies on a detailed analysis of the problem. Whenever possible one
should “bracket” the solution, i.e., determine an interval containing the solution. A serious problem
can be posed by the existence of multiple solutions, especially if they are close to one another, and/or
if they are in even number. If f (x) is a continuous function, a and b are two values such that a < b
and f (a) and f (b) have opposite signs, then (4.3) has at least a solution x1 such that a < x1 < b. But,
of course, there might also be any odd number of solutions in the same interval.

For a more thorough discussion of the problem see Chapter 9 of Reference [1].
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4.4 Common Methods
The most common methods for the numerical solution of (4.3) are the bisection method, the secant
Method, the Newton-Raphson Metod and the Brent Method. Here we shall only discuss

1. the bisection method, which relies on the knowledge of the interval where the solution is lo-
cated, and is very straightforward.

2. The secant method, which also requires that two points are provided, but does not require that
the solution is between the two points. Providing such two pints can be interpreted as providing
a start point and an initial search step.

A large number of further methods are coded into functions contained in various Python packages,
but we cannot discuss all of them here.

4.4.1 Bisection Method
If we have an interval (a, b) such that a < b and f (a) f (b) < 0, the bisection method cannot fail,
obviously provided that f (x) is continuous in the (a, b) interval! This is how it works:

1. evaluate the function f (c) at the midpoint c = (a + b)/2;

2. if f (c) = 0 the problem is solved, but the probability for this to happen is obviously zero;

3. if f (c) has the same sign as f (a) replace a by c as endpoint of the interval, otherwise replace b
by c. The new interval still brackets the solution, but its length is one half of the length of the
original interval.

4. Go back to point 1.

At each iteration the interval containing the solution is halved, and we stop when |a − b| < ε, with ε
the required accuracy for the solution.

A simple example of an equation which cannot be solved analytically is the following

5 + 4x = ex , which we can rewrite as 5 + 4x − ex = 0 . (4.4)

We can use the code of Listing 4.2 in order to check if (4.4) has a solution in the range 0 < x < 10

Listing 4.2 bisection01.py
1 # ! / u s r / b i n / env py thon3
2 from numpy import exp
3 #
4 def fun ( x ) :
5 re turn 5 . 0+4 . 0 * x−exp ( x )
6 #

Lines 4-5 define the function f (x) = 5 + 4x − ex, whose roots we are searching.
6 #
7 a =0.0
8 b =10.0
9 eps =1.0 e−15

10 #
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Variables a and b are the endpoints of the investigated interval, and eps is the required accuracy on
the solution.
11 f a=fun ( a )
12 fb=fun ( b )
13 #
14 i f f a * fb >0:
15 p r i n t ( ” wrong i n t e r v a l ! ! ! ” , fa , fb )
16 e x i t ( )
17 #

Variables fa and fb are the function values at the endpoints of the interval. If the product fa*fb is
greater than zero, fa and fb have the same sign, implying that the function crosses the x axis an even
number of times (including zero!) in the interval, and the interval is rejected at lines 14-16. Function
exit() is a standard Python function that causes the script to exit (terminate).
18 i t e r =1
19 whi le ( b−a )> eps :
20 c =( a+b ) / 2 . 0
21 f c=fun ( c )
22 i f f c ==0:
23 p r i n t ( ” x = ” , c )
24 e x i t ( )
25 i f f c * fa >0:
26 a=c
27 f a= f c
28 e l s e :
29 b=c
30 fb= f c
31 i t e r +=1
32 #

Lines 19-31 are the bisection loop. The midpoint c of the interval is evaluated at line 20, and the
function value fc is evaluated at line 21. At lines 25-30 one of the endpoints of the interval is replaced
by the midpoint, so that the interval is halved. At each iteration the counter iter is incremented at
line 31. The loop stops when the interval width is smaller than eps.
32 #
33 p r i n t ( ” x = ” , c )
34 p r i n t ( ” a c c u r a c y = ” , ’ { : . 2 e } ’ . format ( b−a ) )
35 p r i n t ( ” f ( ” , c , ” ) =” , fun ( c ) )
36 p r i n t ( i t e r , ” i t e r a t i o n s needed ” )

Line 33 prints the solution, line 34 the accuracy on the solution, line 35 the function value at the
solution, and line 36 the number of iterations.

This is what you observe on the terminal when you run the program

$>bisection01.py
x = 2.7800807820516997
accuracy = 4.44e-16
f( 2.7800807820516997 ) = -3.5527136788e-15
55 iterations needed

thus, x = 2.7800807820517000(4) is a solution of (4.4). If you widen the search interval at its left, by
changing its endpoints at lines 7 and 8 to a=-10.0 and b=10.0 you get
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$>bisection01.py
wrong interval!!! -35.0000453999 -21981.4657948

showing that both f (a) and f (b) are negative. Thus there is an even number of roots in the interval.
Since we have already found one root in the right half of the interval (−10, 10), the number of roots
cannot be zero, and the interval must contain at least one further root. If we now change the interval
endpoints at lines 7 and 8 to the values a=-10.0 and b=0.0 we get

$>bisection01.py
x = -1.172610558265084
accuracy = 6.66e-16
f( -1.172610558265084 )
= 1.49880108324e-15
55 iterations needed
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thus, also x = −1.172610558265084(6) is a
solution of (4.4). As we have seen, the fact
that the (continuous) function has opposite
signs at the interval endpoints implies that
there is at least one root in the interval, but,
in principle, there might be any odd number
of roots. Conversely, if f (a) and f (b) have
the same sign, this does not necessarily mean
that the interval contains no root, there might
be an even number of roots. Whenever possi-
ble, plotting a function can be of great help in
localizing the intervals where its roots are lo-
cated. Then, the bisection method determines
the roots with the required accuracy. Fig. 4.1
shows a plot of our f (x).

4.4.2 The Secant Method
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Figure 4.2

Also the secant method requires two start
points, let us denote them by x0 and x1, pos-
sibly both close to the solution x∗. However,
this method does not require that the solution
lies in the (x0, x1) interval. Suppose that we
want to find the root of the function f (x) plot-
ted in Fig. 4.2. We start from the two values
x0 and x1 shown in the figure, and evaluate
the values y0 = f (x0) and y1 = f (x1). Then
we draw the straight line passing through the
points (x0, y0) and (x1, y1), which will cross
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the x axis at the point

x2 = x1 − y1
x1 − x0

y1 − y0
, (4.5)

which is closer to the solution x∗ than both x0 and x1, and evaluate y2 = f (x2). Then we proceed by
iteration with

xi+1 = xi − yi
xi − xi−1

yi − yi−1
. (4.6)

The Newton-Raphson method is analogous to the secant method, but it requires the first derivative of
the function f (x). If we do not have good starting points, the secant method and the Newton-Raphson
method can fail, while the bisection method always succeeds if the function has opposite signs at the
ends of the initial interval

4.5 Root Finding with the scipy.optimize Package
If one has a single-unknown equation, the subpackage scipy.optimize provides four root finding func-
tions, based on different algorithms. Each of these algorithms requires the endpoints of an interval
in which a root is expected. In general the function brentq() is the best choice, but the other
three functions may be useful in certain circumstances, or for academic purposes. Listing 4.3 shows
a program using scipy.optimize.bisect() for finding the positive root of Equation (4.4)

Listing 4.3 optbisect.py
1 # ! / u s r / b i n / env py thon3
2 from numpy import exp
3 from s c i p y . o p t i m i z e import b i s e c t
4 #
5 def fun ( x ) :
6 re turn 5 . 0+4 . 0 * x−exp ( x )
7 #
8 a =0.0
9 b =10.0

10 eps =1.0 e−15
11 #
12 f a=fun ( a )
13 fb=fun ( b )
14 #
15 i f f a * fb >0:
16 p r i n t ( ” wrong i n t e r v a l ! ! ! ” , fa , fb )
17 e x i t ( )
18 #
19 x= b i s e c t ( fun , a , b , x t o l =eps )
20 p r i n t ( x )

The three mandatory arguments of bisect() are the pointer to the function and the endpoints of
the interval containing the root, an optional argument is the required tolerance on the solution. This
is what we get on the terminal

$>optbisect.py
2.780080782051697

Listing 4.4 uses scipy.optimize.brentq() leading, obviously, to the same result.
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Listing 4.4 optbrent.py
1 # ! / u s r / b i n / env py thon3
2 from numpy import exp
3 from s c i p y . o p t i m i z e import b r e n t q
4 #
5 def fun ( x ) :
6 re turn 5 . 0+4 . 0 * x−exp ( x )
7 #
8 a =0.0
9 b =10.0

10 eps =1.0 e−15
11 #
12 f a=fun ( a )
13 fb=fun ( b )
14 #
15 i f f a * fb >0:
16 p r i n t ( ” wrong i n t e r v a l ! ! ! ” , fa , fb )
17 e x i t ( )
18 #
19 x=b r e n t q ( fun , a , b , x t o l =eps )
20 p r i n t ( x )

The scipy.optimize subpackage provides also root finding algorithms that do not require the end
points of an interval containing the solution, but only a good starting point. An example is the function
fsolve(), used in the following listing.

Listing 4.5 fsolve demo.py
1 # ! / u s r / b i n / env py thon3
2 from numpy import exp
3 from s c i p y . o p t i m i z e import f s o l v e
4 #
5 def fun ( x ) :
6 re turn 5 . 0+4 . 0 * x−exp ( x )
7 #
8 x s t a r t =1.0
9 #

10 x= f s o l v e ( fun , x s t a r t )
11 p r i n t ( x )

Here we are finding a root of the same function of Listings 4.3 and 4.4, using x = 3.0 as starting
value, obtaining the same result. The other root, x = −1.17261056, can be obtained by using a
different starting point, for instance x = 1.8.

4.6 Systems of Nonlinear Equations

4.6.1 Equations Involving only Unknowns

When we have a system of nonlinear equations, it is usually difficult to provide a-priori intervals that
contain the solutions for each unknown. Thus it is advisable to use a function like fsolve(), which
we met in Listing 4.5 of Section 4.5, and whose first argument can actually be a vector of functions
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rather than a single function. For instance, suppose that we want to solve the system{
f1(x1, x2) = 0
f2(x1, x2) = 0 where

{
f1(x1, x2) = 4 x1 + 2 x2

2 − 4
f2(x1, x2) = ex1 + 3 x1x2 − 5 x3

2 + 3 , (4.7)

As start values we assume x(0)
1 = 1 and x(0)

2 = 1. The script follows

Listing 4.6 SystemSolve2.py
1 # ! / u s r / b i n / env py thon3
2 from s c i p y . o p t i m i z e import f s o l v e
3 from numpy import exp
4 #
5 def f unc ( x v e c t ) :
6 x1 , x2=x v e c t
7 r1 =4*x1+2*x2**2−4
8 r2=exp ( x1 )+3* x1*x2−5*pow ( x2 , 3 )+3
9 re turn [ r1 , r2 ]

Lines 5-9 define the function func(), which is actually the list of the two functions f1(x1, x2) and
f2(x1, x2) of (4.7). The argument xvect is actually a list of the two x1 and x2 values at which the
functions are to be evaluated. Line 6 unpacks xvect, while lines 7 and 8 evaluate f1(x1, x2) and
f2(x1, x2), respectively, Line 9 returns the list of the two function values.
10 x s t a r t = ( 1 , 1 )
11 s o l = f s o l v e ( func , x s t a r t )
12 p r i n t ( ” S o l u t i o n : ” , s o l )
13 #
14 p r i n t ( ” Check : ” , f unc ( s o l ) )

Line 10 stores our start values x(0)
1 and x(0)

2 into xstart, line 11 calls fsolve() and stores the
evaluated solutions for x1 and x2 into the list sol. Line 12 prints the solutions for x1 and x2 and, finally
Line 14 prints the corresponding values of f1(x1, x2) and f2(x1, x2). The values of the two functions
are expected to be very close to zero. This is what we get when we call SystemSolve2.py:

$>SystemSolve2.py
Solution: [ 0.43880303 1.05943095]
Check: [6.9988459472369868e-12, -1.4656365010523587e-10]

Thus x1 = 0.43880303 and x2 = 1.05943095 are two numerical solutions of the system (4.7). As
always with numerical methods, the corresponding values of the two functions are not exactly zero,
but very small, namely f1(x1, x2) ' 7.0 × 10−12 and f2(x1, x2) ' −1.5 × 10−10.

If you give wrong start values, fsolve() may be unable to converge to a solution. In this
case you get the following warning: the iteration is not making good progress, as measured by the
improvement from the last ten iterations

4.6.2 Equations Involving Unknowns and Parameters
It is often convenient to pass parameter values to a function. For instance, our system 4.7 could be
rewritten as {

f1(x1, x2) = 0
f2(x1, x2) = 0 where

{
f1(x1, x2) = a11 x1 + a12 x2

2 − c1

f2(x1, x2) = a21ex1 + a22 x1x2 + a23 x3
2 − c2 ,

(4.8)
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so that the parameters ai j and ci can be changed in successive calls to the functions, related to different
problems. This is how to do it:

Listing 4.7 SystemSolveParam.py
1 # ! / u s r / b i n / env py thon3
2 from s c i p y . o p t i m i z e import f s o l v e
3 from numpy import exp
4 #
5 def f unc ( xvec t , params ) :
6 x1 , x2=x v e c t
7 a11 , a12 , a21 , a22 , a23 , c1 , c2=params
8 r1=a11 *x1+a12 *x2**2−c1
9 r2=a21 * exp ( x1 )+ a22 *x1*x2+a23 *pow ( x2 ,3) − c2

10 re turn [ r1 , r2 ]

The function func() now has two arguments: the list of unknowns, xvect, and the list of pa-
rameters, param. The function fsolve() will solve only for xvect, and leave the list param
unchanged. The variable and parameter lists are unpacked at Lines 6 and 7, respectively. Lines 8 and
9 evaluate the two functions.

11 a11=4
12 a12=2
13 a21=1
14 a22=3
15 a23=−5
16 c1=4
17 c2=−3
18 p a r l i s t =[ a11 , a12 , a21 , a22 , a23 , c1 , c2 ]
19 x s t a r t = ( 1 , 1 )
20 s o l = f s o l v e ( func , x s t a r t , p a r l i s t )
21 p r i n t ( s o l )

Lines 11-18 define the parameter values and store them into the list parlist. Line 20 passes also
the argument parlist to fsolve(), which now has three arguments, the third being the list of
parameters appearing in the functions.

4.7 Integration of Functions

4.7.1 Introduction

The integrals of functions, even of elementary functions, can be computed analytically only in few
special cases. In most cases the only choice is the numerical integration, also known as quadrature.
Obviously, this leaves out the evaluation of indefinite integrals. Here we shall consider methods for
the numerical evaluation of an integral of the form

I =

∫ b

a
f (x) dx (4.9)

based on adding up the values of f (x) at a sequence of x values within the integration range [a, b].
A rapid survey of some common methods follows.
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4.7.2 Rectangular and Trapezoidal Rules
A large class of quadrature rules are based on the division of the integration interval [a, b] into some
number n of smaller subintervals, and approximating f (x) by a polynomial of low degree (which is
easy to integrate) in each subinterval. For simplicity we shall assume subintervals of equal length

∆x =
b − a

n
, (4.10)

implying the following endpoints for the i-th subinterval

ai = a + i ∆x , bi = a + (i + 1) ∆x , with bi = ai+1 , and i = 0, 1, 12, . . . , n − 1 . (4.11)

The simplest method is to let the approximate function be a constant function (thus, a polynomial of
degree zero) within each subinterval, passing through the point(

xi, f (xi)
)
, with xi = a + (2i + 1)

∆x
2

= ai +
∆x
2
. (4.12)
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Figure 4.3

This is called the midpoint rule or rectangle rule.
The resulting approximation is

I =

∫ b

a
f (x) dx ' ∆x

n−1∑
i=0

f (xi) , (4.13)

which corresponds to approximate the area under
the figure curve by the shaded area of Fig. 4.3.
The next step is approximating the function by
a polynomial of degree one (a straight line) in
each subinterval. For this, it is convenient to la-

bel x0 = a, xn = b, and xi = ai = bi−1 for 1 6 i 6 n − 1, as in Fig. 4.4. The
i-th subinterval has xi and xi+1 as upper and lower limits, respectively, and the corresponding

x

f

f0

fi

fn

f1 f2

x0 = a x1 x2 xn = bxi

Figure 4.4

approximating straight line passes through the
points

(
xi, f (xi)

)
and

(
xi+1, f (xi+1)

)
, so that the area

below the function curve is approximated by a sum
of trapezoids (shaded area in Fig. 4.4). The area of
the i-th trapezoid is

f (xi) + f (xi+1)
2

∆x , (4.14)

and the approximation for the integral is

I =

∫ b

a
f (x) dx

' ∆x

 f (x0) + f (xn)
2

+

n−1∑
i=1

f (xi)

 . (4.15)

Note that n function values f0 . . . fn−1, corresponding to the subinterval midpoints of Fig. 4.3, are
involved in (4.13), while n + 1 function values f0 . . . fn, corresponding to the subinterval upper and
lower endpoints of Fig. 4.4, are involved in (4.15).
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4.7.3 The Simpson Rule

f

f0

fn
fn−1

fi
fi−1

fi+1

xn = bxi−1 xi xi+1x0 = a x

Figure 4.5

In the next (and, in this context, last) step we ap-
proximate the area of a couple of adjacent subinter-
vals by the area below a polynomial of degree two,
i.e., a parabolic arc. This is shown for the couple of
subintervals between xi−1 and xi+1 of Fig. 4.5. Thus,
the whole integration interval [a, b] must be divided
into an even number n of subintervals, and we must
have i = 2m + 1, with m = 0, . . . , (n/2)− 1. The ap-
proximating parabola must pass through the three
points (xi−1, fi−1), (xi, fi) and (xi+1, fi+1), denoted by
the black dots in Fig. 4.5. For each couple of subin-
tervals it is convenient to shift the x origin so that xi−1 = −∆x, xi = 0 and xi+1 = ∆x. In this reference
frame we write the equation for the parabola as y = αix2 + βix + γi, and we must have

αi (∆x)2 − βi ∆x + γi = fi−1 ,

γi = fi , (4.16)

αi (∆x)2 + βi ∆x + γi = fi+1 .

Solving for αi, βi and γi we obtain

αi =
fi−1 − 2 fi + fi+1

2 (∆x)2 , βi =
fi+1 − fi−1

2∆x
, γi = fi , (4.17)

and the area below the parabolic arc is

∆S i =

∫ ∆x

−∆x

(
αix2 + βix + γi

)
dx =

[
αi

x3

3
+ βi

x2

2
+ γix

]∆x

−∆x
=

(
1
3

fi−1 +
4
3

fi +
1
3

fi+1

)
∆x . (4.18)

The approximate integral is thus

I ' S =
∑

i

∆S i =
∆x
3

( f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · · + 4 fn−1 + fn) . (4.19)

4.7.4 The scipy.integrate.simps Function
The scipy.integrate subpackage provides the simps() function discussed in Appendix C.1, which
integrates the samplings of a function using the Simpson rule. As a simple example, Listing 4.8
evaluates the integral of the Gaussian function e−x2

between −5 and 5 using simps().∫ 5

−5
e−x2

dx (4.20)

Listing 4.8 CheckSimps.py
1 # ! / u s r / b i n / env py thon3
2 import numpy as np
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3 from s c i p y . i n t e g r a t e import s imps
4 #
5 x=np . l i n s p a c e ( −5 . 0 , 5 . 0 , 3 1 )
6 y=np . exp (−x **2)
7 i n t e g =s imps ( y , x , even= ’ avg ’ )
8 p r i n t ( i n t e g )
9 p r i n t ( np . s q r t ( np . p i ) )

Line 5 generates an array x comprising 31 equally spaced numbers between −5 and 5. Line 6 gener-
ates an array y such that yi = e−x2

i for i = 0, 1, 2, . . . , 30. Line 7 evaluates the variable integ which
equals the integral (4.20) as evaluated by the Simpson rule. The mandatory arguments of simps()
are the array y, containing the sampling of the function to be integrated, and the array x, containing
the abscissas of the sampling points. The optional argument even is active only if the number of
sampling points n is even, thus corresponding to an odd number n − 1 of subintervals. In this case
even can have the following three values, corresponding to different behaviors of simps():

• even=’first’ integrate the first n − 2 intervals with the Simpson rule, and the last interval
with the trapezoidal rule;

• even=’last’ integrate the first interval with the trapezoidal rule and the last n − 2 intervals
with the Simpson rule;

• even=’avg’ average the results of the above two methods;

Lines 8 and 9 print integ and
√
π for a comparison, since we know that∫ ∞

−∞
e−x2

dx =
√
π . (4.21)

This is what we obtain when we run the script
$>CheckSimps.py
1.77245385117
1.77245385091

References
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Chapter 5

Numerical Solution of Ordinary Differential
Equations (ODE)

5.1 Introduction
A differential equation is an equation that contains an unknown function (rather than an unknown
value) to be determined, and at least one of its derivatives with respect to an independent variable.
If the unknown function depends only on a single independent variable, the differential equation can
contain only ordinary derivatives, and it is called an ordinary differential equation. On the other hand,
if the unknown function depends on several independent variables, and the equation involves partial
derivatives of the unknown function instead of ordinary derivatives, the equation is called a partial
differential equation. In this chapter we are concerned with ordinary differential equations.

A problem involving ordinary differential equations (ODEs) of any order can always be reduced
to the study of a system of first-order differential equations. For example the second-order differential
equation

d2y
dx2 + f (x, y)

dy
dx

= g(x, y) (5.1)

can be rewritten as the system of two first-order differential equations

dy
dx

= z(x, y)

dz
dx

= g(x, y) − f (x, y) z(x, y) , (5.2)

where z is a new unknown function. This is the standard procedure at the basis of the methods for
the numerical solution of ODEs. Thus, the generic problem involving ordinary differential equations
can be reduced to the study of a system of N coupled first-order differential equations involving N
unknown functions yi, with i = 1, 2, . . . ,N, of the form

dyi

dx
= fi(x, y1, . . . , yN) , (5.3)

where the functions fi(x, y1, . . . , yN) are known. We know that the solutions of differential equations
are not completely specified unless appropriate boundary conditions on the yi are given.

Boundary conditions are divided into two broad categories:

69
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• Initial value problems, where all the yi are known at some starting value x0 of the independent
variable. In this case it is desired to find the yi at some final point x f , or at some discrete list of
points (for example, at tabulated intervals).

• In two-point boundary value problems, on the other hand, boundary conditions are specified at
more than one x value. Typically, some of the conditions will be specified at the starting point
x0, and the remaining conditions at the final point x f .

In the following we shall consider the initial value problem up to Section 5.4, while we shall have a
look at the (in general more difficult) two-point boundary value problems in Section 5.5.

Most routines for the numerical solution of differential equations are based on the replacement of
the differentials dyi and dx appearing in the equations by small, but finite, steps ∆yi and ∆x: they are
thus called finite-difference methods. After the replacement, the equations are multiplied by ∆x, thus
leading to algebraic first-order formulas for the change in the functions ∆yi when the independent
variable x is increased by one step ∆x. At the limit of very small stepsizes a good approximation
of the differential equation is obtained. The simplest implementation of this procedure is Euler’s
method, which is conceptually very important, but not recommended for practical use. However, all
more refined methods rely on Euler’s method as a starting point.

5.2 Euler and Runge-Kutta Methods

If we wish to solve numerically the differential equation

dy
dx

= f (x, y) , (5.4)

with the initial condition y(x0) = y0, the Euler method, which is the simplest method, provides a table
of values yn and xn, obtained by the recursive formulas

xn+1 = xn + ∆x , yn+1 = yn + f (xn, yn) ∆x + O(∆x2) , (5.5)

where usually the spacing ∆x is kept constant. The main disadvantage of this formula is that it is
unsymmetrical: it advances the solution by a step ∆x, but uses derivative information only at one end
(the beginning) of the step. The error per step is of the order of ∆x2.

An improvement to the Euler method is the second-order Rung-Kutta method [nth order means
that the error per step is of order O(∆xn+1)], defined by the sequence

∆y(1) = f (xn, yn) ∆x , (5.6)

∆y(2) = f
(
xn +

1
2

∆x, yn +
1
2

∆y(1)
)
∆x , (5.7)

yn+1 = yn + ∆y(2) + O
(
∆x3

)
, (5.8)

where the Euler method of (5.6) is used to extrapolate the midpoint of the interval (xn + ∆x/2, yn +

∆y(1)/2) where we evaluate the derivative used for the more accurate ∆y(2) value of (5.7).
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But the most often used formula is the fourth-order Runge-Kutta method, which proceeds as
follows

∆y(1) = f (xn, yn) ∆x , (5.9)

∆y(2) = f
(
xn +

1
2

∆x, yn +
1
2

∆y(1)
)
∆x , (5.10)

∆y(3) = f
(
xn +

1
2

∆x, yn +
1
2

∆y(2)
)
∆x , (5.11)

∆y(4) = f
(
xn + ∆x, yn + ∆y(2)

)
∆x , (5.12)

yn+1 = yn +
∆y(1)

6
+

∆y(2)

3
+

∆y(3)

3
+

∆y(4)

6
+ O

(
∆x5

)
, (5.13)

Thus the derivative is evaluated four times at each step: once at the initial point, twice at trial mid-
points, and once at a trial endpoint, and the final y increment is evaluated as a weighted average of the
four ∆y(i) values. Consequently, the fourth-order Runge-Kutta method is superior to the second-order
method if it can use a step at least twice as large achieving at least the same accuracy. This is very
often the case, but not always.

5.3 The scipy.integrate.odeint Function
The scipy.integrate.odeint() function integrates a system of ordinary differential equa-
tions of the type (5.3) using lsoda from the FORTRAN library odepack. It solves the initial value
problem for stiff or non-stiff systems of first order ODE’s. We shall use it in the form
y=odeint(f,y0,x,args=(params,))
where f(y,x0) evaluates the derivative of y at x0, y0 is an array containing the initial conditions
on y, x is the sequence of x points at which y should be evaluated. The initial value point should be
the first element of this sequence. Argument args is a tuple containing extra arguments to pass to
the function. Things are probably made clearer by the example of Section 5.4.

5.4 Large-Amplitude Pendulum

mg

m
ϑ

ℓ

O

Figure 5.1

The equation of motion for a simple pendulum without friction is

`2m
d2ϑ

dt2 = −`mg sinϑ , which reduces to
d2ϑ

dt2 = −g
`

sinϑ , (5.14)

where ` is the length of the pendulum, m its mass, `2m its moment of inertia with
respect to the pivot O of Fig. 5.1, and `mg sinϑ the torque of the gravity force mg
with respect to the pivot. Equation (5.14) has no anlytical solution, but in the case
of small oscillation amplitudes one can approximate sinϑ ' ϑ, obtaining the well
known equation for the classical harmonic oscillator

d2ϑ

dt2 = −g
`
ϑ , (5.15)
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as found in any introductory Physics book. Here, however, we are interested in the numerical solution
of the more general equation (5.14). The solution can be obtained by running the following script

Listing 5.1 PlotPendulum.py
1 # ! / u s r / b i n / env py thon3
2 # c od in g : u t f 8
3 import numpy as np
4 from s c i p y . i n t e g r a t e import o d e i n t
5 import m a t p l o t l i b . p y p l o t a s p l t
6 #
7 def dyd t ( y0 , t , params ) :
8 t h e t a , omega = y0
9 GdivL ,= params

10 d e r i v s = [ omega ,−GdivL*np . s i n ( t h e t a ) ]
11 re turn d e r i v s
12 #

Lines 7-11 define the function dydt() required as first argument by odeint(). The arguments
of dydt() are the array of initial conditions y0, the array of times t at which the derivatives are
required, and the array of additional parameters params needed for evaluating the derivatives. We
want to solve the second-order differential equation (5.14), which, according to (5.2), can be rewritten
as the system of two first-order differential equations

dϑ
dt

= ω

dω
dt

= −g
l

sinϑ . (5.16)

Line 8 copies the initial values for θ and ω from the array y0. Line 9 copies our only parameter,
GdivL corresponding to the ratio g/l, from the single-element array params, see Subsection 1.12.2.
Line 10 builds the list derivs, comprising the time derivative of ϑ (simply ω), and the time deriva-
tive of ω, given by the second of (5.16). The function returns derivs at Line 11.
13 t h e t a 0 =np . p i / 2 . 0
14 omega0 =0.0
15 y0 =[ t h e t a 0 , omega0 ]
16 #
17 GdivL =4.9
18 params =[ GdivL ]
19 Omega=np . s q r t ( GdivL )
20 p e r i o d =2.0* np . p i / Omega
21 #

Lines 13-14 fix the initial conditions of the pendulum motion: the pendulum starts from a horizontal
position, ϑ(0) = π/2 , with zero angular velocity, ω(0) = 0. The initial conditions are stored in the
array y0 at line 15. The only parameter needed by the function dydt() is the ratio g/`, defined at
line 17 and stored into the list params at line 18. A pendulum length ` = 2 m is assumed, with
g = 9.8 m/s2. Variable Omega at line 19 is the angular frequency for the small amplitude (harmonic)
oscillations, Ω =

√
g/`, while period at line 20 is the oscillation period of the purely harmonic

oscillator, T = 2π/Ω, i.e., T ' 2.838 s in our case.
22 t =np . l i n s p a c e ( 0 . 0 , p e r i o d , 1 0 1 )
23 ThetaHar= t h e t a 0 *np . cos ( Omega* t )
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24 #
25 s o l = o d e i n t ( dydt , y0 , t , a r g s =( params , ) )
26 t h e t a = s o l [ : , 0 ]
27 p l t . p l o t ( t , t h e t a , ’ k ’ )
28 p l t . p l o t ( t , ThetaHar , ’k−− ’ )

Array t, defined at line 22, comprises the times, in seconds, at which ϑ(t) and ω(t) are to be evaluated,
from t = 0 s up to t = 2.838 s. A total of 101 equally spaced times, corresponding to 100 time
intervals, are requested in the interval 0 6 t 6 T . Line 23 evaluates the angular position ϑharmonic,
at the same times, of a hypothetical pendulum following a purely harmonic motion with angular
frequency Ω, for comparison to our large-amplitude case. At line 25 function odeint solves the
system (5.16) numerically at the times specified by the list t, with the initial conditions specified by
the list y0. The parameter g/` is passed by the list params [see Appendix C.2 for the arguments
of odeint()]. The solutions are stored into the matrix sol. Line 26 copies the ϑi values at the
required instants from matrix sol into the vector theta. Column sol(:,1) comprises the angular
velocity values ωi at the same instants. Line 27 plots the large-amplitude pendulum positions, using a
black (’k’) solid line, while line 28 plots the harmonic positions using a dashed black line (’k--’).
29 p l t . a x h l i n e ( l i n e w i d t h =1 , c o l o r = ’ k ’ )
30 p l t . r cPa rams . u p d a t e ( { ’ f o n t . s i z e ’ : 1 8 } )
31 p l t . g r i d ( )
32 p l t . x l a b e l ( r ’ $ t $ / s ’ , f o n t s i z e =22)
33 p l t . y l a b e l ( r ’ $\ v a r t h e t a $ / r a d ’ , f o n t s i z e =22)
34 p l t . t e x t ( 2 . 2 5 , 1 . 0 , ’ Harmonic ’ , f o n t s i z e =16 , r o t a t i o n =65)
35 p l t . t e x t ( 2 . 2 5 , 0 . 4 , ’ Large Ampl i tude ’ , f o n t s i z e =16 , r o t a t i o n =65)
36 p l t . t i g h t l a y o u t ( )
37 p l t . s a v e f i g ( ’ LargAmpl00 . pdf ’ , format= ’ pdf ’ , d p i =1000)
38 p l t . show ( )
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Figure 5.2

Line 29 plots a horizontal black line corre-
sponding to the ϑ = 0 axis of the plot. Line 30
sets the font size for the plot. Line 31 draws
a grid. Lines 32 and 33 label the horizon-
tal and vertical axes, respectively. Line 34
writes a text into the figure at x = 2.25, y =

1.0, rotated by 65 degrees, which labels the
curve for the harmonic motion. Line 35 does
the same for the curve corresponding to the
large-amplitude-pendulum motion, The font-
size values at lines 30, 32, 33, 34 and 35 are
best determined by trial and error, in order to
obtain the best result for Fig. 5.2. The same
is true for the rotation angles at lines 34 and
35. Line 36 forces the figure to include the axis labels. Line 37 saves the result into a pdf figure, in
our case Fig. 5.2. Line 38 shows the plot on the monitor. If you wish to tabulate ϑ(t), the last lines of
the code can be changed as follows
36 p l t . t i g h t l a y o u t ( )
37 p l t . s a v e f i g ( ’ LargAmpl00 . pdf ’ , format= ’ pdf ’ , d p i =1000)
38 hnd=open ( ” l a r g e a m p l i t u d e . t x t ” , ’w’ )
39 i =0
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40 hnd . w r i t e ( ’ i s e c t h e t a harmonic \n\n ’ )
41 whi le i < l e n ( t h e t a ) :
42 hnd . w r i t e ( ’ { : 3 d } { : 8 . 3 f } { : 8 . 3 f } { : 8 . 3 f } \ n ’ . format ( i , t [ i ] , t h e t a [ i ] , The taHar [ i ] ) )
43 i +=1
44 hnd . c l o s e ( )
45 p l t . show ( )

i sec theta harmonic
0 0.000 1.571 1.571
1 0.028 1.569 1.568
2 0.057 1.563 1.558
3 0.085 1.553 1.543
4 0.114 1.539 1.521
5 0.142 1.521 1.494
6 0.170 1.500 1.460
7 0.199 1.474 1.421
8 0.227 1.445 1.376
9 0.255 1.411 1.326
10 0.284 1.374 1.271

Table 5.1

Line 38 creates the file large amplitude.txt in write
mode (’w’), and associates it to the file handler hnd. Line 38
sets the counter i to zero, line 39 writes the table headers into
the table, and the loop 40-42 writes the single lines of the table,
inserting the index i in column 0, the time t[i] in column 1,
the large-amplitude angular position ϑ(t) in column 2, and the
“harmonic” angular position ϑharmonic(t) in column 3. Line 43
closes the file containing the table. The first few lines of the
resulting table are shown in Table 5.1.

The file large amplitude.txt can now be opened and
read by any editor, or opened in read mode by another Python
script using the code

hnd=open(large amplitude.txt,’r’)
then the single lines can be read with hnd.readline().

5.5 The Shooting Method

The differential equation of Section 5.4 was second-order because Newton’s second law involves a
second-order derivative. We know that the general solution of an nth-order differential equation con-
tains n arbitrary independent constants of integration, and in the case of our pendulum we arbitrarily
chose two initial conditions, namely the initial position ϑ(0) = π/2 and the initial angular velocity
ϑ̇ = ω = 0.

We conclude this chapter considering two problems involving second-order ordinary differential
equations where we are interested in solutions determined by the conditions at two boundaries, one
initial and one final condition. Both problems involve quantum mechanics and the time-independent
one-dimensional Schrödinger equation, which involves the second-order derivative with respect to the
space coordinate.

5.5.1 The Finite Square Well

Our first example is a simple one-dimensional problem which, in spite of being simple, has no analyt-
ical solution: the finite square well. In this problem a particle of mass m is confined to a box of width
2x0 which has finite potential walls of height V0, as shown in Fig. 5.3. Denoting the particle position
by x, we can choose a coordinate system where the potential energy of the particle can be written as

V(x) =

{
0 if |x| ≤ x0 ,
V0 if |x| > x0 .

(5.17)
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The time-independent Schrödinger equation for the particle is thus(
V(x) − ~

2

2m
d2

dx2

)
ψ(x) = Eψ(x) , (5.18)

which can be rewritten (
V0H(|x| − x0) − ~

2

2m
d2

dx2

)
ψ(x) = Eψ(x) , (5.19)

x+x00−x0

V0

Figure 5.3

where E is the energy eigenvalue, and H(x) is the Heav-
iside step function, defined as H(x) = 0 if x < 0, and
H(x) = 1 if x > 0. We have a discrete spectrum of bound
states for eigenvalues En < V0, and a continuous spec-
trum of free states with eigenvalues E > V0. Here we are
interested only in bound states. Both for bound and free
states, the wavefunction has three different mathematical
expressions, depending on whether the particle is at the
left of the box, inside the box or at the right of the box:

ψ(x) =


ψa(x) , if x < −x0 ,
ψb(x) , if − x0 < x < x0 ,
ψc(x) , if x > x0 .

(5.20)

For both bound and free states the solutions inside the well, i.e., for −x0 < x < x0, where the potential
energy is zero, have the form

ψb(x) = A sin(kx) + B cos(kx) , with k =

√
2mE
~

, (5.21)

where A and B are two constants to be determined. The solutions for bound states (En < V0) outside
of the well have the form

ψa(x) = C eαx ,

ψc(x) = D e−αx , both with α =

√
2m(V0 − E)
~

, (5.22)

where C and D are two further constants to be determined, and we are disregarding the solutions
diverging for x → −∞ or x → ∞. With our coordinate choice the potential energy V(x) is an even
function, therefore our eigenfunctions must be either even or odd functions of x, implying that either
A = 0 and C = D (even functions), or B = 0 and C = −D (odd functions). Finally, a wave function
ψ(x) and its first derivative dψ(x)/dx must be continuous everywhere, including at x = ±x0, where the
potential V(x) is discontinuous. This implies that the logarithmic derivative

d ln[ψ(x)]
dx

=
1

ψ(x)
dψ(x)

dx
(5.23)
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must be continuous at x = ±x0. Therefore we must have

even: −kB sin(kx0)
B cos(kx0)

= −αC e−αx0

C e−αx0
⇒ tan(kx0) =

α

k
⇒ tan

 √2mE
~

x0

 =

√
V0 − E

E
,

odd:
kB cos(kx0)
B sin(kx0)

= −αC e−αx0

C e−αx0
⇒ cot(kx0) = −α

k
⇒ cot

 √2mE
~

x0

 = −
√

V0 − E
E

.

(5.24)

The above conditions cannot be satisfied by arbitrary values of the particle energy E. Only certain
energy values (the energy eigenvalues), which solve one of the (5.24) for E, are allowed. Thus the
energy levels of the particle such that E < V0 are discrete, and the corresponding eigenfunctions are
bound states. Equations (5.24) cannot be solved analytically, and the values of E for which they hold
must be found numerically. A possibility is to write them in the form f (E) = 0, with, for instance,

f (E) = tan
 √2mE
~

x0

 − √
V0 − E

E
(5.25)

for the even case, and then use one of the numerical root-finding algorithms discussed in Chapter 4 to
determine the allowed values of E.

In the following we prefer to consider another numerical method, which will provide both the
energy eigenvalues and the discretization of the eigenfunctions of the finite square well.

For this it is convenient to write (5.19) in terms of dimensionless quantities. We start by dividing
(5.19) by V0, obtaining

~2

2mV0

d2ψn(x)
dx2 =

[
(H(|x| − x0) − En

V0

]
ψn(x) , (5.26)

where we are numbering the eigenfunction ψn(x) and the energy eigenvalues En because we are deal-
ing with a discrete spectrum. Then we introduce the first dimensionless variable

ξ =
x
α
, such that x = αξ , (5.27)

where α = ~/
√

2mV0 has the dimensions of a length, and obtain

d2ψn(ξ)
dξ2 =

[
H(|ξ| − ξ0) − En

V0

]
ψn(ξ) , where ξ0 =

x0

α
=

√
2mV0

~
x0 . (5.28)

If we introduce the further dimensionless quantities Wn = En/V0, corresponding to the energy eigen-
values measured in units of the well depth V0, our final equation is

d2ψn(ξ)
dξ2 =

[
H(|ξ| − ξ0] −Wn

]
ψn(ξ) . (5.29)

As discussed in Section 5.1, the second-order differential equation (5.29) is equivalent to the following
system of two first-order ordinary differential equations (ODE)

dψn(ξ)
dξ

= χn

dχn(ξ)
dξ

=
[
H(|ξ| − ξ0] −Wn

]
ψn(ξ) , (5.30)
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which we shall use for the numerical solution. If an eigenvalue Wn, and the corresponding initial
values for ψn(0) and χn(0), were known, solving the system (5.30) numerically would provide the
discretization of the functions ψn(ξ) and χn(ξ) = dψn(ξ)/dξ. In the present case the potential is even,
thus the eigenfunctions ψn(ξ) are either even, with χn(0) = dψn(0)/dξ = 0, or odd, with ψn(0) = 0.
The eigenfunction corresponding to the ground state, ψ0(ξ), is even, and the eigenfunctions ψn, with
n > 0, corresponding to the higher energy levels, are alternatively odd (n odd), and even (n even). If
ψn(ξ) is an eigenfunction of the Hamiltonian, so is zψn(ξ), with z any complex number. Thus we are
allowed to assume the initial conditions

ψn(0) = 1 , χn(0) = 0 , for n even,
ψn(0) = 0 , χn(0) = 1 , for n odd. (5.31)

Obviously, numerical integration with these initial conditions does not lead to a normalized wave-
function, however, once the wavefunction is found, we can easily evaluate the normalization factor.
But we must still determine the correct values of the eigenvalues Wn.

5.5.2 The Shooting Method
The shooting method is a method for solving boundary value problems by reducing them to the
solution of initial value problems. Roughly speaking, we shoot out trajectories in different directions
by changing the initial values, until we find the trajectory reaching the desired boundary value. For
instance, we know that in our case, the boundary conditions for a bound state are

lim
ξ→±∞

ψn(ξ) = 0 . (5.32)
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0
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0 −

δW

W0

ξ0

Figure 5.4 Numerical integrations of the ODE system
(5.30), assuming the correct normalized energy eigenvalue
W0 (black line), and the slightly different values W0 − δW
(red line) and W0 + δW (blue line), with δW/W0 ' 2.5 ×
10−8. Incorrect values of W0 lead to divergence at high ξ.

These conditions are fulfilled if we insert the
conditions (5.31) and the correct value for Wn

into the system (5.30), and perform the nu-
merical integration of the ODE system from
ξ = 0 to ξ = +∞ (actually, up to a sufficiently
large value of ξ). We don’t need the integra-
tion from ξ = 0 to ξ = −∞ because of the
symmetry of the problem. But, if the value of
Wn inserted into (5.30) is not correct, we get a
wavefunction ψ(ξ) diverging for |ξ| → ∞. For
instance, if we assume ξ0 = 10 in (5.30), the
ground state eigenvalue is

W0 = 0.02037903954499 . . . (5.33)

(we shall see in the following how this value
can be obtained). Fig. 5.4 shows the behavior
of ψ(ξ) up to ξ = 30. If we insert a slightly
different value, say W0 ± δW, with δW = 5 ×
10−10, we see that ψ(ξ) diverges with increasing ξ. In this case we have limξ→∞ ψ(ξ) = −∞ for
W0 − δW, and limξ→∞ ψ(ξ) = +∞ for W0 + δW. Obviously a computer does not deal with real
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numbers, but all our values, including (5.33), are affected by truncation errors. This means that we
observe a divergence of ψ also for our “correct” value of W0, provided that we go up to sufficiently
high ξ values. It is a matter of the precision we require, compatibly with the number of bits used by
the computer for storing numbers. In our case the shooting method works as follows:

1. Not knowing the exact value of W0, we start by inserting an educated guess W (0)
0 < W0 into

(5.30). Then we integrate our ODE system up to a sufficiently high value ξmax of ξ, where we
expect ψ(ξmax) to be practically zero. In the present case we know that the energy of our particle
must be greater than zero, so, we start from W (0)

0 = 0. The numerical integration will provide
a discretized wavefunction ψ(0)

0 (ξ), with ψ(0)
0 (ξmax) different from zero and usually very large in

absolute value.

2. Now we insert the new value W (1)
0 = W (0)

0 + ∆W into (5.30), where the increase ∆W must be
smaller than the distance between two consecutive eigenvalues. Since, again, we don’t know the
eigenvalues and their spacing yet, determining a correct step ∆W requires an educated guess
and some trial and error. We integrate the system, and determine ψ(1)

0 (ξ). If ψ(1)
0 (ξmax) has

the same sign as ψ(0)
0 (ξmax) we iterate the procedure, with W (i+1)

0 = W (i)
0 + ∆W, until we find

ψ(i+1)
0 (ξmax)ψ(i)

0 (ξmax) < 0.

3. When ψ(i+1)
0 (ξmax)ψ(i)

0 (ξmax) < 0, i.e., when ψ(i+1)
0 (ξmax) and ψ(i)

0 (ξmax) have opposite sign, the
interval (W (i)

0 ,W
(i+11)
0 ) contains the correct ground-state eigenvalue W0, which can be determined

with the required accuracy, for instance, by the bisection method. This will lead to W0 and ψ0(ξ).

4. Once W0 has been determined, we determine the first-excited eigenvalue W1 and eigenfunction
ψ1(ξ) starting from the initial value W (0)

1 = W0+∆W, and proceeding as in points 1-3. Successive
bound eigenstates are determined analogously, always starting with W (0)

i+1 = Wi + ∆W. Note that
the finite square well always has at least one bound state (the ground state), and its number of
bound states is finite.

Here follows a possible Python code for determining the bound states of a square well with half-
width ξ0 = 10.

Listing 5.2 FiniteWell.py
1 # ! / u s r / b i n / env py thon3
2 #
3 import numpy as np
4 from s c i p y . i n t e g r a t e import o d e i n t , s imps
5 import m a t p l o t l i b . p y p l o t a s p l t
6 #

Lines 1-5 are the usual headers.
7 x i 0 =10.0
8 n P o i n t s W e l l =100
9 n P o i n t s P l o t =3* n P o i n t s W e l l

10 n P o i n t s =5* n P o i n t s W e l l
11 s c a l e =0.2
12 x iMaxPlo t =( x i 0 * n P o i n t s P l o t ) / n P o i n t s W e l l
13 xiMax =( x i 0 * n P o i n t s ) / n P o i n t s W e l l
14 E i g v S t e p =0.05
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15 D e l t a X i=x i 0 / n P o i n t s W e l l
16 t o l e r a n c e =1.0 e −12;
17 #
18 x i=np . l i n s p a c e ( 0 , xiMax , n P o i n t s )
19 #

Line 7 defines the square-well half-width xi0 (ξ0). Lines 8-10 are the numbers for the sampling
points for the wavefunctions from 0 to the right border of the potential well (nPointsWell), from
0 to the right end of the plot (nPointsPlot), and the total number of points used for the calculations
(nPoints). Variable xiMaxPlot is the highest plotted ξ value, while xiMax is the highest ξ value
used for calculations. Variable EigvStep is the increase step ∆W, DeltaXi is the spacing between
consecutive points, and tolerance is the required accuracy on the eigenvalues Wn. Line 18 builds
the ξ array consisting of nPoints evenly spaced values from 0 to ξmax (the points at which the
functions must be evaluated).

20 def d f d x i ( y , x i , params ) :
21 p s i , d p s i d x i =y # unpack y
22 E , x i 0=params # unpack p a r a m e t e r s
23 i f xi <x i 0 :
24 d e r i v s =[ d p s i d x i ,−E* p s i ]
25 e l s e :
26 d e r i v s =[ d p s i d x i , (1 −E)* p s i ]
27 re turn d e r i v s
28 #

Lines 20-28 define the function dfdxi(y,xi,params), which returns the derivatives of ψ and of
χ = dψ/dξ. Array y contains the values of ψ and dψ/dξ at the start point of each integration step,
which are unpacked at Line 21. The array xi contains the points at which the functions ψ and dψ/dξ
must be evaluated. The array params contains the trial eigenvalue W (i)

n , unpacked as E, and the half-
width of the square well ξ0, unpacked as xi0. Lines 23-26 evaluate the derivatives, which are stored
into the array derivs. The derivative of ψ always equals χ = dψ/dξ, while we have (Lines 23-26)

dχ
dξ

=
d2ψ

dξ2 =

 −W (i)
n ψ if ξ < ξ0 ,(

1 −W (i)
n

)
ψ if ξ > ξ0 .

(5.34)

Line 27 returns the derivatives to the calling function.

29 def SymmWell ( params , xi , iEv , E i g v S t a r t , E igvStep , t o l e r a n c e , d f d x i , p s i ) :
30 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i n i t i a l i z e
31 e i g v 1= E i g v S t a r t
32 params [0 ]= e i g v 1
33 i f iEv %2==0:
34 y = [ 1 . 0 , 0 . 0 ]
35 e l s e :
36 y = [ 0 . 0 , 1 . 0 ]
37 p s o l n= o d e i n t ( d f d x i , y , x i , a r g s =( params , ) )
38 PsiEnd1=p s o l n [ −1 ,0 ]
39 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s e a r c h f o r i n t e r v a l
40 whi le True :
41 e i g v 2=e i g v 1+E i g v S t e p
42 i f e igv2 >1 . 0 :
43 re turn −1
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44 params [0 ]= e i g v 2
45 p s o l n= o d e i n t ( d f d x i , y , x i , a r g s =( params , ) )
46 PsiEnd2=p s o l n [ −1 ,0 ]
47 i f ( Ps iEnd1 * PsiEnd2 ) <0 . 0 :
48 break
49 PsiEnd1=PsiEnd2
50 e i g v 1=e i g v 2
51 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l o g a r i t h m i c s e a r c h f o r e i g e n v a l u e
52 whi le True :
53 e igvmid =( e i g v 1+e i g v 2 ) / 2 . 0
54 i f abs ( e igv1 −e i g v 2 )< t o l e r a n c e :
55 break
56 params [0 ]= e igvmid
57 p s o l n= o d e i n t ( d f d x i , y , x i , a r g s =( params , ) )
58 PsiEndMid=p s o l n [ −1 ,0 ]
59 i f ( PsiEndMid * PsiEnd1 )>0 :
60 PsiEnd1=PsiEndMid
61 e i g v 1=e igvmid
62 e l s e :
63 PsiEnd2=PsiEndMid
64 e i g v 2=e igvmid
65 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l i s t wave f u n c t i o n
66 d e l p s i [ : ]
67 f o r i in range ( l e n ( x i ) ) :
68 p s i . append ( p s o l n [ i , 0 ] )
69 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70 re turn e igvmid
71 #

Lines 29-70 define the function SymmWell(params, xi, iEv, EigvStart, EigvStep,
tolerance, dfdxi, psi), which returns the eigenvalue Wn, stored in eigvmid, and the
corresponding discretized eigenfunction ψn, stored in the list psi. The arguments params, xi,
EigvStep, tolerance and dfdxi (the function starting at Line 20) have been discussed above.
Variable iEv is the index n labeling both Wn and ψn, needed because ψn(ξ) is even if iEv is even,
odd if iEv is odd. Variable Eigvstart is the start trial value W (0)

n , while EigvStep is ∆W, the
step used for the search, psi is the address of an array where the discretization of ψn will be stored.

The lower limit for the eigenvalue search is eigv1 (corresponding to W (0)
n ), which is initially set

equal to EigvStart at Line 31. Line 32 stores eigv1 into params(0), for passing it to function
dfdxi(). Lines 33-36 set the values of ψ(0) and χ(0) according to (5.31). Line 37 calls the library
function scipy.integrate.odeint(), discussed in Section 5.3, which integrates a system of
ordinary differential equations. Line 39 copies the value of ψ(0)

n (ξmax) into PsiEnd1.The loop 40-50
searches for an interval containing the eigenvalue Wn. Line 41 assigns the value W (i+1)

n = W (i)
n + ∆W

to eigv2. If W (i+1)
n > 1 we are above the well depth (E > V0), and Lines 42-43 break the search,

forcing the function to return an impossible negative eigenvalue. Lines 44-46 call odeint() again,
and evaluate ψ(i+1)

n (ξmax), stored in PsiEnd2.
The loop stops if ψ(i+1)

n (ξmax)ψ(i)
n (ξmax) < 0, otherwise PsiEnd2 and eiv2 are copied into

PsiEnd1 and eiv1, and the procedure is iterated. The loop 52-64 evaluates Wn with the required
accuracy. Line 53 assigns the arithmetic mean of the upper and lower bounds of the interval to
eigvmid. If the interval width is smaller than tolerance the loop is terminated at Line 55. Oth-
erwise eigvmid is stored in params[0], odeint() is called at Line 57, and the corresponding
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value of ψn(ξmax) is stored into PsiEndMid. In Lines 59-64 if PsiEndMid and PsiEnd1 have the
same sign, PsiEndMid replaces PsiEnd1, otherwise PsiEndMid repalces PsiEnd1, in any case
the interval width is halved. At Lines 66-68 list psi is cleared, then it is filled with the discretized
eigenfunction. At Line 70 SymmWell() returns the eigenvalue to the calling function. Here end the
function definitions, and the main program starts at Line 73.

72 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73 x=np . l i n s p a c e (− xiMaxPlot , x iMaxPlot , ( 2 * n P o i n t s P l o t )+1)
74 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw g r i d
75 p l t . g r i d ( True )
76 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77 e i g v = [ ]
78 E i g v S t a r t = 0 . 0 ;
79 i =0

Line 73 stores the ξ interval to be plotted into list x. Line 75 asks for a grid in the plot, Line 77 creates
an empty list for storing the eigenvalues, Line 78 assigns the lower end of the search interval of the
first eigenvalue, EigvStart. Line 79 assigns the index of the ground state, i = 0, the eigenfunction
will be symmetric.

80 whi le True :
81 params =[ E i g v S t a r t , x i 0 ]
82 p s i = [ ]
83 e i g v . append ( SymmWell ( params , xi , i , E i g v S t a r t , E igvStep , t o l e r a n c e , d f d x i , p s i ) )
84 i f e i g v [ i ] >0:
85 p r i n t ( i , e i g v [ i ] )
86 e l s e :
87 break
88 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t r u n c a t e d i v e r g i n g t a i l o f p s i
89 whi le l e n ( p s i ) >5:
90 i f abs ( p s i [−2])> abs ( p s i [ −1 ] ) :
91 break
92 p s i . pop ( )
93 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n o r m a l i z e p s i
94 NormFact=np . s q r t ( 2 . 0 * s imps ( np . s q u a r e ( p s i ) , dx=Del taXi , even= ’ f i r s t ’ ) )
95 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t r u n c a t e t o p l o t l e n g t h
96 d e l p s i [ ( n P o i n t s P l o t + 1 ) : ]
97 i f l e n ( p s i ) <( n P o i n t s P l o t +1 ) :
98 whi le l e n ( p s i ) <( n P o i n t s P l o t +1 ) :
99 p s i . append ( 0 . 0 )

100 normps i =[ i * ( s c a l e / NormFact ) f o r i in p s i ]
101 p s i n e g= l i s t ( r e v e r s e d ( normps i ) )
102 i f i %2==1: # . . . . . . . . . . . . . . . . . . . . . . . . . . . . odd f u n c t i o n s are a n t i s y m m e t r i c
103 f o r k in range ( l e n ( p s i n e g ) ) :
104 p s i n e g [ k]=− p s i n e g [ k ]
105 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . form whole p s i
106 p s i n e g . pop ( )
107 p s i =p s i n e g+normps i
108 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
109 E n e r S h i f t =e i g v [ i ]
110 p s i =[ x+ E n e r S h i f t f o r x in p s i ]
111 p l t . p l o t ([ − xiMaxPlot , x iMaxPlo t ] , [ E n e r S h i f t , E n e r S h i f t ] , ’ b l a c k ’ )
112 p l t . p l o t ( x , p s i )
113 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n e x t e i g e n v a l u e
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114 E i g v S t a r t =e i g v [ i ]+ E i g v S t e p
115 i +=1

The loop 80-115 searches for the eigenvalues and eigenfunctions of our problem. Line 81 assigns the
values of params needed by dfdxi(), Line 83 calls SymmWell() and appends the new energy
eigenvalue to eigv. The loop is interrupted if eigv[i]<0, meaning that we have reached the top
of the well. If a new eigenvalue has been found the loop 89-93 truncates the list psi1 where the
calculated ψ(ξ) starts to increase because of the round-off error on the eigenvalue. Line 94 evaluates
the normalizing constant

k =

√
2
∫ ∞

0
|ψn(ξ)|2dξ, (5.35)

such that Ψn(ξ) = ψn(ξ)/k is a normalized wavefunction. Actually the upper integration limit is obvi-
ously not infinity, but the last point of the list psi. Line 96 deletes the list points above the plot limit.
If psi was already too short, it is zero-padded at Lines 97-99. Line 100 evaluates the normalized
wavefunction Ψn, times a scale factor needed for the plot. Lines 101-107 build the complete wave-
function, inserting the values corresponding to ξ < 0. The function is even if i is even, odd if i is
odd. Line 106 pops the last value of psineg, otherwise the value ψn(0) would appear twice in the
complete list built at Line 107. Lines 109-113 plot the wavefunction, shifted upwards by the energy
eigenvalue. Line 111 plots a straight horizontal Line corresponding to the eigenvalue.

Line 114 assigns the lower limit for the search of the next eigenvalue, and Line 115 increases the
eigenstate index.

116 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p l o t sq ua re w e l l
117 p l t . p l o t ([ − xiMaxPlot ,− x i 0 ] , [ 1 . 0 , 1 . 0 ] , c o l o r = ’ b l a c k ’ )
118 p l t . p l o t ([ − xi0 ,− x i 0 ] , [ 1 . 0 , 0 . 0 ] , c o l o r = ’ b l a c k ’ )
119 p l t . p l o t ( [ x i0 , x i 0 ] , [ 0 . 0 , 1 . 0 ] , c o l o r = ’ b l a c k ’ )
120 p l t . p l o t ( [ x i0 , x iMaxPlo t ] , [ 1 . 0 , 1 . 0 ] , c o l o r = ’ b l a c k ’ )
121 p l t . y l im ( 0 . 0 , 1 . 1 )
122 p l t . y l a b e l ( r ’ Energy / $V 0$ ’ , f o n t s i z e =18)
123 p l t . x l a b e l ( r ’ $x \ , \ f r a c { \ s q r t {2 mV 0 } } { \ hba r } $ ’ , f o n t s i z e =24)
124 p l t . t i g h t l a y o u t ( )

Lines 117-124 plot the shape of the square potential well and write the horizontal and vertical axes
labels.

125 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
126 p l t . s a v e f i g ( ’ SquareWel l00 . eps ’ , format= ’ eps ’ , d p i =1000)
127 p l t . show ( ) # show t h e p l o t

Line 126 saves the plot in encapsulate PostScript format (.eps), and Line 127 shows the plot on the
computer monitor. The result is shown in Fig. 5.5. The horizontal black lines correspond to the
energy eigenvalues divided by V0, namely
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Figure 5.5 The seven bound eigenstates of a finite potential
well of half-width x0 = 10 ~/

√
2mV0, i.e., ξ0 = 10. The

ground state is always bound, whatever the width of the
well. The number of excited bound eigenstates increases
with increasing ξ0.

W0 0.020379039559702515
W1 0.08135854295251191
W2 0.18242255589320847
W3 0.32253401889174704 (5.36)
W4 0.4996922434624138
W5 0.7095036776365305
W6 0.9368079801646677

these values are printed on the computer mon-
itor by Line 85. As we know from quantum
mechanics, a finite square well always has at
least one bound state (the ground state). The
number of bound excited states depends on
the depth and on the width of the well. In
our case, ξ0 = x0

√
2mV0/~ = 10, we have

seven bound states, six excited states plus the
ground state. Eigenstates of higher energy are

not bound, but free. The number of bound states increases with increasing ξ0, i.e., with increasing x0

at constant V0, with increasing V0 at constant x0, or with both x0 and V0 increasing.

5.5.3 The Harmonic Oscillator
Contrary to the square well, the quantum harmonic oscillator has an exact analytical solution. All
eigenstates are bound, with energy eigenvalues En = (n + 1/2) ~ω, and Hermite polynomials as
eigenfunctions. Here, however, we shall solve the problem by numerical integration combined with
the shooting method, and compare our results to the analytical solutions.

The potential energy for the harmonic oscillator is V(x) = mω2x2/2, where m is the mass of the
“oscillating” particle, and ω =

√
k/m, k being the Hooke constant. The corresponding Schrödinger

equation is thus (
mω2

2
x2 − ~

2

2m
d2

dx2

)
ψn(x) = Enψn(x) . (5.37)

Equation (5.37) can be rewritten in the following form, suitable for ODE numeric integration

~2

2m
d2ψn(x)

dx2 =

(
mω2

2
x2 − En

)
ψn(x) . (5.38)

In order to write (5.38) in terms of dimensionless quantities, we introduce the new variable

ξ =
x
α
, so that x = αξ , (5.39)

where α is a quantity with the dimensions of a length, to be chosen later. We obtain

~2

2mα2

d2ψn(ξ)
dξ2 =

mα2ω2

2

(
ξ2 − 2

mα2ω2 En

)
ψn(ξ) . (5.40)
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We divide both sides by mα2ω2/2,

~2

m2ω2α4

d2ψn(ξ)
dξ2 =

(
ξ2 − 2

mα2ω2 En

)
ψn(ξ) . (5.41)

and we choose α as

α =

√
~

ωm
, (5.42)

which has the dimensions of a length, as required. The equation reduces to

d2ψn(ξ)
dξ2 =

(
ξ2 − 2

~ω
En

)
ψn(x) . (5.43)

If we further define the quantity

Wn =
En

~ω
, (5.44)

which is the nth energy eigenvalue measured in units of ~ω, our final equation involves only dimen-
sionless quantities, and is written

d2ψn(ξ)
dξ2 =

(
ξ2 − 2Wn

)
ψn(x) . (5.45)

Equation (5.45) is equivalent to the following system of two first-order ordinary differential equations
(ODE)

dψn

dξn
= χn ,

dχn

dξ
=

(
ξ2 − 2Wn

)
ψn(x) . (5.46)

As in the case of the finite square well, if the correct eigenvalues Wn, and the corresponding appropri-
ate initial values ψn(0) and χn(0) are introduced into (5.46), numerical integrations lead to the correctly
discretized ψn(ξ) and χn(ξ) = dψn(ξ)/dξ functions. Again, the potential energy is an even function of
x (and of ξ), implying that the eigenfunctions ψn(ξ) are either even, thus with χn(0) = dψn(0)/dξ = 0,
or odd, with ψn(0) = 0. The eigenfunction corresponding to the ground state, ψ0(ξ), is even. Thus we
assume again the initial conditions (5.31), and, again, we determine the eigenvalues and eigenfunc-
tions by the shooting method. The harmonic oscillator has infinite eigenvalues, in the following we
shall confine ourselves to the lowest seven states, n = 0, 1, 2, . . . , 6.

Listing 5.3 QuantOscill.py
1 # ! / u s r / b i n / env py thon3
2 #
3 import numpy as np
4 from s c i p y . i n t e g r a t e import o d e i n t , s imps
5 import m a t p l o t l i b . p y p l o t a s p l t
6 p l t . r c ( ’ t e x t ’ , u s e t e x=True )
7 #
8 n P o i n t s =500
9 n P o i n t s P l o t =200
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10 xiMax =10.0
11 x iMaxPlo t =( xiMax* n P o i n t s P l o t ) / n P o i n t s
12 D e l t a X i=xiMax / f l o a t ( n P o i n t s )
13 s c a l e =4.0
14 nEigen=7
15 E i g v S t e p =0.005
16 t o l e r a n c e =1.0 e −12;
17 #

Variable nPoints is the number of points used for calculations, nPointsPlot is the number
of points displayed in the plot, xiMax is the maximum ξ values used for calculations, where it is
assumed that ψn(ξ) is practically zero for the evaluated functions (up to n = 6), xiMaxPlot is the
maximum xi value displayed in the plot. DeltaXi is the ξ spacing between two consecutive points,
needed for evaluating the integral of |ψ|2 used for normalizing ψ. Quantity nEigen is the number of
evaluated eigenstates, 6 plus the ground state in our case: since the bound eigenstates of the present
problem are infinite, we must set a limit somewhere!
18 x i=np . l i n s p a c e ( 0 , xiMax , n P o i n t s )
19 #
20 def d f d x i ( y , x i , params ) :
21 p s i , d p s i d t =y # unpack y
22 E,= params # unpack p a r a m e t e r s
23 d e r i v s =[ d p s i d t , ( x i * xi −2.0*E)* p s i ]
24 re turn d e r i v s
25 #

Analogous to the square well. Here the tentative eigenvalue E is the only parameter needed by the
function dfdxi(), Line 23 evaluates the derivative dχ/dξ according to (5.46).
26 def SymmWell ( params , xi , iEv , E i g v S t a r t , E igvStep , t o l e r a n c e , d f d x i , p s i ) :
27 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i n i t i a l i z e
28 e i g v 1= E i g v S t a r t
29 params [0 ]= e i g v 1
30 i f iEv %2==0:
31 y = [ 1 . 0 , 0 . 0 ]
32 e l s e :
33 y = [ 0 . 0 , 1 . 0 ]
34 p s o l n= o d e i n t ( d f d x i , y , x i , a r g s =( params , ) )
35 PsiEnd1=p s o l n [ −1 ,0 ]
36 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s e a r c h f o r i n t e r v a l
37 whi le True :
38 e i g v 2=e i g v 1+E i g v S t e p
39 params [0 ]= e i g v 2
40 p s o l n= o d e i n t ( d f d x i , y , x i , a r g s =( params , ) )
41 PsiEnd2=p s o l n [ −1 ,0 ]
42 i f ( Ps iEnd1 * PsiEnd2 ) <0 . 0 :
43 break
44 PsiEnd1=PsiEnd2
45 e i g v 1=e i g v 2
46 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l o g a r i t h m i c s e a r c h f o r e i g e n v a l u e
47 whi le True :
48 e igvmid =( e i g v 1+e i g v 2 ) / 2 . 0
49 params [0 ]= e igvmid
50 i f abs ( e igv1 −e i g v 2 )< t o l e r a n c e :
51 break
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52 p s o l n= o d e i n t ( d f d x i , y , x i , a r g s =( params , ) )
53 PsiEndMid=p s o l n [ −1 ,0 ]
54 i f ( PsiEndMid * PsiEnd1 )>0 :
55 PsiEnd1=PsiEndMid
56 e i g v 1=e igvmid
57 e l s e :
58 PsiEnd2=PsiEndMid
59 e i g v 2=e igvmid
60 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l i s t wave f u n c t i o n
61 d e l p s i [ : ]
62 f o r i in range ( l e n ( x i ) ) :
63 p s i . append ( p s o l n [ i , 0 ] )
64 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65 re turn e igvmid
66 #

Analogous to the corresponding code for the finite square well.
67 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e v a l u a t e and draw p o t e n t i a l
68 x = np . l i n s p a c e (− xiMaxPlot , x iMaxPlot , ( 2 * n P o i n t s P l o t )+1)
69 y = 0 . 5 * x **2 # p o t e n t i a l .
70 p l t . p l o t ( x , y ) # x ˆ2
71 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw g r i d
72 p l t . g r i d ( True )
73 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These lines draw the harmonic potential on the plot. The potential is

V(x) =
1
2
ω2m x2 ⇒ V(ξ) =

1
2
~ωξ2 ⇒ V(ξ) =

1
2
ξ2 , (5.47)

the last formula being in units of ~ω. The rest is analogous to the code for the finite square well.
74 e i g v = [ ]
75 E i g v S t a r t = 0 . 0 ;
76 i =0

Analogous to the finite square well.
77 whi le i <nEigen :
78 params =[ E i g v S t a r t ]
79 p s i = [ ]
80 e i g v . append ( SymmWell ( params , xi , i , E i g v S t a r t , E igvStep , t o l e r a n c e , d f d x i , p s i ) )
81 p r i n t ( i , e i g v [ i ] )
82 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t r u n c a t e d i v e r g i n g t a i l o f p s i
83 whi le l e n ( p s i ) >5:
84 i f abs ( p s i [−2])> abs ( p s i [ −1 ] ) :
85 break
86 p s i . pop ( )
87 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n o r m a l i z e p s i
88 NormFact=np . s q r t ( 2 . 0 * s imps ( np . s q u a r e ( p s i ) , even= ’ f i r s t ’ ) )
89 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t r u n c a t e t o p l o t l e n g t h
90 d e l p s i [ ( n P o i n t s P l o t + 1 ) : ]
91 i f l e n ( p s i ) <( n P o i n t s P l o t +1 ) :
92 whi le l e n ( p s i ) <( n P o i n t s P l o t +1 ) :
93 p s i . append ( 0 . 0 )
94 normps i =[ i * ( s c a l e / NormFact ) f o r i in p s i ]
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95 p s i n e g= l i s t ( r e v e r s e d ( normps i ) )
96 i f i %2==1: # . . . . . . . . . . . . . . . . . . . . . . . . . . . . odd f u n c t i o n s are a n t i s y m m e t r i c
97 f o r k in range ( l e n ( p s i n e g ) ) :
98 p s i n e g [ k]=− p s i n e g [ k ]
99 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . form whole p s i

100 p s i n e g . pop ( )
101 p s i =p s i n e g+normps i
102 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 E n e r S h i f t =e i g v [ i ]
104 p s i =[ x+ E n e r S h i f t f o r x in p s i ]
105 p l t . p l o t ([ − xiMaxPlot , x iMaxPlo t ] , [ E n e r S h i f t , E n e r S h i f t ] , ’ b l a c k ’ )
106 p l t . p l o t ( x , p s i )
107 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n e x t e i g e n v a l u e
108 E i g v S t a r t =e i g v [ i ]+ E i g v S t e p
109 i +=1

Lines 77-109 constitute the main loop of the program, analogous to the main loop of the square well.
The only important difference is that the number of bound eigenstates of the harmonic oscillator is
infinite, thus Line 77 sets the number of required eigenstates.

110 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111 p l t . y l a b e l ( ’$W=E / ( \ hba r \omega ) $ ’ , f o n t s i z e =18)
112 p l t . x l a b e l ( ’ $ \\ d i s p l a y s t y l e \\ x i =\\ s q r t { \ \ f r a c { \ \ omega m} { \ \ hba r } } \ \ , x$ ’ , f o n t s i z e =24)
113 p l t . t i g h t l a y o u t ( )
114 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
115 p l t . s a v e f i g ( ’ Q u a n t O s c i l l 0 0 . eps ’ , format= ’ eps ’ , d p i =1000)
116 p l t . show ( ) # show t h e p l o t
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Figure 5.6 The ground state and the first six excited eigen-
states of the quantum harmonic oscillator, as obtained by
numerical integration.

The numerically evaluated eigenvalues are, in
units of ~ω

W0 0.4999999798237699
W1 1.4999999905895576
W2 2.500000022660503
W3 3.4999999952432175 (5.48)
W4 4.500000038020879
W5 5.499999974849539
W6 6.500000020207548 ,

they approximate within some 10−8 the ana-
lytically calculated values

Wn = n +
1
2

(5.49)

The version of the shooting method discussed in the last sections of this chapter can be adapted
to any symmetric one-dimensional attractive potential. Notable cases are the ammonia inversion
potential and the oxetane ring-puckering potential in molecular physics.
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Chapter 6

Tkinter Graphics

6.1 Tkinter
A graphical user interface (GUI) is a user interface that allows users to interact with a computer by
clicking the mouse on graphical icons representing, for instance, buttons or menus, rather than by
typing commands at the command line. As with all other computer graphical tools, for long time a
problem with GUIs has been the lack of cross-platform compatibility, i.e., the impossibility to use the
same GUI on different operating systems, notably Linux, macOS and Windows.

Tcl (suggested pronunciation: “tickle”) is a high-level programming language designed for being
very simple but powerful. The most popular Tcl extension is the Tk toolkit, first announced in 1991,
which provides a graphical user interface library for a variety of operating systems, thus achieving a
wide cross-platform compatibility. The popular combination of Tcl with the Tk extension is referred
to as Tcl/Tk, and enables building a GUI natively in Tcl. Tcl/Tk is included in the standard Python
installation in the form of Tkinter, standing for “Tk interface”. Tkinter, which we are going to con-
sider in this chapter, is Python’s de facto standard GUI. Tkinter is included with the standard Linux,
Microsoft Windows and macOS installations of Python.

There are several popular GUI library alternatives available, such as wxPython, PyQt (PySide),
Pygame, Pyglet, and PyGTK, which, however, we are not going to consider here.

We shall still use the command line for preparing our Tkinter based scripts, but, once our scripts
are running, we interact with the program execution through the Tkinter GUI. Further, what is perhaps
more important, Tkinter provides more freedom than Pyplot both in drawing figures and in animation
on the computer monitor. In the present chapter we shall discuss the basics of Tkinter graphics, while
Tkinter animation will be considered in Chapter 7.

6.2 The Root Window and Tkinter Color Management
We start by describing how Tkinter manages the colors we use for graphics. Tkinter represents colors
with strings. There are two ways to specify colors in Tkinter:

1. You can use locally predefined standard color names. The list is platform dependent, and
you can inquire on the internet what is available for your particular platform. However, the
color strings ’white’, ’black’, ’red’’, ’green’, ’blue’, ’cyan’, ’yellow’, and
’magenta’ are always available. This is enough for most applications.

89
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2. You can define your own colors by using strings specifying the intensities of the three primary
colors red, green and blue in hexadecimal digits, according to the RGB additive color model.
The intensity of each primary color is represented by one ore two hexadecimal digits, according
to the color depth. The relative intensity of each primary color is 0 – f (decimal 0 – 15) if a single
hexadecimal digit is used, 00 – ff (decimal 0 – 255) if two digits are used. The full color string
comprises a hash symbol (#) followed either by three or six hexadecimal digits. For example,
in the 6-hexadecimal-digits representation, ”#ffffff” corresponds to white (maximum intensity,
255, or ff in hexadecimal, for all three primary colors), ”#000000” to black (minimum intensity,
0, for all primary colors), ”#ff0000” to pure bright red, ”#010000” to the darkest possible red,
”#00ff00” to pure bright green, ”#0000ff” to pure bright blue, and ”#00ffff” to bright cyan (green
plus blue, both at maximum intensity).

Here follows a simple script that you can use to test the correspondence between strings and colors
on your computer monitor, we can call it checkcolor.py. You can use it by typing, for instance
$>checkcolor.py e0cc0f
which asks for the relative color intensities (in decimal), red=224, green=204, blue=15.

Listing 6.1 checkcolor.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , Canvas
3 from s y s import a rgv
4 #
5 s c r i p t , c o l=a rgv
6 c o l s t r i n g =” # ”+c o l
7 r o o t =Tk ( )
8 r o o t . t i t l e ( ’ Check Colo r ’ )
9 ca nv as=Canvas ( r o o t , w id th =200 , h e i g h t =200 , background= c o l s t r i n g )

10 ca nv a s . g r i d ( row =0 , column =0)
11 #
12 r o o t . main loop ( )

Figure 6.1

Functions Tk() and Canvas() are imported from Tkinter at Line 2,
while the list argv is imported from the sys library at Line 3. As
we already know, list argv comprises what we typed on the the com-
mand line, so checkcolor.py is copied into script, and e0cc0f
is copied into col at Line 5. Thus, string colstring at Line 6 be-
comes #e00cc0f in our case. Line 7 creates the root window (which
is always needed when using Tkinter graphics, it is the only window we
shall use in this program), and Line 8 writes the title Check Color in the
frame of the root window, as shown in Fig. 6.1. Line 9 creates a can-
vas, the surface where we can draw and paint, 200 pixel wide and 200
pixel high in the root window: Tkinter measures lengths in pixels (ab-
breviated as px). The background color of the canvas is set to the color

coded in colstring. In Line 10 we are introduced to the Tkinter grid() geometry manager.
Just think of the root window as divided into contiguous rectangular surfaces organized in rows and
columns. Rows and columns are numbered from zero upwards. Since here the canvas is the only
widget present in the root window, it is located at row=0, column=0. Note that writing, for instance,
canvas.grid(15,27) would not alter the output, since empty rows and columns are simply ig-
nored by Tkinter. However, Line 10 must be in the script, otherwise Python does not know where
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to locate the canvas. Just see what happens if you cancel it out. We shall see the importance of the
grid geometry manager in Section 7.3, Listing 7.3. Line 12 starts the execution of the program, and
the root window frame and the colored canvas are displayed. The only way to close the program is
to click the mouse on the x in the small red circle at the upper left of the frame. Later we shall learn
more “refined” ways to exit programs. You can experiment all possible color encodings. The result is
shown in Fig. 6.1. Also note that, if you type
$>checkcolor.py
on the terminal command line, without the color code, Python will complain that something is missing
in the command line.

As a further example of the use of the color codes, Listing 6.2 draws an approximate rainbow

Listing 6.2 Rainbow.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , Canvas
3 #
4 r o o t =Tk ( )
5 r o o t . t i t l e ( ’ Rainbow ’ )
6 ca nv as=Canvas ( r o o t , w id th =800 , h e i g h t =150 , background=” # f f f f f f ” )
7 ca nv as . g r i d ( row =0 , column =0)
8 #

The code above is analogous to the code of Lines 1-10 of Listing 6.1, only, the list sys.argv is
not needed here. Line 6 creates a canvas 800 pixels wide and 150 pixels high belonging to the root
window, and the background color is set to white.

9 f o r i in range ( 0 , 8 0 0 ) :
10 C o l S t r i n g =” # ”
11 i f i <256:
12 r =255; g= i ; b =0;
13 e l i f i <512:
14 r =511− i ; g =255; b= i −256;
15 e l s e :
16 r =0; g=767− i ; b =255;
17 i f i >672:
18 r =( i −672)*2
19 i f g<0:
20 g=0
21 #
22 C o l S t r i n g = C o l S t r i n g +format ( r , ’ 02x ’ )+ format ( g , ’ 02x ’ )+ format ( b , ’ 02x ’ )
23 l i n e =[ i , 0 , i , 1 5 0 ]
24 ca nv as . c r e a t e l i n e ( l i n e , f i l l = C o l S t r i n g )
25 #
26 r o o t . main loop ( )

The loop 9-24 paints 800 vertical lines, numbered by the index i, each line one-pixel wide, in the
canvas. Each line will have a different color, according to its index i. The integer variables r, g
and b represent the intensities of the primary colors red, green and blue. Line 10 creates a one-
character string containing only the initial hash symbol #. For 0 ≤ i < 256 quantity r is assigned the
maximum value 255 (maximum red intensity), b is always 0, while g gradually increases from 0 to
255. For 256 ≤ i < 512 the value of r decreases from 255 to 0, g has always its maximum value 255
(maximum green intensity), and b increases from 0 to 255. For i ≥ 512 the value of r is always 0,
g decreases from 255 to 0, and b has always its maximum value 255. For 672 < i < 800 we have
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g = 0, b = 255, while r increases from 2 to 127, in order to reproduce violet. The color vision in
the human eye is due to the presence of three types of photoreceptor cells in the retina, called cones.
The three types of cones have different response curves to the light frequency. The first type responds
the most to light of long wavelengths, peaking at about 560 nm, corresponding to red. The second
type responds the most to light of medium-wavelength, peaking at 530 nm, corresponding to green.
The third type responds the most to short-wavelength light, peaking at 420 nm, corresponding to blue.
However, the red-sensible cones are slightly excited also by the higher end of the visible radiation,
where photons are more energetic. This is why some red is needed to simulate our visual perception
of violet. The method .create line() used at Line 24 is discussed in Section 6.3. The output of
script 6.2 is shown in Fig. 6.2.

Figure 6.2 The “rainbow” output of Listing 6.2.

6.3 Drawing Geometric Shapes on the Canvas

x

y

O

Figure 6.3 The x and y axis on the
Tkinter canvas.

Tkinter has its .create methods for drawing geometrical shapes
and writing text on the canvas. Geometric shapes and text are po-
sitioned on the canvas using the coordinate system shown in Fig.
6.3. As usual when dealing with displays on a computer monitor,
the coordinate origin is located at the upper left corner of the win-
dow, and the y axis is directed downwards. Both the x and the y
coordinates are measured in pixels.

We have already met the method .create line() at Line
24 of Listing 6.2, where it was used to draw vertical lines of dif-
ferent colors. Listing 6.3 illustrates the use of the further methods

.create rectangle(), .create polygon(), .create oval(), .create arc() and

.create text(). All these methods have both mandatory and optional arguments. See Appendix
D fot a more complete discussion

Listing 6.3 GeomShapes.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , Canvas ,ARC,CHORD, PIESLICE
3 from numpy import cos , s i n , p i
4 #
5 cw=600
6 ch =500



6.3. DRAWING GEOMETRIC SHAPES ON THE CANVAS 93

7 r o o t =Tk ( )
8 r o o t . t i t l e ( ’ Geomet r i c Shapes ’ )
9 ca nv as=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background=” # f f f f f f ” )

10 ca nv a s . g r i d ( row =0 , column =0)

Variables cw and ch are the canvas width and height, respectively. Lines 7-10 create the root window,
and create and locate the canvas.

11 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r e c t a n g l e
12 ca nv a s . c r e a t e r e c t a n g l e ( 4 0 , 1 0 , 1 5 0 , 1 0 0 , f i l l = ’ #00 f f 0 0 ’ )
13 ca nv a s . c r e a t e t e x t ( 9 5 , 1 2 0 , t e x t = ’ Th i s i s a r e c t a n g l e ’ ,\
14 f o n t =( ’ H e l v e t i c a ’ , ’ 14 ’ ) )

Figure 6.4 Drawing geometrical shapes and writing text on
the canvas.

The method .create rectangle() at
Line 12 creates a rectangle with opposite ver-
tices (x1 = 40 px, y1 = 10 px) and (x2 =

150 px, y2 = 100 px), using light green,
’#00ff00’, as fill color. The mandatory argu-
ments of this method are the four x1, y1, x2

and y2 coordinates. Here we are using the op-
tional argument fill=’#00ff00’, speci-
fying the fill color. If you omit this argument,
the default color is transparent, equivalent
to fill=’’. Another optional argument is
outline, determining the color of the bor-
der. The default is outline=’black’.

At Lines 13-14 the method .cre-
ate text() writes a text on the canvas
at a position determined by its two manda-
tory arguments, x and y. The text to be
written is specified by the optional argument
text=’This is a rectangle’. By
default, the text is printed centered around the (x, y) position. Different positioning with respect to
(x, y) is possible via the optional argument anchor, the default is anchor=CENTER. The optional
argument font is a tuple comprising two strings, specifying the font, here ’Helvetica’, and the
font size, here ’14’.

15 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . hep tagon
16 Ox=270
17 Oy=60
18 r =50.0
19 Np=7
20 po ly = [ ]
21 i =0
22 a l p h a =2.0* p i / Np
23 whi le i <Np :
24 po ly . append ( Ox+ r * s i n ( i * a l p h a ) )
25 po ly . append ( Oy− r * cos ( i * a l p h a ) )
26 i +=1
27 ca nv a s . c r e a t e p o l y g o n ( poly , f i l l = ’ #00 f f f f ’ , o u t l i n e = ’ #000000 ’ )
28 ca nv a s . c r e a t e t e x t ( 2 7 0 , 1 2 0 , t e x t = ’ Th i s i s a h e p t a g o n ’ ,\
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29 f o n t =( ’ H e l v e t i c a ’ , ’ 14 ’ ) )

Here we create a regular polygon, i.e., a closed polyline of n line segments of equal length and n
vertices, with n = 7 (a heptagon) in the present case. Our heptagon is centered at Ox = 270 px,
Oy = 60 px, and inscribed in a circle of radius r = 50 px. Line 20 creates the empty list poly, that
will contain the vertices of the heptagon. Variable alpha defined at line 22 is the central angle, and
the loop 23-26 fills the list of the vertex coordinates. Method .create polygon() at Line 27
creates a polygon whose vertices are specified by the (x, y) coordinates contained in the list poly,
the mandatory argument. The optional argument fill=’#00ffff’ specifies that the color of the
polygon surface is bright cyan, while the other optional argument outline=’#000000’ specifies
that the border is black.

30 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e l l i p s e
31 ca nv a s . c r e a t e o v a l ( 4 0 0 , 1 0 , 5 9 0 , 1 0 9 , f i l l = ’ r e d ’ )
32 ca nv a s . c r e a t e t e x t ( 4 8 5 , 1 2 0 , t e x t = ’ Th i s i s an e l l i p s e ’ ,\
33 f o n t =( ’ H e l v e t i c a ’ , ’ 14 ’ ) )

Method create oval() draws an ellipse inscribed in a rectangle of opposite vertices (400, 10)
and (590, 109). The fill color is ’red’, the default color, ’black’, is used for the border since the
outline option is not specified.

34 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a rc
35 ca nv a s . c r e a t e a r c ( 1 0 , 1 5 0 , 1 5 0 , 3 0 0 , s t a r t =20 , e x t e n t =220 , f i l l = ’ # f f f f 0 0 ’ ,\
36 o u t l i n e = ’ # f f f f 0 0 ’ , s t y l e =PIESLICE )
37 ca nv a s . c r e a t e t e x t ( 8 0 , 3 0 0 , t e x t = ’ SLICE ’ , f o n t =( ’ H e l v e t i c a ’ , ’ 12 ’ ) )
38 ca nv a s . c r e a t e a r c ( 2 0 0 , 1 5 0 , 3 4 0 , 3 0 0 , s t a r t =20 , e x t e n t =220 , f i l l = ’ ’ ,\
39 o u t l i n e = ’ #0000 f f ’ , s t y l e =CHORD)
40 ca nv a s . c r e a t e t e x t ( 2 7 0 , 3 0 0 , t e x t = ’CHORD’ , f o n t =( ’ H e l v e t i c a ’ , ’ 12 ’ ) )
41 ca nv a s . c r e a t e a r c ( 4 0 0 , 1 5 0 , 5 4 0 , 3 0 0 , s t a r t =20 , e x t e n t =220 , o u t l i n e = ’ # f f 0 0 0 0 ’ \
42 , s t y l e =ARC)
43 ca nv a s . c r e a t e t e x t ( 4 7 0 , 3 0 0 , t e x t = ’ARC’ , f o n t =( ’ H e l v e t i c a ’ , ’ 12 ’ ) )

Method create arc() is called with different options. Option start is the start angle, in degrees,
of the arc. The angle is measured from the +x direction, counterclockwise. Option extent is the
angular width of the arc, again in degrees. Option style=PIESLICE draws a slice of a pie chart,
style=CHORD draws a chord connecting the endpoints of the arc, and style=ARC simply draws
the arc. Constants ARC, CHORD and PIESLICE are defined in the TKinter library and imported at
Line 2.

44 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l i n e
45 l i n e = [ ]
46 i =0
47 dx =(cw−20) /6
48 dy=40
49 whi le i <7:
50 l i n e . append (10+ i *dx )
51 l i n e . append (380+ dy )
52 dy=−dy
53 i +=1
54 ca nv a s . c r e a t e l i n e ( l i n e , f i l l = ’ b l u e ’ )
55 ca nv a s . c r e a t e t e x t ( 3 0 0 , 4 4 0 , t e x t = ’ Th i s i s a p o l y l i n e ’ ,\
56 f o n t =( ’ H e l v e t i c a ’ , ’ 14 ’ ) )
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Method create line() at Line 54 draws a polyline comprising an arbitrary number n of line seg-
ments, obviously including the single segment as special case, and n+1 vertices. The mandatory argu-
ment line is a list comprising the coordinates of the polyline vertices in the form [x0, y0, x1, y1, . . . , xn, yn].
The optional argument fill specifies the line color. List line is created at lines 45-53.

57 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Greek l e t t e r s
58 ca nv a s . c r e a t e t e x t ( 3 0 0 , 4 8 0 , t e x t =\
59 ’ Greek l e t t e r s : \
60 \ u0393 \u03B5 \ u03c9 \u03BC\u03B5 \u03C4 \u03C1 \u03B9 \u03B1 ’ ,\
61 f o n t =( ’ H e l v e t i c a ’ , ’ 12 ’ ) )
62 #
63 r o o t . main loop ( )

The create text() command at lines 58-61, split into four lines because of page size, shows the
use of Greek letters. Unfortunately it is not (yet?) possible to insert LATEX text into Tkinter, as we did
under Matplotlib. The only way out is using the UTF-8 encoded Greek characters, listed in Table E.2
of Appendix E.

6.4 Plotting a Function with Tkinter

6.4.1 Plotting a Hyperbola
Plotting a function with Tkinter is slightly less easy than with Matplotlib, but still straightforward.
Plotting relies on the method canvas.create line(), which draws a polyline. If the line seg-
ments of the polyline are sufficiently short, the polyline is indistinguishable from a smooth curve:
remember that, in any case, you cannot have a resolution better than 1 px on the computer monitor.

Figure 6.5 Plotting a hyperbola under Tkinter.
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As an example, Listing 6.4 draws a hyperbola of equation

x2

a2 −
y2

b2 = 1 , (6.1)

with a=80 and b=40, on the canvas. The pixel is used as unit of length.

Listing 6.4 HyperbolaPlot.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , Canvas , E , LAST ,N
3 import numpy as np
4 #
5 cw=800
6 ch =400
7 Ox=cw / 2
8 Oy=ch / 2
9 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c r e a t e r o o t window and canvas

10 r o o t =Tk ( )
11 r o o t . t i t l e ( ’ Hyperbo la P l o t ’ )
12 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background=” # f f f f f f ” )
13 ca nv a s . g r i d ( row =0 , column =0)

In addition to the functions Tk() and Canvas(), we import also the Tkinter constants E, LAST and
N. The canvas size is 800×400 pixels, Ox and Oy are the coordinates of the origin of our xy reference
frame relative to the canvas reference.
14 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a xe s
15 ca nv a s . c r e a t e l i n e ( 0 , Oy , cw−1 ,Oy , f i l l = ’ b l a c k ’ , a r row=LAST ,
16 a r r o w s h a p e = ( 2 0 , 2 0 , 5 ) )
17 ca nv a s . c r e a t e l i n e ( Ox , ch −1 ,Ox , 0 , f i l l = ’ b l a c k ’ , a r row=LAST ,
18 a r r o w s h a p e = ( 2 0 , 2 0 , 5 ) )
19 ca nv a s . c r e a t e t e x t ( cw−20 ,Oy+11 , t e x t = ’ x ’ , f o n t =( ’ Times ’ , ’ 16 ’ ,
20 ’ i t a l i c ’ ) )
21 ca nv a s . c r e a t e t e x t ( Ox−15 ,15 , t e x t = ’ y ’ , f o n t =( ’ Times ’ , ’ 16 ’ ,
22 ’ i t a l i c ’ ) )

Lines 15-16 and 17-18 draw the x and y axes on the canvas, respectively. The two axes have arrows at
their terminal endpoints (arrow=LAST), the shape of the arrows is specified by the arrowshape
optional parameter, see Appendix D. Lines 19-20 and 21-22 write the symbols x and y at the axes
ends.
23 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x− t i c k s
24 dx=80
25 i =1
26 x=0
27 whi le x<cw−dx :
28 x= i *dx
29 ca nv a s . c r e a t e l i n e ( x , Oy , x , Oy+10)
30 ca nv a s . c r e a t e t e x t ( x , Oy+10 , t e x t = s t r ( x−Ox ) , a nc ho r=N)
31 i +=1
32 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y− t i c k s
33 dy=40
34 i =1
35 y=0
36 whi le y<ch−dy :
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37 y= i *dy
38 t x t = s t r ( y−Oy )
39 ca nv a s . c r e a t e t e x t ( Ox−10 , ch−y , t e x t = s t r ( y−Oy ) , a nc ho r=E )
40 i +=1

Lines 24-40 draw the ticks along the x and y axes, respectively. The x ticks are spaced by 80 px, the
y ticks by 40 px. The arguments of the method .create text() are discussed in Appendix D.

41 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a s y m p t o t e s
42 ca nv a s . c r e a t e l i n e ( 0 , 0 , cw−1 , ch −1 , f i l l = ’ r e d ’ )
43 ca nv a s . c r e a t e l i n e ( 0 , ch −1 ,cw−1 ,0 , f i l l = ’ r e d ’ )

Lines 42-43 draw the hyperbola asymptotes, the two red diagonals in Fig. 6.5.

44 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . make l i s t s o f h y p e r b o l a c o o r d i n a t e s
45 a =80.0
46 b =40.0
47 y=−ch / 2
48 hyp1 = [ ]
49 hyp2 = [ ]
50 whi le y<ch / 2 :
51 x=( a / b )* np . s q r t ( y*y+b*b )
52 hyp1 . append ( Ox+x )
53 hyp1 . append ( Oy−y )
54 hyp2 . append ( Ox−x )
55 hyp2 . append ( Oy−y )
56 y+=2

The equation of our hyperbola is (6.1). The parameters a and b are defined at lines 45 and 46, all
values are in pixels. Line 47 sets the initial value of y as -ch/2, at the bottom of the canvas in our
xy reference frame. Lines 48 and 49 create the two empty lists hyp1 and hyp2 that will contain
the coordinate samplings for the right and left branch of the hyperbola, respectively. Loop 50-56 fills
hyp1 and hyp2 by evaluating x as a function of y. It is convenient evaluate x as a function of y,
rather than y a function of x, because x(y) is a double-valued function, while y(x) is a four-valued
function. The value of y is increased by 2 px at every step. You are invited to experiment the results
of changing the y step increase at Line 56.

57 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw h y p e r b o l a
58 ca nv as . c r e a t e l i n e ( hyp1 , f i l l = ’ b l u e ’ )
59 ca nv a s . c r e a t e l i n e ( hyp2 , f i l l = ’ b l u e ’ )
60 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 r o o t . main loop ( )

Lines 58 and 59 draw the two hyperbola branches.

6.4.2 Saving an Image of the Canvas
As we saw in Section 3.3, Listing 3.5, the package matplotlib.pyplot can save its plots to
figures through the method .savefig(). Matplotlib can save a figure in the formats .png, .pdf, .ps,
.eps and .svg. Obviously, also the images that we draw on the Tkinter canvas can be saved to figures.
For this we have the method .postscript(), which saves figures only in Encapsulated PostScript.
This, however, is not a relevant limitation: there are many available programs that can convert image
files between different figure formats. The author’s (personal) choice is the use of the ImageMagick®
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package, available for Linux, Windows and macOS, among others. Once ImageMagick® is installed,
and you want to convert an Encapsulated PostScript file naned, say, myfigure.eps to any other
format, say .jpg, you simply type

convert -density 300 myfigure.eps myfigure.jpg
Thus, for instance, the last lines of Listing 6.4 must be changed to
60 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 ca nv a s . u p d a t e ( )
62 ca nv a s . p o s t s c r i p t ( f i l e = ’ hyperb . eps ’ , co lormode= ’ c o l o r ’ )
63 r o o t . main loop ( )

Line 61 updates the canvas, so that the figure can be copied from it. We shall see in Chapter 7
that the method .update() is essential in Tkinter animation for refreshing the canvas at each new
animation frame. Method .postscript() at Line 62 creates the Encapsulated PostScript file
hyperb.eps. The optional argument colormode can have the values ’color’ for color output,
’gray’ for grayscale and ’mono’ for black and white. Since .postscript() is a canvas mode,
only the canvas, not the window frame, is reproduced in the figure file.



Chapter 7

Tkinter Animation

7.1 Introduction

Tkinter animation is based on the same principle of all computer animations, as well as cinematogra-
phy and TV: successive images (frames) are shown on the monitor at a given frame rate (24 frames
per second in the case of 35 mm sound films), giving the illusion of motion to the human eye. This
task is performed by a loop, often an infinite loop, which, at each cycle,

1. cleans the canvas, removing the preceding frame (from the canvas, not from the monitor!);

2. draws the new frame on the canvas, while the preceding frame is still displayed on the monitor;

3. copies the new frame from the canvas to the monitor;

4. waits an appropriate delay time in order to keep pace with the required frame rate;

5. returns to point 1.

In choosing the frame rate for an interactive animation, we must keep in mind that the computer
must have the time to perform all calculations needed to draw the new frame, and actually redraw
the picture, in the interval between two consecutive pictures. When the calculations involved are too
complex, and/or drawing the pictures requires too much time, the animation will be slower than the
requested frame rate. In this case, an alternative is asking our program to store all the single frames
in a file, which we shall watch as a movie after running the program. This, however, will prevent
interactivity.

As a simple example, the following code shows a ball (actually, a red circle) moving on the canvas
and bouncing at the canvas borders.

Listing 7.1 FramedBall.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , Canvas , ALL
3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . open T k i n t e r r o o t window
4 r o o t =Tk ( )
5 r o o t . t i t l e ( ” Framed b a l l ” )

Line 4 creates the root window of our program, and Line 5 writes the title of the root window.

99
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6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . canvas w i d t h and h e i g h t
7 cw=800
8 ch =640
9 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . add canvas t o r o o t window

10 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ w h i t e ’ )
11 ca nv a s . g r i d ( row =0 , column =0)
12 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v a r i a b l e s
13 d e l a y =20 # m i l l i s e c o n d s
14 r a d =20
15 c o l o r =” r e d ”
16 x= r a d
17 y=ch− r a d
18 vx =4.0
19 vy =−5.0

Figure 7.1 Ball bouncing at the canvas borders.

Quantities cw and ch are the width and
height of the canvas in pixels, respectively.
Line 10 creates the canvas of the required
width and height. It also specifies that the
canvas belongs to the root window, and that
the background color is white. Line 13 sets a
delay period of 20 ms, thus, the time interval
between two successive frames of our movie
will be 20 ms plus the time needed to calcu-
late and draw a single frame. Lines 14-19 de-

fine the variables describing the ball: the radius in px, rad and the color color, set to red. Lines 17
and 18 assign the initial x and y coordinates of the ball center: the initial x position equals the radius,
while the initial y position equals the canvas height minus the radius. Thus, the ball is located at the
lower left corner of the canvas: as usual in computer graphics, the x = 0 axis is the canvas left border,
while the y = 0 axis is the canvas upper border, the y axis being directed downwards. Lines 18 and 19
assign the initial x and y components of the ball velocity, vx and vy, respectively. Actually, vx and
vy are the x and y displacements of the ball at each cycle (each animation step). In other words, we
are measuring the ball velocity in “pixels/cycle”. Note that a negative y velocity is directed upwards
on the monitor.

20 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . main loop
21 whi le True :
22 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw b a l l on canvas
23 ca nv as . d e l e t e (ALL)
24 ca nv as . c r e a t e o v a l ( x−rad , y−rad , x+rad , y+rad , f i l l = c o l o r )
25 ca nv a s . u p d a t e ( )
26 # . . . . . . . . . . . . . . . . . . . . . i s t h e b a l l bounc ing on t h e canvas b o r d e r s ?
27 i f ( x+ r a d )>=cw :
28 vx=−abs ( vx )
29 e l i f ( y+ r a d )>=ch :
30 vy=−abs ( vy )
31 e l i f x<= r a d :
32 vx=abs ( vx )
33 e l i f y<= r a d :
34 vy=abs ( vy )
35 # . . . . . . . . . . . . . . . . . . . . . . . . . up da t e p o s i t i o n and v e l o c i t y components
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36 x+=vx
37 y+=vy
38 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . w a i t d e l a y t i m e
39 ca nv a s . a f t e r ( d e l a y )

Lines 21-39 constitute the program’s main loop (the animation loop). At each cycle, Line 23 clears
the canvas, i.e., the preceding frame. constant ALL is imported from Tkinter at Line 2. Line 24
draws the ball in the canvas: an ellipse inscribed in a rectangle (actually, a square, so that the ellipse
is actually a circle) of opposite corners (x-rad,y-rad) and (x+rad,y+rad), and filled with
the ball color. The circle is thus centered at (x, y). The drawing on the canvas is actually done at
Line 25 by the command canvas.update(). Lines 27-34 produce the bouncing effect: if the
distance between the ball center and one of the canvas borders is equal to or smaller than rad, the x
or y velocity component is reversed, according to the case. Note that here we are using the function
abs(), which returns the absolute value of the argument as an integer if the argument is integer, as
a float if the argument is a float. Function math.fabs() returns the absolute value always as a
float, even if the argument is an integer. Lines 36 and 37 update the ball position for the next “movie
frame”. Line 39 forces the program execution to wait the required delay time between two successive
frames. The program is exited by clicking on the red x at the upper left corner of the root window.
This usually causes the computer to report an error, that you can ignore. When you close the window,
your program still tries to do the next iteration, and you get an error message because the canvas no
longer exists.

7.2 Adding Uniform Acceleration
Adding a uniform acceleration is very simple: we need to add only two lines to Listing 7.1, and
change one line, as discussed in the comments to Listing 7.2. This listing draws a bouncing ball in
the presence of gravity (and absence of friction!)

Listing 7.2 GravityBall.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , Canvas , ALL
3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . open T k i n t e r r o o t window
4 r o o t =Tk ( )
5 r o o t . t i t l e ( ” G r a v i t y b a l l ” )
6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . canvas w i d t h and h e i g h t
7 cw=800
8 ch =400
9 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . add canvas t o r o o t window

10 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ w h i t e ’ )
11 ca nv a s . g r i d ( row =0 , column =1)
12 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v a r i a b l e s
13 d e l a y =20 # m i l l i s e c o n d s
14 r a d =20
15 c o l o r =” r e d ”
16 x= r a d
17 y=ch− r a d
18 vx =4.0
19 vy =−7.5
20 ay =0.1
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Line 20 is the first added line: it assigns the value 0.1 to the variable ay, the y (and only nonzero)
component of the ball acceleration. The acceleration is measured in “pixels/cycle2 ”, and, being
positive, is directed downwards on the computer monitor, simulating gravity.
21 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . main loop
22 whi le True :
23 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw b a l l on canvas
24 ca nv a s . d e l e t e (ALL)
25 ca nv a s . c r e a t e o v a l ( x−rad , y−rad , x+rad , y+rad , f i l l = c o l o r )
26 ca nv a s . u p d a t e ( )
27 # . . . . . . . . . . . . . . . . . . . . . i s t h e b a l l bounc ing on t h e canvas b o r d e r s ?
28 i f ( x+ r a d )>=cw :
29 vx=−abs ( vx )
30 e l i f ( y+ r a d )>=ch :
31 vy=−abs ( vy )
32 e l i f x<= r a d :
33 vx=abs ( vx )
34 e l i f y<= r a d :
35 vy=abs ( vy )
36 # . . . . . . . . . . . . . . . . . . . . . . . . . up da t e p o s i t i o n and v e l o c i t y components
37 x+=vx
38 y+=vy +0.5* ay
39 vy+=ay
40 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . w a i t d e l a y t i m e
41 ca nv a s . a f t e r ( d e l a y )

Line 38 is the line we had to change. The y motion is occurring with uniform acceleration, thus, the
y displacement of the ball in a time interval ∆t is ∆y = vy ∆t + 0.5 ay ∆t2. Here we are using the loop
cycle as time unit, thus ∆t = ∆t2 = 1. Line 39 is the last added line, it updates the vertical component
of velocity for the next “movie frame”.

7.3 Adding Interactive Buttons
Up to now, we could stop and exit our programs only by clicking the mouse on the x in the small
red circle at the upper left of the window frame. When we do this for listings 7.1 and 7.2, an error is
reported on the terminal because we interrupted the execution of an infinite loop. Another possibility
would be to replace the loop command “while True:” in the code with, for instance, the command
“for i in range(5000):”, this would stop the program after 5000 cycles. A more refined way
is adding interactive buttons, which allow us to control the program during its execution. Here follows
a listing, where only the additions to, and changes from, Listing 7.2 are commented.

Listing 7.3 ButtonBall.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import Tk , But ton , Canvas , Frame , ALL,W
3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
4 RunAll=True
5 RunMotion=F a l s e

Two further functions, Button() and Frame(), and one further constant, W, are imported from
Tkinter. Two global variables, RunAll, initially set to True, and RunMotion, initially set to
False, are added. The program will run as long as RunAll is true, the ball will move when
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RunMotion is true, and be in “standby” when RunMotion is false. According to Line 5, the ball
will stand still at the beginning of the program execution. These two variables are global: they are
common to the main program and to the functions called by clicking the mouse on the control buttons.

6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S t a r t / S top mot ion
7 def S t a r t S t o p ( ) :
8 g l o b a l RunMotion
9 RunMotion=not RunMotion

10 i f RunMotion :
11 S t a r t B u t t o n [ ” t e x t ” ]= ” Stop ”
12 e l s e :
13 S t a r t B u t t o n [ ” t e x t ” ]= ” R e s t a r t ”

Here we define the function StartStop(), called by pressing the Start/Stop button, see comments
to Lines 30-33 below. This function switches the value of the global variable RunMotion from
True to False and vice versa, and changes the label on the Start/Stop button accordingly. If the
ball is moving, pressing the button will stop it, and put it in motion if it is in stand-by. The variable
RunMotion is declared as global: it is shared by the main program and StartStop(). Failing to
declare RunMotion as global would cause an error message: Python would interpret the variable as
local to StartStop(), and complain that Line 9 is using a variable before it is assigned a value.

14 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E x i t program
15 def S t o p A l l ( ) :
16 g l o b a l RunAll
17 RunAll=F a l s e

Here we define the function StopAll(), called by pressing the Close button. This function assigns
the value False to the global variable RunAll, causing the program execution to stop.

18 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e r o o t window
19 r o o t =Tk ( )
20 r o o t . t i t l e ( ” B u t t on b a l l ” )
21 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add canvas t o r o o t window
22 cw=800
23 ch =400
24 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ w h i t e ’ )
25 ca nv a s . g r i d ( row =1 , column =0)
26 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add t o o l b a r t o r o o t window
27 t o o l b a r =Frame ( r o o t )
28 t o o l b a r . g r i d ( row =0 , column =0 , s t i c k y =W)

Figure 7.2 Control buttons on the toolbar of the root
window

Line 25 locates the canvas at row 1 instead of row 0
as in the previous scripts, because row 0 will be oc-
cupied by a horizontal toolbar, containing the con-
trol buttons. Line 27 creates the toolbar as a frame
belonging to the root window, and Line 28 locates it
at row 0, column 0, just above the canvas. The op-
tion sticky=W aligns the buttons at the left (West
in a geographical map) of the toolbar. The other
possibility would be sticky=E for aligning the
buttons at the right. Values N and S have no effect in a single-row toolbar. Omitting the sticky
option would center the buttons in the toolbar. Constants W, E, N and S are defined by Tkinter.
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29 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar b u t t o n s
30 S t a r t B u t t o n =Bu t ton ( t o o l b a r , t e x t =” S t a r t ” , command= S t a r t S t o p )
31 S t a r t B u t t o n . g r i d ( row =0 , column =0)
32 C l o s e B u t t o n=Bu t ton ( t o o l b a r , t e x t =” Close ” , command=S t o p A l l )
33 C l o s e B u t t o n . g r i d ( row =0 , column =1)

Line 30 creates the Start/Stop button, belonging to the toolbar, see Fig. 7.2. The initial text on the
button is “Start”, because initially the ball is in stand-by. The command associated to the button is the
function StartStop(), defined at Lines 7-13. Line 31 locates the button at row 0 (the only row)
and column 0 of the toolbar. Lines 32-33 create and locate the Close button, which stops the program
execution by calling function StopAll().

34 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V a r i a b l e s
35 d e l a y =20 # m i l l i s e c o n d s
36 r a d =20
37 c o l o r =” r e d ”
38 x= r a d
39 y=ch− r a d
40 vx =4.0
41 vy =−7.5
42 ay =0.1
43 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main loop
44 whi le RunAll :
45 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw b a l l on canvas
46 ca nv a s . d e l e t e (ALL)
47 ca nv a s . c r e a t e o v a l ( x−rad , y−rad , x+rad , y+rad , f i l l = c o l o r )
48 ca nv a s . u p d a t e ( )
49 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bouncing on t h e canvas b o r d e r s
50 i f RunMotion :
51 i f ( x+ r a d )>=cw :
52 vx=−abs ( vx )
53 e l i f ( y+ r a d )>=ch :
54 vy=−abs ( vy )
55 e l i f x<= r a d :
56 vx=abs ( vx )
57 e l i f y<= r a d :
58 vy=abs ( vy )
59 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update p o s i t i o n and v e l o c i t y
60 x+=vx
61 y+=vy +0.5* ay
62 vy+=ay
63 # − − − − − − − − − − − − − − − . . . . . . . . . . . . . . . . . . . . . . . . . − − − − − − − − − Wait d e l a y t i m e
64 ca nv a s . a f t e r ( d e l a y )
65 #−−−−−−−−−−−−−−−−−−−−−−−−−
66 r o o t . d e s t r o y ( )

The loop 44-64 iterates as long as RunAll is true. When the loop is interrupted, the root window
is destroyed at Line 66. During the loop execution, the position of the ball is updated by Lines 49-62
if RunMotion is true, otherwise the ball stands still. Now, each time you click the mouse on the
Start/stop button of Fig. 7.2 the ball stops if it was moving, and vice versa. If you click on the Close
button the program terminates without error messages.
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7.4 Numerical Parameters, Entries, Labels and Mouse Dragging

Figure 7.3 Control buttons, labels and entries on the
toolbar.

It is often interesting to observe how the program
behavior changes if some numerical parameters are
changed. A possibility is changing the lines of the
listing where the variables are assigned, for instance
Line 40 of Listing 7.3 for the initial horizontal ve-
locity vx, or Line 42 for the vertical acceleration
ay. In this case one must rerun the program.

But it is also possible to change the parameter
values interactively, during the program execution.
For this, we need to introduce appropriate labels
and entries in the toolbar, as shown in Fig. 7.3. Af-
ter clicking the mouse on the entry widget, the user
can enter a new value by typing it on the keyboard.
Then, the program can read the new text on the entry and perform the required conversions. The label
widget is a standard Tkinter widget used to display a text or image on the screen. Here we shall use it
to specify the name of the parameter displayed in the nearby entry.

Further, it is possible to change the initial conditions by dragging the objects on the canvas by
means of the mouse. Listing 7.4 follows, as usual only the changes from Listing 7.3 are commented.

Listing 7.4 MouseEntryBall.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import *
3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
4 RunAll=True
5 RunMotion=GetData=Grabbed=F a l s e
6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S t a r t / S top mot ion
7 def S t a r t S t o p ( ) :
8 g l o b a l RunMotion
9 RunMotion=not RunMotion

10 i f RunMotion :
11 S t a r t B u t t o n [ ” t e x t ” ]= ” Stop ”
12 e l s e :
13 S t a r t B u t t o n [ ” t e x t ” ]= ” R e s t a r t ”
14 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E x i t program
15 def S t o p A l l ( ) :
16 g l o b a l RunAll
17 RunAll=F a l s e
18 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s
19 def ReadData (* a r g ) :
20 g l o b a l GetData
21 GetData=True

From this listing on, we are importing everything from Tkinter at Line 2, in spite of this being discour-
aged at the end of Section 1.8. From the author’s experience, importing everything from the Tkinter
package (and from Tkinter only!) never led to variable conflicts. You are simply advised to be careful.

The new global variables GetData and Grabbed, both initially set to False, are added at Line
5. When the motion is in standby, if Getdata is True the program will read new values from the
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entries, if Grabbed is True the mouse cursor will grab the ball and move it on the canvas. The value
of GetData is turned to True by the new function ReadData(), defined at Lines 18-21.

22 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grab b a l l ****
23 def G r a b B a l l ( e v e n t ) :
24 g l o b a l Grabbed , rad , RunMotion , x , y
25 i f not RunMotion :
26 Grabbed = ( ( x−e v e n t . x )**2+ ( y−e v e n t . y )**2) < r a d **2
27 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R e l e a s e b a l l ****
28 def R e l e a s e B a l l ( e v e n t ) :
29 g l o b a l Grabbed
30 Grabbed=F a l s e
31 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drag b a l l ***
32 def D r a g B a l l ( e v e n t ) :
33 g l o b a l Grabbed , x , y
34 i f Grabbed :
35 x , y=e v e n t . x , e v e n t . y

All three functions above have a single argument, event. Python events can come from various
sources, here we are interested in keyboard key presses and mouse operations by the user.

If the ball is in standby (RunMotion is False), function GrabBall() checks if the distance of
the mouse pointer, located on the canvas at (event.x,event.y), from the ball center, located at
(x,y), is smaller than the ball radius, rad. In this case the ball is grabbed by the mouse cursor by
setting Grabbed equal to True. Pressing the mouse left button is the event that activates function
GrabBall(), see Line 46 below.

The event calling function ReleasBall(), defined at lines 27-30, is releasing the left mouse
button, see Line 48 below. The function releases (frees) the grabbed ball.

Function DragBall(), defined at lines 31-35, copies the mouse-cursor coordinates (event.x,
event.y) into the ball-center coordinates (x,y), thus forcing the ball to follow the mouse-cursor
movements on the canvas. The event activating this function, provided that the the global variable
Grabbed is True, is the motion of the mouse cursor over the canvas, see Line 47 below.

36 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e r o o t window
37 r o o t =Tk ( )
38 r o o t . t i t l e ( ” E n t r y b a l l ” )
39 r o o t . b ind ( ’<Return > ’ , ReadData )
40 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add canvas t o r o o t window
41 cw=800
42 ch =400
43 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ w h i t e ’ )
44 ca nv a s . g r i d ( row =0 , column =0)
45 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mouse b u t t o n ***
46 ca nv a s . b ind ( ’<But ton −1> ’ , G r a b B a l l )
47 ca nv a s . b ind ( ’<B1−Motion> ’ , D r a g B a l l )
48 ca nv a s . b ind ( ’<B u t t o n R e l e a s e −1> ’ , R e l e a s e B a l l )

Line 39 binds the Return key of the keyboard to the function ReadData(): whenever the Return
key is pressed, ReadData() is called, and GetData is set to True. See Appendix F.

Line 46 binds the event “pressing the left mouse button” to the function GrabBall(), defined at
lines 23-26, provided that the mouse cursor is inside the canvas. In Tkinter notation, event <Button-
1> corresponds to pressing the left mouse button, <Button-2> to pressing the middle mouse button,
and <Button-3> to pressing the right button. Codes <Button-4> <Button-5> refer to the
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events of turning the mouse wheel forward and backward. Again, see Appendix F.
Line 47 binds the event “moving the mouse while the left button is pressed” to the function Drag-

Ball(). Codes <B2-motion> and <B3-motion> refer to mouse motion while the middle, or
right, button is pressed, respectively.

Line 48 binds the event “releasing the left mouse button” to the function <ButtonRelease-
1>. Thus, pressing the left mouse button when the mouse cursor is on the ball (closer to the ball
center than the ball radius) will grab the ball. Moving the mouse keeping the left button pressed will
drag the ball over the canvas, and releasing the left mouse button will free the ball.
49 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add t o o l b a r t o r o o t window
50 t o o l b a r =Frame ( r o o t )
51 t o o l b a r . g r i d ( row =0 , column =1 , s t i c k y =N)
52 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar b u t t o n s
53 S t a r t B u t t o n =Bu t ton ( t o o l b a r , t e x t =” S t a r t ” , command= S t a r t S t o p , wid th =7)
54 S t a r t B u t t o n . g r i d ( row =0 , column =0)
55 C l o s e B u t t o n=Bu t ton ( t o o l b a r , t e x t =” Close ” , command=S t o p A l l )
56 C l o s e B u t t o n . g r i d ( row =0 , column =1)

The Start button and the Close button are located in subcolumns 0 and 1 of the toolbar, respectively.
In this program we use a vertical toolbar, located in column 1, at the right of the canvas (located in
column 0), see Fig. 7.3.
57 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar l a b e l s and e n t r i e s
58 LabVx=Labe l ( t o o l b a r , t e x t =”Vx” )
59 LabVx . g r i d ( row =1 , column =0)
60 EntryVx=E n t r y ( t o o l b a r , bd =5 , wid th =8)
61 EntryVx . g r i d ( row =1 , column =1)
62 LabAccel=Labe l ( t o o l b a r , t e x t =”Ay” )
63 LabAccel . g r i d ( row =2 , column =0)
64 E n t r y A c c e l=E n t r y ( t o o l b a r , bd =5 , wid th =8)
65 E n t r y A c c e l . g r i d ( row =2 , column =1)

Lines 58 and 59 create the label Vx and locate it in subrow 1, column 0 of the toolbar: subrow 0
is occupied by the buttons. Lines 60 and 61 create the entry where we can type new values for the
horizontal velocity component, and locate it at the right of the label, at subrow 1 and subcolumn 1 of
the toolbar. Line 60 also specifies that the border of the entry is 5 pixels (bd=5), and that the entry
will show a maximum of 8 characters (width=8). Lines 62-65 create the label and the entry for the
vertical acceleration ay.
66 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V a r i a b l e s
67 d e l a y =20 # m i l l i s e c o n d s
68 r a d =20
69 c o l o r =” r e d ”
70 x= r a d
71 y=ch− r a d
72 vx =4.0
73 vy =−7.5
74 ay =0.1
75 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W r i t e v a r i a b l e v a l u e s i n t o e n t r i e s
76 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
77 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )
78 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main loop
79 whi le RunAll :
80 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw b a l l on canvas
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81 ca nv a s . d e l e t e (ALL)
82 ca nv a s . c r e a t e o v a l ( x−rad , y−rad , x+rad , y+rad , f i l l = c o l o r )
83 ca nv a s . u p d a t e ( )
84 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B a l l i s moving
85 i f RunMotion :
86 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bouncing
87 i f ( x+ r a d )>=cw :
88 vx=−abs ( vx )
89 e l i f ( y+ r a d )>=ch :
90 vy=−abs ( vy )
91 e l i f x<= r a d :
92 vx=abs ( vx )
93 e l i f y<= r a d :
94 vy=abs ( vy )
95 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update p o s i t i o n and v e l o c i t y
96 x+=vx
97 y+=vy +0.5* ay
98 vy+=ay
99 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s

100 e l i f GetData :
101 t r y :
102 vx= f l o a t ( EntryVx . g e t ( ) )
103 e xc ep t V a l u e E r r o r :
104 pass
105 t r y :
106 ay= f l o a t ( E n t r y A c c e l . g e t ( ) )
107 e xc ep t V a l u E r r o r :
108 pass
109 EntryVx . d e l e t e ( 0 , ’ end ’ )
110 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
111 E n t r y A c c e l . d e l e t e ( 0 , ’ end ’ )
112 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )
113 GetData=F a l s e
114 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wai t d e l a y t i m e
115 ca nv as . a f t e r ( d e l a y )
116 #−−−−−−−−−−−−−−−−−−−−−−−−−
117 r o o t . d e s t r o y ( )

Lines 100-113 are effective when the ball is in standby (when RunMotion is False) and GetData
is True. Line 102 reads what is typed in the entry EntryVx and converts it to a float value, assigned
to the variable vx. The reason for the try statement at Line 101 is that you might have typed
some characters that are not numbers in the entry. In this case the function float() could not
convert the value and would report an exception (in Python, errors detected during execution are
called exceptions). Lines 101-104 tell the code to try if it is possible to convert the entry string into a
float value, if the conversion is successful, the value is assigned to vx. If a ValueError exception
is raised, i.e., conversion was not possible, Line 104 tells the program to do nothing: vx preserves its
old value. Lines 105-108 check if the string typed into the entry EntryAccel can be converted into
a new numerical value for ay. Line 109 deletes the present content of the entry EntryVx from 0,
i.e., the first character of the string, to the end of the string. Line 110 rewrites the new value formatted
with two digits after the decimal point. Line 113 resets the variable GetData to False.

You can type new values for the horizontal velocity and for the vertical acceleration of the ball at
any time, provided that the ball is in standby. The corresponding variables will assume the new values
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only after you press both the Return key and the Restart button, no matter in which order. When the
ball is in standby, you can also grab it and change its position with the mouse.

7.5 Creating Video Files under Tkinter
It is often convenient to create video files from our Python animations, both for sending them to
friends (or for showing them in conferences), and because animations can involve complex computa-
tions between successive frames, causing the program to run very slowly. Unfortunately Tkinter does
not have any method equivalent to .FuncAnimation() that we met in Section 3.7. The easiest
way is using one of the many available programs that record the entire computer screen or a selected
part of it.

A good choice for Linux is SimpleScreenRecorder by Maarten Baert. It is easy to install
and to use, and has the possibility to reduce the video frame rate if your animation is running too slow
due to the complex computations mentioned above. Recording the screen of a Mac is easy if you are
using macOS Mojave: just hit the keyboard shortcut Shift+cmd+5 and all the controls for capturing
video and still images from your desktop will appear. You can record the whole screen, a section, or a
specific window, then trim, save or share the resulting footage. Windows 10 offers the built-in Xbox
app, featuring screen capturing tools. Launch the Xbox app, then press the Windows and G icons on
the keyboard and choose ’Yes this is a game’ option. If you want to change the video quality or adjust
the audio settings, you can do so by opening Game DVR options menu. If you are satisfied with one
of the above options, or if you have found another screen-capturing application of your taste, you can
skip the rest of Section 7.5. Honestly, you are advised to do so.

Creating a video file under Tkinter is possible and absolutely not complicated. However, it is
true that it can be somewhat time-consuming, but it is the computer’s time, not necessarily yours!
The basic idea is copying each animation frame into a picture file, then merging all the pictures
into a single video file with the help of an external program. As we saw in Section 6.4.2, the method
canvas.postscript() saves the canvas content into an Encapsulated PostScript (eps) file. Thus,
if we want to create a video file from Script 7.4, we start by modifying Lines 78-94 as follows

Listing 7.5 EntryBall.py Modified to Create Video Files
75 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W r i t e v a r i a b l e v a l u e s i n t o e n t r i e s
76 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
77 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )
78 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frame c o u n t e r
79 iFrame=0
80 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main loop
81 whi le RunAll :
82 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw b a l l on canvas
83 ca nv as . d e l e t e (ALL)
84 ca nv as . c r e a t e o v a l ( x−rad , y−rad , x+rad , y+rad , f i l l = c o l o r )
85 ca nv a s . u p d a t e ( )
86 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B a l l i s moving
87 i f RunMotion :
88 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e v i d e o frame
89 FrameName= ’ . . / VideoFrames / f rame { : 0 8 d } . eps ’ . format ( iFrame )
90 ca nv a s . p o s t s c r i p t ( f i l e =FrameName , co lormode= ’ c o l o r ’ )
91 iFrame+=1
92 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bouncing
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93 i f ( x+ r a d )>=cw :
94 vx=−abs ( vx )
95 e l i f ( y+ r a d )>=ch :
96 vy=−abs ( vy )
97 e l i f x<= r a d :
98 vx=abs ( vx )
99 e l i f y<= r a d :

100 vy=abs ( vy )

where we have added Line 79 and Lines 88-91. Variable iFrame, defined at Line 79, is an animation-
frame counter. Lines 88-91 are executed only if RunMotion is True (if the ball is moving). Line
89 creates a name for the eps frame picture in the form path/frameXXXXXXXX.eps, where
XXXXXXXX is a zero-padded integer number ranging from 0000000000 to 99999999, equal to the
frame counter. Actually, in all practical cases, the highest number will be much smaller, since 108

is a very high number of frames. Even running at 50 frames/second, a video comprising 108 frames
would last 108/50 = 2 × 106 s ' 555.5 hours! For the path, here we are assuming that you have pre-
viously created an empty directory named VideoFrames parallel to your working directory, where
the animation frames will be stored. Under Windows all slashes ( / ) in the path must be replaced by
backslashes ( \ ). Line 90 copies the current animation-frame canvas into the eps file, and Line 91
increases the frame counter.

When we stop our modified program the VideoFrames directory will contain all our animation
frames in eps format. Unfortunately there is no program that can directly merge eps files into a video
file. Thus, we must first convert our eps files to some other format. Here we shall convert them to jpg
(Joint Photographic Experts Group), but also several other formats, like, for instance, png (Portable
Network Graphics), would do the job. The program convert of the ImageMagick® package can do
the conversion for us. Our jpg files can then be merged into a video file, for instance mp4 (MPEG-4:
Moving Picture Experts Group), or avi (Audio Video Interleave, created by Microsoft), by the pro-
gram ffmpeg. FFmpeg is a free software project consisting of a vast software suite of libraries and
programs for handling video, audio and other multimedia files and streams. It is available for the
Linux, Windows and macOS platforms. Listing 7.6 does the whole conversion from the original eps
files to the final video file. All you have to do is typing, for instance,

MakeVideo.py bouncing.mp4 or MakeVideo.py bouncing.avi
in the VideoFrames directory, and the script will create a video file for you.

Listing 7.6 MakeVideo.py
1 # ! / u s r / b i n / env py thon3
2 import t ime
3 import os
4 from s y s import a rgv
5 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conver t f r am es
6 movie=a rgv [ 1 ]
7 t t 0 = t ime . t ime ( )
8 nn=0
9 f o r I n F i l e in os . l i s t d i r ( ’ . ’ ) :

10 i f I n F i l e . e n d s w i t h ( ’ . eps ’ ) :
11 base=os . p a t h . s p l i t e x t ( I n F i l e ) [ 0 ]
12 O u t F i l e=base+” . j p g ”
13 command=” c o n v e r t − d e n s i t y 300 . / ”+ I n F i l e +” − f l a t t e n . / ”+O u t F i l e
14 os . sys tem ( command )
15 nn+=1
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16 t t t = t ime . t ime ( )
17 p r i n t ( t t t − t t 0 , ’ s e c o n d s ’ )
18 p r i n t ( ( t t t − t t 0 ) / nn , ’ s e c o n d s / f rame ’ )
19 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Merge f r ame s t o v i d e o f i l e
20 t t 0 = t t t
21 command= ’ f fmpeg − r 50 − f image2 − i . / f rame%08d . j p g −vcodec l i b x 2 6 4 ’ \
22 + ’ − c r f 25 −vf s c a l e =1280:−2 −p i x f m t yuv420p ’+movie
23 os . sys tem ( command )
24 t t t = t ime . t ime ( )
25 p r i n t ( t t t − t t 0 , ’ s e c o n d s f o r FFmpeg ’ )

Line 6 copies the second command-line argument, in our case bouncing.mp4 or bouncing.avi
according to your choice, into the string variable movie, see the discussion of Listing 2.1. Line 7
stores the initial time of the script execution into tt0, this will be needed for evaluating the com-
putation time. Variable nn at Line 8 is an animation-frame counter, needed at line 18 for evaluating
the conversion time per animation frame. Loop 9-15 converts our eps files to jpg. At Line 9, the
method os.listdir(’.’) returns a list comprising the entries of the current directory, specified
by the path ’.’. Thus, the variable InFile iterates over all the directory entries. The string method
.endswith() at Line 10 returns True if the string InFile ends with the suffix .eps, otherwise
returns False. Thus, Lines 11-15 are executed only for eps files.

Method os.path.splitext() at Line 11 splits its argument, InFile, into a string pair
(root, ext) such that root + ext = InFile, and ext is either empty or begins with a period
and contains at most one period. Thus, if InFile is, for instance, frame00000015.eps, the
string root is frame00000015, and ext is .eps. As a result, base is frame00000015, and
the string OutFile is frame00000015.jpg. Line 13 builds the command string to be passed as
argument to the method os.system, see Section 2.4. Line 14 calls the external command

c o n v e r t − d e n s i t y 300 frameXX . eps − f l a t t e n frameXX . j p g

that converts the eps file to a jpg file. The XX in the file names stands for an 8-digit integer (the frame
counter) with the appropriate number of leading zeros. The command option -density specifies
the image resolution to store when converting a vector image, like eps in our case, to a raster graphics,
also called bitmap, image such as jpg, pnm or png. The default resolution is 72 dots per inch, which
is equivalent to one pixel per typographic point (1 point = 1/72 inch). A value of 300, as chosen here,
will lead to satisfactory results for all practical purposes. The command option -flatten is needed
to preserve our background color, otherwise some output formats, like png, might have a transparent
background. Line 15 increases by one the frame counter.

Line 16 gets the time after all frames have been converted, and Lines 17-18 print the time needed
for the whole conversion process, and the average time per single-image conversion, on the terminal.
The time needed for converting a single image is of the order of 1 s, ranging from some 0.5 s up to
some 3 s depending on the image complexity and on the computer speed. At a frame rate of 24 fps
(frames per second), an animation of 10 minutes comprises 14 400 frames, whose conversion from eps
to jpg thus requires a time of the order of 4 hours. But, once you have launched the conversion script,
you can let your computer do the work alone overnight, if you wish. If you have a multiprocessor
computer you can divide the conversion time by approximately a factor n, where n is the number of
processors.

Lines 21-22 do the final job, merging the converted jpg frames into the output mp4, or avi, video
file, by calling the external command ffmpeg. The external command is

f fmpeg − r 24 − f image2 − i . / f rame \%08d . j p g −vcodec \
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l i b x 2 6 4 − c r f 25 −vf s c a l e =1280:−2 −p i x \ f m t yuv420p movie

where movie is either bouncing.mp4 or bouncing.avi. These are the meanings of the com-
mand options:

• - r 24 stands for a frame rate of 24 fps, you can experiment with different values, obtaining
effects from time-stretching (digital slow motion) to fast motion. An extremely low frame rate,
like -r 1/5 gives each image a duration of 5 seconds, good for a slide show, not for an
animation. An extremely high frame rate can exceed the computer capabilities.

• -f image2 tells FFmpeg that the input is a sequence of separate images, to be merged into a
single video file.

• -i ./frame%08d.png specifies that the input files are in the current directory (./), and
their names have the form framexxxxxxxx.png, where xxxxxxxx is a progressive 8-digit
integer patched with trailing zeros.

• -vcodec libx264 specifies the computer program used for encoding and decoding the
digital data stream, here libx264, which is free software available for Linux, Windows and
macOS. Usually libx264 is installed automatically when you install FFmpeg.

• -crf 25 sets the quality/size tradeoff for constant-quality (no bitrate target) and constrained-
quality (with maximum bitrate target) modes. Valid range is 0 to 63, higher numbers indicating
lower quality and smaller output size. A value of 25 is a reasonable compromise, while 63 leads
to a very low quality. The default value is 23.

• -vfscale=1280:-2 is a scale filter which resizes the image to a horizontal width of 1280
pixels. You can specify both width and height by typing, for instance, -vfscale=1280:800,
thus changing the aspect ratio. If you want to keep the aspect ratio you can type -1 for the ver-
tical size, -vfscale=1280:-1, this will calculate the height of the output image according
to the aspect ratio of the input image. Some codecs require the size of width and height to be a
multiple of a certain number n. You can achieve this by setting the width or height to −n, as in
the present case.

• -pix fmt yuv420p ensures compatibility with a wide range of playback programs. It is
required here, for example, for the video to be playable by Windows Media Player

• movie, has been set equal to our second command-line argument at Line 6, i.e., either bounc-
ing.mp4 or bouncing.avi, according to your choice. It is the name of the video output
file. If mp4 or avi are not convenient for you, FFmpeg supports many common and some
uncommon image formats, like, for instance, gif.

If you wish, you can change the file extensions .jpg at lines 12 and 21 with the extensions .png,
.pnm or other. The program will run anyway, in our experiments we found that the conversion to
.jpg was faster, but you might want to experiment a little yourself.

As stated above, in a multiprocessor, or multicore, computer, the time needed for converting the
animation frames from eps to jpg can be reduced by a factor approximately equal to the number
of “logical processors”. This is done by letting the logical processors work in parallel as much as
possible. Script 7.7 is an example of how we can do this. Assuming that you have 4 logical processors,
the usage is
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M a k e V i d e o P a r a l l e l . py 4 bounc ing . mp4

where the number 4 can be replaced by the actual number of available processors, and the extension
.mp4 can be replaced by the extension .avi or whatever video format you prefer.

Listing 7.7 MakeVideoParallel.py
1 # ! / u s r / b i n / env py thon3
2 import math
3 import t ime
4 import os
5 from s y s import argv , e x i t
6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I s s c r i p t c a l l e d c o r r e c t l y ?
7 i f l e n ( a rgv ) ! = 3 :
8 p r i n t ( ’ u sage : M a k e V i d e o P a r a l l e l . py NumberOfProcessors O u t p u t F i l e ’ )
9 e x i t ( )

10 # . . . . . . . . . . . . . . . . . . . . . . Number o f p r o c e s s o r s and name o f o u t p u t f i l e
11 nproc= i n t ( a rgv [ 1 ] )
12 movie=a rgv [ 2 ]
13 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Form l i s t s o f i n p u t and o u t p u t f i l e s
14 L i s t I n = [ ]
15 L i s t O u t = [ ]
16 f o r I n F i l e in os . l i s t d i r ( ” . ” ) :
17 i f I n F i l e . e n d s w i t h ( ” . eps ” ) :
18 L i s t I n . append ( I n F i l e )
19 base=os . p a t h . s p l i t e x t ( I n F i l e ) [ 0 ]
20 O u t F i l e=base+” . j p g ”
21 L i s t O u t . append ( O u t F i l e )
22 nn= l e n ( L i s t I n )
23 # . . . . . . . . . . . . . . . . . . . . . . . . . . Conver t a n i m a t i o n f r am es from eps t o j p g
24 t t 0 = t ime . t ime ( )
25 i =0
26 whi le i <nn :
27 j =0
28 command= ’ ’
29 whi le j <nproc :
30 i f ( i + j )<nn :
31 command+=” c o n v e r t − d e n s i t y 300 . / ”+ L i s t I n [ i + j ]+ ” − f l a t t e n . / ” \
32 +L i s t O u t [ i + j ]
33 i f j <( nproc −1) and ( i + j ) <( nn −1 ) :
34 command+=” | ”
35 j +=1
36 os . sys tem ( command )
37 i +=nproc
38 t t t = t ime . t ime ( )
39 p r i n t ( t t t − t t 0 , ’ s e c o n d s ’ )
40 p r i n t ( ( t t t − t t 0 ) / nn , ’ s e c o n d s / image ’ )
41 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Merge j p g f i l e s i n t o v i d e o f i l e
42 t t 0 = t t t
43 command= ’ f fmpeg − r 24 − f image2 − i . / f rame%08d . j p g −vcodec l i b x 2 6 4 ’ \
44 + ’ − c r f 25 −vf s c a l e =1280:−2 −p i x f m t yuv420p ’+movie
45 os . sys tem ( command )
46 t t t = t ime . t ime ( )
47 p r i n t ( t t t − t t 0 , ’ s e c o n d s f o r FFmpeg ’ )
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Lines 7-9 check if the number of entered command-line arguments is correct, they must be 3: i)
MakeVideoParallel.py, ii) the number of processors, iii) the name of the output video file. If
this is not the case the script warns you and exits. Line 11 copies the number of processors to be
used into the integer variable nproc, Line 12 copies the name of the output video file into the string
variable movie.

Lines 14-22 form the lists of the names of the input eps files, ListIn, and of the output jpg files,
ListOut. The integer variable nn is the number of animation frames to be converted.

Lines 24-40 perform the format conversion. They build composit command strings of the type
c o n v e r t − d e n s i t y 300 . / f rame00000000 . eps − f l a t t e n frame0000000 . j p g |
c o n v e r t − d e n s i t y 300 . / f rame00000001 . eps − f l a t t e n frame0000001 . j p g |
. . .

where the vertical bars “ | ” are used to join separate commands into a single command string, to be
passed as argument to the method os.system(). Thus, Line 36 launches the joined commands
simultaneously, and they can be simultaneously executed by different processors, if available. The
rest of the script is analogous to Listing 7.6.

7.6 Animation and Ordinary Differential Equations

7.6.1 Euler’s Method
A motion occurring with uniform acceleration is just a special case. In the general case the force
acting on a body will be some function of both the body position and velocity, and, because of New-
ton’s second law, we must deal with differential equations. In most cases the differential equations
describing the motion have no analytical solution, and we must use the numerical methods discussed
in Chapter 5. As a first simple example, simple because the acceleration is actually constant, we shall
apply Euler’s method, presented in Section 5.2, to the program of our Listing 7.4. As usual, we shall
comment only the changes to the original listing.

Listing 7.8 GravityEuler.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import *
3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
4 RunAll=True
5 RunMotion=GetData=F a l s e
6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S t a r t / S top mot ion
7 def S t a r t S t o p ( ) :
8 g l o b a l RunMotion
9 RunMotion=not RunMotion

10 i f RunMotion :
11 S t a r t B u t t o n [ ” t e x t ” ]= ” Stop ”
12 e l s e :
13 S t a r t B u t t o n [ ” t e x t ” ]= ” R e s t a r t ”
14 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E x i t program
15 def S t o p A l l ( ) :
16 g l o b a l RunAll
17 RunAll=F a l s e
18 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s
19 def ReadData (* a r g ) :
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20 g l o b a l GetData
21 GetData=True
22 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V a r i a b l e s
23 d e l a y =20 # m i l l i s e c o n d s
24 r a d =20
25 c o l o r =” r e d ”
26 x= r a d
27 y= r a d
28 vx =4.0
29 vy =7.5
30 ay =−0.2
31 mass=10
32 e n e r=mass * ( 0 . 5 * ( vx**2+vy **2)− ay *y )

Two new variables are added: the mass of the ball, set equal to 10 in arbitrary units, and the energy of
the ball, evaluated at Line 32 as the sum of the potential and kinetic energies.

33 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e r o o t window
34 r o o t =Tk ( )
35 r o o t . t i t l e ( ” G r a v i t y E u l e r ” )
36 r o o t . b ind ( ’<Return > ’ , ReadData )
37 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add canvas t o r o o t window
38 cw=800
39 ch =400
40 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ w h i t e ’ )
41 ca nv a s . g r i d ( row =0 , column =0)
42 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add t o o l b a r t o r o o t window
43 t o o l b a r =Frame ( r o o t )
44 t o o l b a r . g r i d ( row =0 , column =1 , s t i c k y =N)
45 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar b u t t o n s
46 nr =0
47 S t a r t B u t t o n =Bu t to n ( t o o l b a r , t e x t =” S t a r t ” , command= S t a r t S t o p , wid th =7)
48 S t a r t B u t t o n . g r i d ( row=nr , column =0)
49 C l o s e B u t t o n=Bu t to n ( t o o l b a r , t e x t =” Close ” , command=S t o p A l l )
50 C l o s e B u t t o n . g r i d ( row=nr , column =1)
51 nr+=1
52 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar l a b e l s and e n t r i e s
53 LabVx=Labe l ( t o o l b a r , t e x t =”Vx” )
54 LabVx . g r i d ( row=nr , column =0)
55 EntryVx=E n t r y ( t o o l b a r , bd =5 , wid th =8)
56 EntryVx . g r i d ( row=nr , column =1)
57 nr+=1
58 LabAccel=Labe l ( t o o l b a r , t e x t =”Ay” )
59 LabAccel . g r i d ( row=nr , column =0)
60 E n t r y A c c e l=E n t r y ( t o o l b a r , bd =5 , wid th =8)
61 E n t r y A c c e l . g r i d ( row=nr , column =1)
62 nr+=1
63 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energy l a b e l
64 EnerLab0=Labe l ( t o o l b a r , t e x t = ’ Energy : ’ , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
65 EnerLab0 . g r i d ( row=nr , column =0)
66 EnerLab=Labe l ( t o o l b a r , t e x t = ’ { : 8 . 3 f } ’ . format ( e n e r ) , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
67 EnerLab . g r i d ( row=nr , column =1 , s t i c k y =W)
68 nr+=1
69 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W r i t e v a r i a b l e v a l u e s i n t o e n t r i e s
70 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
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71 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )

Two new labels are added to the toolbar at lines 63-67. Label EnerLab0, defined at Lines 64-65.
simply contains the word “Energy”, while Label EnerLab, defined at Lines 66-67 contains the value
of the total energy of the bouncing ball. Its value will be updated every ten iterations of the main
animation loop.
72 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main loop
73 c o u n t =0
74 whi le RunAll :
75 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw b a l l on canvas
76 ca nv a s . d e l e t e (ALL)
77 ca nv a s . c r e a t e o v a l ( x−rad , ch −( y+ r a d ) , x+rad , ch −(y− r a d ) , f i l l = c o l o r )
78 ca nv a s . u p d a t e ( )
79 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B a l l i s moving
80 i f RunMotion :
81 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bouncing
82 i f ( x+ r a d )>=cw :
83 vx=−abs ( vx )
84 e l i f ( y+ r a d )>=ch :
85 vy=−abs ( vy )
86 e l i f x<= r a d :
87 vx=abs ( vx )
88 e l i f y<= r a d :
89 vy=abs ( vy )
90 # . . . . . . . . . . . . . . . . . Update p o s i t i o n and v e l o c i t y , E u l e r a l g o r i t h m
91 x+=vx
92 y+=vy
93 vy+=ay

A new variable count, initialized to zero, is defined at line 73. Lines 74-116 constitute the main
animation loop of the program. The Euler method is a first-order method, with velocity and position
updated at each iteration at Lines 91-93. The x component of velocity is constant between consecutive
bouncings at the left and right borders of the canvas. The differential equation for the y motion is

m
d2y
dt2 = may , (7.1)

which, according to Section 5.1, can be rewritten as the system of two first-order differential equations

dy
dt

= 3y

d3y
dt

= ay , (7.2)

which Euler’s method solves by the recursive formulas (5.5)

yi+1 = yi + 3i ∆t , 3y, i+1 = 3y, i + ay ∆t , (7.3)

corresponding to Lines 92 and 93, since we have ∆t = 1 in our units.
94 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s
95 e l i f GetData :
96 t r y :
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97 vx= f l o a t ( EntryVx . g e t ( ) )
98 e xc ep t V a l u e E r r o r :
99 pass

100 t r y :
101 ay= f l o a t ( E n t r y A c c e l . g e t ( ) )
102 e xc ep t V a l u E r r o r :
103 pass
104 EntryVx . d e l e t e ( 0 , ’ end ’ )
105 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
106 E n t r y A c c e l . d e l e t e ( 0 , ’ end ’ )
107 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )
108 GetData=F a l s e
109 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W r i t e e ne rg y
110 c o u n t +=1
111 i f c o u n t >=10:
112 c o u n t =0
113 e n e r=mass * ( 0 . 5 * ( vx**2+vy **2)− ay *y )
114 EnerLab [ ’ t e x t ’ ]= ’ { : 8 . 3 f } ’ . format ( e n e r )
115 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wai t d e l a y t i m e
116 ca nv as . a f t e r ( d e l a y )
117 #−−−−−−−−−−−−−−−−−−−−−−−−−
118 r o o t . d e s t r o y ( )

The variable count is incremented at Line 110. Every ten lines the total energy of the bouncing ball
is evaluated at line 113 and displayed on the toolbar label.

Euler integration is a first-order method, and its limits are apparent if we run Script 7.8 for a few
minutes: the ball jumps slowly become higher and higher, implying that energy is not conserved. This
is seen also by looking at the value displayed by the energy label in the toolbar. The reason is simple:
the first of (7.3) assumes a constant velocity during the execution of each step (obviously, the velocity
is different from step to step), equal to the initial velocity of the step. But, in reality, the velocity
decreases during the step because ay is negative. Thus, independently of the ball going upwards or
downwards, the calculated position at the end of each step is slightly higher than the correct position,
leading to a slow increase in the calculated energy. Since ay is constant, all errors have the same sign
and there is no hope of random cancellation.

7.6.2 The Leapfrog Method
In contrast to Euler integration, leapfrog integration is a second-order method, yet it requires the same
number of function evaluations per step. Unlike Euler integration, it is stable for oscillatory motion,
as long as the time-step ∆t is constant and ∆t 6 ω/2, ω being the angular frequency of the oscillation.
In leapfrog integration, the equations for updating position and velocity are

xi = xi−1 + 3i− 1
2

∆t ,

ai = F(xi) , (7.4)
3i+ 1

2
= 3i− 1

2
+ ai∆t ,

with positions and accelerations evaluated at “integer times” i ∆t, and velocities evaluated at “half-
integer” times

(
i + 1

2

)
∆t. The advantage of the method is that, at each step, the position is still updated

assuming a constant velocity, but the velocity is calculated at the middle of the step rather than at one
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of the end points. Equations (7.4) can be re-arranged to the “kick-drift-kick” form

3i+ 1
2

= 3i + ai
∆t
2
,

xi+1 = xi + 3i+ 1
2

∆t , (7.5)

3i+1 = 3i+ 1
2

+ ai+1
∆t
2
,

used in Script 7.9, where Euler integration of Listing 7.8 is replaced by leapfrog integration. Note
that leapfrog integration cannot be applied in the presence of a velocity-dependent acceleration.

Listing 7.9 GravityFrog.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import *
3 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
4 RunAll=True
5 RunMotion=GetData=F a l s e
6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S t a r t / S top mot ion
7 def S t a r t S t o p ( ) :
8 g l o b a l RunMotion
9 RunMotion=not RunMotion

10 i f RunMotion :
11 S t a r t B u t t o n [ ” t e x t ” ]= ” Stop ”
12 e l s e :
13 S t a r t B u t t o n [ ” t e x t ” ]= ” R e s t a r t ”
14 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E x i t program
15 def S t o p A l l ( ) :
16 g l o b a l RunAll
17 RunAll=F a l s e
18 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s
19 def ReadData (* a r g ) :
20 g l o b a l GetData
21 GetData=True
22 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V a r i a b l e s
23 d e l a y =20 # m i l l i s e c o n d s
24 r a d =20
25 c o l o r =” r e d ”
26 x= r a d
27 y= r a d
28 vx =4.0
29 vy =7.5
30 ay =−0.1
31 mass=10
32 e n e r=mass * ( 0 . 5 * ( vx**2+vy **2)− ay *y )
33 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e r o o t window
34 r o o t =Tk ( )
35 r o o t . t i t l e ( ’ G r a v i t y L e a p f r o g ’ )
36 r o o t . b ind ( ’<Return > ’ , ReadData )
37 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add canvas t o r o o t window
38 cw=800
39 ch =400
40 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ w h i t e ’ )
41 ca nv a s . g r i d ( row =0 , column =0)
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42 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add t o o l b a r t o r o o t window
43 t o o l b a r =Frame ( r o o t )
44 t o o l b a r . g r i d ( row =0 , column =1 , s t i c k y =N)
45 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar b u t t o n s
46 nr =0
47 S t a r t B u t t o n =Bu t ton ( t o o l b a r , t e x t =” S t a r t ” , command= S t a r t S t o p , wid th =7)
48 S t a r t B u t t o n . g r i d ( row=nr , column =0)
49 C l o s e B u t t o n=Bu t ton ( t o o l b a r , t e x t =” Close ” , command=S t o p A l l )
50 C l o s e B u t t o n . g r i d ( row=nr , column =1)
51 nr+=1
52 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar l a b e l s and e n t r i e s
53 LabVx=Labe l ( t o o l b a r , t e x t =”Vx” )
54 LabVx . g r i d ( row=nr , column =0)
55 EntryVx=E n t r y ( t o o l b a r , bd =5 , wid th =8)
56 EntryVx . g r i d ( row=nr , column =1)
57 nr+=1
58 LabAccel=Labe l ( t o o l b a r , t e x t =”Ay” )
59 LabAccel . g r i d ( row=nr , column =0)
60 E n t r y A c c e l=E n t r y ( t o o l b a r , bd =5 , wid th =8)
61 E n t r y A c c e l . g r i d ( row=nr , column =1)
62 nr+=1
63 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Energy l a b e l
64 EnerLab0=Labe l ( t o o l b a r , t e x t = ’ Energy : ’ , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
65 EnerLab0 . g r i d ( row=nr , column =0)
66 EnerLab=Labe l ( t o o l b a r , t e x t = ’ { : 8 . 3 f } ’ . format ( e n e r ) , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
67 EnerLab . g r i d ( row=nr , column =1 , s t i c k y =W)
68 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W r i t e v a r i a b l e v a l u e s i n t o e n t r i e s
69 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
70 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )
71 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main loop
72 i t e r =0
73 whi le RunAll :
74 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw b a l l on canvas
75 ca nv as . d e l e t e (ALL)
76 ca nv as . c r e a t e o v a l ( x−rad , ch −( y+ r a d ) , x+rad , ch −(y− r a d ) , f i l l = c o l o r )
77 ca nv a s . u p d a t e ( )
78 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B a l l i s moving
79 i f RunMotion :
80 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bouncing
81 i f ( x+ r a d )>=cw :
82 vx=−abs ( vx )
83 e l i f ( y+ r a d )>=ch :
84 vy=−abs ( vy )
85 e l i f x<= r a d :
86 vx=abs ( vx )
87 e l i f y<= r a d :
88 vy=abs ( vy )
89 # . . . . . . . . . . . . . . Update p o s i t i o n and v e l o c i t y , l e a p f r o g a l g o r i t h m
90 x+=vx
91 vy +=0.5* ay
92 y+=vy
93 vy +=0.5* ay

Lines 91-93 code equations (7.5) for the present case: constant acceleration and ∆t = 1.
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94 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s
95 e l i f GetData :
96 t r y :
97 vx= f l o a t ( EntryVx . g e t ( ) )
98 e xc ep t V a l u e E r r o r :
99 pass

100 t r y :
101 ay= f l o a t ( E n t r y A c c e l . g e t ( ) )
102 e xc ep t V a l u E r r o r :
103 pass
104 EntryVx . d e l e t e ( 0 , ’ end ’ )
105 EntryVx . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( vx ) )
106 E n t r y A c c e l . d e l e t e ( 0 , ’ end ’ )
107 E n t r y A c c e l . i n s e r t ( 0 , ’ { : . 2 f } ’ . format ( ay ) )
108 GetData=F a l s e
109 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W r i t e e ne rg y
110 i t e r +=1
111 i f i t e r >=10:
112 i t e r =0
113 e n e r=mass * ( 0 . 5 * ( vx**2+vy **2)− ay *y )
114 EnerLab [ ’ t e x t ’ ]= ’ { : 8 . 3 f } ’ . format ( e n e r )
115 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wai t d e l a y t i m e
116 ca nv as . a f t e r ( d e l a y )
117 #−−−−−−−−−−−−−−−−−−−−−−−−−
118 r o o t . d e s t r o y ( )

Running Listing 7.9 shows that now energy is conserved.

7.6.3 The odeint integration

O
ϑ

mg

y

x

ℓ

Figure 7.4

As a relatively simple example, we consider the elastic-string
pendulum of Fig. 7.4, where a bob of mass m is bound to the
pivot O by a massless rubber string of rest length ` in the pres-
ence of standard gravity acceleration g. We restrict ourselves to
a motion occurring in a vertical plane. Differently from the case
of Section 5.4, here the position of the bob cannot be specified
by a single coordinate, as the angle ϑ. Thus we shall use the
Cartesian coordinates of Fig. 7.4, whose origin O is located on
the pivot, while the y axis is antiparallel to the gravity acceler-
ation g. The bob of the pendulum is subject to the gravitational
force −mg. Further, if the distance

√
x2 + y2 of the bob from

the pivot is greater than `, i.e., if the bob is located outside of
the dashed circle of the figure, the string exerts an elastic force

fel = −k
( √

x2 + y2 − `
)

(x̂ cosϑ + ŷ sinϑ) , where ϑ = arctan
(y

x

)
, (7.6)

where k is the Hooke constant of the rubber band, and x̂ and ŷ are the unit vectors along the x and y
axes, respectively. Obviously, the rubber band exerts no force if

√
x2 + y2 < ` (bob inside the dashed

circle). Further, we assume the presence of a frictional force proportional to the bob velocity

ffr = −η 3 , (7.7)
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through a given constant coefficient η. As in Section 5.4, we shall solve the differential equations
by the function odeint(). Our two-dimensional problem requires the integration of the following
system of four first-order differential equations

dx
dt

= 3x ,

d3x
dt

=

 −η3x if
√

x2 + y2 < ` ,

−k
( √

x2 + y2 − `
)

cosϑ − η3x if
√

x2 + y2 > ` ,

dy
dt

= 3y ,

d3y
dt

=

 −g − η3y if
√

x2 + y2 < ` ,

−g − k
( √

x2 + y2 − `
)

sinϑ − η3y if
√

x2 + y2 > ` .
(7.8)

In section Section 5.4 we called odeint() only once, obtaining the discretization of the whole
motion. Here we need to call odeint() before drawing each animation frame, in order to obtain
an animation “in real time”. Thus, while the array t of Listing 5.1 comprised the 101 time points at
which we wanted to evaluate the bob positions, here it will comprise only two time points: the starting
and the final point of the interval between two consecutive frames, arbitrarily chosen as t0 = 0 and
t1 = 0.01 s. The listing follows.

Listing 7.10 BentBandPendulum.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import *
3 import numpy as np
4 import t ime
5 from s c i p y . i n t e g r a t e import o d e i n t
6 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i n t e r a c t i o n f u n c t i o n s
7 def S t a r t S t o p ( ) : # . . . . . . . s t a r t / s t o p pendulum mot ion
8 g l o b a l R u n I t e r
9 R u n I t e r=not R u n I t e r

10 i f R u n I t e r :
11 S t a r t B u t t o n [ ’ t e x t ’ ]= ’ S top ’
12 e l s e :
13 S t a r t B u t t o n [ ’ t e x t ’ ]= ’ R e s t a r t ’
14 def ReadData (* a r g s ) : # . . . . . . . . . . . . . . . . . read e n t r i e s
15 g l o b a l GetData
16 GetData=True
17 def S t o p A l l ( ) : # . . . . . . . . . . . . . . . . . . . . . . . e x i t program
18 g l o b a l RunAll
19 RunAll=F a l s e
20 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
21 RunAll=True
22 GetData=R u n I t e r=F a l s e

Lines 7-19 define the three functions StartStop(), ReadData() and StopAll(), already
encountered in the preceding listings. The program runs as long as the global variable Runall is
True. The pendulum moves if the global variable RunIter is True, otherwise it is in stand-by. New
data are read from the entries in the toolbar if ReadData is True.
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23 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Canvas da ta
24 But tWid th =9
25 cw=800
26 ch =640
27 Ox=cw / 2
28 Oy=ch / 2

Variable ButtWidth is the maximum number of characters that can be written on a toolbar button,
while cw and ch are the canvas width and height in pixels, respectively. Variables Ox and Oy are the
x and y cooordinates of the pendulum pivot on the canvas, in pixels.

29 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P h y s i c a l p a r a m e t e r s
30 g =9.8 # m / s ˆ2
31 L=4.0 # m
32 m=5.0 # kg
33 Hooke =500.0 # N / m
34 e t a =0.0 # kg / s
35 d t =0.01 # s

These are the physical quantities determining the pendulum motion, in SI units. Quantity g is the
gravitational acceleration at the Earth’s surface, in ms−2, L is the rest length of the elastic band, in
meters, m is the bob mass, in kg, Hooke is the Hooke constant of the elastic band, in N/m, eta is
the proportionality factor η between drag force and velocity, in Ns/m=kg/s. As default we assume
absence of friction, or η = 0. You can experiment interactively on how different values of η affect the
motion while running the program. Finally, dt is the time step ∆t used in the numerical integration
of our differential equations.

36 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 prad =3 # p i v o t r a d i u s
38 r a d =12 # bob r a d i u s
39 bColor= ’ r e d ’ # bob c o l o r

This are parameters used for drawing the pendulum: prad is the pivot radius and rad the bob radius,
in pixel, bColor is the bob color.

40 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 s c a l e =50.0 # p i x e l s / m
42 t a u =20 # m i l l i s e c o n d s

Quantity scale is the ratio S , expressed in px/m, of a length on the computer monitor, in px, to
the corresponding real length in m. Thus the rest length of our rubber band, 4 m, corresponds to
200 pixels. Quantity tau is the required time interval τ between two consecutive animation frames.
Tkinter requires τ to be an integer number of milliseconds.

43 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I n i t i a l p o s i t i o n and v e l o c i t y
44 xx =1.1*L
45 vx =0.0
46 yy =0.0
47 vy =0.0
48 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v a r i a b l e and parame te r v e c t o r s
49 y=[ xx , vx , yy , vy ]
50 params =[L , Hooke ,m, e t a , g , Ox , Oy , s c a l e , d t , t a u ]

Quantities xx and yy are the coordinates of the initial position of the bob, vx and vy the components
of its initial velocity. List y comprises the initial conditions, at each animation step, for odeint.
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51 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . d e r i v a t i v e s −comput ing f u n c t i o n
52 def d f d t ( y , t , params ) :
53 xx , vx , yy , vy = y # unpack i n i t i a l c o n d i t i o n s
54 L , Hooke ,m, e t a , g , Ox , Oy , s c a l e , d t , t a u=params # unpack p a r a m e t e r s
55 l e n g t h =np . s q r t ( xx**2+yy **2)
56 s t r e t c h = l e n g t h −L
57 t h e t a =np . a r c t a n 2 ( yy , xx )
58 i f s t r e t c h >0:
59 f o r c e =−Hooke* s t r e t c h
60 e l s e :
61 f o r c e =0.0
62 fx= f o r c e *np . cos ( t h e t a )− e t a *vx
63 fy= f o r c e *np . s i n ( t h e t a )− e t a *vy
64 ax =( fx /m)
65 ay =( fy /m)−g
66 d e r i v s =[ vx , ax , vy , ay ]
67 re turn d e r i v s

Function dfdt() returns the derivatives needed by odeint() for numerical integration. Lines 53
copies the values of position and velocity at the beginning of the integration step from the list y. Line
54 copies the values of the parameters from the list params. The length of the possibly stretched
rubber band,

√
x2 + y2, is evaluated at Line 55, and the corresponding band extension,

√
x2 + y2 − `,

at Line 56. Line 57 evaluates the angle ϑ between the string and the x axis. Lines 58-63 evaluate
the x and y components, fx and fy, of the combined force acting on the bob due to drag and Hooke’s
law, according to (7.8), Lines 64-65 evaluate the corresponding acceleration components, taking also
gravity into account. The derivatives of the elements of the list y are stored into the array derivs at
Line 66. At Line 67 the function dfdt() returns derivs.

68 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e r o o t window
69 r o o t =Tk ( )
70 r o o t . t i t l e ( ’ E l a s t i c −Band Pendulum ’ )
71 r o o t . b ind ( ’<Return > ’ , ReadData )
72 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add canvas t o r o o t window
73 ca nv a s=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background= ’ # f f f f f f ’ )
74 ca nv a s . g r i d ( row =0 , column =0)
75 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Add t o o l b a r t o r o o t window
76 t o o l b a r =Frame ( r o o t )
77 t o o l b a r . g r i d ( row =0 , column =1 , s t i c k y =N)

Lines 69-71 create the root window root, write the title and bind the Return keyboard key to the
function ReadData(). Lines 73-77 create the canvas where our animation will take place, and the
toolbar where buttons and entries will be located. The toolbar is located at the right of the canvas.

78 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Too lbar b u t t o n s
79 nr =0
80 S t a r t B u t t o n =Bu t ton ( t o o l b a r , t e x t = ’ S t a r t ’ , command= S t a r t S t o p , \
81 wid th=But tWid th )
82 S t a r t B u t t o n . g r i d ( row=nr , column =0 , s t i c k y =W)
83 nr+=1
84 E x i t B u t t o n=Bu t ton ( t o o l b a r , t e x t = ’ E x i t ’ , command=StopAl l ,
85 wid th=But tWid th )
86 E x i t B u t t o n . g r i d ( row=nr , column =0 , s t i c k y =W)
87 nr+=1
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Lines 79-87 create the buttons bound to the functions StartStop() and StopAll().

88 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Labe l and E n t r y a r r a y s
89 LabVar = [ ]
90 En t ryVar = [ ]
91 V a r L i s t =[ ’ x\ u2080 ’ , ’ vx \ u2080 ’ , ’ y\ u2080 ’ , ’ vy \ u2080 ’ ]
92 nVar= l e n ( V a r L i s t )
93 LabPar = [ ]
94 E n t r y P a r = [ ]
95 P a r L i s t =[ ’ Length ’ , ’ Hooke ’ , ’ Mass ’ , ’ \u03B7 ’ , ’ g ’ , ’Ox ’ , ’Oy ’ ,\
96 ’ s c a l e ’ , ’ Time s t e p ’ , ’ \u03C4 / ms ’ ]
97 nPar= l e n ( P a r L i s t )

The lists that will contain the labels and entries for the variables and parameters of the problem,
LabVar, EntryVar, LabPar, and EntryPar are created as initially empty lists at lines 89, 90,
93 and 94. The lists of the variable and parameter names, VarList and ParList, to be used in
the labels, are created at lines 91 and 95. For the elements of VarList UTF-8 encoded subscripts
are used, see Table E.1 of Appendix E. The variable names are actually x0 (the initial x position), 3x0

(the initial x velocity component), y0 (the initial y position), and 3y0 (the initial y velocity component).
The variables of the program are the components of the bob position, x and y, and of the bob velocity,
3x and 3y. The parameters are the rest length of the rubber string, `, the Hooke constant of the rubber
band, k, the mass of the pendulum bob, m, the friction coefficient, η (UTF-8 code \u03B7), the
gravity acceleration, g, the coordinates of the pivot with respect to the window frame, Ox and Oy,
the length scale, the time step, ∆t, and the interval between two consecutive frames, τ (UTF-8 code
\u03C4), see Fig. 7.6. Variables nVar and nPar are the numbers of variables and parameters of
the problem, respectively.

98 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E n t r i e s
99 f o r i in range ( nVar ) :

100 LabVar . append ( Labe l ( t o o l b a r , t e x t = s t r ( V a r L i s t [ i ] ) , \
101 f o n t =( ’ H e l v e t i c a ’ , 1 2 ) ) )
102 LabVar [ i ] . g r i d ( row=nr , column =0)
103 Ent ryVar . append ( E n t r y ( t o o l b a r , bd =5 , wid th=But tWid th ) )
104 Ent ryVar [ i ] . g r i d ( row=nr , column =1)
105 nr+=1
106 f o r i in range ( nPar ) :
107 LabPar . append ( Labe l ( t o o l b a r , t e x t = s t r ( P a r L i s t [ i ] ) , \
108 f o n t =( ’ H e l v e t i c a ’ , 1 2 ) ) )
109 LabPar [ i ] . g r i d ( row=nr , column =0)
110 E n t r y P a r . append ( E n t r y ( t o o l b a r , bd =5 , wid th=But tWid th ) )
111 E n t r y P a r [ i ] . g r i d ( row=nr , column =1)
112 nr+=1

Loop 99-105 adds the names of the variables, listed in VarList, to the label list LabVar, and
locates each label at row nr (incremented at Line 105), column 0 of the toolbar. Then creates the
entry for each variable and locates it at the right of the corresponding label, at row nr, column 1. Loop
106-112 adds the names of the parameters, listed in ParList to the parameter-label list LabPar,
and locates the labels and the corresponding entries in the toolbar. The labels and entries for the
variables and parameters are located in the toolbar as shown in Fig. 7.6.

113 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t i m e l a b e l
114 CycleLab0=Labe l ( t o o l b a r , t e x t = ’ P e r i o d : ’ , f o n t =( ’ H e l v e t i c a ’ , 1 1 ) )
115 CycleLab0 . g r i d ( row=nr , column =0)
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116 CycleLab=Labe l ( t o o l b a r , t e x t = ’ ’ , f o n t =( ’ H e l v e t i c a ’ , 1 1 ) )
117 CycleLab . g r i d ( row=nr , column =1 , s t i c k y =W)
118 nr+=1
119 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I n i t i a l i z e e n t r i e s
120 f o r i in range ( l e n ( V a r L i s t ) ) :
121 En t ryVar [ i ] . i n s e r t ( 0 , ’ { : . 3 f } ’ . format ( y [ i ] ) )
122 f o r i in range ( l e n ( P a r L i s t ) ) :
123 E n t r y P a r [ i ] . i n s e r t ( 0 , ’ { : . 3 f } ’ . format ( params [ i ] ) )

Lines 114-117 create two further labels, one, in column 0, with the name Period:, the other, in
column 1, will be updated every ten iterations and show the value of the average time interval between
two successive animation frames. Lines 120-123 write the initial variable and parameter values,
formatted with three digits after the decimal point, into the corresponding entry windows.

124 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
125 t = [ 0 . 0 , d t ]
126 t c o u n t =0
127 t t 0 = t ime . t ime ( )

Array t comprises the end points of the time interval between two successive computation steps
of odeint(). An animation frame will be drawn at each step. Variable tcount is a counter,
that will be incrased by 1 at each animation step. Function time.time() returns the number of
seconds elapsed since the epoch as a float. For Unix, epoch is January 1st, 1970, at 0 hours. The
actual value of epoch is usually not relevant, because only the differences between values returned by
time.time() at different instants of the program execution are used in most programs.

128 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main loop
129 whi le RunAll :
130 S t a r t I t e r = t ime . t ime ( )
131 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Draw pendulum
132 ca nv as . d e l e t e (ALL)
133 ca nv as . c r e a t e o v a l ( Ox− s c a l e *L , ch−Oy+ s c a l e *L , \
134 Ox+ s c a l e *L , ch−Oy− s c a l e *L , o u t l i n e = ’ g r e e n ’ , w id th =1)
135 ca nv as . c r e a t e l i n e ( 0 , ch−Oy , cw , ch−Oy , f i l l = ’ g r e e n ’ )
136 ca nv as . c r e a t e o v a l ( Ox−prad , ch −(Oy+p rad ) , Ox+prad , ch −(Oy−p rad ) , \
137 f i l l = ’ b l a c k ’ )
138 l e n g t h s q =xx**2+yy **2
139 l e n g t h =np . s q r t ( l e n g t h s q )
140 i f l e n g t h >=L :
141 ca nv a s . c r e a t e l i n e ( Ox , ch−Oy , Ox+ s c a l e *xx , ch−Oy− s c a l e *yy , f i l l = ’ b l a c k ’ )
142 e l s e :
143 a l p h a=np . a r c s i n ( l e n g t h / L )
144 b e t a=np . a r c t a n 2 ( yy , xx )
145 gamma=( np . p i / 2 . 0 ) + be ta −a l p h a
146 xx2 =0.5*L*np . cos ( gamma )
147 yy2 =0.5*L*np . s i n ( gamma )
148 ca nv a s . c r e a t e l i n e ( Ox , ch−Oy , Ox+ s c a l e *xx2 , ch−Oy− s c a l e *yy2 , \
149 Ox+ s c a l e *xx , ch−Oy− s c a l e *yy , f i l l = ’ b l a c k ’ )
150 ca nv as . c r e a t e o v a l ( Ox+ s c a l e *xx−rad , ch−Oy− s c a l e *yy−rad , \
151 Ox+ s c a l e *xx+rad , ch−Oy− s c a l e *yy+rad , f i l l =bColor )
152 ca nv as . u p d a t e ( )

Loop 129-202 is our animation loop. Line 129 stores in StartIter the initial time of the iteration
(the time elapsed since epoch). Lines 133-134 draws a green circle of radius ` (the rest length of the
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string): the elastic force is active if the center of the bob is outside the circle, inactive if the bob is in-
side. Lines 135 draw a horizontal green line passing through the origin (through the pivot). Lines 136-
137 draw draw a black circle in the origin, representing the pivot of the pendulum. Lines 138-139 eval-
uate the length of the rubber band, equal to the distance between the bob and the pivot. If the length of
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Figure 7.5 The angles α, β and γ of List-
ing 7.10.

the rubber band is equal to, or longer than, its rest length `,
it is represented by a straight line drawn at Line 141. If the
distance is shorter than `, the rubber band is represented by a
polyline comprising two line segments of equal length, start-
ing on the pivot and ending at the center of bob, as shown in
Fig. 7.5. The length of each line segment is `/2. Lines 148-
149 draw the polyline. The angles α (alpha), β (beta)
and γ (gamma), evaluated at Lines 143-145, are shown in
Fig. 7.5, and are used at Lines 146 and 147 to evaluate the
position (x2, y2) where the rubber band is bent, see Fig. 7.5.
Obviously, a real rubber band would be bent in a more com-
plicated, practically unpredictable way. Our purpose here is

just to show that the distance between bob and pivot is smaller than `. The bob is drawn at Lines
150-151 and the canvas is updated at Line 152.

153 i f R u n I t e r :
154 # . . . . . . . . . . . . . . . . . . . . . . . . . . V e l o c i t y and p o s i t i o n f o r n e x t f rame
155 p s o l n = o d e i n t ( d f d t , y , t , a r g s =( params , ) )
156 xx=p s o l n [ 1 , 0 ]
157 vx=p s o l n [ 1 , 1 ]
158 yy=p s o l n [ 1 , 2 ]
159 vy=p s o l n [ 1 , 3 ]
160 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update v e c t o r
161 y=[ xx , vx , yy , vy ]

If RunIter is True, Lines 155-159 evaluate the bob position and velocity at the next step by calling
odeint(), and the new values, x, 3x, y and 3y are stored into the list y at Line 161.

162 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read e n t r i e s
163 e l i f GetData :
164 i =0
165 whi le i <nVar :
166 t r y :
167 y [ i ]= f l o a t ( En t ryVar [ i ] . g e t ( ) )
168 e xc ep t V a l u e E r r o r :
169 pass
170 i +=1
171 i =0
172 whi le i <nPar :
173 t r y :
174 params [ i ]= f l o a t ( E n t r y P a r [ i ] . g e t ( ) )
175 e xc ep t V a l u e E r r o r :
176 pass
177 i +=1
178 i =0
179 whi le i <nVar :
180 Ent ryVar [ i ] . d e l e t e ( 0 ,END)
181 Ent ryVar [ i ] . i n s e r t ( 0 , ’ { : . 3 f } ’ . format ( y [ i ] ) )
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182 i +=1
183 i =0
184 whi le i <nPar :
185 E n t r y P a r [ i ] . d e l e t e ( 0 ,END)
186 E n t r y P a r [ i ] . i n s e r t ( 0 , ’ { : . 3 f } ’ . format ( params [ i ] ) )
187 i +=1
188 xx , vx , yy , vy=y
189 L , Hooke ,m, e t a , g , Ox , Oy , s c a l e , d t , t a u=params
190 t a u= i n t ( t a u )
191 t = [ 0 . 0 , d t ]
192 GetData=F a l s e

If RunIter is False and GetData is True, Lines 163-178 read the start-values array and the param-
eters array from the corresponding entries in the toolbar (they may have been changed by typing new
values on the keyboard). At Lines 179-187 the values are rewritten into the entries, formatted with
three digits after the decimal point. Lines 188-189 copy the values from the lists. Line 190 takes care
that tau, the required time interval between two consecutive frames, must be an integer number of
milliseconds. Line 191 inserts the new value of dt into the list t. Once the new data have been read,
Line 192 sets GetData to False.

Figure 7.6

193 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c y c l e d u r a t i o n
194 t c o u n t +=1
195 i f t c o u n t %10==0:
196 t t t = t ime . t ime ( )
197 e l a p s e d = t t t − t t 0
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198 CycleLab [ ’ t e x t ’ ]= ’ %8.3 f ’%( e l a p s e d *100 .0 )+ ’ ms ’
199 t t 0 = t t t
200 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
201 E l a p s I t e r = i n t ( ( t ime . t ime () − S t a r t I t e r ) * 1 0 0 0 . 0 )
202 ca nv as . a f t e r ( t au −E l a p s I t e r )

Line 194 increases the iteration counter. Every 10 iterations Line 198 writes the average iteration
duration, in ms, into label CycleLab at the bottom of the toolbar.

203 E l a p s I t e r = i n t ( ( t ime . t ime () − S t a r t I t e r ) * 1 0 0 0 . 0 )
204 ca nv as . a f t e r ( t au −E l a p s I t e r )
205 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
206 r o o t . d e s t r o y ( )

Line 203 stores the time elapsed from the beginning of the current iteration, in ms, into ElapsIter.
If ElapsIter is shorter than tau (the requested time interval between two consecutive frames),
Line 204 cauases the program so wait for tau-ElapsIter milliseconds before starting the succes-
sive iteration. Note that if ElapsIter is longer than tau Line 204 has no effect, and the program
runs slower than required.

7.7 Length and Time Scaling
Script 7.10 can be instructive about some problems involved with length and time scaling in computer
animation. Obviously it is convenient to use a coherent system of units when writing the differential
equations to be solved by odeint(). If we choose SI units, lengths will be measured in meters,
masses in kilograms, times in seconds, . . . These units are consistently used in function dfdt()
defined at Lines 52-67, and passed to odeint() at Line 155. This is why the rest length of our
rubber band is given in m at Line 31. But a length of 4 m would not fit into the computer monitor,
and, in any case, the methods that draw items on the canvas expect lengths and coordinates to be
given in px (pixels). The problem is handled by introducing the variable scale, corresponding to
S , the number of px on the monitor that corresponds to a real length of 1 m. All real lengths and
positions expressed in m must be converted into px by multiplying them by S before being passed to
the Tkinter functions that draw on the canvas.

A pixel is the smallest single component of a digital image. This, on the computer display, cor-
responds to a small square of uniform color and of side p, the value of p depending on the specific
display size and resolution of our computer. The display size is the physical size of the area where
pictures and videos are displayed. The size of a screen is usually described by the length of its diag-
onal in inches. The display resolution is usually given in width×height with the units in pixels. For
instance, on a display of size 22′′ and resolution 1680 × 1050 pixels we have 96 dots per inch. Thus
the side of a pixel is p = 0.0254/96 ' 2.6458 × 10−4 m.

Variable scale is assigned the value as S = 50.0 at Line 41. Thus, a real length of L, expressed
in m, is represented by a line of LS px on the monitor. Since the side of a pixel is p, the ratio of a
length represented on the display to the orignal real length is

ρL =
LS p

L
= S p . (7.9)

Thus, the rest length of our elastic band, 4 m, corresponds to LS = 200 px on the canvas. With the
assumed monitor size and resolution, we have ρL = S p ' 1.3229×10−2, and if we measure the radius
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of the green circle of Fig. 7.6 with a ruler we find

r = LS p ' 0.0529 m = 5.29 cm . (7.10)

Times are measured in seconds in our computations, and Line 35 defines Variable dt, correspond-
ing to the time step ∆t used for the numerical solution of our differential equations (see Chapter 5),
as 0.01 s, or 10 ms. On the other hand Python requires the time interval τ between two successive
animation frames to be given as an integer number of milliseconds, and variable tau is defined at
Line 42 as 20 ms. Thus the ratio of the time observed in our animation to the real time is

ρt =
1000 ∆t

τ
, (7.11)

the factor 1000 at the numerator is due to τ being expressed in milliseconds rather than in seconds.
With the values of Script 7.10 we obtain ρt = 2, and our animated motion is slower than the real
motion by a factor 2. The ratio of the velocity of an object on the monitor to the corresponding real
velocity is thus

ρv =
ρL

ρt
=

S pτ
1000 ∆t

. (7.12)

Again, the values of Script 7.10 lead to ρv ' 6.6145× 10−3. A real velocity of 1 m/s is represented by
a velocity of 6.6145 mm/s on the monitor.

The time scale ρt can be adjusted by changing the values of ∆t and/or τ. Increasing ∆t, and/or
decreasing τ, makes ρt larger, and movements on the display slower. Vice versa, ρt is decreased
by decreasing ∆t and/or increasing τ. It is important to note that the values of ∆t and τ cannot be
arbitrarily changed, but each of them has its own permissible range. The upper limit to ∆t is set by the
convergence of the finite-difference method used for the integration of the differential equations. In
simple words, the values of our functions at time t+∆t cannot be too different from their values at time
t. The lower limit to ∆t is mainly set by the computer precision, and by the animation becoming too
slow. The upper limit to τ is set by the fact that a large time interval between two successive animation
frames can cause the impression of a “step-wise animation”. The lower limit to τ is strongly computer-
dependent, being set by the computer speed. The time interval between two successive frames cannot
be shorter that the time τcalc needed to solve the differential equations and to redraw the canvas. If τ
is set to a value shorter than τcalc Line 202 simply has no effect. The reader is invited to experiment
on the animation behavior when the values in the entries Time step and τ/ms are changed.
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Chapter 8

Classes

8.1 The class Statement

Python is an object-oriented programming (OOP) language. While procedure-oriented programming
(POP) languages are mainly based on variables and functions, OOP languages add, and stress, objects.
Often objects correspond to things found in the real world. A graphics program may have objects
such as “circle” or “square”, a physics program may have objects such as “electron” or “nucleus”.
An object is a collection of data (variables) characterizing the object itself, and methods (functions)
acting on those data. It is certainly possible to write Python programs not using objects, as we have
done in the previous chapters. But objects are one of the strengths of Python. Python, as most OOP
languages, is class-based: Python objects are instances of classes. This means that the structure and
behavior of an object are defined by a class, a class being a blueprint of all objects of a specific type.
For example, a celestial-mechanics program can define objects “Earth” and ”Jupiter” as instances of
the class “planet”. A class is defined by the class statement, ending with a colon. Its methods are
defined by using the def statement, just as usual functions. As usual, code blocks are defined by
their indentation. Listing 8.1 should give a first idea of how a class is structured.

Listing 8.1 ClassExample.py
1 # ! / u s r / b i n / env py thon3
2 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c l a s s p a r t i c l e
3 c l a s s p a r t i c l e :
4 c o l o r = ’ r e d ’
5 def i n i t ( s e l f , mass , x , vx ) :
6 s e l f .m=mass
7 s e l f . x=x
8 s e l f . vx=vx
9 s e l f . px=mass *vx

10 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . move p a r t i c l e
11 def move ( s e l f ) :
12 s e l f . x+= s e l f . vx
13 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14 p t 1= p a r t i c l e ( 1 0 , 1 0 , 3 . 5 )
15 p t 2= p a r t i c l e ( 2 0 , 1 5 , −2 . 1 )
16 c e n t e r =( p t 1 .m* p t 1 . x+p t 2 .m* p t 2 . x ) / ( p t 1 .m+p t 2 .m)
17 p r i n t ( ”momentum1 = { : . 1 f } ” . format ( p t 1 . px ) )
18 p r i n t ( ”momentum2 = { : . 1 f } ” . format ( p t 2 . px ) )

131
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19 p r i n t ( ” c e n t e r o f mass = { : . 3 f } ” . format ( c e n t e r ) )
20 p r i n t ( ’ c o l o r 1 : ’ , p t 1 . c o l o r , ’ c o l o r 2 : ’ , p t 2 . c o l o r )

Lines 3-12 comprise the definition of a class named particle. This class has two methods, one
class variable and four instance variables. Line 4 defines the class variable color, which is set equal
to ’red’. A class variable is a variable which has the same value for all class instances: all our
particles will be red. Lines 5-9 define the init () method, note the leading and trailing double
underscores ( ) reserved by Python to the names of special methods. Method init () is a
function that creates a new object belonging to the class (a new class instance) in a given initial
state, specified by the initial values of some instance variables. Here method init () has four
arguments, the first, self, is a reference to the current instance of the class. The other arguments are
the mass, initial position and initial velocity of a particle moving in one dimension (along the x axis).
Lines 6-8 copy the argument values of init () into instance variables of the new class instance.
Instance variables are variables that are specific to the object, and may differ from one instance to
the other of the same class. Instance variables are prefixed by “self.”, like self.m, in the class
declaration. Line 9 defines the momentum of the particle. Lines 11-12 define the move() method
which, when called, displaces the particle position by vx. In an animation, a loop will iteratively call
the move() method, each time displacing the particle. Thus, here the velocity is actually measured
in pixels/cycle, as in previous scripts.

Lines 14-15 create two new “particles”, i.e., two new instances of the class. The first particle is
called pt1, with mass m1 = 10, position x1 = 10, and velocity 31 = 3.5, the second is called pt2,
with m2 = 20, x2 = 15, and 32 = −2.1. This is how class instances are created.

Line 16 evaluates the center of mass of the two particles, center (xc in mathematical notation)

xc =
m1x1 + m2x2

m1 + m2
. (8.1)

Note the dot notation for accessing the instance variables relative to each particle: pt1.m indicates
the mass of particle 1, pt2.m indicates the mass of particle 2. Lines 17 and 18 print the values of
the momenta of particle 1 and particle 2. Line 19 prints the center of mass of the two-particle system.
Line 20 prints the colors of the two particles, both red, because color is a class variable. This is
what we see when we run the script
$>ClassExample.py
momentum1 = 35.0
momentum2 = -42.0
center of mass = 13.333
color1: red color2: red

8.2 A First Example: Two Colliding Balls
Script 8.2 provides a first example of the use of classes in Tkinter animation. Two balls of different
size and mass, both instances of the class ball, move on the canvas, bouncing against the canvas
borders and colliding elastically with each other. As usual, a backslash (\) at the end of a code line
indicates that a long command is split over multiple lines.
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Listing 8.2 ClassCollide.py
1 # ! / u s r / b i n / env py thon3
2 from t k i n t e r import *
3 from numpy import a r c t a n 2 , cos , s i n , s q r t
4 import t ime
5 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
6 RunAll=True
7 GetData=R u n I t e r=F a l s e
8 But tWid th =9
9 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Canvas s i z e s

10 cw=800
11 ch =600
12 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S t a r t v a l u e s
13 t a u =20 # m i l l i s e c o n d s
14 m1=200
15 r1 =40
16 x1= r1
17 y1= r1
18 vx1 =5.0
19 vy1 =5.0
20 m2=150
21 r2 =30
22 x2=cw− r2
23 y2= r2
24 vx2 =−5.0
25 vy2 =5.0

Line 13 assigns the required time interval between two successive animation frames τ = 20 ms. Lines
14-25 assign the mass in arbitrary units, radius, the initial x and y coordinates in px, the initial x and y
velocity components in px/cycle, for two instances of the class ball. As usual in simple animations,
positions are measured in pixels and velocities in pixels/(animation cycle).

26 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C l a s s b a l l
27 c l a s s b a l l :
28 def i n i t ( s e l f , mass , r a d i u s , x , y , vx , vy , c o l o r ) :
29 s e l f .m=mass
30 s e l f . r a d= r a d i u s
31 s e l f . x=x
32 s e l f . y=y
33 s e l f . vx=vx
34 s e l f . vy=vy
35 s e l f . c o l= c o l o r
36 s e l f . image=c an va s . c r e a t e o v a l ( s e l f . x− s e l f . rad , ch −( s e l f . y+\
37 s e l f . r a d ) , s e l f . x+ s e l f . rad , ch −( s e l f . y− s e l f . r a d ) , \
38 f i l l = s e l f . co l , o u t l i n e = s e l f . c o l )

Lines 27-108 define the class ball. The init () method is defined at lines 28-38: each in-
stance of this class will have its own mass, radius, position and velocity on the canvas plane, and
its own color. Lines 36-38 create a first image of the class instance on the canvas, whose posi-
tion can later be changed by the methods canvas.coords() and canvas.move(). This is
an alternative to what seen in Script 7.10: instead of clearing the whole canvas with the command
canvas.delete(All) at Line 132, and redrawing everything, here each object will be moved
separately on the canvas. As usual in physics, we shall use an upwards-directed y axis for computa-
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tions. Conversion to the usual canvas coordinates for drawing is performed by writing ch-self.y
instead of self.y. Variable ch is global and corresponds to the canvas height in px.
39 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Move b a l l
40 def move ( s e l f ) :
41 s e l f . x+= s e l f . vx
42 s e l f . y+= s e l f . vy
43 ca nv a s . c o o r d s ( s e l f . image , s e l f . x− s e l f . rad , ch −( s e l f . y+ s e l f . r a d ) , \
44 s e l f . x+ s e l f . rad , ch −( s e l f . y− s e l f . r a d ) )

Function move(), defined at Lines 40-44, moves the ball to its position in the successive animation
frame. First, the x and y coordinates of its center are updated at lines 41-42, then, the position of
self.image is updated by canvas.coords() at lines 43-44. The first argument of the canvas
method .coords() is the object to be relocated, in this case self.image, the image of the class
instance (the current ball) on the canvas. The other arguments are coordinates specifying the new
position of the object. The number of coordinates depends on the object. Here they have the form
x1, y1, x2, y2, describing the bounding box of the oval representing the ball.
45 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bounce on canvas b o r d e r s
46 def bounce ( s e l f ) :
47 i f ( s e l f . x+ s e l f . r a d )>=cw :
48 s e l f . vx=−abs ( s e l f . vx )
49 s e l f . x =2 . 0 * ( cw− s e l f . r a d )− s e l f . x
50 i f ( s e l f . x− s e l f . r a d )<=0:
51 s e l f . vx=abs ( s e l f . vx )
52 s e l f . x =2.0* s e l f . rad − s e l f . x
53 i f ( s e l f . y+ s e l f . r a d )>=ch :
54 s e l f . vy=−abs ( s e l f . vy )
55 s e l f . y =2 . 0 * ( ch− s e l f . r a d )− s e l f . y
56 i f ( s e l f . y− s e l f . r a d )<=0:
57 s e l f . vy=abs ( s e l f . vy )
58 s e l f . y =2.0* s e l f . rad − s e l f . y

Lines 46-58 define the method bounce(), which checks if the ball, at its current position, has
reached one of the canvas borders or trespassed it. Trespassing can happen (mathematically, not
physically!) because the ball moves by discrete steps. In this case the method makes the ball bounce
at the canvas border. Lines 47 checks if the x position plus the ball radius is beyond the canvas right
border. If so, the sign of the x velocity component is made negative at Line 48, and the x coordinate is
reflected on the canvas border at Line 49. Lines 50-58 perform analogous checks and transformations
at the other three canvas borders.
59 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E l a s t i c c o l l i s i o n
60 def E l a s t C o l l ( s e l f , o t h e r ) :
61 X= o t h e r . x− s e l f . x
62 Y= o t h e r . y− s e l f . y
63 d i s t s q =X**2+Y**2
64 R12sq =( s e l f . r a d+ o t h e r . r a d )**2
65 i f d i s t s q <=R12sq :
66 t c =0.0
67 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A d j u s t o v e r l a p p i n g b a l l s
68 i f d i s t s q <R12sq :
69 Xdot= o t h e r . vx− s e l f . vx
70 Ydot= o t h e r . vy− s e l f . vy
71 aa=Xdot **2+ Ydot **2
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72 b b h a l f=X* Xdot+Y* Ydot
73 cc=X**2+Y**2−R12sq
74 # . . . . . . . . . . . . . . . . . . . . . . . Time e l a p s e d s i n c e ” r e a l ” c o l l i s i o n
75 t c =(− b b h a l f − s q r t ( b b h a l f **2− aa * cc ) ) / aa
76 # . . . . . . . . . . . . . . . . . . . . . . . . Time r e v e r s a l t o c o l l i s i o n i n s t a n t
77 o t h e r . x+= t c * o t h e r . vx
78 o t h e r . y+= t c * o t h e r . vy
79 s e l f . x+= t c * s e l f . vx
80 s e l f . y+= t c * s e l f . vy
81 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . D i s t a n c e s a t c o l l i s i o n i n s t a n t
82 X= o t h e r . x− s e l f . x
83 Y= o t h e r . y− s e l f . y
84 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o l l i s i o n r e f e r e n c e frame
85 a l p h a= a r c t a n 2 (Y,X)
86 c s a l p h a =cos ( a l p h a )
87 s n a l p h a= s i n ( a l p h a )
88 S e l f V e l X i= s e l f . vx* c s a l p h a+ s e l f . vy* s n a l p h a
89 S e l f V e l E t a=− s e l f . vx* s n a l p h a+ s e l f . vy* c s a l p h a
90 OtherVelXi= o t h e r . vx* c s a l p h a+ o t h e r . vy* s n a l p h a
91 O t h e r V e l E t a=−o t h e r . vx* s n a l p h a+ o t h e r . vy* c s a l p h a
92 SelfNewVelXi = ( ( s e l f .m−o t h e r .m)* S e l f V e l X i +2.0* o t h e r .m* OtherVelXi ) / \
93 ( s e l f .m+ o t h e r .m)
94 OtherNewXi = ( ( o t h e r .m− s e l f .m)* OtherVelXi +2.0* s e l f .m* S e l f V e l X i ) / \
95 ( s e l f .m+ o t h e r .m)
96 s e l f . vx=SelfNewVelXi * c s a l p h a −S e l f V e l E t a * s n a l p h a
97 s e l f . vy=SelfNewVelXi * s n a l p h a+S e l f V e l E t a * c s a l p h a
98 o t h e r . vx=OtherNewXi * c s a l p h a −O t h e r V e l E t a * s n a l p h a
99 o t h e r . vy=OtherNewXi * s n a l p h a+O t h e r V e l E t a * c s a l p h a

100 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
101 o t h e r . x−= t c * o t h e r . vx
102 o t h e r . y−= t c * o t h e r . vy
103 s e l f . x−= t c * s e l f . vx
104 s e l f . y−= t c * s e l f . vy

Lines 60-104 define the method ElastColl(), that handles elastic collisions between the specific
class instance (the specific ball, let us call it ball 1) and another class instance (another ball, let us
call it ball 2). The method’s second argument, other, refers to ball 2, thus, it must be another
instance of the class ball. Lines 61-64 evaluate variables X, defined as X = x2 − x1, and Y, defined
as Y = y2 − y1. Variable distsq is the square of the distance between the centers of the two balls,
X2 + Y2, and R12sq is the square of the sum of the two radii, (R1 + R2)2. If X2 + Y2 > (R1 + R2)2

no collision occurs, and the method is exited at Line 65. Otherwise variable tc, corresponding to the
time interval tc elapsed from the collision instant to the time of the current animation frame (the two
balls might be compenetrating because of their stepwise motions), is temporarily set to 0.

Line 68 checks if X2 + Y2 < (R1 + R2)2, the other remaining possibility being X2 + Y2 = (R1 + R2)2.
In the latter case the two balls are tangent to each other, and we are exactly at the collision instant.
Otherwise the two balls are partially overlapping as shown in Fig. 8.1. As mentioned above, the two
balls cannot overlap in reality, but they can overlap in our simulation because they move by discrete
steps. Lines 69-83 of our listing handle this case by performing a “time reversal” that brings the
balls back in time to the collision instant, which occurred between the times of the two successive
animation frames. The coordinates of ball i, where i = 1, 2, can be written as functions of time as

xi(t) = xi(0) + ẋit , yi(t) = yi(0) + ẏit , (8.2)
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where xi(0) and yi(0) are the calculated coordinates of the
overlapping balls at the current animation frame instant, that
we choose as time origin, while ẋi and ẏi are their velocity
components. Thus, for instance, ẋ1 corresponds to the vari-
able self.vx. Remember that time is measured in units of
τ, the interval between between two successive frames. Ac-
cordingly, the square of the distance between the two centers,
s2(t), is written, as a function of time,

s2(t) = [x2(t) − x1(t)]2 + [y2(t) − y1(t)]2

=
[
(x2(0) + ẋ2t − x1(0) − ẋ1t)2 +

(y2(0) + ẏ2t − y1(0) − ẏ1t)2
]

=
(
Ẋ2 + Ẏ2

)
t2 + 2

(
XẊ + YẎ

)
t + X2 + Y2 , (8.3)

where Ẋ = ẋ2 − ẋ1 and Ẏ = ẏ2 − ẏ1. In order to find the collision time tc, such that s2(tc) = (R1 + R2)2,
we must solve the quadratic equation(

Ẋ2 + Ẏ2
)

t2
c + 2

(
XẊ + YẎ

)
tc +

[
X2 + Y2 − (R1 + R2)2

]
= 0 . (8.4)

This is done at lines 69-75, where, at Line 75, we choose the negative solution tc because, obviously,
the collision occurred before the balls overlapped. Note that we must have |tc| < 1 because the
collision occurred between the times of the two successive frames, separated by our time unit τ.
Lines 77-80 evaluate the coordinates of the ball centers at the collision instant tc, and Lines 82-83 the
new variables X = x2(tc) − x1(tc) and Y = y2(tc) − y1(tc)

The collision instant of two spheres of masses m1 and m2, radii R1 and R2, centers located at[
x1(tc), y1(tc)

]
and

[
x2(tc), y2(tc)

]
, and velocities 31 and 32, respectively, is shown in Fig. 8.2. In a two-

dimensional elastic collision between two perfectly smooth spheres, according to classical mechanics,
the velocity of each sphere must be split into two perpendicular components: one tangent to the sur-
faces of the colliding spheres at the point of contact (along the η axis in Fig. 8.2), the other along the
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line joining the centers of the two spheres (along the ξ
axis). Assuming that the sphere surfaces are perfectly
smooth, the collision affects only the ξ velocity compo-
nents, while the η components are unchanged. Denot-
ing by 31ξ and 32ξ the ξ velocity components of the two
spheres before the collision, the ξ velocity components
after the collision, 41ξ and 42ξ, are written

41ξ =
(m1 − m2) 31ξ + 2 m2 32ξ

m1 + m2
,

42ξ =
(m2 − m1) 32ξ + 2 m1 31ξ

m1 + m2
. (8.5)

In the code, as usual, self refers to the specific class
instance (ball 1), while argument other, as stated above,

refers to the other ball involved in the collision, ball 2. The variables relative to ball 2 are accessed



8.2. A FIRST EXAMPLE: TWO COLLIDING BALLS 137

through the dot notation, thus, for instance, the x coordinate of its center is other.x. Lines 82-83
evaluate the differences between the x and y positions of the two balls, X and Y, respectively, denoted
by X and Y in Fig. 8.2.

Lines 85-87 evaluate the angle α (alpha) between the ξη and xy reference frames, its cosine
(csalpha) and sine (snalpha). Lines 88 and 89 evaluate the ξ and η velocity components of ball 1
before the collision, i.e., quantities 31ξ and 31η of (8.5), stored in SelfXi and SelfEta, respectively.
Lines 90 and 91 evaluate the corresponding quantities 32ξ and 32η for ball 2, stored in OtherXi and
OtherEta. Lines 92-93 evaluate the ξ velocity component of ball 1 after the collision, 41ξ stored
in SelfNewXi, according to (8.5). Lines 94-95 store the ξ velocity component of ball 2 after the
collision into OtherNewXi. Finally, Lines 96-99 evaluate the final velocity components of both
balls in the “laboratory frame” xy, i.e., self.vx, self.vy, other.vx, and other.vy.

Lines 101-104 take into account that, since the collision took place at time tc < 0, thus before the
instant of the current animation frame, at t = 0 the two balls have moved further for a time |tc| with
their new velocities.

105 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B u t t o n f u n c t i o n s
106 def ReadData (* a r g ) :
107 g l o b a l GetData
108 GetData=True
109 #
110 def S t a r t S t o p ( ) :
111 g l o b a l R u n I t e r
112 R u n I t e r=not R u n I t e r
113 i f R u n I t e r :
114 S t a r t B u t t o n [ ” t e x t ” ]= ” Stop ”
115 e l s e :
116 S t a r t B u t t o n [ ” t e x t ” ]= ” R e s t a r t ”
117 #
118 def S t o p A l l ( ) :
119 g l o b a l RunAll
120 RunAll=F a l s e

Functions ReadData(), StartStop() and StopAll() are the same as in Script 7.10.

121 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e r o o t window
122 r o o t =Tk ( )
123 r o o t . t i t l e ( ’ C l a s s C o l l i d e ’ )
124 r o o t . b ind ( ’<Return > ’ , ReadData )
125 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
126 ca nv as=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background=” # f f f f f f ” )
127 ca nv as . g r i d ( row =0 , column =0)
128 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e t o o l b a r
129 t o o l b a r =Frame ( r o o t )
130 t o o l b a r . g r i d ( row =0 , column =1 , s t i c k y =N)

Lines 122-124 create the root window root, write the title in its frame, and bind the Return keyboard
key to the function ReadData(). Lines 126-130 create the canvas and the toolbar. The toolbar, that
will contain the buttons and entries, is located at the right of the canvas

131 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B u t t o n s
132 nr =0
133 S t a r t B u t t o n =Bu t ton ( t o o l b a r , t e x t =” S t a r t ” , command= S t a r t S t o p ,
134 wid th=But tWid th )
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135 S t a r t B u t t o n . g r i d ( row=nr , column =0 , s t i c k y =W)
136 nr+=1
137 C l o s e B u t t o n=Bu t ton ( t o o l b a r , t e x t =” E x i t ” , command=StopAl l ,
138 wid th=But tWid th )
139 C l o s e B u t t o n . g r i d ( row=nr , column =0 , s t i c k y =W)
140 nr+=1

Lines 132-140 create the buttons bound to the functions StartStop() and StopAll().

141 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter a r r a y s
142 LabPar = [ ]
143 E n t r y P a r = [ ]
144 P a r L i s t =[ ’m\ u2081 ’ , ’ r \ u2081 ’ , ’ vx \ u2081 ’ , ’ vy \ u2081 ’ , ’m\ u2082 ’ , ’ r \ u2082 ’ ,
145 ’ vx \ u2082 ’ , ’ vy \ u2082 ’ , ’ \u03C4 ’ ]
146 nPar= l e n ( P a r L i s t )
147 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E n t r i e s f o r new parame te r v a l u e s
148 f o r i in range ( nPar ) :
149 LabPar . append ( Labe l ( t o o l b a r , t e x t = s t r ( P a r L i s t [ i ] ) ,
150 f o n t =( ” H e l v e t i c a ” , 1 2 ) ) )
151 LabPar [ i ] . g r i d ( row=nr , column =0)
152 E n t r y P a r . append ( E n t r y ( t o o l b a r , bd =5 , wid th =10) )
153 E n t r y P a r [ i ] . g r i d ( row=nr , column =1)
154 nr+=1

Lines 142-146 create the lists that will contain the labels and entries for the parameters of the problem,
LabPar and EntryPar, as well as the list of the parameter names, ParList. For the elements of
ParList, UTF-8 encoded subscripts are used, see Table E.1 of Appendix E. Lines 148-150 locate
labels and entries on the toolbar as shown in Fig. 8.3.

155 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time l a b e l
156 CycleLab0=Labe l ( t o o l b a r , t e x t =” P e r i o d : ” , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
157 CycleLab0 . g r i d ( row=nr , column =0)
158 CycleLab=Labe l ( t o o l b a r , t e x t =” ” , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
159 CycleLab . g r i d ( row=nr , column =1 , s t i c k y =W)
160 nr+=1

Label CycleLabwill show the actual duration of the time interval between two successive animation
frames.

161 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parame ter s
162 params =[m1 , r1 , vx1 , vy1 , m2 , r2 , vx2 , vy2 , t a u ]
163 f o r i in range ( nPar ) :
164 b u f f=” %.2 f ” % params [ i ]
165 E n t r y P a r [ i ] . d e l e t e ( 0 , ’ end ’ )
166 E n t r y P a r [ i ] . i n s e r t ( 0 , b u f f )

The parameter list params is created, and the initial values of the parameters are written in the
windows of the toolbar entries.

167 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e c o l l i d i n g b a l l s
168 b a l l 1 = b a l l (m1 , r1 , x1 , y1 , vx1 , vy1 , ” r e d ” )
169 b a l l 2 = b a l l (m2 , r2 , x2 , y2 , vx2 , vy2 , ” b l u e ” )

The two collision partners ball1 and ball2 are created as instances of the class ball, each with
its own mass, initial position and velocity, and color.

170 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time o r i g i n
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171 t t 0 = t ime . t ime ( )
172 t c o u n t =0

The initial time tt0 and the counter tcount are initialized.

Figure 8.3

173 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . An ima t ion loop
174 whi le RunAll :
175 S t a r t I t e r = t ime . t ime ( )
176 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Move b a l l s
177 i f R u n I t e r :
178 b a l l 1 . move ( )
179 b a l l 1 . bounce ( )
180 b a l l 2 . move ( )
181 b a l l 2 . bounce ( )
182 b a l l 1 . E l a s t C o l l ( b a l l 2 )

Lines 174 -223 comprise the animation loop. Line 175 stores the start time of each iteration into
StartIter. If RunIter is True, lines 178-182 move each ball, check if the balls are bouncing
at the canvas borders and check if an elastic collisions is occurring between them. Note that the
command ball2.ElastColl(ball1) would be equivalent to ball1.ElastColl(ball2).

183 e l s e :
184 i f GetData :
185 i =0
186 whi le i <nPar :
187 t r y :
188 params [ i ]= f l o a t ( E n t r y P a r [ i ] . g e t ( ) )
189 e xc ep t V a l u e E r r o r :
190 pass
191 i +=1
192 b a l l 1 .m, b a l l 1 . rad , b a l l 1 . vx , b a l l 1 . vy , \
193 b a l l 2 .m, b a l l 2 . rad , b a l l 2 . vx , b a l l 2 . vy , t a u=params
194 t a u= i n t ( t a u )
195 f o r i in range ( nPar ) :
196 b u f f=” %.2 f ” % params [ i ]
197 E n t r y P a r [ i ] . d e l e t e ( 0 , ’ end ’ )
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198 E n t r y P a r [ i ] . i n s e r t ( 0 , b u f f )
199 b a l l 1 . x= b a l l 1 . rad −b a l l 1 . vx
200 b a l l 1 . y= b a l l 1 . rad −b a l l 1 . vy
201 b a l l 2 . x=cw−b a l l 2 . rad −b a l l 2 . vx
202 b a l l 2 . y= b a l l 2 . rad −b a l l 2 . vy
203 b a l l 1 . move ( )
204 b a l l 2 . move ( )
205 GetData=F a l s e

If Runiter is False, and if GetData is True, the loop 186-191 updates the list params reading
the new values from the entries on the toolbar. The single variables are read from the params array
at Lines 192-193. Variable tau is converted to an integer number of milliseconds at Line 194.

Loop 195-198 rewrites the entry windows, formatting the values with two digits after the decimal
point. Lines 199-200 locate the center of ball 1 at x = r1 − 3x1, y = r1 − 3y1. Thus, when the method
ball1.move() is called at Line 203, the ball center will be located at x = r1, y = r1. The same is
done for ball 2 at Lines 201-202. Line 205 sets GetData to False, so that entries are no longer read
till the Enter key is pressed again.

206 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cyc le d u r a t i o n
207 t c o u n t +=1
208 i f t c o u n t ==10:
209 t c o u n t =0
210 t t t = t ime . t ime ( )
211 e l a p s e d = t t t − t t 0
212 CycleLab [ ’ t e x t ’ ]= ” %8.2 f ”%( e l a p s e d *100 .0 )+ ” ms”
213 t t 0 = t t t
214 E l a p s I t e r = i n t ( ( t ime . t ime () − S t a r t I t e r ) * 1 0 0 0 . 0 )
215 ca nv as . u p d a t e ( )
216 ca nv as . a f t e r ( t au −E l a p s I t e r )

At Line 207 the counter tcount is increased by 1. When tcount equals 10 Line 211 determines
the duration time of the last 10 loop iterations, and Line 212 prints the average duration of an iteration,
in ms, in the label CycleLab at the bottom of the toolbar in Fig. 8.3.

Line 214 measures the time elapsed since the beginning of the current iteration. Line 215 updates
the canvas, and Line 216 delays the next iteration till a total time τ has elapsed between two successive
animation frames.

217 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218 r o o t . d e s t r o y ( )

8.3 A “Classical” Atom
In physics books we learn that a “classical” atom, i.e., an atom comprising a nucleus and electrons
obeying the laws of classical electromagnetism, would not be stable. Such an atom would collapse
because the orbiting electrons, being accelerated, would radiate energy and spiral down to the nucleus.
We also learn that this is not the case because, actually, atoms obey the laws of quantum mechanics
rather than the laws of classical physics. And this is the end of the story.

However, it is interesting to note that a hypothetical “classical” atom with two or more electrons,
thus, any classical atom more complex than the hydrogen atom, would not be stable even disregarding
radiation losses. Instinctively we might thing of a classical atom as something similar to the Solar
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System, with the nucleus playing the role of the Sun and the electrons the roles of the planets. But
there is a very important difference. The gravitational force between any two components of the Solar
System (two planets, or a planet and the Sun) is proportional to the product of the two masses, with
the mass of the Sun (1.99 × 1030 kg) being more than 1000 times larger than the mass of the most
massive planet, Jupiter (1.90×1027 kg). This makes neglecting the interactions of the planets between
themselves a reasonable start approximation. And, in any case, one ought to remember that it took to
the Solar System some 4 billion years to reach the actual “stable” configuration.

On the other hand, it is true that a “classical” helium atom (our simplest example) would be a
three-body system where the mass of the nucleus is much larger than the mass of each electron (by a
factor of approximately 7.3 × 103), in analogy to the Solar System. But here forces are proportional
to the products of the involved charges, rather than masses. Thus, the interaction between the two
electrons is absolutely not negligible with respect to the nucleus-electron interactions. This makes
approximations analogous to the ones used for the Solar System impossible, and an approximate
analytic treatment of the problem is not feasible. Even if, obviously, a classical atom simply does not
exist, it can be instructive to watch the animation generated by Script 8.3.

Listing 8.3 ClassicalAtom.py
1 # ! / u s r / b i n / env py thon3
2 #
3 from t k i n t e r import *
4 from s c i p y . i n t e g r a t e import o d e i n t
5 import numpy as np
6 import t ime
7 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s u b s c r i p t s f o r l a b e l s
8 sub =[ ’ \ u2080 ’ , ’ \ u2081 ’ , ’ \ u2082 ’ , ’ \ u2083 ’ , ’ \ u2084 ’ , ’ \ u2085 ’ ,\
9 ’ \ u2086 ’ , ’ \ u2087 ’ , ’ \ u2088 ’ , ’ \ u2089 ’ ]

10 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G loba l v a r i a b l e s
11 RunAll=True
12 R u n I t e r=NewBaryc=GetData=ReWrite=F a l s e
13 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P h y s i c a l v a l u e s
14 q =1.602176 e−19 # e l e m e n t a r y charge / Coulomb
15 me=9.10938 e−31 # e l e c t r o n mass / kg
16 mp=1.67262 e−27 # p r o t o n mass / kg
17 ke =8.987551 e9 # Coulomb ’ s c o n s t a n t (N m ˆ 2 / Cˆ 2 )
18 r2 =1.0 e−10 # r a d i u s o f second− e l e c t r o n o r b i t / m
19 r1= r2 / 3 . 0
20 v1=np . s q r t ( ke *2 .0 * q * * 2 / ( me* r1 ) ) # m / s
21 v2=np . s q r t ( ke *q * * 2 / ( me* r2 ) ) # m / s
22 d t =2.0 e−19 # s

The list at Lines 8-9 defines numerical subscripts according to Table E.1 of Appendix E. These
subscripts will be used in the the labels that appear in the toolbar, see Fig. 8.4. Lines 11-12 initialize
the usual global variables needed by the toolbar buttons.

Lines 14-17 define some constants in SI units: the elementary charge q, the electron and proton
masses me and mp, and the Coulomb constant ke = 1/(4πε0). As initial conditions we arbitrarily
assume all particles (nucleus and electrons), located on the x axis of a Cartesian reference frame, the
nucleus being located at the origin. Variable r2 is the initial distance r2 = x0

2 of the farther electron
from the nucleus, arbitrarily chosen as 0.1 nm. Variable r1 is the initial distance of the closer electron,
r1 = −x0

1, from the nucleus. We arbitrarily choose x0
1 = −x0

2/3. The initial velocities of both electrons
are assumed parallel to the y axis, 301 = (0, ẏ1) and 302 = (0, ẏ2). Variable v1, corresponding to ẏ1, is
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chosen so that the closer electron would describe a circular orbit around the nucleus in the absence of
electron 2. Analogously, the initial velocity of the farther electron, -v2, corresponding to ẏ2, would
corresponds to a circular orbit if electron 1 had collapsed onto the nucleus. Finally, dt is the step size
dt, in seconds, used for the numerical integration of the equations of motion.

23 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawing and a n i m a t i o n p a r a m e t e r s
24 c y c l e =20 # ms
25 s c a l e =3.0 e12 # px / m
26 cw=900 # px
27 ch =900 # px
28 Ox=cw / 2 . 0
29 Oy=ch / 2 . 0
30 b c r a d =2 # px
31 T r a i l L e n g t h =200

Quantity cycle is the required time interval ∆τ between two successive animation frames. Quantity
scale is the ratio S between a distance on the canvas, measured in px, and the corresponding real
distance measured in m. Thus, a real distance of 1 m corresponds to 3× 1012 px, a distance of 0.1 nm
corresponds to 300 px on the canvas. As we shall see in the following, the value of scale can be
interactively changed during the program execution.

As usual, cw and ch are the canvas width and height in px, respectively, while Ox and Oy are
the position, in px, of the origin of our coordinate system with respect to the left upper corner of the
canvas. The barycenter of the atom will be shown by a small black circle of radius 2 px (bcrad).
In order to visualize the paths of the particles, each particle (electron or nucleus) leaves a trail on the
canvas, consisting of a polyline of TrailLength (Ntrail in mathematical notation) vertices, starting
from the present position of the particle, as shown in Fig. 8.4.

32 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S t a r t / S top f u n c t i o n
33 def S t a r t S t o p ( ) :
34 g l o b a l R u n I t e r
35 R u n I t e r=not R u n I t e r
36 i f R u n I t e r :
37 S t a r t B u t t o n [ ” t e x t ” ]= ” Stop ”
38 e l s e :
39 S t a r t B u t t o n [ ” t e x t ” ]= ” R e s t a r t ”
40 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E x i t f u n c t i o n
41 def S t o p A l l ( ) :
42 g l o b a l RunAll
43 RunAll=F a l s e
44 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Data f u n c t i o n
45 def ReadData (* a r g ) :
46 g l o b a l GetData
47 GetData=True
48 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S c a l e Down
49 def ScaleDown (* a r g ) :
50 g l o b a l s c a l e
51 s c a l e /= np . s q r t ( 2 . 0 )
52 Sca leLab [ ’ t e x t ’ ]= ” %10.3 e ”%( s c a l e )
53 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S c a l e Up
54 def ScaleUp (* a r g ) :
55 g l o b a l s c a l e
56 s c a l e *=np . s q r t ( 2 . 0 )
57 Sca leLab [ ’ t e x t ’ ]= ” %10.3 e ”%( s c a l e )
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Functions StartStop(), StopAll() and ReadData()are the same as in Script 7.10. Function
ScaleDown() divides scale by a factor

√
2 each tim it is called, thus reducing the lengths on the

canvas. Function ScaleUp() muliplies scale by
√

2, thus enlarging the picture.

58 # . . . . . . . . . . . . . . . . . . . . . . . . . . E v a l u a t e c e n t e r o f mass and i t s v e l o c i t y
59 def b a r y c ( p a r t ) :
60 mto t=sum ( zz .m f o r zz in p a r t )
61 cx=sum ( zz . x* zz .m f o r zz in p a r t ) / mtot
62 cy=sum ( zz . y* zz .m f o r zz in p a r t ) / mtot
63 cvx=sum ( zz . vx* zz .m f o r zz in p a r t ) / mtot
64 cvy=sum ( zz . vy* zz .m f o r zz in p a r t ) / mtot
65 re turn [ [ cx , cy ] , [ cvx , cvy ] ]
66 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . move o r i g i n t o c e n t e r o f mass
67 def S e t B a r y c ( ) :
68 g l o b a l NewBaryc
69 g l o b a l p a r t
70 xcm , ycm=b a r y c ( p a r t ) [ 0 ]
71 cvx , cvy=b a r y c ( p a r t ) [ 1 ]
72 f o r zz in p a r t :
73 zz . x−=xcm
74 zz . y−=ycm
75 zz . vx−=cvx
76 zz . vy−=cvy
77 NewBaryc=True

Function baryc() evaluates the position and velocity components of the barycenter of the system.
Nucleus and electron are all instances of the class particle defined below, starting from Line 79.
The argument part of baryc() is a list of particle instances, comprising the nucleus and the
two electrons. Each instance has its own variables, here we are interested in mass, m, coordinates, x
and y, and velocity components, vx and vy. Line 60 evaluates the total mass of the atom, mtot.
Note that the for loop inside the argument of sum() runs over all the elements zz of the list part,
quantity zz.m being the mass of each particle. Lines 61-64 evaluate the position (cx,cy) and velocity
components (cvx,cvy), of the barycenter. Function SetBaryc() moves nucleus and electrons to
their positions in the barycenter reference frame, where the origin is located on the barycenter and the
total momentum is zero.

78 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C l a s s p a r t i c l e
79 c l a s s p a r t i c l e :
80 def i n i t ( s e l f , mass , cha rge , f r i c t , x , y , vx , vy ) :
81 s e l f .m=mass
82 s e l f . q=c h a r g e
83 s e l f . f r = f r i c t
84 s e l f . x=x
85 s e l f . y=y
86 s e l f . t r a i l m i n =np . s q r t ( s e l f . x**2+ s e l f . y * * 2 ) * 0 . 0 5
87 s e l f . vx=vx
88 s e l f . vy=vy
89 i f s e l f . q>0: # n u c l e u s
90 s e l f . c o l= ’ r e d ’
91 s e l f . r a d =8
92 e l s e : # e l e c t r o n
93 s e l f . c o l= ’ b l u e ’
94 s e l f . r a d =4
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95 s e l f . image=c an va s . c r e a t e o v a l ( Ox+ i n t ( s c a l e * s e l f . x− s e l f . r a d ) , \
96 i n t ( Oy− s c a l e * s e l f . y+ s e l f . r a d ) , i n t ( Ox+ s c a l e * s e l f . x+ s e l f . r a d ) , \
97 i n t ( Oy− s c a l e * s e l f . y− s e l f . r a d ) , f i l l = s e l f . co l , o u t l i n e = s e l f . c o l )
98 s e l f . t r a i l =[ s e l f . x , s e l f . y ]* T r a i l L e n g t h
99 s e l f . S c a l e d T r a i l = [ 0 . 0 , 0 . 0 ] * T r a i l L e n g t h

100 s e l f . T r a i l I m g=c an va s . c r e a t e l i n e ( s e l f . S c a l e d T r a i l , f i l l = s e l f . c o l )
101 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . move p a r t i c l e
102 def move ( s e l f ) :
103 ca nv a s . c o o r d s ( s e l f . image , Ox+ s c a l e * s e l f . x− s e l f . rad , \
104 Oy− s c a l e * s e l f . y+ s e l f . rad , Ox+ s c a l e * s e l f . x+ s e l f . rad , \
105 Oy− s c a l e * s e l f . y− s e l f . r a d )
106 def U p d a t e T r a i l ( s e l f ) :
107 i f abs ( s e l f . x− s e l f . t r a i l [ −2])+ abs ( s e l f . y− s e l f . t r a i l [−1])> s e l f . t r a i l m i n :
108 d e l s e l f . t r a i l [ : 2 ]
109 s e l f . t r a i l . append ( s e l f . x )
110 s e l f . t r a i l . append ( s e l f . y )
111 def DrawTra i l ( s e l f ) :
112 s e l f . S c a l e d T r a i l [ : : 2 ] = [ Ox+ s c a l e * zz f o r zz in s e l f . t r a i l [ : : 2 ] ]
113 s e l f . S c a l e d T r a i l [ 1 : : 2 ] = [ Oy− s c a l e * zz f o r zz in s e l f . t r a i l [ 1 : : 2 ] ]
114 ca nv a s . c o o r d s ( s e l f . T ra i l Img , s e l f . S c a l e d T r a i l )

Lines 79-114 define the class particle. Each instance of the class has its own values for mass,
charge, linear drag coefficient (frict), position (x,y), and velocity (vx,vy), initialized by the
init () method. The instance variable trailmin, equal to 0.05 times the distance of the

particle from the origin, is the minimum distance between two consecutive points of the trail. If the
charge of the particle is positive (nucleus) the particle is represented by a red circle of radius 8 px on
the canvas. If the charge is negative (electron) the particle is represented by a blue circle of radius 4
px (Lines 89-94). Lines 95-97 draw the first image of the particle on the canvas. Line 98 initializes
the list trail, comprising TrailLength couples of (x, y) coordinates that will describe the trail
of the particle. Line 99 initializes the list ScaledTrail, whose elements equal the corresponding
elements of trail multiplied by scale. Line 100 generates TrailImg, the first image of the trail
on the canvas. Both image and TrailImg will be updated at each step (frame) of our animation.

Method move(), at lines 102-105, moves the particle image to its new position at the next ani-
mation step. This is done through the method canvas.coords() , whose arguments are the image
to be moved, self.image, and the coordinates of the new position.

Method UpdateTrail() checks if the present position of the particle, (self.x,self.y),
differs by more than self.trailmin from the last couple of coordinates of the list self.trail.
If so, the coordinates of the first (oldest) point of the polyline are removed, and the coordinates of the
new position are added at the end of the list.

Method DrawTrail() evaluates the coordinates of the polyline to be drawn on the canvas.
Since we use usual Cartesian coordinates for our calculations, and prefer to have the origin at the
center of the canvas, we convert our coordinates by the rules

xcanv = Ox + S xCart , ycanv = Oy − S yCart , (8.6)

where S is the scale factor scale, and we take into account that the canvas y axis is directed down-
wards. Since x and y coordinates alternate in the list, we use slicing for the conversion.

115 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c r e a t e i n p u t v e c t o r
116 def W r i t e I n p u t ( bod i e s , va l , InpV , v e c t ) :
117 nn=7* l e n ( b o d i e s )
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118 InpV [ : nn : 7 ] = [ zz .m f o r zz in b o d i e s ]
119 InpV [ 1 : nn : 7 ] = [ zz . q f o r zz in b o d i e s ]
120 InpV [ 2 : nn : 7 ] = [ zz . f r f o r zz in b o d i e s ]
121 InpV [ 3 : nn : 7 ]= v e c t [ : : 4 ] = [ zz . x f o r zz in b o d i e s ]
122 InpV [ 4 : nn : 7 ]= v e c t [ 1 : : 4 ] = [ zz . y f o r zz in b o d i e s ]
123 InpV [ 5 : nn : 7 ]= v e c t [ 2 : : 4 ] = [ zz . vx f o r zz in b o d i e s ]
124 InpV [ 6 : nn : 7 ]= v e c t [ 3 : : 4 ] = [ zz . vy f o r zz in b o d i e s ]
125 InpV [ nn : : ] = v a l
126 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read E n t r y v a l u e s
127 def ReadInpu t ( InpV , bod ie s , va l , v e c t ) :
128 nn=7* l e n ( b o d i e s )
129 f o r i , zz in enumerate ( b o d i e s ) :
130 zz .m=InpV [ i *7]
131 zz . q=InpV [ i *7+1]
132 zz . f r =InpV [ i *7+2]
133 zz . x=v e c t [ i *4]= InpV [ i *7+3]
134 zz . y=v e c t [ i *4+1]= InpV [ i *7+4]
135 zz . vx=v e c t [ i *4+2]= InpV [ i *7+5]
136 zz . vy=v e c t [ i *4+3]= InpV [ i *7+6]
137 v a l [ : : ] = InpV [ nn : : ]

Figure 8.4

Lines 116-125 define the function WriteInput(), which copies the instance variables of the single
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particles into the lists InpV and vect. List InpV is used for interactively changing parameters
during the program execution, through the toolbar entries. List vect is the array of initial conditions
for the numerical solution of the differential equations by odeint(). The name vect is used
as local variable in the WriteInput() and ReadInput() functions, in the main program the
corresponding list is called y, see Lines 178, 179 and 275. Line 125 adds the values of the list
values, defined at Line 175 below, at the end of Inpv. The first 7n elements of InpV are the
instance variables of the n particles (n = 3 in our case, but you can easily add new electrons between
Lines 172 and 173), and its last 4 elements are the elements of values. The two lists are thus

InpV = [m0, q0, η0, x0, y0, ẋ0, ẏ0,m1, q1, η1, x1, y1, ẋ1, ẏ1,m2, q2, η2, x2, y2, ẋ2, ẏ2, ke, dt,∆τ,Ntrail] ,
vect = [x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2] , (8.7)

where the numerical subscripts refer to the particles, and ηi stands for the linear drag-force coefficient
on particle i. Note the use of list slicing in Lines 118-124. The elements of InpV appear in the entry
windows of the toolbar, see Fig. 8.4.

Once we have modified some of the parameter values in the toolbar entries, function ReadIn-
put(), defined at Lines 127-137, copies our new values into the class particle instances and into the
vect and values lists.

138 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v e c t 2 b o d i e s
139 def v e c t 2 b o d i e s ( vec t , b o d i e s ) :
140 f o r i , zz in enumerate ( b o d i e s ) :
141 zz . x=v e c t [4* i ]
142 zz . y=v e c t [4* i +1]
143 zz . vx=v e c t [4* i +2]
144 zz . vy=v e c t [4* i +3]

Function vect2bodies(), defined at Lines 139-144, copies the positions and velocities of the
particles from the list vect, see (8.7), into the particle instance variables.

145 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . r o o t window
146 r o o t =Tk ( )
147 r o o t . t i t l e ( ’ C l a s s i c a l Helium Atom ’ )
148 r o o t . b ind ( ’<Return > ’ , ReadData )
149 r o o t . b ind ( ’<C o n t r o l −p lus > ’ , ScaleUp )
150 r o o t . b ind ( ’<C o n t r o l −minus> ’ , ScaleDown )
151 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . canvas
152 ca nv as=Canvas ( r o o t , w id th=cw , h e i g h t =ch , background=” # f f f f f f ” )
153 ca nv as . g r i d ( row =0 , column =0)
154 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t o o l b a r
155 t o o l b a r =Frame ( r o o t )
156 t o o l b a r . g r i d ( row =0 , column =1 , s t i c k y =N)

Lines 146-150 create the root window and bind the <Return> keyboard key to the ReadData()
function, and the <Control-plus> key combination (simultanous pressing of the <Ctrl> and <+>
keys) to ScaleUp(), <Control-minus> to ScaleDown(). A canvas and a toolbar are created in
the root window.

157 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . b u t t o n s
158 nr =0
159 S t a r t B u t t o n =Bu t ton ( t o o l b a r , t e x t =” S t a r t ” , command= S t a r t S t o p , wid th =11)
160 S t a r t B u t t o n . g r i d ( row=nr , column =0 , s t i c k y =W)
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161 A d j u s t B u t t o n=Bu t ton ( t o o l b a r , t e x t =” S e t B a r y c e n t e r ” ,\
162 command=SetBaryc , wid th =11)
163 A d j u s t B u t t o n . g r i d ( row=nr , column =1 , s t i c k y =W)
164 nr+=1
165 C l o s e B u t t o n=Bu t ton ( t o o l b a r , t e x t =” E x i t ” , command=StopAl l , w id th =11)
166 C l o s e B u t t o n . g r i d ( row=nr , column =0 , columnspan =2 , s t i c k y =W)
167 nr+=1

Three buttons, bound to the functions StartStop(), SetBaryc() and StopAll(), respec-
tively, are created in the toolbar, located as in Fig. 8.4.

168 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e b o d i e s
169 p a r t = [ ]
170 p a r t . append ( p a r t i c l e ( 4 . 0 * mp , 2 . 0 * q , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ) )
171 p a r t . append ( p a r t i c l e ( me,−q , 0 . 0 , − r1 , 0 . 0 , 0 . 0 , − v1 ) )
172 p a r t . append ( p a r t i c l e ( me,−q , 0 . 0 , r2 , 0 . 0 , 0 . 0 , v2 ) )
173 nP= l e n ( p a r t )
174 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter−v a l u e l i s t
175 v a l u e s =[ ke , d t , c y c l e , T r a i l L e n g t h ]
176 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i n p u t v e c t o r
177 InpV = [ 0 ] * ( 7 * nP+ l e n ( v a l u e s ) )
178 y = [0 ]*4* nP
179 W r i t e I n p u t ( p a r t , v a l u e s , InpV , y )

The nucleus, first and second electron are create at lines 170-173 as instances of the class particle,
members of the list part. The nucleus, part[0], has mass 4mp and charge 2q, each electron,
part[1] and part[2], has mass me and charge −q. The nucleus is located in the origin with
initial zero velocity, while the electrons are located at y1 = y2 = 0, x1 = −r1, x2 = r2, with initial zero
x velocity components ẋ0

1 = ẋ0
2 = 0, and y velocity components ẏ0

1 and ẏ0
2. All values of the x position

components and of the y velocity components are slightly changed if one presses the Set Barycenter
button on the toolbar, which performs the coordinate transformation to the barycentric frame.

Line 175 generates the list values, comprising the Coulomb constant ke, the numerical-integration
step dt, the required time interval between two successive animation frames, and the number of ver-
tices in the trails following the particles.

Lines 177-179 generate the lists InpV and y, and initialize them using the function WriteIn-
put().

180 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I n p u t l i s t
181 I n p u t S t r = [ ]
182 f o r i in range ( l e n ( p a r t ) ) :
183 I n p u t S t r . append ( ’m’+sub [ i ] )
184 I n p u t S t r . append ( ’ q ’+sub [ i ] )
185 I n p u t S t r . append ( ’ \u03B7 ’+sub [ i ] ) # e t a
186 I n p u t S t r . append ( ’ x ’+sub [ i ] )
187 I n p u t S t r . append ( ’ y ’+sub [ i ] )
188 I n p u t S t r . append ( ’ vx ’+sub [ i ] )
189 I n p u t S t r . append ( ’ vy ’+sub [ i ] )
190 I n p u t S t r . append ( ’Ke ’ )
191 I n p u t S t r . append ( ’ d t ’ )
192 I n p u t S t r . append ( ’ Cycle / ms ’ )
193 I n p u t S t r . append ( ’ T a i l ’ )
194 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L a b e l s and E n t r i e s f o r p a r t i c l e s
195 I n p u t L a b = [ ]
196 I n p u t E n t r y = [ ]
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197 f o r i , zz in enumerate ( I n p u t S t r ) :
198 I n p u t L a b . append ( Labe l ( t o o l b a r , t e x t =zz , f o n t =( ” H e l v e t i c a ” , 1 1 ) ) )
199 I n p u t L a b [ i ] . g r i d ( row=nr , column =0)
200 I n p u t E n t r y . append ( E n t r y ( t o o l b a r , bd =3 , wid th =12) )
201 I n p u t E n t r y [ i ] . g r i d ( row=nr , column =1)
202 I n p u t E n t r y [ i ] . i n s e r t ( 0 , ” { : . 3 e } ” . format ( InpV [ i ] ) )
203 nr+=1
204 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t i m e l a b e l
205 CycleLab0=Labe l ( t o o l b a r , t e x t =” P e r i o d : ” , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
206 CycleLab0 . g r i d ( row=nr , column =0)
207 CycleLab=Labe l ( t o o l b a r , t e x t =” ” , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
208 CycleLab . g r i d ( row=nr , column =1 , s t i c k y =W)
209 nr+=1
210 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s c a l e l a b e l
211 Sca leLab0=Labe l ( t o o l b a r , t e x t =” S c a l e : ” , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
212 Sca leLab0 . g r i d ( row=nr , column =0)
213 Sca leLab=Labe l ( t o o l b a r , t e x t =” %10.3 e ”%( s c a l e ) , f o n t =( ” H e l v e t i c a ” , 1 1 ) )
214 Sca leLab . g r i d ( row=nr , column =1 , s t i c k y =W)
215 nr+=1

Lines 181-193 generate the label strings for the entries in the toolbar, as seen in the left toolbar
column of Fig. 8.4, \u03B7 is the utf-8 encoding of the Greek letter η, denoting the linear-drag
constant. Lines 195-203 create the labels and entries for modifying the program parameters,located
in the toolbar. Lines 205-208 create two side-by-side labels in the toolbar, one with the word Period:,
the other reporting the actual average time interval between consecutive frames during the program
execution. Lines 211-214 create two labels reporting the value of the variable scale.

216 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f u n c t i o n
217 def d f d t ( yInp , t , pp ) :
218 nn =7*( l e n ( y Inp ) / / 4 )
219 mm=np . a r r a y ( pp [ : nn : 7 ] ) # masses from InpV
220 qq=pp [ 1 : nn : 7 ] # c h a r g e s from InpV
221 f r =np . a r r a y ( pp [ 2 : nn : 7 ] ) # drags from InpV
222 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
223 x=yInp [ : : 4 ]
224 y=yInp [ 1 : : 4 ]
225 vx=np . a r r a y ( yInp [ 2 : : 4 ] )
226 vy=np . a r r a y ( yInp [ 3 : : 4 ] )
227 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coulomb c o n t r i b u t i o n t o f o r c e
228 d i s t x =x−( np . t i l e ( x , ( l e n ( x ) , 1 ) ) ) . T
229 d i s t y =y−( np . t i l e ( y , ( l e n ( y ) , 1 ) ) ) . T
230 a l p h a=np . a r c t a n 2 ( d i s t y , d i s t x )
231 r2=np . s q u a r e ( d i s t x )+ np . s q u a r e ( d i s t y )
232 np . f i l l d i a g o n a l ( r2 , 1 . 0 )
233 q2=−ke *( np . t i l e ( qq , ( l e n ( qq ) , 1 ) ) . T*qq )
234 f f =np . d i v i d e ( q2 , r2 )
235 np . f i l l d i a g o n a l ( f f , 0 . 0 )
236 fx= f f *np . cos ( a l p h a )
237 fy= f f *np . s i n ( a l p h a )
238 # . . . . . . . . . . . . . . . . . . . . . A c c e l e r a t i o n s , i n c l u d i n g l i n e a r drags
239 ax =( fx . sum ( a x i s =1)−( vx* f r ) ) /mm
240 ay =( fy . sum ( a x i s =1)−( vy* f r ) ) /mm
241 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B u i l d o u t p u t l i s t
242 d e r i v s = [0 ]* l e n ( y Inp )
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243 d e r i v s [ : : 4 ] = vx
244 d e r i v s [ 1 : : 4 ] = vy
245 d e r i v s [ 2 : : 4 ] = ax
246 d e r i v s [ 3 : : 4 ] = ay
247 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
248 re turn d e r i v s

Lines 217-247 define the function dfdt(), called by odeint() at line 274. Argument yInp is
the list

[
x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, . . .

]
containing the positions and velocities of the particles at the

beginning of each iteration step. Argument t is the list [0, dt] defined at line 249, comprising the time
points at which positions and velocities must be evaluated by odeint(). Here the two elements of
t simply determine the time length of the integration step. The function call at line 274 will pass the
list InpV, containing all program parameters, as argument pp. Function dfdt() returns the list of
the derivatives of the elements of yInp, namely

[
ẋ0, ẏ0, ẍ0, ÿ0, ẋ1, ẏ1, ẍ1, ÿ1, . . .

]
.

Line 218 evaluates nn, the number of pp elements referring to the particles (the last four elements
of pp being the elements of values). The number of particles Np equals the length of yInp divided
by 4, since each particle has its own x and y components of position and velocity. Thus nn equals Np

multiplies by 7, since each particle has its own mass, charge and linear-drag coefficients, plus the x
and y components of its initial position and initial velocity. Lines 219-221 create the lists mm, qq and
fr, comprising the particle masses, charges, and linear-drag coefficients, respectively. These lists are
obtained by appropriately slicing List pp, as discussed in Section 1.13. Lines 223-226 obtain the four
lists of positions and velocities at the beginning of the integration step by slicing the list yInp.

Lines 228-237 evaluate the Coulomb forces acting on particles. Lines 228 and 229 evaluate the
matrices of the x and y components of the interparticle distances. According to the array operations
discussed in Section 1.17, we have

distx =

 0 x1 − x0 x2 − x0

x0 − x1 0 x2 − x1

x0 − x2 x1 − x2 0

 , disty =

 0 y1 − y0 y2 − y0

y0 − y1 0 y2 − y1

y0 − y2 y1 − y2 0

 . (8.8)

Note that here the Python matrix-manipulation routines perform some unnecessary calculations be-
cause of the skew-symmetry of both matrices. Actually the evaluation of a single triangular submatrix,
excluding the diagonal elements, would be sufficient for each matrix. However the available Python

xi x j

yi

y j

αi j

x

y
particle j

particle i

Figure 8.5

matrix-manipulation routines are pre-compiled and optimized,
thus they run much faster than user-written nested loops evaluat-
ing the triangular submatrices only. The i, j elements of the up-
per triangular submatrix of matrix alpha, evaluated at Line 230,
are thus the αi j angles shown in Fig. 8.5. The i, j elements of
the lower triangular submatrix of alpha equal α ji + π, therefore
sinαi j = − sinα ji and cosαi j = − cosα ji. Again here and in the
following, Python matrix-manipulation routines perform some un-
necessary, but fast, calculations. On the diagonal, where both argu-
ments of function numpy.arctan2() are zero, the function can
return either zero or π, but this is irrelevant for our purposes, since
we don’t need the diagonal elements of alpha. Line 231 creates
the matrix r2 whose elements r2

i j are the squares of the distances
between particle i and particle j. Line 232 arbitrarily fills the diagonal of r2 with ones, in order to
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avoid divisions by zero on the matrix diagonal at Line 234, since r2
ii = 0. The resulting “artificial”

diagonal elements are not used in the subsequent calculations. Line 233 creates the matrix q2, with
elements (q2)i j = −keqiq j. Line 234 obtains the matrix ff by Hadamard (element by element) matrix
division. The off-diagonal elements of ff are thus

−ke
qiq j

r2
i j

(8.9)

corresponding to the magnitudes the Coulomb forces between the particle pairs i, j, with a plus sign
if the force is attractive, and a negative sign if the force is repulsive. The diagonal elements of ff
are zeroed by Line 235. Lines 236 and 237 form the matrices of the x and y components of the
inter-particle forces. Thus, the sum of the elements of row i of fx (fy) is the x (y) component of
the total Coulomb force acting on particle i. These sums of the row elements are performed at Lines
239-240, where also the contribution of the linear-drag force is added, and the total force components
are divided by the particle masses in order to obtain the lists ax and ay of the particle acceleration
components.

Lines 242-246 build the list derivs comprising the derivatives of the elements of yInp, which
function dfdt() returns at Line 248, the last line of the dfdt() definition code.

249 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n u m e r i c a l t i m e i n t e r v a l
250 t = [ 0 . 0 , d t ]
251 t t 0 = t ime . t ime ( )
252 t c o u n t =0
253 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw c o o r d i n a t e axes
254 ca nv as . c r e a t e l i n e ( 0 , Oy , cw , Oy , f i l l =” b l a c k ” )
255 ca nv as . c r e a t e l i n e ( Ox , 0 , Ox , ch , f i l l =” b l a c k ” )
256 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cr ea t e b a r y c e n t e r image on canvas
257 bc=c an va s . c r e a t e o v a l ( Ox−bcrad , Oy−bcrad , Ox+bcrad , Oy+bcrad , f i l l =” b l a c k ” )

Line 250 builds the list t of the time points at which odeint() evaluates the solutions of the
differential equations at each animation step. Line 251 stores in variable tt0 the seconds elapsed
since the epoch. Line 252 sets the iteration counter tcount to zero. Lines 254 and 255 draw the x
and y axes on the canvas, and Line 257 draws a first image of the system barycenter.

258 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
259 whi le RunAll :
260 S t a r t I t e r = t ime . t ime ( )
261 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . draw b o d i e s
262 f o r zz in p a r t :
263 zz . move ( )
264 zz . U p d a t e T r a i l ( )
265 zz . DrawTra i l ( )
266 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c e n t e r o f mass
267 cx , cy=b a r y c ( p a r t ) [ 0 ]
268 cx*= s c a l e
269 cy*= s c a l e
270 ca nv a s . c o o r d s ( bc , Ox+cx−bcrad , Oy−cy−bcrad , Ox+cx+bcrad , Oy−cy+b c r a d )
271 ca nv a s . u p d a t e ( )

Lines 259-315 comprise our main animation loop. Line 260 stores the seconds elapsed from epoch
to each iteration start in StartIter. Loop 262-265 moves all particles to there new positions, and
updates the particle trails. Lines 267-270 evaluate the new position of the barycenter and draw its
image on the canvas. Line 271 updates the canvas.
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272 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . mo t ion
273 i f R u n I t e r :
274 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n e x t s t e p
275 p s o l n = o d e i n t ( d f d t , y , t , a r g s =( InpV , ) )
276 y=p s o l n [ 1 , : ]
277 v e c t 2 b o d i e s ( y , p a r t )

If RunIter is True lines 275-277 call odeint() to solve the differential equations for the particle
motions and update the list y, comprising the particle positions and velocities at the next step. Line
277 copies the new positions and velocities stored in y into the class particle instances, so that the
class methods move(), UpdateTrail() and DrawTrail can update the animation frame at the
next iteration step.

278 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
279 e l s e :
280 i f NewBaryc :
281 ReWrite=True
282 W r i t e I n p u t ( p a r t , v a l u e s , InpV , y )
283 NewBaryc=F a l s e
284 e l i f GetData :
285 f o r i , zz in enumerate ( I n p u t E n t r y ) :
286 t r y :
287 InpV [ i ]= f l o a t ( zz . g e t ( ) )
288 e xc ep t V a l u e E r r o r :
289 pass
290 ReWrite=True
291 GetData=F a l s e

Lines 280-304 are executed only if RunIter is False. If NewBaryc is True, i.e., if the toolbar
button <Set Barycenter> has been pressed, thus calling function SetBaryc(), variable ReWrite
is set to True, and lists InpV and y are updated with the new initial positions and velocities in the
barycenter reference frame. Eventually, NewBaryc is set to False.

If GetData is True, i.e., if the <Return> key has been pressed, Loop 285-289 rereads all values
in the toolbar entries and updates list InpV. Variable ReWrite is set to True and GetData to False.

292 i f ReWrite :
293 ReadInpu t ( InpV , p a r t , v a l u e s , y )
294 f o r zz , yy in z i p ( I n p u t E n t r y , InpV ) :
295 zz . d e l e t e ( 0 , ’ end ’ )
296 zz . i n s e r t ( 0 , ” { : . 3 e } ” . format ( yy ) )
297 d t=v a l u e s [ 1 ]
298 t = [ 0 . 0 , d t ]
299 c y c l e= i n t ( v a l u e s [ 2 ] )
300 T r a i l L e n g t h = i n t ( v a l u e s [ 3 ] )
301 f o r zz in p a r t :
302 zz . t r a i l =[ zz . x , zz . y ]* T r a i l L e n g t h
303 zz . S c a l e d T r a i l = [ 0 . 0 , 0 . 0 ] * T r a i l L e n g t h
304 ReWrite=F a l s e

If ReWrite is True, i.e., if either NewBaryc or GetData was True, the values stored in List
InpV are copied into the class-particle instances, and into the lists values and y. Loop 294-296
rewrites the values in the toolbar entry-windows formatted with 3 digits after the decimal point. Lines
297-298 update variable dt and List t. Lines 299-300 update the integer values of cycle (in ms)
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and TrailLength. Loop 301-303 reinitializes the particle trails with the new lengths. Eventually,
ReWrite is set to False.

305 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c y c l e d u r a t i o n
306 t c o u n t +=1
307 i f t c o u n t ==10:
308 t c o u n t =0
309 t t t = t ime . t ime ( )
310 e l a p s e d = t t t − t t 0
311 CycleLab [ ’ t e x t ’ ]= ” %8.3 f ”%( e l a p s e d *100 .0 )+ ” ms”
312 t t 0 = t t t
313 E l a p s I t e r = i n t ( ( t ime . t ime () − S t a r t I t e r ) * 1 0 0 0 . 0 )
314 ca nv as . a f t e r ( c y c l e −E l a p s I t e r )

Line 306 increases the iteration counter tcount. Lines 307-312 are executed every 10 iterations.
Variable elapsed is the number of seconds elapsed during the last 10 iterations, which, multiplied
by 100, gives the average duration of each iteration in ms. The value is written in the last-but-one
label at the bottom of the toolbar. Variable tt0 is reinitialized.

Variable ElapsIter at Line 313 is the time elapsed since the start of the present iteration, in
ms. Line 314 delays the start of the next iteration till cycle ms have elapsed since the beginning of
the present iteration. If ElapsIter>cycle, the argument of canvas.after() is negative, and
Line 314 is simply ignored.

315 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
316 r o o t . d e s t r o y ( )

It is interesting to experiment on this script, using the entry labels in the toolbar to change the
initial parameter values, and observe how the behavior of our “classical atom” is modified. If the
initial positions and velocities of the electrons are modified, in most cases the behavior becomes
unstable, and, eventually, “autoionization” may result. Changing the sign of the velocity of either
electron is sufficient to observe such instabilities.

A further possibility is adding new electrons between Lines 173 and 174, with arbitrary initial
positions and velocities.

A “C-style” dfdt() Alternative Function

Function dfdt(), defined at Lines 217-248, can be replaced by the following code, where the nested
loops at Lines 230-246 avoid the unnecessary calculation of the whole skew-symmetric matrices. This
code can be easier to read for the C-minded programmer, but executes more slowly.

Listing 8.4 C-style
217 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f u n c t i o n
218 def d f d t ( yInp , t , pp ) :
219 nn =7*( l e n ( y Inp ) / / 4 )
220 mm=pp [ : nn : 7 ] # masses from InpV
221 qq=pp [ 1 : nn : 7 ] # c h a r g e s from InpV
222 f r =pp [ 2 : nn : 7 ] # drags from InpV
223 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
224 x=yInp [ : : 4 ]
225 y=yInp [ 1 : : 4 ]
226 vx=yInp [ 2 : : 4 ]
227 vy=yInp [ 3 : : 4 ]
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228 Fx= l i s t (− a r r a y ( vx )* a r r a y ( f r ) ) # drag c o n t r i b u t i o n t o f o r c e x
229 Fy= l i s t (− a r r a y ( vy )* a r r a y ( f r ) ) # drag c o n t r i b u t i o n t o f o r c e y
230 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coulomb c o n t r i b u t i o n t o f o r c e
231 i =1
232 whi le i <nP :
233 j =0
234 whi le j < i :
235 d e l t a x =x [ i ]−x [ j ]
236 d e l t a y =y [ i ]−y [ j ]
237 r2= d e l t a x **2+ d e l t a y **2
238 a l p h a= a r c t a n 2 ( d e l t a y , d e l t a x )
239 f f =−ke *qq [ i ]* qq [ j ] / r2
240 fx= f f * cos ( a l p h a )
241 fy= f f * s i n ( a l p h a )
242 Fx [ i ]−= fx
243 Fx [ j ]+= fx
244 Fy [ i ]−= fy
245 Fy [ j ]+= fy
246 j +=1
247 i +=1
248 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
249 d e r i v s = [0 ]* l e n ( y Inp )
250 d e r i v s [ : : 4 ] = vx
251 d e r i v s [ 1 : : 4 ] = vy
252 d e r i v s [ 2 : : 4 ] = l i s t ( a r r a y ( Fx ) / a r r a y (mm) )
253 d e r i v s [ 3 : : 4 ] = l i s t ( a r r a y ( Fy ) / a r r a y (mm) )
254 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
255 re turn d e r i v s
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Appendix A

Relevant Mathematical Functions

The math module comprises real, and a few integer, functions of real variables. The cmath module
comprises complex functions of complex variables. Many functions, notably the power, logarithmic,
trigonometric, . . . functions have the same name in the two modules. But it is important to realize
that functions of the same name belonging to different modules lead to formally different results. For
instance

>>> from math import cos
>>> cos ( 0 )
1 . 0
>>> from cmath import cos
>>> cos ( 0 )
(1 −0 j )

the output of the complex functions specifies that the real part of cos 0 is 1, while its imaginary part
is 0 (here, actually, −0). The imaginary unit, denoted by i in mathematical formulas, is coded as j in
Python.

All math functions are available also in the numpy module, the important difference being that
the numpy functions accept also lists or arrays as arguments. For instance:

>>> import numpy as np
>>> np . cos ( np . p i / 4 )
0 .7071067811865476
>>> np . cos ( [ 0 , np . p i / 4 , np . p i / 3 ] )
a r r a y ( [ 1 . , 0 .70710678 , 0 . 5 ] )

A.1 The math Module

The math module provides access to the mathematical functions defined by the C standard. These
functions cannot be used with complex numbers as arguments and cannot return complex values: use
the functions of the same name from the cmath module if you require support for complex numbers.

In the following we list the functions provided by this module. Except when explicitly noted
otherwise, all return values are floats. Symbol NaN, standing for Not a Number, is a numeric data type
value representing an undefined or unrepresentable value, especially in floating-point calculations, for
instance, 0/0.

155
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A.1.1 Number-Theoretic and Representation Functions

- math.ceil(x) Returns the smallest integer greater than or equal to x, dxe.
- math.copysign(x,y) Returns x with the sign of y.

- math.fabs(x) Returns |x|, the absolute value of x.

- math.factorial(x) Returns x!, the factorial of x.

- math.floor(x) Returns bxc, the largest integer less than or equal to x.

- math.fmod(x,y) Returns x mod y, the remainder when x is divided by y. In other words:
the dividend x and the divisor y are assumed real, the quotient is assumed integer, and the
function returns the remainder.

- math.frexp(x) Returns the mantissa and exponent of x as the pair (m,y), where m is a
float 0.5 ≤ m < 1, y is an integer, and x = m × 2y.

- math.fsum(iterable) Returns an accurate floating point sum of values in the list it-
erable, avoiding the loss of precision due to multiple roundings in the intermediate partial
sums:
>>> sum([.1,.1,.1,.1,.1,.1,.1,.1,.1,.1])
0.9999999999999999
>>> math.fsum([.1,.1,.1,.1,.1,.1,.1,.1,.1,.1])
1.0

- math.isfinite(x) Returns True if x is neither an infinity nor a NaN (Not a Number).

- math.isinf(x) Returns True if x is a positive or negative infinity.

- math.isnan(x) Returns True if x is a NaN.

- math.ldexp(x,y) Returns x × 2y. This is essentially the inverse of function frexp().

- math.modf(x) Returns the fractional and integer parts of x as the pair (f,n), where x =

n + f , 0 ≤ f < 1, and n is an integer.

- math.trunc(x) Returns the truncated integer value of x. Note that trunc() returns a
float, while floor() returns an integer.

A.1.2 Power and Logarithmic Functions

- math.exp(x) Returns ex.

- math.expm1(x) Returns ex − 1.

- math.log(x[,base]) Returns the logarithm of x to the specified base (defaults to e).
>>> print(math.log(10),math.log(10,10))
2.302585092994046 1.0

- math.log1p(x) Returns ln(1 + x), the natural logarithm of (1 + x).

- math.log2(x) Returns log2 x, equivalent to math.log(x,2).

- math.log10(x) Returns Logx = log10 x, equivalent to math.log(x,10).

- math.pow(x,y) Returns xy.

- math.sqrt(x) Returns
√

x.
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A.1.3 Trigonometric Functions
- math.acos(x) Returns arccos x.
- math.asin(x) Returns arcsin x.
- math.atan(x) Returns arctan x.
- math.atan2(y,x) Returns arctan (y/x), in radians. The result is between −π and π. Since

the signs of both arguments are known, atan2() computes the correct quadrant.
- math.cos(x) Returns cos x.
- math.hypot(x,y) Returns the Euclidean norm,

√
x2 + y2.

- math.sin(x) Returns sin x.
- math.tan(x) Returns tan x.

A.1.4 Angular Conversion
- math.degrees(x) Converts angle x from radians to degrees.
- math.radians(x) Converts angle x from degrees to radians.

A.1.5 Hyperbolic Functions
- math.acosh(x) Returns arcosh x.
- math.asinh(x) Returns arsinh x.
- math.atanh(x) Returns artanh x.
- math.cosh(x) Returns coshx.
- math.sinh(x) Returns sinh x.
- math.tanh(x) Returns tanh x.

Note that the prefix “arc” in the trigonometric functions is the abbreviation for arcus, while the prefix
“ar” in the hyperbolic functions stands for area.

A.1.6 Special functions
- math.erf(x) Returns the error function

erf(x) =
1√
π

∫ x

−x
e−t2 dt =

2√
π

∫ x

0
e−t2 dt (A.1)

- math.erfc(x) Returns the complementary error function 1 − erf(x)

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x
e−t2 dt (A.2)

- math.gamma(x) Returns Γ(x), the Gamma function.
- math.lgamma(x) Returns ln

(∣∣∣Γ(x)
∣∣∣), the natural logarithm of the absolute value of the

Gamma function at x.
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A.1.7 Constants

- math.pi Mathematical constant, the ratio of circumference of a circle to its diameter, π =

3.14159...

- math.e Mathematical constant, base of the natural logarithms, e = 2.71828...

A.2 The cmath Module

A complex number is written as x+yj, where x is the real part, y the imaginary part, and j the coding
of the imaginary unit i.

z=5.5+3.2j
>>> print(z)
(5.5+3.2j)
>>> print(z.real)
5.5
>>> print(z.imag)
3.2

A.2.1 Conversions to and from Polar coordinates

- cmath.polar(z)Returns the representation of z in polar coordinates, i.e., (r,phi)where
r is the modulus of z and phi is the phase of z, thus z = r eiϕ. Function polar(z) is equivalent
to (abs(z), phase(z)).

- cmath.rect(r,phi) Returns the complex number z with polar coordinates r and phi.

A.2.2 Power and Logarithmic Functions

- cmath.exp(z) Returns ez.

- cmath.log(z[,base]) Returns the logarithm of z to the given base. If the base is not
specified, returns the natural logarithm of z. There is one branch cut, from 0 along the negative
real axis to −∞, continuous from above.

- cmath.log10(z) Returns Log z = log10 z. This has the same branch cut as cmath.log().

- cmath.sqrt(z) Returns
√

z. This has the same branch cut as cmath.log().

A.2.3 Trigonometric Functions

- cmath.acos(z) Returns arccos zx. There are two branch cuts: one extends right from 1
along the real axis to ∞, continuous from below. The other extends left from −1 along the real
axis to −∞, continuous from above.

- cmath.asin(z) Returns arcsin z. This has the same branch cuts as cmath.acos().
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- cmath.atan(z) Returns arctan z. There are two branch cuts: One extends from 1j along
the imaginary axis to ∞ j, continuous from the right. The other extends from -1j along the
imaginary axis to −∞ j, continuous from the left.

- cmath.cos(z) Returns cos z.
- cmath.sin(z) Return the sin z.
- cmath.tan(z) Return the tan z.

A.2.4 Hyperbolic Functions
- cmath.acosh(z) Returns arcosh z. There is one branch cut, extending left from 1 along the

real axis to −∞, continuous from above.
- cmath.asinh(z) Returns arsinh z. There are two branch cuts: One extends from 1j along

the imaginary axis to ∞ j, continuous from the right. The other extends from -1j along the
imaginary axis to −∞ j, continuous from the left.

- cmath.atanh(z) Returns artanh z. There are two branch cuts: One extends from 1 along
the real axis to∞, continuous from below. The other extends from -1 along the real axis to −∞,
continuous from above.

- cmath.cosh(z) Returns cosh z.
- cmath.sinh(z) Returns sinh z.
- cmath.tanh(x) Returns tanh z.

A.2.5 Classification Functions
- cmath.isinf(z) Returns True if the real or the imaginary part of z is +∞ or −∞.
- cmath.isnan(z) Returns True if the real or the imaginary part of z is not a number (NaN).

A.2.6 Constants
- cmath.pi A complex number whose real part is π, and whose imaginary part is 0.
- cmath.e A complex number whose real part is e, and whose imaginary part is 0.
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Appendix B

Building Your Own Library

B.1 Writing a Module
As a program gets longer, it is convenient to split it into several files for easier maintenance. You
might also want to use one, or more, of your functions in several separate programs without copying
their definitions into each program. You can do this by putting the definitions of the functions that
you plan to use often into a file, which Python calls a module. Definitions from a module can then be
imported into other modules, into a script, or into interactive mode with the usual import command.

Thus, a module is a file containing Python definitions and statements. The file name is the module
name with the suffix .py appended. Within a module, the module’s name (as a string) is available
as the value of the global variable name . For instance, you can use your favorite text editor to
create the file of Listing B.1, comprising two function definitions. If you call the file mymath.py,
the module name will be mymath.

Listing B.1 mymath.py
1 import math
2 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f a c t o r i z e
3 def f a c t o r i z e ( n ) :
4 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
5 f a c t o r s = [ ]
6 whi le n%2==0:
7 f a c t o r s . append ( 2 )
8 n=n / / 2
9 i =3

10 whi le i<=s q n f :
11 whi le n%i ==0:
12 f a c t o r s . append ( i )
13 n=n / / i
14 s q n f= i n t ( math . c e i l ( math . s q r t ( f l o a t ( n ) ) ) )
15 i +=2
16 i f n !=1 :
17 f a c t o r s . append ( n )
18 re turn f a c t o r s
19 # . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F iboSeq
20 def FiboSeq ( n ) : # r e t u r n F i b o n a c c i s e q u e n c e up t o n
21 r e s u l t = [ ]
22 a , b = 0 , 1
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23 whi le b < n :
24 r e s u l t . append ( b )
25 a , b = b , a+b
26 re turn r e s u l t

Line 1 imports the module math, needed by the function factorize(). Python modules can
import one another, here our module imports one of Python built-in modules. Lines 3-18 define the
function factorize(), the same that we already met in Script 2.2. Lines 20-21 define the simple
function FiboSeq(), that returns the Fibonacci sequence up to n, the argument of the function. As
you know, a Fibonacci sequence is a sequence of integers, whose first two elements are 0 and 1, and
each successive element is the sum of the two elements that precede it.

If you are working in the same directory where you stored your mymath.py file, you can import
your mymath module without problems. In interactive mode you can simply type

>>> import mymath
>>> mymath . f a c t o r i z e (33333333333333331)

[ 3 1 , 1499 , 717324094199]

or, alternatively,

>>> from mymath import FiboSeq
>>> FiboSeq ( 4 0 0 )

[ 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , 144 , 233 , 377]

You can also write a script accessing your module. Let us call it, for instance, TestLib.py,

Listing B.2 TestLib.py
1 # ! / u s r / b i n / env py thon3
2 from mymath import f a c t o r i z e
3 f a c t = f a c t o r i z e (33333333333333331)
4 p r i n t ( f a c t )

which runs as follows

$> T e s t L i b . py
[ 3 1 , 1499 , 717324094199]

Thus, everything is fine as long as you are working in the same directory where you stored your
module. However, it is often convenient to build a separate directory where to store all your modules
(all your library). Let us call this directory, for instance, ~/python/lib, where the tilde (~) stands
for your home directory, which is platform dependent, namely

• /home/<username>/ under Linux;

• /Users/<username> under macOS;

• C:\Users\<username> under Microsoft Windows Vista.

Unfortunately, if you are working in a different directory your module is no longer automatically
accessible. If you try to import it, this is how Python reacts

>>> import mymath
Traceback ( most r e c e n t c a l l l a s t ) :

F i l e ”< s t d i n >” , l i n e 1 , in <module>
ModuleNotFoundError : No module named ’ mymath ’
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But don’t panic: there are two possibilities to import the modules from your new directory to wherever
you wish in your computer:

1. Temporary access: when you ask to import a module named, for instance, mymath, the inter-
preter first searches for a built-in module with that name. If not found, it then searches for a file
named mymath.py in a list of directories contained in the built-in variable sys.path. Vari-
able sys.path is a list of directories comprising i) the directory containing the input script
(or the current directory); ii) the directories listed in the environment variable PYTHONPATH,
if existent, see Section B.2; and iii) the installation-dependent default. This is how you can add
your new directory to the list of sys.path when you are in interactive mode

>>> import s y s
>>> s y s . p a t h . append ( ’ / home /< username > / py thon / l i b ’ )

remember that the argument of .append() is operating-system dependent. From now on
your module is accessible. But if you exit and reenter Python interactive mode the accessibility
is lost, unless you change again the value of sys.path by retyping the two lines. If you wish
to access your module from inside a Python script, these must be the first script lines:

1 \# ! / u s r / b i n / env py thon3
2 import s y s
3 s y s . p a t h . append ( ’ / home /< username > / py thon / l i b ’ )

The second and third lines must be added to every script that calls your module, but otherwise
this “change” is permanent.

2. Permanent access: You can define an appropriate environment variable, as discussed in Sec-
tion B.2. This will make your modules accessible from everywhere in your computer and
forever.

B.2 The PYTHONPATH Environment Variable
Environment variables are global system variables accessible by all the processes running in a com-
puter. Environment variables are used to store system-wide values such as the directories, or lists of
directories, where to search for, for instance, executable programs or libraries. In other words, envi-
ronment variables tell programs from what directories to read files, in what directories to write files,
where to store temporary files-

The environment variable PYTHONPATH sets the search path for importing your python modules.
Thus, for instance, you can store your mymath module, and all your other modules, in a directory
called ~/python/lib. Obviously, you can name the directory as you wish, and locate is wherever it
is most convenient for you in your file system. By default, the variable PYTHONPATH is not defined
on your computer, but you can easily add it. The procedure is not difficult, but operating-system
dependent:

- Under Linux, look for the hidden file .bashrc in your home directory, edit it with your
favorite editor and add the following two lines at the end

PYTHONPATH = : . : ˜ / py thon / l i b
e x p o r t PYTHONPATH
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the right-hand-side of the first line defines two fields, separated by a colon (” : ”), where Python
should search for your modules: the dot (“ .”) stands for the current directory, ~/python/lib
is the directory where you write your modules. Under Linux and macOS, the character tilde
( ~ ) is a shorthand for /home/<username>/. Changes to your search path will take effect
when you start a new shell.

- Under macOS, edit the file .profile and add the two lines
PYTHONPATH = $ {PYTHONPATH } : ˜ / py thon / l i b
e x p o r t PYTHONPATH

Again, changes to your search path will take effect when you start a new shell.

- Under Windows, execute the following steps

1. Access “System Settings” from your Control Panel.
2. Click on the “Advanced” tab.
3. Click on the “Environmental Variables” button on the bottom of the screen.
4. Click the “New” button under the “System Variables” section.
5. Type PYTHONPATH in the “Variable” field. Type the path for Python modules in the

value field. Click “OK” when you are finished setting the PYTHONPATH environmental
variable.

After doing this, your modules are permanently accessible from any of your directories.
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The integrate Subpackage

C.1 simps()

The function
simps(y,x=None,dx=1,axis=-1,even=’avg’)

integrates y(x) in dx using samples along the x axis and the composite Simpsons rule. If x is None, a
uniform spacing equal to dx is assumed. An even number n of samples implies an odd number n − 1
of subintervals. Since Simpson’s rule requires an even number of subintervals, the parameter even
controls how the extra subinterval is handled. This is how the function arguments are handlesd.

• y is the array of the function values to be integrated.

• x is the optional array of the abscissae of the y values. If x is not given, a uniform spacing
equal to dx is assumed.

• dx , optional, is the spacing between the integration points along the x axis. It is only used
when x is None. The default value 1.

• axis int, optional, forget this.

• even optional, can be ’avg’, ’first’ or last’. Active only if the number of y values is
even, implying an odd number of subinterval. Value ’first’ means using Simpsons rule for
the first n− 2 subintervals and the trapezoidal rule on the last subinterval, see Subsections 4.7.2
and 4.7.3. Value ’last’ means using Simpsons rule for the last n − 2 subintervals and the
trapezoidal rule on the first subinterval. Value ’avg’means averaging the results of ’first’
and ’last’.

C.2 odeint()

The function
odeint(func, y0, t, args=(), Dfun=None, col deriv=0, full output=0, ml=None,
mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0,
ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)

integrates a system of ordinary differential equations using the solver lsoda from the FORTRAN li-
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brary odepack. This is the argument list of the function, only the first three arguments are mandatory,
and used in Listing 5.1:

• func(y,t0,...) is a function that computes the derivative(s) of the function(s) y at t0

• y0 is an array comprising the initial conditions on y

• t is an array comprising the time points at which to solve for y. The initial value point should
be the first element of the array

• args is an optional tuple comprising the extra arguments needed for evaluating the function.

• Dfun is the gradient (Jacobian) of func. Not needed here.

• col deriv is an optional Boolean. It must be set to True if Dfun defines derivatives down
columns (faster), otherwise Dfun should define derivatives across rows.

• full output is an optional Boolean, True if to return a dictionary of optional outputs as
the second output

• printmessg is an optional Boolean, True if the convergence message must be printed
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Methods for Drawing and Writing on the
Canvas

In this appendix we describe some relevant methods for drawing geometrical shapes and writing text
on the Tkinter canvas.

- create arc(x0, y0, x1, y1, dash=, dashoffset=, disableddash=,
disabledfill=, disabledoutline=. disabledoutlinestipple=,
disabledstipple=, disabledwidth=, extent=, fill=, offset=,
outline=, outlinestipple=, start=, state=, stipple=, style=,
tags=, width=)
Draws an arc from the ellipse inscribed in the rectangle with opposite vertices (x0, y0) and
(x1, y1). The arc is delimited by the angles start and extent

- create line(coord, activedash, activefill, activestipple,
activewidth, arrow=, arrowshape=, capstyle=, dash=, dashoffset=,
disableddash=, disabledfill=, disabledstipple=, disabledwidth=,
joinstyle=, splinesteps=, state=, stipple=, tags=, width=)
Draws a polyline comprising n segments, whose vertices (x0, y0), (x1, y1), . . . (xn, yn) are ele-
ments of the list coord

- create oval(x0, y0, x1, y1, activedash=, activefill=,
activeoutline=, activeoutlinestipple=, activestipple=,
activewidth=, dash=, dashoffset=, disableddash=, disabledfill=,
disabledoutline=, disabledoutlinestipple=, disabledstipple=,
disabledwidth=, fill=, offset=, outline=, outlineoffset=,
outlinestipple=, smooth=, splinesteps=, state=, stipple=,
tags=, width=)
Draws an ellipse inscribed in the rectangle with opposite vertices (x0, y0) and (x1, y1).

- create polygon(coord, activedash=, activefill=, activeoutline=,
activewidth=, dash=, dashoffset=, disableddash=, disabledfill=,
disabledoutline=, disabledoutlinestipple=, disabledstipple=,
disabledwidth=, fill=, joinstyle=, offset=, outline=,
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outlineoffset=, outlinestipple=, smooth=, splinesteps=, state=,
stipple=, tags=, width=)
Draws a polygon on n sides and n vertices, the vertex coordinates (x0, y0), (x1, y1), . . . (xn−1, yn−10)
being the 2n elements of the list coord.

- create rectangle(x0, y0, x1, y1, activedash=, activefill=,
activeoutline=, activeoutlinstipple=, activestipple=,
activewidth=, dash=, dashoffset=, disableddash=, disabledfill=,
disabledoutline=, disabledoutlinestipple=, disabledstipple=,
disabledwidth=, fill=, offest=, outline=, outlineoffset=,
outlinestipple=, state=, stipple=, tags=, width=)
Draws a rectangle with opposite vertices (x0, y0) and (x1, y1).

- create text(x, y, activefill=, activestipple=, anchor=,
disabledfill=, disabledstipple=,fill=, font=, justify=,
offest=, state=, stipple=, text=, width=)
Writes text at position (x, y). By default the text is centered on this position.

Meaning of the mandatory function arguments

- coord: A list of the form [x0, y0, x1, y1, . . . xn, yn] where (xi, yi) are the coordinates of the
vertices of the polyline for create line(), and of the vertices of the polygon for cre-
ate polygon().

- x, y: Position of the text for create text().

- x0, y0, x1, y1: Opposite vertices of the rectangle for create rectangle(). Oppo-
site vertices for the rectangle bounding the ellipse for create arc() and create oval().

Meaning of the optional function arguments

- activedash, activefill, activeoutline, activeoutlinstipple,
activestipple, activewidth: These options specify the dash, fill, stipple,
and width values to be used when the object is active, that is, when the mouse is over it.

- anchor: the default is anchor=tk.CENTER, meaning that the text is centered vertically
and horizontally around the position (x, y). The other options are (tk.NW), (tk.N), (tk.NE),
(tk.E), (tk.SE), (tk.S), (tk.SW), (tk.W), corresponding to the compass points.

- arrow The default is for the line to have no arrowheads. Use arrow=tk.FIRST to get an
arrowhead at the (x0, y0) end of the line. Use arrow=tk.LAST to get an arrowhead at the far
end. Use arrow=tk.BOTH for arrowheads at both ends.
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- arrowshape: A tuple (d1, d2, d3) describing the shape of the arrowheads added by the arrow

d3

d2

d1

Figure D.1 Shape of
the arrowhead

option. The meaning of the three quantities d1, d2 and d3 is shown in Fig.
D.1. Thus, in general, the arrowhead is a quadrilateral, more specifically
a kite, either convex or concave. It is a convex kite if d2 < d1: a rhombus
in the special case d1 = 2d2. It is a concave kite, also called dart, if
d2 > d1, as in the case of Fig. D.1. In the special case d2 = d1 it is an
isosceles triangle of base 2d3, which can be considered a degenerate kite.
Thus the command canvas.create line(0, 50, 100, 50,
arrow=LAST, arrowshape=(20 ,20, 5)) creates a horizon-
tal line from (0, 50) to (100, 50) with an isosceles triangle as arrowhead.

The arrowhead starts at x = 100−20 = 80. The base of the triangle is 2×d3 = 10. All measures
are in pixels. The default values for arrowshape are d1 = 8, d2 = 10, d3 = 3.

- capstyle: Specifies the shape of the ends of the line. The options are i) tk.BUTT: the end
of the line is cut off square at a line that passes through the endpoint; ii) tk.PROJECTING:
the end of the line is cut off square, but the cut line projects past the endpoint a distance equal to
half the line’s width; iii) tk.ROUND: the end describes a semicircle centered on the endpoint.

- dash: Must be a tuple of integers. The first integer specifies how many pixels should be drawn.
The second integer specifies how many pixels should be skipped before starting to draw again,
and so on. When all the integers in the tuple are exhausted, they are reused in the same order
until the border is complete. The default is a solid line.

- dashoffset: If you specify a dash pattern, the default is to start the specified pattern at the
beginning of the line. The dashoffset option allows you to specify that the start of the dash
pattern occurs at a given distance after the start of the line

- disableddash, disabledfill, disabledstipple, disabledwidth: The
dash, fill, stipple, and width values to be used when the item is in the tk.DISABLED
state.

- extent: width of the arc in degrees. The arc starts at the angle given by the start option
and extends counterclockwise for extent degrees.

- fill: the color to use in drawing the line. Default is fill=’black’.

- font: if you don’t like the default font, set this option to any font value. Examples:
font=(’Helvetica’, ’16’) for a 16-point Helvetica regular;
font=(’Times’, ’24’, ’bold italic’) for a 24-point Times bold italic.

- joinstyle: For lines that are made up of more than one line segment, this option controls
the appearance of the junction between segments. The options are i) tk.ROUND: the join is a
circle centered on the point where the adjacent line segments meet; ii) tk.BEVEL: a flat facet
is drawn at an angle intermediate between the angles of the adjacent lines; iii) tk.MITER: the
edges of the adjacent line segments are continued to meet at a sharp point. The default style is
tk.ROUND

- justfy: for multi-line text displays, this option controls how the lines are justified: tk.LEFT
(the default), tk.CENTER, or tk.RIGHT.
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- offset: the purpose of this option is to match the stippling pattern of a stippled line with
those of adjacent objects.

- outline: the color of the border around the outside of the geometric shape, for
create arc(), create oval(), create polygon() and
create rectangle(). Default is black.

- outlinestipple: if the outline option is used, this option specifies a bitmap used to stipple
the border. Default is black, and that default can be specified by setting
outlinestipple=’’.

- smooth: if True, the line is drawn as a series of parabolic splines fitting the point set. Default
is False, which renders the line as a set of straight segments.

- splinesteps: if the smooth option is true, each spline is rendered as a number of straight
line segments. The splinesteps option specifies the number of segments used to approxi-
mate each section of the line; the default is splinesteps=12.

- start: Starting angle for the slice, in degrees, measured from +x direction. If omitted, you
get the entire ellipse.

- state: normally, line items are created in state tk.NORMAL. Set this option to tk.HIDDEN
to make the line invisible; set it to tk.DISABLED to make it unresponsive to the mouse.

- stipple: to draw a stippled line, set this option to a bitmap that specifies the stippling pattern,
such as stipple=’gray25’. See Section 5.7, Bitmaps for the possible values.

- style: the default is to draw the whole arc; use style=tk.PIESLICE for this style. To draw
only the circular arc at the edge of the slice, use style=tk.ARC. To draw the circular arc and
the chord (a straight line connecting the endpoints of the arc), use style=tk.CHORD.

- tags: if a single string, the line is tagged with that string. Use a tuple of strings to tag the line
with multiple tags.

- text: the text to be displayed in the object, as a string. Use newline characters (’\n’) to force
line breaks.

- width: the line’s width (create line()), or width of the border of the geometric shape
(create arc(), creat oval(), create polygon() and create rectangle()).
Default value is 1 pixel. In the case of create text(), if you don’t specify a width option,
the text will be set inside a rectangle as long as the longest line. However, you can also set
the width option to a dimension, and each line of the text will be broken into shorter lines, if
necessary, or even broken within words, to fit within the specified width.
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Unicode Characters

We advise to use LATEXwhenever possible when subscripts, superscripts, Greek letters, . . . are needed
in text superposed to Python plots. However, this is not always possible, in particular when writing
text on buttons and labels. Often Unicode symbols offer an acceptable alternative. UTF-8 is a variable
width character encoding capable of encoding all 1 112 064 Unicode characters (they include, for
instance, Greek, Hebrew, Chinese, Japanese, Korean . . . characters) using one to four bytes. UTF-
8 is fully backward-compatible with ASCII encoding. The following two tables give the two-byte
encodings for the numerical subscripts and superscripts, and for the Greek letters.

Table E.1 UTF-8 Numerical Superscripts and Subscripts

number 0 1 2 3 4 5 6
superscript \u2070 \u2071 \u2072 \u2073 \u2074 \u2075 \u2076
subscript \u2080 \u2081 \u2082 \u2083 \u2084 \u2085 \u2086

number 7 8 9
superscript \u2077 \u2078 \u2079
subscript \u2087 \u2088 \u2089

For instance, x0 is rendered by x\u2080, and y2 by y\u2072.

Table E.2 UTF-8 Greek Letters

A \u0391 I \u0399 P \u03A1 α \u03B1 ι \u03B9 ρ \u03C1
B \u0392 K \u039A Σ \u03A2 β \u03B2 κ \u03BA σ \u03C3
Γ \u0393 Λ \u039B T \u03A3 γ \u03B3 λ \u03BB τ \u03C4
∆ \u0394 M \u039C Υ \u03A4 δ \u03B4 µ \u03BC υ \u03C5
E \u0395 N \u039D Φ \u03A5 ε \u03B5 ν \u03BD ϕ \u03C6
Z \u0396 Ξ \u039E X \u03A6 ζ \u03B6 ξ \u03BE χ \u03C7
H \u0397 O \u039F Ψ \u03A7 η \u03B7 o \u03BF ψ \u03C8
Θ \u0398 Π \u03A0 Ω \u03A9 ϑ \u03B8 π \u03C0 ω \u03C9

Each two-byte code is represented by a backslash (\) followed by a u and four hexadecimal digits.

171



172 APPENDIX E. UNICODE CHARACTERS



Appendix F

Tkinter Events

Tkinter events can be key presses or mouse operations by the user. For each widget (root window,
canvas, frame . . . ), it is possible to bind Python functions and methods to an event. The syntax is
widget.bind(event, handler)
where widget can be the root window itself (usually called root in the programs of this book) or
one of its “children”, like a canvas or a frame, event is a keyboard or mouse event, and handler
is a usually user-defined function. See Section 7.4 for some first examples.

A description of the mouse and keyboard events is given in the two following sections.

F.1 Mouse Events
A mouse event is generated when the mouse moves, or when a mouse button is clicked or released.
The mouse events and their string codings are listed in Table F.1. The x and y canvas coordinates of
where the mouse was clicked or released, or of the mouse location during the motion, are passed to
the handler function through the argument as event.x and event.y. See Listing 7.4.

Table F.1 String Codings of Mouse Events

String Event
’<Button-n>’ where n can be 1, 2, 3, 4 or 5. A mouse button is pressed over

the widget. Button 1 is the leftmost button, button 2 is the middle
button (where available), button 3 the rightmost button. Buttons
4 and 5 refer to turning the mouse wheel forward and backward,
respectively.

’<ButtonPress-n>’ synonym of ’<Button-n>’.
’<Bn-Motion>’ The mouse is moved, with mouse button n being held down
’<ButtonRelease-n>’ Button n was released.
’<Double-Button-n>’ Button n was double clicked. You can use Double or Triple as

prefixes.
’<Enter>’ The mouse pointer entered the widget (this event doesnt mean that

the user pressed the <Enter> key!).
’<Leave>’ The mouse pointer left the widget.
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F.2 Keyboard Events
A keyboard event occurs when a keyboard key is pressed or released. Events corresponding to
pressing printable keys like, for instance, a, A, or 8 are simply represented by the strings ’<a>’,
’<A>’ or ’<8>’. The release of the same keys is represented by the strings ’<KeyRelease-
a>’, ’<KeyRelease-A>’, and ’<KeyRelease-8>’. The string ’<Key>’ binds to any key
press, which key was actually pressed is passed to the handler function through the argument as
event.char. Binding to events like pressing Ctrl plus another key, like, for instance Ctrl+a, is ob-
tained through strings like ’<Control-a>’. In Listing 8.3 Lines 149 and 150 bind the key combi-
nations ’<Control-plus>’ and ’<Control-minus>’ to the handler functions ScaleUp()
and ScaleDown(), respectively.

Table F.2 String Codings of Keyboard Events: Keypad and Non-Printable Keys

String Key String Key
’<Alt L>’ Left-hand Alt ’<KP Down>’ Down arrow on the keypad
’<Alt R>’ Right-hand Alt ’<KP End>’ End on the keypad
’<BackSpace>’ Backspace ’<KP Enter>’ Enter on the keypad
’<Cancel>’ Del ’<KP Home>’ Home on the keypad
’<Caps Lock>’ CapsLock ’<KP Insert>’ Ins on the keypad
’<Control L>’ Left-hand Ctrl ’<KP Left>’ Left arrow on the keypad
’<Control R>’ Right-hand Ctrl ’<KP Multiply>’ * on the keypad
’<Delete>’ Del ’<KP Next>’ PageDown on the keypad
’<Down>’ Down arrow ’<KP Prior>’ PageUp on the keypad
’<End>’ End ’<KP Right>’ Right arrow on the keypad
’<Escape>’ Esc ’<KP Subtract>’ - on the keypad
’<F1>’ Function key F1 ’<KP Up>’ up arrow on the keypad
. . . . . . ’<Next>’ PageDown
’<F12>’ Function key F12 ’<Num Lock>’ NumLock
’<Home>’ Home ’<Pause>’ Pause
’<Insert>’ Ins ’<Print>’ PrintScrn
’<Left>’ Left arrow ’<Prior>’ PageUp
’<KP 0>’ 0 on the keypad ’<Return>’ Enter
. . . . . . ’<Right>’ Right arrow
’<KP 9>’ 9 on the keypad ’<Scroll Lock>’ ScrollLock
’<KP Add>’ + on the keypad ’<Shift L>’ Left-hand Shift
’<KP Decimal>’ . on the keypad ’<Shift R>’ Right-hand shift key
’<KP Delete>’ Del on the keypad ’<Tab>’ Tab
’<KP Divide>’ / on the keypad ’<Up>’ Up arrow

Table F.2 shows the representations of the non-printable keys and of the keys of the numeric
keypad, the representations of these latter always starting with KP . Some printable keys are not
represented by their symbols on the keyboard, but have special representations. A few of them are
reported in Table F.3.
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Table F.3 String Codings of Keyboard Events: Some Special Printable Keys

String Key String Key String Key
’<backslash>’ \ ’<bar>’ | ’<quotedbl>’ ”
’<dollar>’ $ ’<percent>’ % ’<ampersand>’ &
’<slash>’ / ’<parenleft>’ ( ’<parenright>’ )
’<equal>’ = ’<question>’ ? ’<minus>’ −
’<at>’ @ ’<asterisk>’ ∗ ’<greater>’ >
’<less>’ < ’<comma>’ , ’<semicolon>’ ;
’<period>’ . ’<colon>’ : ’<underscore>’
’<plus>’ + ’<minus>’ − ’<sterling>’ £
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Index

abs(), 101
Acceleration, uniform, 101
Anaconda, 2
Animation and ordinary differential equations, 114
Animation, pyplot, 55
Animation, Tkinter, 99
append(), 15
arange(), 46
argv, 36
Arithmetic operators, 10
Arithmetics, matrix, 29
array(), 27, 58
Arrays, 27
Arrays as argument of numpy functions, 28
ArtistAnimation (class), 55
Assignment operator, 7
Assignment operators, 10
Atom, “Classical”, 140
Axis labels, 49
Axis scale, logarithmic, 49

Balls, colliding, 132
bisect(), 62
Bisection method, 59
Blank, visible ( ), 36
Boolean values, 11
break, 26
Breaking a loop, 26
brentq(), 62
Button-1, 106
Button-2, 106
Button-3, 106
Button-4, 106
Button-5, 106
Buttons, interactive, 102

Calling external commands in Python, 43
Canvas, 90

Canvas coordinates, 100
Canvas, saving to a figure, 97
canvas.coords(), 133, 134, 144
canvas.delete(), 133
canvas.move(), 133
ceil(), 36
Changing numerical parameters, 105
Characters, unicode, 171
chmod, Linux command, 35
class statement, 131
Class variables, 131
Classes, 131
“Classical” Atom, 140
close(), 42
Colliding balls, 132
Collision, two-dimensional elastic, 135
Color management, Tkinter, 89
Color vision, 92
Column, slicing out from a matrix, 29
Command line, 1
Command prompt, 1
Comment, 8
Comments, 36
Comparison operators, 11
Complex numbers, 158
Conditional statement, 13
Console, 1
continue, 26
Conversion between lists and tuples, 15
Conversion, variable-type, 9
Conversions between integers and floats, 9
Conversions between numbers and strings, 9
Copying lists, 16
Copying the elements of lists and tuples, 17
count(), 15
.create arc(), 92
.create line(), 92
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.create oval(), 92

.create oval(), 101

.create polygon(), 92

.create rectangle(), 92, 93

.create text(), 93

.create text(), 92
Creating video files from Tkinter, 109

def, 38
del, 20
.delete(), 101
Determinant of a matrix, 32
Diagonalization of a matrix, 33
dict(), 20
Dictionaries, 19
Differential equations and animation, 114
Differential equations, ordinary, 69
Differential equations, partial, 69
Dipole fields, 52
Display resolution, 128
Display size, 128
divide(), 28
Dot notation, 132, 137
dot(), 58
Dragging canvas objects with mouse, 105
Drawing on the canvas, 167

Eigenvalue, matrix, 33
Eigenvector, matrix, 33
Elastic collision, two-dimensional, 135
elif, 13, 14
else, 13, 14
endswith(), 111
Entry, Tkinter, 105
enumerate(), 25
Environment variable, 163
epoch, 150
epoch, 125
Equations, 57
Equations, linear, 57
Equations, nonlinear, 57, 58
Errors, rounding, 8
Euler method, 70
Euler’s method, 114
Events, keyboard, 174
Events, mouse, 173

Events, Tkinter, 173
Exceptions, 108
Executable file, 35
Execute permission, Linux, 35
exit(), 60
Exiting interactive mode, 33
extend(), 15

codefabs(), 101
Factors, prime, 35
Fibonacci sequence, 162
Field lines, plotting, 52
Figures, multiple, 48
File handler, 42
File, executable, 35
Files, reading and writing, 41
fill diagonal(), 149
Finite square well, 74
Finite-difference methods, 70
Flags, format, 22
float(), 9, 10
Floats and integers, conversions between, 9
for loop, 23
Format, 8, 20
Format string, 21
Format types and flags, 22
Format, new style, 22
Format, old style, 21
Formatted printing, 21
Frame rate, 99
fsolce(), 63
fsolve(), 63
FuncAnimation (class), 55
Function, number of arguments, 38
Functions, 38
Functions, integration of, 65
Functions, plotting, 46

Geometrical Shapes, 92
Geometry manager, grid(), 90
Global variables, 40
Graphical user interface (GUI), 89
Graphics, Tkinter, 89
grid(), 47
Grid geometry manager, 90
grid(), 90
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GUI (graphical user interface), 89

Hadamard product, 28
Harmonic oscillator, 83
Heaviside function, 75
Hyperbola, plotting a under Tkinter, 95

id(), 17
if, 13, 14
import(), 12
index(), 15
init (), 132

insert(), 15
int(), 9, 10
Integers and floats, conversions between, 9
Integration of functions, 65
Interactive buttons, 102
Interactive Mode, 6
Interactive Python, 1
Inverse of a matrix, 32

Keyboard events, 174

Label, Tkinter, 105
Labels, axis, 49
Large-amplitude pendulum, 71
LATEX, 47
Leapfrog method, 117
len(), 10
Length scaling, 128
Library, building your own, 161
linalg.solve(), 58
Linear equations, 57
Linear equations, systems of, 57
linspace(), 79
List methods, 15
List, slicing a, 18
Lists, 14
Lists and the =assignment operator, 16
Lists and tuples, conversion between, 15
Lists as argument of numpy functions, 28
Lists of numbers, plotting, 45
Lists, copying, 16
Lists, copying the elements, 17
Local variables, 40
Logarithmic axis scale, 49

Loop, breaking a, 26
Loop, for, 23
Loop, while, 25
Loops, 23

Mathematical Functions, 155
codemath.fabs(), 101
Matplotlib, 45
Matrices and vectors, operations with, 27
Matrix arithmetics, 29
Matrix diagonalization, 33
Matrix multiplication, 58
Matrix, determinant, 32
Matrix, inverse of, 32
Matrix, skew-symmetric, 31
Matrix, slicing out rows and columns from a, 29
Matrix, symmetric, 31
Matrix, trace, 32
Methods, 131
Methods for Drawing and Writing on the canvas,

167
Methods, list, 15
Mode, Interactive, 6
Modulo operator, string, 21
Mouse dragging, 105
Mouse events, 173
Multi-processor computer, 44
Multiline comment, 8
Multiple figures, 48
Multiplication, matrix, 58
Multiplication, row by column, 29

Nan, 155
New style printing format, 22
Newton-Raphson Method, 62
Nonlinear equation, starting point, 63
Nonlinear equations, 58
Nonlinear equations, Systems of, 63
Nonlinear equations, systems of, 58
Notation, dot, 132, 137
Notation, scientific, 22
Number of arguments of a function, 38
Numbers and Strings, conversions between, 9
Numerical integration, rectangular rule for, 66
Numerical integration, Simpson rule for, 67
Numerical integration, trapezoidal rule for, 66
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Numerical parameters, interactive changing, 105
Numerical solution of nonlinear equations, 57
numpy.array, 27
numpy.empty(), 31
numpy.zeros(), 31
numpy.divide(), 28
numpy.dot(), 29
numpy.linalg.det(), 32
numpy.linalg.inv(), 32
numpy.sum(), 32

Object oriented programming language, 131
odeint(), 71, 72, 121
Old style printing format, 21
open(), 42
Operations with matrices and vectors, 27
Operator, assignment, 7
Operators, arithmetic, 10
Operators, assignment, 10
Ordinary differential equations, 69
Ordinary differential equations and animation, 114
os.listdir(), 111
os.path.splitext(), 111
os.system(), 43

Packages, 12
Partial differential equations, 69
Passing parameters to fsolve(), 64
Pendulum, large-amplitude, 71
Pixel, 128
Pixel abbreviated as px, 90
Placeholders (in format strings), 21
plot(), 45, 49
Plot, translating, 55
Plots, superposed, 49
Plotting, 45
Plotting a function with Tkinter, 95
Plotting field lines, 52
Plotting functions, 46
Plotting lists of numbers, 45
Polyline, 45
pop(), 15
.postscript(), 97
Primary colors, 90
Prime factors, 35
print() function, 20

Printing, formatted, 21
Product, Hadamard, 28
Prompt, 1
px, 90
Pyplot, 45
Pyplot animation, 55
Python scripts, 35
PYTHONPATH, 163

Quadrature, 65

range(), 24
Reading files, 41
readline(), 42
readlines(), 42
Rectangular rule for numerical integration, 66
remove(), 15
Resolution, display, 128
return, 38
reverse(), 15
RGB color model, 90
Root finding with the scipy.optimize package, 62
Root window, 90
Rounding errors, 8
Rounding to the nearest integer, 9
Row by Column multiplication, 29
Row, slicing out from a matrix, 29
Runge-Kutta method, 70

Saving the Tkinter canvas to a figure, 97
Scaling, length, 128
Scaling, time, 128
Scientific notation, 22
scipy.integrate, 165
scipy.optimize Package, root finding, 62
Scripts, 6, 35
Scripts calling external commands, 43
Secant method, 61
Shell, 1
Shooting method, 74
simps(), 67
Simpson rule, 67
Single-element list, unpacking, 18
Size, display, 128
Skew-symmetric matrix, 31
Slicing, 18
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Slicing out rows and columns from a matrix, 29
Slide show, 112
solve(), 58
sort(), 15
Space, visible ( ), 36
splitext(), 111
Standard input, 10, 41
Standard output, 10, 41
Statement, conditional, 13
stdin, 10
stdout, 10
sticky, 103
str(), 9
String, 6
String modulo operator, 21
String, format, 21
String, slicing a, 18
Strings and numbers, conversions between, 9
strip(), 42
subplot(), 49
Subplots, 48
Subroutine, 38
sum(), 143
Superposed plots, 49
Symmetric matrix, 31
Systems of linear equations, 57
Systems of nonlinear equations, 58
Systems of nonlinear equations, numerical solu-

tion, 63

Tcl, 89
Terminal, 1
tile(), 30
time(), 36
Time origin for Unix-like systems, 36
Time scaling, 128
time.time(), 125
Tk, 89
Tkinter, 89
Tkinter and video files, 109
Tkinter events, 173
Tkinter Graphics, 89
Toolbar, 103
Trace of a matrix, 32
Translating plot, 55

transpose(), 30
Trapezoidal rule for numerical integration, 66
Tuples, 14
Tuples and lists, conversion between, 15
Tuples, copying the elements, 17
Two-dimensional elastic collision, 135
Types, format, 22

Unicode characters, 171
Uniform acceleration, 101
Unix time origin, 36
Unpacking a single-element list, 18
.update(), 101
UTF-8 encoding, 35, 171

Value, Boolean, 11
Variable Types, 7
Variable, environment, 163
Variable-type conversion, 9
Variables, 7
Variables, class, 131
Variables, global, 40
Variables, local, 40
Vectors and matrices, operations with, 27
Video files and Tkinter, 109
Visible space, , 36

while loop, 25
Write mode, 43
Writing files, 41
Writing on the canvas, 167

xlim(), 51
xscale(), 51

ylim(), 51
yscale(), 51


