5.3 e Photon Lifetime and Cavity Q

From the above discussion, the eigenvalues 6y, are seen to be such that |5,m|2 gives the
factor by which the beam intensity is changed as a result of one round trip. Since this change
is due to diffraction losses, we must then have |6;,|> < 1 j thus the quantity

Vim=1—|6m|* (5.2.6)

gives the round-trip fractional power loss due to diffraction. One can also see that, according
to Eq. (56.2.4), A¢yy = —2 kL + ¢y, is the corresponding round-trip phase shift. For the field

to be self-reproducing, we must then require that A¢;, = —2m n, where n is an integer. We
thus get —2kL + ¢, = —27n, and, with the substitution k = 27tv/c, we obtain the cavity
resonance frequencies as
c I
Vi = o [n + g—j’:] (5.2.7)

Note that we have indicated explicitly that these frequencies are dependent on the values of
the three numbers /, m, and n. The integers [ and m represent the order of the eigensolution
in Eq. (5.2.5) while the integer number n specifies the total phase shift of the beam, after one
round trip, in units of 27t (i.e. n = —A¢y,/27).

As a conclusion of this section we can say that the eigenmodes and the eigenvalues
of our problem can be obtained upon solving the integral equation Eq. (5.2.5). In fact, its
eigensolutions, Elm, give the field of the eigenmodes at all point in a given plane. For each
mode Elm, the corresponding eigenvalue 6y, then gives: (a) The round-trip diffraction loss,
Vi, through its magnitude |G;,| [see Eq. (5.2.6)]. (b) The resonance frequency, vy, through
its phase, ¢y, [see Eq. (5.2.7)].

5.3. PHOTON LIFETIME AND CAVITY Q

Consider a given mode of a stable or unstable cavity and assume, for generality, that
some losses other than diffraction losses are also present. For instance one may have mirror
losses as a result of mirror reflectivity being smaller than unity. One may also have scattering
losses in some optical element within the cavity. Under these conditions we want to calculate
the rate of energy decay in the given cavity mode. To this purpose, let Iy be the initial intensity
corresponding to the field amplitude E(x;, y;, 0) at a given transverse coordinate xj, y;. Let
R, and R, be the (power) reflectivities of the two mirrors and 7; the fractional internal loss
per pass due to diffraction and any other internal losses. The intensity /(¢;) at the same point
X1,y1 atatime t; = 2L/c, i.e. after one cavity round trip, will be

I(t;) = Ri Ry(1 —T))? I (5.3.1)

Note that, since 7; is defined here as the fractional internal loss per pass, the intensity is
reduced by a factor (I — T;) in a single pass and hence by a factor (I — T;)? in a double pass
(round trip). The intensity, at the same transverse co-ordinate, after m round trips, i.e. at time

tw = 2mL/c (5.3.2)
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is then
I(t) = [RiRy(1 = T)" I (5.3.3)

Let now ¢ (¢) be the total number of photons in the given cavity mode at time z. Since the
mode retains its shape after each round trip, we can set ¢ () o< I(¢). From Eq. (5.3.3) we can
then write

¢(tw) = [Ri R2 1 =T)7]" ¢o (5.3.4)
where ¢ is the number of photons initially present in the cavity. We can also set
¢ (tm) = [exp(—t/7c)]dpo (5.3.5)

where 7, is a suitable constant. In fact, a comparison of Egs. (5.3.5) with (5.3.4) with the help
of Eq. (5.3.2) shows that

exp (- 2mL/c ) = [Ri R, (1 = T)*]" (5.3.6)
from which one finds that . is independent of the number of round trips, m, and is given by
t.=—2L/cIn[Ri Ry(1 —T))?] (5.3.7)

If we now assume that Eq. (5.3.5) holds, not only at times £, but also at any time ¢ (>0), we
can then write

¢(1) = exp (—1/7c) ¢o (5.3.8)

In this way, we justify the assumption

Example 5.2. Calculation of the cavity photon lifetime. Eq. (5.1.1) for the mode field and iden-

We will assume Ry = R, = R = 098 and T; =~ 0. From
Eq. (5.3.7) we obtain 7, = t7/[—In R] = 49.5 17, where

tify Eq. (5.3.7) as the expression for the
cavity photon lifetime. One can notice that

77 is the transit time of the photons for a single-pass in Eq. (5.3.7), with the help of Eqs. (1.2.4)

the cavity. From this example we note that the photon life-
time is much longer than the transit time, a result which is

and (1.2.6), can readily be transformed to

typical of low loss cavities. If we now assume L = 90 cm, .= L/cy (5.3.9)

we get t7 = 3ns and 7, = 150ns.

We thus see that the cavity photon lifetime
is just equal to the transit time t7 = L/c of the beam in the laser cavity divided by the
(logarithmic) cavity loss y.

Having calculated the photon lifetime, the time behavior of the electric field, at any point
inside the resonator can, according to Eq. (5.1.1) and within the scalar approximation, be
written as E(f) = Eexp[(—t/21.) + jwt], where o is the angular resonance frequency of
the mode. The same time behavior then applies for the field of the output wave leaving the
cavity through one mirror as a result of finite mirror transmission. If we now take the Fourier
transform of this field, we find that the power spectrum of the emitted light has a Lorentzian
line shape with linewidth (FWHM) given by

Av. = 1/2n 7, (5.3.10)



5.4 e Stability Condition

It should be noted that the spectrum of the
emitted light, obtained in this way, does not
exactly agree with the transmission spectrum
shown for a Fabry—Perot interferometer in
Sect. 4.5, whose shape is not Lorentzian [see
Eq. (4.5.6)]. In particular, the expression for
Av, obtained here [see Eq. (5.3.10)], when
combined with Eq. (5.3.7) with T; = 0, does
not coincide with that obtained in Sect. 4.5
[see Eq. (4.5.12) with L' = L]. This discrep-
ancy can be traced back to the approximation
made in writing Eq. (5.3.8). In numerical
terms, however, the discrepancy between the
two results is quite small, especially at high
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Example 5.3. Linewidth of a cavity resonance. If we take
againR; = R, = 098 and T; = 0, from Egs. (5.3.10) and
(5.3.7) we get Av,. = 6.4307 x 1073 x (¢/2L), while from
Eq. (4.5.12) we get Av,. = 6.4308 x 10~ x (c/2L). For
the particular case L = 90cm, we then obtain Ay, =
1.1 MHz. Even at the relatively low reflectivity values of
R; = R, = 0.5, the discrepancy is not large. In fact from
Egs. (5.3.10) and (5.3.7) we get Av, =0.221 x (c¢/2L),
while from Eq. (4.5.12) Av. = 0.225 x (¢/2L). Again
for L = 90 cm we then obtain Av, =~ 37.5 MHz. Thus,
in typical cases, Av, may range from a few to a few tens
of MHz.

values of reflectivity, as can be seen from the following example. From now on we will there-
fore assume that the cavity line shape is Lorentzian with width given by Eq. (5.3.10) and that
the cavity photon lifetime is given by Eq. (5.3.7).

Having discussed the cavity photon lifetime, we can now introduce the cavity quality
factor, or Q factor, and derive its relation to the photon lifetime. For any resonant system, and
in particular for a resonant optical cavity, one defines the cavity Q factor (usually abbreviated
to cavity Q) as Q = 2m(energy stored)/(energy lost in one cycle of oscillation). Thus a high
value of cavity Q implies low losses of the resonant system. Since, in our case, the energy

stored is ¢hv and the energy lost in one cycle is hv(—d¢ /dt)(1/v) = —hd¢ /dt, we have

0 = —2mv/(de/dr)

From Eq. (5.3.8) we then get

0=2nvt,

which, with the help of Eq. (5.3.10), can be
transformed to the more suggestive form

0 =v/Av, (5.3.13)

Thus the cavity Q factor can be interpreted as

the ratio between the resonance frequency, v,
of the given mode and its linewidth, Av,.

5.4. STABILITY CONDITION

(5.3.11)

(5.3.12)

Example 5.4. Q-factor of a laser cavity According to
example 5.2 we will again take t, = 150 ns and assume
v = 5x 10 Hz (i.e. A = 630 nm). From Eq. (5.3.12) we
obtain Q = 4.7 x 108, Thus, very high Q-values can be
achieved in a laser cavity and this means that a very small
fraction of the energy is lost during one oscillation cycle

Consider first a general two-mirror resonator (Fig. 5.6a) and a ray leaving point Py of a
plane S inside the resonator e.g. just in front of mirror 1. This ray, after reflection from mirrors
2 and 1, will intersect the plane 8 at some point P;. If we let ry and r; be the transverse
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16

WAVE OPTICS AND GAUSSIAN BEAMS

A more accurate treatment of optical beams and laser resonators must take into
account diffraction and the wave nature of light. Practical laser beams are almost
always well enough collimated even under worst conditions, however, that we can
describe their diffraction properties using a scalar wave theory, and working in
the paraxial wave approximation.

In this chapter, therefore, we introduce the paraxial wave analysis and the
equivalent Huygens-Fresnel integral approach for optical beams in free space.
We also introduce the lowest and higher-order gaussian mode solutions of these
equations as a widely useful set of “normal modes of free space.”

The Hermite-gaussian or Laguerre-gaussian modes which we introduce in this
chapter are exact and yet mathematically convenient solutions to the paraxial
wave equation in free space. They also provide very close (though not quite
exact) approximations for the transverse eigenmodes of stable laser resonators
with finite diameter mirrors. Gaussian beams are therefore very widely used in
analyzing laser beams and related optical systems. Our approach in this chapter
is to focus primarily on the mathematical derivation of these modes, whereas in
the following chapter we summarize most of the important practical properties
of gaussian beams in considerable detail.

16.1 THE PARAXIAL WAVE EQUATION

One fundamental way of analyzing free-space wave propagation, using a differen-
tial approach, is through the paraxial wave equation, which we can derive once
again here in the following fashion.

Derivation of the Paraxial Wave Equation

Electromagnetic fields in free space (or in any uniform and isotropic
medium) are governed in general by the scalar wave equation

[V? +k?] E(z,y,2) =0, (1)
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where E(z,y, z) is the phasor amplitude of a field distribution that is sinusoidal
in time. We will be concerned in this section with optical beams propagating pri-
marily along the z direction, so that the primary spatial dependence of E(z, y, z)
will be an exp(—jkz) variation. This exp(—jkz) variation has a spatial period of
one wavelength A in the z direction.

In addition, for any beam of practical interest the amplitude and phase of
the beam will generally have some transverse variation in z and y which spec-
ifies the beam’s transverse profile, as shown in Figure 16.1; and this transverse
amplitude and phase profile will change slowly with distance z due to diffraction
and propagation effects. Both the transverse variations across any plane z, how-
ever, and especially the variation in beam profile with distance along the z axis,
will usually be slow compared to the plane-wave exp(—jkz) variation in the 2
direction for a reasonably well-collimated beam.

It is then convenient to extract the primary exp(—jkz) propagation factor
out of E(z,y, z), by writing each relevant vector component of the field (such as
E; or Ey) in the form

E(z,y,2) = u(z,y, 2)e”7*2, (2)

where u is a complex scalar wave amplitude which describes the transverse pro-
file of the beam. Substituting this into the wave equation 16.1 then yields, in
rectangular coordinates, the reduced equation

8% 0*u  O%u ou

=+ 7+ —2jk— =0. 3

8x2+8y2+6z2 ¥ 52 0 @)
Now, we emphasize once again that with the exp(—jkz) dependence factored out,
the remaining 2z dependence of the wave amplitude @(z,y, ), is caused basically
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by diffraction effects, and this z dependence will in general be slow compared
not only to one optical wavelength, as in exp(—jkz), but also to the transverse
variations due to the finite width of the beam. This slowly varying dependence of
ii(z,y, z) on z can be expressed mathematically by the paraxial approximation

B2
|

By dropping the second partial derivative in z, we thus reduce the exact wave
equation 16.3 to the paraxial wave equation *

02

%
0z 5,2

2k6u

< 52 or or

()

8% 0% ., Ol
—2+W—2]kb;—0. (5)

More generally we may write this paraxial wave equation as

Vii(s, z) — 2Jk6u(s, 2) 0, (6)

where s refers to the transverse coordinates s = (z,y) or 8 = (r,6), depending
on what coordinate system (rectangular or cylindrical) we elect to use, and V3
means the laplacian operator operating on these coordinates in the transverse
plane. This equation will be the primary governing equation for all the analysis
of this and the following several chapters.

Paraxial Wave Propagation: Finite Difference Approach

The paraxial wave equation can also be turned around and written in the
form

Oi(s,z) _
8z

This equation can then be integrated forward in the 2 direction in order to com-
pute the forward propagation and diffraction spreading of an arbitrary paraxial
optical beam. That is, we can employ any suitable numerical differentiation and
integration algorithms, first to evaluate the transverse derivative V2i(s, z) at a
given plane z, and then to step forward to a new plane z + Az. We can thus
accomplish numerical forward propagation of an arbitrary optical wavefront,
making sure to use adequate numbers of sampling points in both the transverse
and longitudinal directions.

This numerical approach, sometimes referred to as the “finite difference ap-
proach,” has been applied to practical beam propagation problems by several
workers. For almost any free-space beam propagation problem that we may con-
sider, however, the integral formulation that we will consider in the next section is
probably a better choice for numerical calculations, because of the much greater
computational efficiency of fast Fourier transforms that can be employed.

—%V%ﬁ(s, 2). ™

Validity of the Paraxial Approximation

The paraxial wave equation in either of the above forms is fully adequate
for describing nearly all optical resonator and beam propagation problems that
arise with real lasers. As perhaps the simplest but most effective way to confirm
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The previous chapter developed the analytical tools needed for calculating
optical-beam propagation in free space. We also need to have, however, a phys-
ical and intuitive understanding of the propagation of real optical beams—an
understanding which the next two chapters attempt to develop.

In particular, the Hermite-gaussian or Laguerre-gaussian modes which we
introduced in the previous chapter are both mathematically convenient, and
also provide very good (though not quite exact) approximations to the transverse
modes of stable laser resonators with finite diameter mirrors. Gaussian or quasi
gaussian beams are therefore very widely used in analyzing laser problems and
related optical systems. A good physical as well as mathematical understanding
of gaussian beam properties is particularly important. In this chapter we thus
review most of the important physical properties of ideal gaussian optical beams
in free space.

17.1 GAUSSIAN BEAM PROPAGATION

We first look in this section at what the analytic expressions for a lowest-order
gaussian beam imply physically in terms of aperture transmission, collimated
beam distances, far-field angular beam spread, and other practical aspects of
gaussian beam propagation.

Analytical Expressions

Let us assume a lowest-order gaussian beam characterized by a spot size
wg and a planar wavefront By = oo in the transverse dimension, at a reference
plane which for simplicity we take to be z = 0. This plane will henceforth be
known for obvious reasons as the beam waist, as in Figure 17.1.
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R(z)

FIGURE 17.1
Notation for a lowest-order gaussian beam diverging away from its
waist.

The normalized field pattern of this gaussian beam at any other plane z will
then be given by

~ : 2\'? g . LT+ y?
)= (7) " g o[- g

1/2 . . 24 .2 2 4 2
_ (2) exp[—jkz + jy(z)] exp[ 22+y2 2?4y ],

p w(z) O RARTI0)

)]

where the complex radius of curvature §(z) is related to the spot size w(z) and
the radius of curvature R(z) at any plane z by the definition

1 1 A
= — 2
W@ - RE ) @
In free space this parameter obeys the propagation law
i(z)=do+2z=2+jzr, 3)
with the initial value
2
~ T, .
do = J—/\—O = jzg. (4)

Note that the value of A in these formulas is always the wavelength of the radi-
ation in the medium in which the beam is propagating.
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The equivalent “top hat”
radius for a cylindrical gaus-
sian beam.

All the important parameters of this gaussian beam can then be related to
the waist spot size wo and the ratio z/zg by the formulas

w(z) = woy/1+ (i)z,

R(z)=2+ % (5)

¥(z) = tan™? (é) .

In other words, the field pattern along the entire gaussian beam is characterized
entirely by the single parameter wy (or §o, or zg) at the beam waist, plus the
wavelength A in the medium.

Aperture Transmission

Before exploring the free-space propagation properties of an ideal gaussian
beam, we might consider briefly the vignetting effects of the finite apertures that
will be present in any real optical system. The intensity of a gaussian beam falls
off very rapidly with radius beyond the spot size w. How large must a practical
aperture be before its truncation effects on.a gaussian beam become negligible?

Suppose we define the total power in an optical beam as P = [[|i|>dA
where dA integrates over the cross-sectional area. The radial intensity variation
of a gaussian beam with spot size w is then given by

2P _,2,,2

I(’I‘)=me r/w. (6)
The effective diameter and area of a uniform cylindrical beam (a “top hat beam”)
with the same peak intensity and total power as a cylindrical gaussian beam will
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as shown in Figure 17.2.

An aperture significantly larger than this will be needed, however, to pass a
real gaussian beam of spot size w without serious clipping of the beam skirts.
The fractional power transfer, for example, for a gaussian beam of spot size w
passing through a centered circular aperture of diameter 2a, as in Figure 17.3,
will be given by

. 2 [ =
power transmission = — / 2nre 2/ dp = 1 — =20 /W (8)
Tw 0

This figure plots this transmission versus aperture radius a normalized to spot
size w. An aperture with radius @ = w transmits = 86% of the total power in
the gaussian beam. We will refer to this as the 1/e or 86% criterion for aperture
size.

A more useful rule of thumb to remember, however, is that an aperture with
radius @ = (7/2)w, or diameter d = 7w, will pass just over 99% of the gaussian
beam power. We will often use this as a practical design criterion for laser beam
apertures, and will refer to it as the “d = ww” or 99% criterion. (A criterion
of d = 3w which gives ~ 98.9% transmission would obviously serve equally
well.) Figure 17.4 illustrates just where some of these significant diameters for a
gaussian beam will fall on the gaussian beam profile.
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FIGURE 17.4

Significant diameters for hard-edged truncation of a cylindrical gaussian
beam. Note that the d = mw criterion gives 99% power transmission,
but also +17% intensity ripples and intensity reduction in the near and far
fields.

Aperture Diffraction Effects

Optical designers should take note, however, that sharp-edged apertures,
especially circular apertures, even though they may cut off only a very small
fraction of the total power in an optical beam, will also produce aperture diffrac-
tion effects like those shown in Figure 17.5, which will significantly distort the
intensity pattern of the transmitted beam in both the near-field (Fresnel) and
far-field (Fraunhofer) regions.

We will show in the following chapter, for example, that the diffraction effects
on an ideal gaussian beam of a sharp-edged circular aperture even as large as
the d = ww criterion will cause near-field diffraction ripples with an intensity
variation AI/I = +17% in the near field, along with a peak intensity reduction
of = 17% on axis in the far field. We have to enlarge the aperture to d ~ 4.6w to
get down to +1% diffraction ripple effects from a sharp-edged circular aperture.

Beam Collimation: The Rayleigh Range and the Confocal Parameter

Another important question is how rapidly an ideal gaussian beam will
expand due to diffraction spreading as it propagates away from the waist region
or, in practical terms, over how long a distance can we propagate a collimated
gaussian beam before it begins to spread significantly?

The variation of the beam spot size w(z) with distance as given by Equation
17.5 is plotted in Figure 17.6 for two different waist spot sizes wg; and wgz > wo1,
with the transverse scale greatly enlarged. The primary point is that as the
input spot size wp at the waist is made smaller, the beam expands more rapidly
due to diffraction; remains collimated over a shorter distance in the near field;
and diverges at a larger beam angle in the far field.

In particular, the distance which the beam travels from the waist before the
beam diameter increases by v/2, or before the beam area doubles, is given simply
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odd Fresnel
number

even Fresnel
number

FIGURE 17.5

Near-field Fresnel-diffraction
ripples produced by truncation
of a gaussian beam.

FIGURE 17.6

Diffraction spreading of two gaus-
sian beams with different spot
sizes at the waist.

by the parameter

~N

Z2=2p = E%Q = “Rayleigh range.” 9)
The term Rayleigh range is sometimes used in antenna theory to describe the dis-
tance z & d2 /) that a collimated beam travels from an antenna of aperture diam-

eter d (assuming d 3> A) before the beam begins to diverge significantly. We have
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FIGURE 17.7
The collimated waist region of a gaussian beam.

therefore adopted the same term here as a name for the quantity zg = Twg/\.
The Rayleigh range marks the approximate dividing line between the “near-field”
or Fresnel and the “far-field” or Fraunhofer regions for a beam propagating out
from a gaussian waist.

To express this same point in another way, if a gaussian beam is focused from
an aperture down to a waist and then expands again, the full distance between
the v/2wp spot size points is the quantity b given by

2 2
b=2zp = -1;-‘)—0 = confocal parameter. (10)

This confocal parameter was widely used in earlier writings to characterize gaus-
sian beams. Using the Rayleigh range 2z = b/2, as shown in Figure 17.7, seems,
however, to give simpler results in most gaussian beam formulas.

Collimated Gaussian Beam Propagation

Over what distance can the collimated waist region of an optical beam
then extend, in practical terms? To gain some insight into this question, we
might suppose that a gaussian optical beam is to be transmitted from a source
aperture of diameter D with a slight initial inward convergence, as shown in
Figure 17.8, so that the beam focuses slightly to a waist with spot size wg at one
Rayleigh range out, and then reexpands to the same diameter D two Rayleigh
ranges (or one confocal parameter) out. We will choose the aperture diameter
according to the mw or 99% criterion, i.e., we will use D = 7 x /2 wp at each
end.

The relation between the collimated beam distance and the transmitting
aperture size using this criterion is then

2 2
LLC a1)
A A
Some representative numbers for this collimated beam range at two different
laser wavelengths are illustrated in Figure 17.8 and in Table 17.1. A visible laser
with a 1 cm diameter aperture can project a beam having an effective diameter
of a few mm with no significant diffraction spreading over a length of 50 meters
or more. Such a beam can be used, for example, as a “weightless string” for
alignment on a construction project. With the aid of a simple photocell array,

collimated range = 2z =

669
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A collimated
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FIGURE 17.8
Collimated gaussian beam
ranges versus transmitting 100m
aperture diameter D, using Wo -
the d = mw criterion. \_L_._—/’E
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TABLE 17.1
Collimated Laser Beam Ranges
Aperture Waist Collimated Collimated
diameter spot size range, 2zr range, 2rp
D wo (10.6 pm) (633 nm)
1cm 2.25 mm 3m 45 m
10 cm 2.25 cm 300 m 5 km
lm 22.5 cm 30 km 500 km

the center of such a beam can easily be found to an accuracy of better than
w/20, or a small fraction of a mm, over the entire distance.

Far-Field Beam Angle: The “Top Hat" Criterion

Suppose we next move out into the far field, where the beam size expands
linearly with distance, as in Figure 17.9. At what angle does a gaussian beam
spread in the far field, that is, for z > zg?

From the gaussian beam equations (17.1-17.5), the 1/e spot size w(z) for the
field amplitude in the far field for a gaussian beam coming from a waist with
spot size wy is given by

w(z) ® — = . (z> zr), (12)
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— FIGURE 17.9

which gives the simple relation

wo X w(z) = Az

(13)
connecting the spot sizes at the waist and in the far field. The far-field angular
beam spread for a gaussian beam can then related to the near-field beam size or
aperture area in several different ways, depending on how conservative we want
to be.

The on-axis beam intensity in the far field, for example, is given by

2P P
mw?(z) | A22%[2wuwi’

Ixis(2) = (14)

Hence, the on-axis intensity is the same as if the total power P were uniformly
distributed over an area mw?(z)/2 = A%22%/27w?. The solid angle for an equiva-
lent “top hat” angular distribution in the far field, call it Qru(2), is thus given
by

Qs = rw(z) _ A%
TH= 922~ 2w’

(15)

At the same time, the “equivalent top hat” definition of the source area at the
waist is given from Equation 17.7 by Arg = 7mw?/2. The product of these two
quantities is thus given by

A 2
ATH X QTH = (5) . (16)

The source aperture size (at the waist) and the far-field solid angular spread thus
have a product on the order of the wavelength A squared, although the exact
numerical factor will depend on the definitions we choose for the area and the
solid angle, as we will see in more detail later.

Far-Field Beam Angle: The 1/e Criterion

Another and perhaps more reasonable definition for the far-field beam angle
is to use the 1/e or 86% criterion for the beam diameter, so that the far field
half-angular spread is defined by the width corresponding to the 1/e point for
the E field amplitude at large z.

A gaussian beam spreads with a con-
stant diffraction angle in the far field.
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With this definition, the half-angle 8y, out to the 1/e amplitude points in
the far-field beam is given, as shown in Figure 17.9, by

. w(z) A
Ol/e = zl_l.n;lo -z—- = 7|'_'u)0-' (17)

TPwice this angle then gives a full angular spread of

291 /e = '7%, (18)
which can be interpreted as a more precise formulation, valid for gaussian beams,
of the approximate relation Af ~ A/d that we gave in Chapter 1. We can then
define the gaussian beam solid angle ©, /e on this same basis as the circular cone
defined by this angular spread, or

AZ

s (19)

Ql/ e = Wo%/e =
This cone will, as noted in the preceding, contain 86% of the total beam power
in the far field.

Suppose we use the same 1/e criterion to define the effective radius of the
input beam at the beam waist (ignoring the fact that an aperture of radius
a = wo at the waist would actually produce some very substantial diffraction
effects on the far-field beam pattern). Then the product of the effective source
aperture area A/ = mwj/2 and the effective far-field solid angle 783, using
these 1/e definitions becomes

Ar/eSye = wwg X wa/e =2, (20)

This is a precise formulation for gaussian beams of a very general antenna the-
orem which states that

A(Q)dQ = N2 (21)
/I

This theorem says in physical terms that if we measure the effective capture area
A(Q) of an antenna for plane-wave radiation arriving from a direction specified
by the vector angle Q = (6, ¢), and then integrate these measured areas over all
possible arrival angles as specified by d2, the result (for a lossless antenna of any
form) is always just the measurement wavelength A. This result is valid for any
kind of antenna, at radio, microwave or optical wavelengths.

Far-Field Beam Angle: Conservative Criterion

Finally, as a still more conservative way of expressing the same points, we
might use the d = mw or 99% criterion instead of the 1/e criterion to define both
the effective source aperture size and the effective far field solid angle. We might
then say that a source aperture of diameter d = mwq transmitting a beam of
initial spot size wo will produce a far-field beam with 99% of its energy within
a cone of full angular spread 26, = 7w(z)/z. On this basis the source aperture
area, call it A, is 7d?/4 and the beam far-field solid angle is Q, = 762; and
these are related by the more conservative criterion

Ay = (72—')4 A2 672, (22)
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None of the criteria we have introduced here for defining effective aperture size
and effective solid angle are divinely ordained, and which of them we use should
depend largely on what objective we have in mind.

Wavefront Radius of Curvature

We can next look at how the wavefront curvature of a gaussian beam varies
with distance. The radius of curvature R(z) of a gaussian beam has a variation
with distance given analytically by

oo for z<K zp
2
R(z) =z+ fzg {22z for z=2zp . (23)

z for z> zp

This is plotted against normalized distance in Figure 17.10(a).

The wavefront is flat or planar right at the waist, corresponding to an infinite
radius of curvature or R(0) = co. As the beam propagates outward, however,
the wavefront gradually becomes curved, and the radius of curvature R(z) drops
rather rapidly down to finite values (see Figure 17.10). For distances well beyond'
the Rayleigh range zp the radius then increases again as R(z) = z, i.e., the
gaussian beam becomes essentially like a spherical wave centered at the beam
waist. What this means in physical terms is that the center of curvature of the
wavefront starts out at —oo for a wavefront right at the beam waist, and then
moves monotonically inward toward the waist, as the wavefront itself moves
outward toward z — +00.
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Confocal Curvatures

The minimum radius of curvature occurs for the wavefront at a distance
from the waist given by z ="zg, with the radius value R = b = 2zg. This means
that at this point the center of curvature for the wavefront at 2 = +2p is located
at z = —zg, and vice versa, as illustrated in Figure 17.10.

This particular spacing has a special significance in stable resonator theory.
Suppose the curved wavefronts R(z) at +2g are matched exactly by two curved
mirrors of radius R and separation L = R = b = 2zp. Since the focal point of a
curved mirror of radius R is located at f =’R/ 2, the focal points of these two
mirrors then coincide exactly at the center of the resonator. The two mirrors are
said to form a symmetric confocal resonator, thus giving rise to the confocal pa-
rameter b = 2zp = 27w /). Such a resonator has certain particularly interesting
mode properties which we will explore later.

REFERENCES

Further discussion of the concept of the “Rayleigh range” can be found in J. F. Ramsay,
“Tubular beams from radiating apertures,” in Advances in Microwaves, Vol. 3, ed. by
L. F. Young (Academic Press, New York, 1968), p. 127.

Earlier considerations of the same ideas by Lord Rayleigh (J. W. Strutt) himself
can be found in his papers “On images formed with or without reflection or refraction,”
Phil. Mag. 11, 214-218 (1881), and “On pinhole photography,” Phil. Mag. 31, 87-89
(1891).

Problems for 17.1

1. Gaussian beam transmission through a square aperture. Find the power trans-
mission for a gaussian beam through a square aperture with sides of length 2a,
in analogy to the circular aperture results given in the text.

2. Criteria for centering accuracy of a circular aperture. Suppose a gaussian beam
is transmitted through a circular aperture of diameter d = ww. How critical
is the centering of the laser beam axis with respect to the aperture position
(or vice versa)? Attempt to evaluate the decrease in beam transmission versus
the displacement between beam and aperture centers, using either approximate
mathematical methods or computer evaluation.

3. Setting tolerances on beam collimation and far-field beam angle. A laser oscillator
is designed to give a collimated beam at its output plane with a specified spot
size wp and a collimated wavefront with radius of curvature Ry = 0o. Due to
manufacturing tolerances, however, the actual output wavefront may come out
slightly spherical. Suppose we establish as a practical tolerance for good collima-
tion that the far-field beam angle of the laser output beam should not vary by
more than 10% from its design value. What is the resulting tolerance on Ry (or
1/Rp) at the laser’s output plane for a fixed value of wo? How much wavefront
distortion does this represent, expressed in terms of fractional wavelengths of
wavefront distortion at the 1/e radius of the output beam?

4. Simulating an annular beam with positive and negative gaussians. A circularly
symmetric beam with a hole in the center can be simulated by superposing
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STABLE TWO-MIRROR RESONATORS

The simplest kind of optical resonator consists of just two curved mirrors set up
facing each other. If the curvatures of these two mirrors correspond to a stable
periodic focusing system, and if their transverse dimensions are large enough so
that we can neglect edge-diffraction effects, then these mirrors can in essence
trap a set of lowest-order and higher-order gaussian modes or beams that will
bounce back and forth between the two mirrors. These trapped Hermite-gaussian
modes form, to a first approximation, a set of resonant modes for the two-mirror
cavity.

Simple two-mirror cavities such as this are widely used in practical lasers,
and the properties of these stable gaussian resonator modes form part of the
basic lore of laser physics. In this chapter, therefore, we give a fairly detailed
account of these properties and of how they are derived from gaussian beam
theory. In addition we give a brief survey of the (usually) small deviations from
ideal gaussian beam behavior that occur because of finite mirror sizes, including
in particular the finite diffraction losses in finite-diameter resonators.

In later chapters we will discuss the additional complexities that arise in an-
alyzing multielement resonators which contain, for example, intracavity lenses
or gaussian apertures, as well as the quite different and nongaussian modes as-
sociated with unstable optical resonators. Even in these situations, however, the
stable two-mirror gaussian concepts introduced in this section will prove very
useful in understanding and explaining the behavior of these more complex res-
onators.

19.1 STABLE GAUSSIAN RESONATOR MODES

Suppose we have a gaussian beam with a certain waist size and waist location,
as in Figure 19.1, and suppose that we then fit a pair of curved mirrors to this
beam at any two points along the beam, as also illustrated in Figure 19.1. If the
radii of curvature of the mirrors are exactly matched to the wavefront radii of
the gaussian beam at those two points, and if the transverse size of the mirrors
is substantially larger than the gaussian spot size of the beam, each of these
mirrors will in essence reflect the gaussian beam exactly back on itself, with
exactly reversed wavefront curvature and direction.
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FIGURE 19.2
Notation and analytical model for analyzing a simple stable two-
mirror cavity.

These two mirrors can thus trap the gaussian beam as a standing wave be-
tween the two mirrors, with, if the mirrors are large enough in size, negligible
diffraction or “spillover” losses past the edges of the mirrors. The two mirrors
thus form an optical resonator which can support both the lowest-order gaussian
mode, and also higher-order Hermite-gaussian or Laguerre-gaussian modes, as
resonant modes of the cavity. We will see in this section that this simple de-
scription is, in essence, exactly what happens in elementary stable two-mirror
gaussian resonators.

Stable Two-Mirror Resonator Analysis

In practice, instead of being given a gaussian beam and asked to fit mirrors
to it, we are much more likely to be given two curved mirrors M; and M,
with radii of curvature R, and R; and spacing L, and asked to find the right
gaussian beam that will just fit properly between these two mirrors. To analyze
this situation we can use the model in Figure 19.2, assuming that the gaussian
beam will have an (initially unknown) spot size wo or Rayleigh range 2z =
mwi/A, and that the mirrors will be located at distances z; and z, from the
(initially unknown) location of the beam waist.
The essential conditions are then that the wavefront curvature R(z) of the
gaussian beam, as given by gaussian beam theory, must match the mirror cur-
vature at each mirror, taking into account the specified mirror spacing L. This

proper curvature and spacing.
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provides us with three equations, namely,
R(z1) = 21+ 2% /21 = —Ry, "
1
R(z) = 29 + 25/23 = +Ra,
and
L=2—2. (2)

The minus sign in the first of these equations arises because of a difference in the
sign conventions that we use in in describing beam wavefronts or in describing
resonator mirrors. The gaussian wavefront curvature R(z) is usually taken as
positive for a diverging beam, or negative for a converging beam, traveling to
the right; whereas the mirror curvatures R, and R are usually taken as positive
numbers for mirrors that are concave inward, i.e., as seen looking out from within
the resonator, and as negative numbers for mirrors that are convex as seen from
inside the resonator.

The g Parameters

We must then invert these three equations in order to find the gaussian
beam parameters zg, z; and 23 in terms of the specified mirror curvatures and
spacing R, Rz and L. Before doing this, however, it is customary to define a
pair of “resonator g parameters,” g, and gz, which were introduced in the early
days of laser theory to describe laser resonators, and have since become standard
notation in the field. These parameters are given by

g1=1—-— and g2=1——. 3)

We will see more of their physical significance later.
In terms of these parameters we can then find that the trapped gaussian
beam in Figure 19.2 will have a unique Rayleigh range given by

g192(1 — gi1g2) L2 @

2
2% = s
B (91+ 92 — 29192)°
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and that the locations of the two mirrors relative to the gaussian beam waist
will be given by

ne—20-9) ;4 ,-_90-g) . )

91+ g2 — 26192 91+ 92 — 29192

(Note that if mirror M; is located to the left of the beam waist, so that the waist
is inside the resonator as in Figure 19.2, then 2, as measured from the waist will
be a negative number.)

It is also useful to write out the waist spot size wg, which is given by

LA 9192(1 ~ g192)
wg ===, | g2l 9192) 6
7 7 V(914 92— 20192)2 (6)

and the spot sizes w; and ws at the ends of the resonator, which are given by

LA g2 LA )
wi==2L, [ —22 and wi=2 [ —L 7
7 V(1= gag2) 27w V(1= g192) )

These quantities depend only on the resonator g parameters defined in the pre-
ceding, and on the quantity \/LA/7 which we will discuss in the following.

Resonator Stability Diagram

It is immediately obvious from Equations 19.4 to 19.7 that real and finite
solutions for the gaussian beam parameters and spot sizes can exist only if the
g1, 92 parameters are confined to a stability range defined by

0<g192< 1. (8)

We refer to this as a stability range because this is also exactly the condition
required for two mirrors with radii R, and R and spacing L to form a stable
periodic focusing system for rays, as analyzed earlier in Chapter 15.

In the early days of gaussian resonator theory this stability criterion was
immediately translated into the resonator stability diagram shown in Figure 19.4.
Every two-mirror optical resonator can then be characterized by the parameters
g1 =1—L/R, and g» = 1 — L/Ry, and hence represented by a point in the
g1, 92 plane. If this point falls in the shaded stable region, shown in Figure 19.4,
the mirrors correspond to a stable periodic focusing system, and the resonator
(if the mirrors are large enough transversely) will trap a family of lowest and
higher-order gaussian modes with gaussian beam parameters given by Equations
19.4 through 19.7. Such a stable resonator will thus have a unique set of gaussian
transverse resonator modes.

If the point g,, g2 instead falls in any of the unstable regions outside the
shaded area, the mirrors will correspond to an unstable periodic focusing system,
and no gaussian beam that will fit properly between the mirrors can be found.
These mirror configurations correspond to the very different (but also very useful)
unstable optical resonators that we will discuss in a later chapter.

Optical ray theory and gaussian mode theory thus have a close connection,
which we will study in more detail later on, even though the diffraction effects
that are an integral part of gaussian beam theory are entirely neglected in the
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FIGURE 19.4
The stability diagram for a two-mirror optical resonator.

optical ray theory. Note also that these distinctions between stability and insta-
bility depend only on the g parameters, and are (to first order) entirely indepen-
dent of either the optical wavelength or the transverse size or dimensions of the
resonator. In the following section we will examine in more detail the various
types of resonators that occur in various regions of the stability diagram, and
the various practical properties of these resonators.

Resonator Circle Diagrams

An alternative and less commonly used graphical method for interpreting
the gaussian beam parameters in stable two-mirror resonators is the circle dia-
gram of Deschamps. Suppose again that two mirrors of radii R; and R, are set
up with spacing L. If we then draw circles with diameters R; and R, tangent to
the concave side of each of these mirrors, as shown in Figure 19.5, the intersec-
tion of these two circles is a necessary and sufficient condition for the existence
of a stable gaussian mode in the resonator; and moreover the waist location and
its relative size in the resonator is determined by the line joining the intersection
of these two circles.

REFERENCES

The standard review article in the journal literature on gaussian resonator modes is H.
Kogelnik and T. Li, “Laser beams and resonators,” Appl. Optics 5, 1550~1567 (October
1966). See also the many other references cited therein.

Many of the same ideas on gaussian beams as eigenmodes of stable periodic fo-
cusing systems developed quite independently of laser resonator theory, and somewhat
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(b) C» located to the left of the left-hand mirror.

(c) C> located to the right of the right-hand mirror (i.e., a divergent right-hand
mirror).

2. Symmetric cavity with central thin lens. A stable optical cavity of length L is
to be formed by two symmetric mirrors with radius of curvature R, plus a thin
lens of focal length f placed exactly in in the center of the cavity. Calculate how
to fit a stable gaussian beam within this cavity, and then describe the stability
limits of the cavity and the profile of the gaussian beam within the cavity for
different choices of f, R, and L. Describe in particlar where the waist (or waists)
will occur in the cavity under different conditions. Hint: Split the central thin
lens into two lenses with half the focal power each, and then put a reference right
in the middle between these two thin lenses.

3. Standing-wave cavity fields. The standing-wave field i(z, y, z) for a single lowest-
order gaussian made inside an ideal stable laser cavity is the sum of two identical
but oppositely traveling gaussian beams. Write down this field expression, in
terms of the waist spot size wo characteristic of the resonator and the coordinates
z, 9y, z. Do the standing-wave fields oscillate in the same time-phase everywhere
inside the laser cavity?

19.2 IMPORTANT STABLE RESONATOR TYPES

To gain more insight into the general properties of stable gaussian resonators, let
us now survey some of the characteristics associated with resonators at various
different points of interest in the stability diagram introduced in the previous
section.

(1) Symmetric Resonators

Perhaps the simplest resonator configurations to analyze are symmetric
resonators, which have mirror curvatures R; = R, = R, and hence g parameters
91 = g2 = g = 1— L/R. The waist of the gaussian resonant mode is then
obviously in the center of the resonator, with waist and end mirror spot sizes
given by

=) e O

All these symmetric resonators obviously lie along the +45° diagonal through
the origin in the g plane, with an allowed range from g = 1 (planar mirror case),
through g = 0 (symmetric confocal case), to g = —1 (concentric or spherical
case).

Figure 19.6 shows how the resonator spot sizes change as the g value is varied
along this range, for example, by steadily increasing the mirror curvatures while
keeping the mirror spacing fixed.
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FIGURE 19.6
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(2) Half-Symmetric Resonators

Another elementary system is the half-symmetric resonator of Figure 19.7,
in which one mirror is planar, Ry = oo, and the other curved, so that g; = 1
and g2 = g = 1 — L/R,. Such a resonator is obviously equivalent to half of a
symmetric system that is twice as long. The waist in this situation will be located
on mirror number 1, with spot sizes given by

LA Lx [ 1
'wg:w'i':-;r— r?-— and w§=—7r— = (10)

The allowed range for go = g is now from +1 to 0, corresponding to a vertical
line between the points (1,1) and (1,0) in the stability diagram.

Q

(3) Symmetric Confocal Resonator

The central point in the stability diagram, and in some sense a central type
of stable optical resonator, is the symmetric confocal stable resonator, which is
characterized by the values R} = Ry = L and g; = g2 = 0 (Figure 19.8). This is
referred to as a confocal resonator because the focal points of the two end mirrors
(which are located at R/2 out from the mirror) coincide with each other at the
center of the resonator. We have already seen in Figure 15.10 that confocality

Symmetric stable resonators
lie along the diagonal axis
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94
w2
LN
FIGURE 19.7 4
Half-symmetric resonators 2+ -
have their waist at the w2
plane-mirror end of the cav-
ity.
! > g
o 0.5 1
w1
0.51 -

corresponds to the condition for a gaussian beam in which the center of curvature
of each mirror is located exactly on the opposite mirror. The two mirrors are thus
spaced from each other by exactly two Rayleigh ranges or by exactly the waist
length of the trapped gaussian beam.

The spot sizes at the center and at the end mirrors of a confocal resonator
are then given by

LA

p .

e1iS

and w? =l = (11)

The spot sizes on the end mirrors thus correspond exactly to the scale factor
/I that arises in all types of stable resonators, whereas the spot size at the
central waist is smaller by 1/ V2.

Table 19.1 gives some typical values of this spot size for resonators of different
lengths at the typical wavelengths of 633 nm for the He-Ne laser and at 10.6 um
for the CO, lasers. The Table also shows the laser tube diameter that might be
associated with this length of resonator, using the rule of thumb that aperture
diameter d = mw.
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L}W [5Y FIGURE 19.8
' The symmetric confocal
.‘;?".’ resonator is a special case,
located exactly at the origin
of the stability diagram.
TABLE 19.1

Confocal Resonator Spot Sizes

Cavity length, L 10 cm 1m 10 m

Spot size, wy = \/LA/m:

A =633 nm 150 yum 0.4 mm 1.5 mm

A =10.6 um 600 pm 1.7mm 6 mm
Tube diameter, Tw;:

A =633 nm 04mm 12mm 4mm

A =10.6 um 1.7mm 5 mm 1.7 cm

These mode diameters are significantly smaller than the diameters of the laser
rods or tubes that we might want to use to obtain reasonable laser power out-
puts at these wavelengths. Finding ways to increase the diameter of the stable
gaussian modes (or finding new resonator designs which inherently have larger
mode volumes) is one of the primary design objectives in most laser designs.

The confocal resonator in fact has overall the smallest average spot diam-
eter along its length of any stable resonator, although we will see that other
resonators may have a smaller waist size at one spot within the resonator. The
confocal resonator is also highly insensitive to misalignment of either mirror.
Tilting of either mirror still leaves the center of curvature located on the other
mirror surface, and merely displaces the optic axis of the resonator by a small
amount. The confocal resonator can thus be very useful, for example, as a trial
resonator design when we are first attempting to obtain laser oscillation from a
laser medium whose gain is small or uncertain. The small mode size then means
very small diffraction losses, and the alignment insensitivity means that critical
mirror alignment should not be necessary to get the laser to oscillate.

The confocal resonator is also useful for power or energy measurements, in
which we simply want to know how much power or energy is available in some
laser medium, without consideration of mode control requirements. A confocal
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FIGURE 19.9
The long-radius or near-planar '

resonator can have larger
mode volume, but is very sen-
sitive to mirror misalignment.

resonator is then likely to oscillate in a combination of lowest and higher-order
modes that will fill the entire volume of the laser medium and extract essentially
all the stimulated emission available from the laser medium.

The small average size of the confocal modes, on the other hand, means that
the lowest-order or TEMgg confocal mode will not be very effective in extracting
power from larger-diameter gain media. Multimode oscillation, as in the power
measurement situation, will mean large far-field diffraction spreading of the laser
output beam.

(4) Long-Radius (Near-Planar) Resonators

Another elementary resonator configuration, and one that was used in many
of the earliest laser devices, is the near-planar or long-radius stable resonator of
Figure 19.9. A planar or flat-mirror resonator can be regarded as the limiting
situation of a long-radius stable resonator as the radii of curvature of the two
mirrors go to infinity. The resonator parameters then become Ry ~ R; = co and
g1 = g2 = 1. If we let R; = R, = R, the spot sizes in this situation all become
large and essentially equal, in the form

™

A
wgzwfzwgzg-xﬂg for R> L. (12)

In gaussian beam terms the long-radius resonator has a very long and large waist,
of which the resonator encompasses only a very short central part. As the mirror
radii become infinite the spot sizes become infinite also, though only very slowly,
with the radius increasing as (R/2L)!/%. The exactly planar resonator occurs
right on the stability boundary, at g; = go = 1, and so the gaussian theory fails
at and beyond that point.

Long-radius resonators, although they can have larger mode volumes, are
generally avoided in practical laser designs because of their very great alignment
difficulties. Since the centers of curvature of the mirrors are cantilevered far
out beyond the ends of the resonator, at distances +R, very delicate angular
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alignment of the mirrors becomes necessary if the optical axis of the resonator
(which passes through these two centers of curvature) is to be kept aligned within
the center of the laser medium itself. Long-radius mirrors are also difficult to
manufacture and to test. Note, for example, that for a 2.5 cm diameter mirror
with a 50-m radius of curvature, the total sag at the center of the mirror relative
to the edges is only =~ 1.5 um. At the same time the spot size enhancement factor
for a laser resonator that is L = 50 cm long is only (R/2L)'/* =~ 2.7.

(5) Near-Concentric Resonators

The near-concentric stable resonator is another design which is on the
boundary of the stability region, and which can give large spot sizes at the
end mirrors, but now with a vanishingly small spot size in the center of the
resonator, as illustrated in Figure 19.10.

For a near-concentric resonator, in which the cavity length L is less than the
sum of the two radii R; + Ry by the small amount AL, the resonator parameters
are given by Ry & Ra * R = L/2+ AL and g1 = g2 = —1+ AL/R. The spot
size at the central waist is then given by

x4/= for AL L, (13)
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FIGURE 19.11
The near-hemispherical res-
onator is widely used in w2
practical laser oscillators.
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and the end-mirror spot sizes by
LA 4L
2 2
Wy =Wy & — X\ —= for AL < L. 1
1 2™ AL < (14)

The mirror radii are now physically reasonable, and the spot sizes can be adjusted
in operation by using translatable end-mirror mounts. The mirrors can then be
pulled slowly apart in order to bring the resonator closer to or even across the
stability boundary, by making the incremental length AL small or even negative.

The central portion of the resonator, where the spot size becomes very small,
is then not very useful, at least for laser power extraction. More seriously, the
mirror centers of curvature now become very close to each other at the center of
the cavity, as illustrated in Figure 19.10. Hence this resonator again becomes very
sensitive to large axis misalignments caused by very small mirror misalignments.

(6) Hemispherical Resonators

The resonator design that is by far the most commonly used in practical
stable-resonator lasers, such as, for example, most medium and low-power gas
lasers, is the near-hemispherical or half-concentric stable resonator, of Figure
19.11, for which the resonator parameters are B; = oo and Ry = L 4+ AL, and
hence g; =1 and g = AL/L = 0. This resonator is like half of a near-concentric



8.6 e Mode-Locking

8.6. MODE-LOCKING

Let us now consider a laser which is oscillating on a rather large number of longitudinal
modes. Under ordinary circumstances, the phases of these modes will have random values
and, for cw oscillation, the beam intensity will show a random time behavior. As an example,
Fig. 8.15 shows the time behavior of the square of the electric field amplitude, |A()|?, of the
output beam for the case of N = 31 oscillating modes, each with the same amplitude Ey, and
evenly separated in frequency by the frequency difference Av between consecutive longitu-
dinal modes. One sees that the output beam consists of a random sequence of light pulses.
Despite this randomness, since these pulses arise from the sum of N frequency components
which are evenly spaced in frequency, the pulse waveform of Fig. 8.15 has the following
general properties which are a characteristic of a Fourier series: (i) The waveform is periodic
with a period 7, = 1/Av. (ii) Each light pulse of the random waveform has a duration Az,
roughly equal to 1/Av, where, Av, = NAv, is the total oscillating bandwidth. Thus, for
lasers with relatively large gain bandwidths, such as solid-state, dye or semiconductor lasers,
Avy, may be comparable to this gain bandwidth and hence short noise pulses, with durations
of picoseconds or less, can be produced. Note that, since the response time of a conventional
photodetector is usually much longer than a few picoseconds, one does not resolve this com-
plex time behavior in the detected output of a, random phase, multimode laser, and instead its
average value is monitored. This value is simply the sum of powers in the modes and hence is
proportional to NE(Z).

Let us now suppose that the oscillating modes, while still having equal or comparable
amplitudes, are somehow made to oscillate with some definite relation between their phases.
Such a laser is referred to as mode locked, and the process by which the modes are made to
adopt a definite phase relation is referred to as mode locking.!"> Mode-locked lasers will be
considered at some length in this section.
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FIG. 8.15. Example of time behavior of the squared amplitude of the total electric field, |A(f)|?, for the case of 31
oscillating modes, all with the same amplitude Ey and with random phases.
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FIG. 8.16. Mode amplitudes (represented by vertical lines) versus frequency for a mode-locked laser. (a) Uniform
amplitude. (b) Gaussian amplitude distribution over a bandwidth (FWHM) Awy.

8.6.1. Frequency-Domain Description

We will first describe mode-locking in the frequency domain and consider, as a first
example, the case of 2n + 1 longitudinal modes oscillating with the same amplitude Ej
(Fig. 8.16a). We will assume the phases ¢; of the modes in the output beam to be locked
according to the relation

Yr—Q—1=9 (8.6.1)

where ¢ is a constant. The total electric field E(¢) of the e.m. wave, at any given point in the
output beam, can be written as

+n
E(t) =) iEoexp{j[(wo + [Aw) t + lp]} (8.6.2)

—n

where wy is the frequency of the central mode, Aw is the frequency difference between two
consecutive modes and where the value of the phase for the central mode has, for simplicity,
been taken to be zero. According to Eq. (8.6.2), the total electric field of the wave can be
written as

E(t) = A(t) exp(jwot) (8.6.3)
where
+n
A(t) = iEoexp [jl (Awt + )] (8.6.4)

—n

Equation (8.6.3) shows that E(¢) can be represented in terms of a sinusoidal carrier wave,
at the center-mode frequency wy, whose amplitude A() is time dependent. To calculate the
time behavior of A(f), we now change to a new time reference 7 such that Awt’ = Awt + ¢.
In terms of the new variable ¢, Eq. (8.6.4) transforms to

+n
A(t) =" iEyexpjl(Aw ) (8.6.5)

—n
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FIG. 8.17. Time behavior of the squared amplitude of the electric field for the case of seven oscillating modes with
locked phases and equal amplitudes, Ep.

and the sum appearing in the right-hand side can be easily recognized as a geometric progres-
sion with a ratio expj(Awt’) between consecutive terms. Summation of this progression can
then be easily performed and we obtain

sin[2n+ 1) Aw ¢ /2]

Al = Bo— [Aw?/2]

(8.6.6)

To help understanding the physical significance of this expression, Fig. 8.17 shows the
quantity A%(f')/E2, A*(¢) being proportional to the beam intensity, versus time 7, for 2n+1 =
7 oscillating modes. It is seen that, as a result of the phase-locking condition Eq. (8.6.1), the
oscillating modes interfere so as to produce a train of evenly spaced light pulses. The pulse
maxima occur at those times for which the denominator of Eq. (8.6.6) vanishes. In the new
time reference ¢, the first maximum occurs for ¥ = 0. Note that, at this time, the numerator
of Eq. (8.6.6) also vanishes and, upon making the approximation sin« 2 ¢, which holds for
small values of «, we readily see from Eq. (8.6.6) that A>(0) = (2n + 1)2E(2). The next pulse
will occur when the denominator of Eq. (8.6.6) again vanishes and this will happen at a time
¢ such that (Awt’/2) = 7. Two successive pulses are therefore separated by a time

1, =21/ Aw = 1/Av (8.6.7)

where Av is the frequency separation between two consecutive oscillating modes. For ¢ > 0,
the first zero for A%(¢') in Fig. 8.17 occurs when the numerator of Eq. (8.6.6) again vanishes.
This occurs at a time ¢, such that [(2n +1) Awt,/ 2] = m. Since the width Az, (FWHM) of

A2(?), i.e. of each laser pulse, is approximately equal to t;,, we thus have
At, =21/(2n+ 1)Aw = 1/ Avg, (8.6.8)

where Av, = (2n + 1) Aw /27 is the total oscillating bandwidth (see Fig. 8.16a).

The mode-locking behavior of Fig. 8.17 can be readily understood if we represent the
field components of Eq. (8.6.5) by vectors in the complex plane. The /-th amplitude compo-
nent would thus correspond to a complex vector of amplitude Ej and rotating at the angular
velocity [Aw. At time ¢ = 0, all these vectors are seen from Eq. (8.6.5) to have zero phase
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FIG. 8.18. Representation of the cavity mode amplitudes in the complex plane for the case of five modes. Figure (a)
show the situation at a general time ¢’ > 0, while FIG. (b) depicts the time instant at which the sum of the five mode
amplitudes is zero.

and, accordingly, they lie in the same direction in Fig. 8.18, which we assume to be the
horizontal direction. The total field will, in this case, be (2n + 1)Ey. For ¢ > 0, the vector
corresponding to the central mode remains fixed, the vectors of the modes with / > O i.e., with
® > wy, will rotate in one direction (e.g., counterclockwise) while the vectors of the modes
with ® < g will rotate in the opposite (clockwise) sense. Thus, for the case of e.g., five
modes, the situation at some later time ¢, will be as indicated in Fig. 8.18a. If now the time 7
is such that mode 1 has made a 27 rotation (which occurs when Awt = 27), mode —1 will
also have rotated (clockwise) by 27, while modes 2 and —2 will have rotated by 4. All these
vectors will therefore be aligned again with that at frequency wy, and the total field amplitude
will again be (2n + 1)Ey. Thus the time interval 7, between two consecutive pulses must be
such that Awt, = 2m, as indeed shown by Eq. (8.6.7). Note that, in this picture, the time
instant t;, at which A(#) vanishes (see Fig. 8.17) correspond to the situation where all vectors
are evenly spaced around the 27 angle (Fig. 8.18b). To achieve this condition, mode 1 must
have made a rotation of only 27r/5, or, more generally for (2n + 1) modes, of 27/(2n + 1).
The time duration t;, and hence the pulse duration A7, thus turn out to be given by Eq. (8.6.8).

Before proceeding further it is worth summarizing and commenting on the main results
that have been obtained so far. We have found that, under the mode locking condition given
by Eq. (8.6.1), the output beam consists of a train of mode-locked pulses, the duration of
each pulse, At,, being about equal to the inverse of the oscillating bandwidth Av;. Again this
result comes about again from a general property of a Fourier series. Now, since Av; can be
of the order of the width of the gain line Avy, very short pulses (down to a few picoseconds)
can be expected to result from mode-locking of solid-state or semiconductor lasers. For dye
or tunable solid-state lasers, the gain linewidth can be at least a factor 100 times larger, so
that very much shorter pulsewidths are possible and indeed have been obtained (e.g., ~25fs
for Rhodamine 6G dye laser and ~7 fs for Ti:sapphire laser). In the case of gas lasers, on the
other hand, the gain linewidth is much narrower (up to a few GHz) and relatively long pulses
are generated (down to ~100 ps). Note also that the peak power of the pulse is proportional
to (2n + 1)?E2, while for modes with random phases the average power is simply the sum of
powers in the modes and hence is proportional to (2n + I)E(Z). Therefore, for the same number
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the 4f states into sublevels which are typically separated by ~ 10,000 cm™'. Spin-orbit cou-
pling then splits each term into manifolds typically separated by ~ 3,000 cm™'. Crystal field
interaction produces the weakest perturbation (weakened by the screening effect of the 5s°
and 5p° orbitals), thus further splitting each sub-level into a manifold with energy separation
typically of 200cm™!. All relevant absorption and emission features are due to transitions
between these 4f states (4f—4f transitions). Electric dipole transitions within the 4f shell are
parity-forbidden and it needs a mixture of wavefunctions with opposite parity, brought about
by the crystal-field interaction, to create non-zero, although still weak, transition probabili-
ties. Thus, one generally finds long (hundreds of ws) radiative lifetimes. Furthermore, due to
the screening from the 5s and 5p® orbitals, electron-phonon coupling turns out to be very
weak. One thus has sharp transition lines and weak non-radiative decay channels for low ion-
doping (ion-ion interaction can lead to non-radiative decay at high RE ion concentrations, see
Fig. 2.13). From the above considerations one expects large values of the overall lifetime, 7,
and of the product o t, where o is the peak cross-section. This implies a low threshold pump
power for laser action since, e.g. for a four level laser, the threshold pump rate is proportional
to 1/o07 [see Eq. (7.3.3)].

The electronic configurations for those transition metals, of interest for laser action, are
also shown in Table 9.1. Note that the electronic configuration of the most important active
species, i.e., Cr, is given by (Ar)3d°4s', while those of Ti, Co, and Ni can be written in
the general form (Ar)3dV4s?> (with N =2 for Ti, 7 for Co and 8 for Ni). When in an ionic
crystal, the 4s' electron and two 3d electrons of Cr are used for the ionic binding and Cr is
present as a triply ionized ion with 3 electrons left in the 3d shell. For Titanium, the two 4s
electrons and one 3d electron are used for the ionic binding and Ti is present as triply ionized
ion with only one electron left in the 3d shell. For both Co and Ni the two 4s electrons are
used for the binding and these elements are present as doubly ionized ions. In all cases, the
remaining electrons in the 3d orbital can arrange themselves in a large number of states (e.g.
24 for Cr’*) and all the absorption and emission features of transition metal ions arise from
3d — 3d transitions. Lacking the screening which occurs for RE ions, the 3d states interact
strongly with the crystal field of the host and, as we shall see later, this is the fundamental
reason for the vibronic character, leading to wide absorption and emission bands, for most of
the corresponding transitions. Again electric dipole transitions within the 3d shell are parity
forbidden but, due to the stronger crystal field compared to the RE case, the 3d —3d transitions
are more allowed and thus the lifetimes are significantly shorter (a few ws) than those of the
4f — 4f transitions of RE ions. Compared to e.g. Nd:YAG, the transition cross sections are
somewhat smaller so that the product ot is now typically one order of magnitude smaller.

As a conclusion to this section, it is worth noting that ions belonging to the actinide
series, notably U™, were also used in the early days of laser development (actually the
Ut laser was the second solid state laser to be developed, i.e. immediately after the ruby
laser). These ions are essentially no longer used but they deserve a mention here for historical
reasons.

9.2.1. The Ruby Laser

This type of laser was the first to be made to operate (T. H. Maiman, June 1960%%) and
still continues to be used in some applications.® As a naturally occurring precious stone, ruby
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FIG. 9.1. Simplified energy levels of ruby.

has been known for at least 2,000 years. It consists of a natural crystal of Al,O3 (corundum)
in which some of the AI** ions happen to have been replaced by Cr’" ions. For the laser
material, one uses artificial crystals obtained by crystal growth from a molten mixture of
Al,O3 with a small percentage of Cr,03 (0.05% by weight).® Without the addition of Cr,0s3,
the crystal that forms is colorless and it is known as sapphire. Due to the strong green and
violet absorption bands of Cr’" ions, it only needs the small addition of Cr,0j to give the
crystal a pink color (pink ruby). In the case of gem stones, the Cr’* concentration is about an
order of magnitude larger, giving them a strong red color (red ruby).

The energy levels of ruby are due to one of the three electrons of the Cr’™ ion, in the
3d inner shell, under the influence of the octahedral field at the Al site in the Al,O3 lattice.
The corresponding levels, of interest for laser action, are shown in Fig. 9.1. The notation used
to label the levels is derived from group theory and is not discussed at any length here. We
merely limit ourselves to pointing out that the superscript to the left of each letter indicates
the multiplicity of the state while the letter indicates the particular rotational symmetry of the
state. Thus, as an example, the ground 4A, state has a multiplicity (2S + 1) =4,i.e.,5=3/2
where S is the total spin quantum number of the three 3d electrons. This means that the spins
of these electrons are all parallel in this case.

Ruby has two main pump bands *F; and *F, and the peaks of the transitions from the
ground *A; level to these bands occur at the wavelengths of 550nm (green) and 420 nm
(violet), respectively (see also Fig. 6.7). The two bands are connected by a very fast (ps)
nonradiative decay to both 2A and E states, which together form the 2E state. The 24 and E
states are themselves connected to each other by a very fast nonradiative decay, which leads to
a fast thermalization of their populations, thus resulting in the E level being the most heavily
populated. Since the total spin of the 2E state is 1/2, the 2E — *A, transition is spin-forbidden.
The relaxation time of both 2A and E levels to the ground state is thus very long (z = 3 ms),
actually one of the longest among all solid-state laser materials.

From the discussion above it is now apparent that the level E accumulates the largest
fraction of the pump energy, and is thus a good candidate as the upper laser level. In fact, laser
action usually occurs on the E — *A, transition (R; line) at the wavelength A; = 694.3 nm
(red). It should be noted, however, that the frequency separation between 2A and E levels
(~29 cm™") is small compared to kT /h (~209 cm ™" at T = 300 K) so that the 2A population is
comparable to, although slightly smaller than, the E level population. It then follows that it
is also possible to obtain laser action on the 2A — A, transition (R, line, A; = 692.8 nm). It
is anyhow apparent that ruby operates as a three-level laser (actually, together with Er lasers,
it represents the most notewhorty example of a three-level laser). As already discussed in



9.2 e Solid-State Lasers

TABLE 9.2. Optical and spectroscopic parameters
of ruby for room temperature operation

Property Values and units

Cr, 03 doping 0.05 wt. %

cr’t concentration 1.58 x 10'% ions /cm?

Output wavelengths 694.3 nm (R line)
692.9 nm (R, line)

Upper laser level lifetime 3 ms

Linewidth of R laser transition 1lem™!

Stim. emission cross-section o, 2.5% 10720 cm?

Absorption cross section o, 1.22 x 10720 cm?

Refractive index (A =694.3nm) n=1.763 (E] ¢)
n=1.755 (E| |c)

connection with Fig. 2.10, the R, transition is, at room temperature, predominantly homoge-
neously broadened, the broadening arising from the interaction of the Cr’* ions with lattice
phonons. The width of the transition (FWHM) is Avg =~ 11 em ! (330GHz) at T =300K. As
a summary, Table 9.2 shows some relevant optical and spectroscopic parameters of ruby at
room temperature.

Ruby lasers are usually operated in a pulsed regime. For this, the pump configuration
of Fig. 6.1 using a medium-pressure (~500 Torr) xenon flashtube, is generally utilized. Typ-
ical rod diameters range between 5 and 10 mm with a length between 5 and 20 cm. It should
be noted that a helical flashtube surrounding the active rod was used in the earliest ruby
lasers. Since this laser operates on a three-level scheme, the threshold pump energy is typi-
cally an order of magnitude higher than that of other solid-state lasers operating with four level
schemes (e.g. Neodimium lasers). Due to the long upper state lifetime, ruby lasers lend them-
selves readily to Q-switched operation and, due to the relatively broad laser linewidth, they
can also produce short pulses (~5 -+ 10 ps) in mode-locked operation. Both active and pas-
sive methods can be used for Q-switching and mode-locking. When slow saturable absorbers
are used for Q-switching, the laser tends to operate on a single transverse and longitudinal
mode due to the mode selecting mechanism discussed in Sect. 8.4.2.4. With fast saturable
absorbers (usually solutions of cyanine dyes), simultaneous Q-switched and mode-locked
operation occurs (see Fig. 8.28a). Peak powers of a few tens of MW, for Q-switching, and
a few GW, when also mode-locked, are typical. Since the gain of the R, line is somewhat
smaller than for the R; line, laser action on the R, line can be selected by using, for instance,
the dispersive system of Fig. 7.16b. Ruby lasers can also run cw, transversely pumped by a
high-pressure mercury lamp or longitudinally pumped by an Ar ion laser.

Ruby lasers, once very popular, are now less widely used since, on account of their
higher threshold, they have been superseded by competitors, such as Nd:YAG or Nd:glass
lasers. In fact, ruby lasers were extensively used in the past for the first mass production of
military rangefinders, an application in which this laser is now completely replaced by other
solid-state lasers (Nd: YAG, Nd:glass, Yb:Er:glass). Ruby lasers are, however, still sometimes
used for a number of scientific and technical applications where their shorter wavelength,
compared to e.g., Nd:YAG, represents an important advantage. This is for instance the case
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by electrical means, i.e., by passing a sufficiently large current (which may be continuous,
at radiofrequency or pulsed) through the gas. The principal pumping mechanisms occurring
in gas lasers have been discussed in Sect. 6.4. It should also be pointed out that some gas
lasers can in addition be pumped by mechanisms other than electrical pumping. In particular,
we mention pumping by gas-dynamic expansion, chemical pumping, and optical pumping by
means of another laser (particularly used for far-infrared lasers).

Once a given species is in its excited state, it can decay to lower states, including the
ground state, by four different processes: (1) Collisions between an electron and the excited
species, in which the electron takes up the excitation energy as kinetic energy (super-elastic
collision); (2) near-resonant collisions between the excited species and the same or a different
species in the ground state; (3) collisions with the walls of the container; (4) spontaneous
emission. Regarding this last case, one should always take into account the possibility of radi-
ation trapping, particularly for the usually very strong UV or VUV transitions. This process
slows down the effective rate of spontaneous emission (see Sect. 2.9.1).

For a given discharge current, these various processes of excitation and de-excitation lead
eventually to some equilibrium distribution of population among the energy levels. Thus it can
be seen that, due to the many processes involved, the production of a population inversion in
a gas is a more complicated matter that, e.g., in a solid-state laser. In general we can say
that a population inversion between two given levels will occur when either (or both) of the
following circumstances occur: (1) The excitation rate is greater for the upper laser level (level
2) than for the lower laser level (Ievel 1); (2) the decay of level 2 is slower than that of level 1.
In this regard we recall that a necessary condition for cw operation is that the rate of the 2 — 1
transition be smaller than the decay rate of level 1 [see Eq. (7.3.1)]. If this condition is not
satisfied, however, laser action can still occur under pulsed operation provided the condition
(1), above, is fulfilled (self-terminating lasers).

10.2.1. Neutral Atom Lasers

These lasers make use of neutral atoms in either gaseous or vapor form. Neutral atom gas
lasers constitute a large class of lasers and include in particular most of the noble gases. All
these lasers oscillate in the infrared (1-10 wm), apart from the notable exceptions of green
and red emission from the He-Ne laser. Metal vapor lasers also constitute a large class of
lasers, including, for example, Pb, Cu, Au, Ca, Sr, and Mn. These lasers generally oscillate in
the visible, the most important example being the copper vapor laser oscillating on its green
(510nm) and yellow (578.2nm) transitions. All metal vapor lasers are self-terminating and
therefore operate in a pulsed regime.

10.2.1.1. Helium-Neon Lasers(.?

The He-Ne laser is certainly the most important of the noble gas lasers. Laser action
is obtained from transitions of the neon atom, while helium is added to the gas mixture to
greatly facilitate the pumping process. The laser oscillates on many wavelengths, by far the
most popular being at A = 633 nm (red). Other wavelengths include the green (543 nm) and
the infrared ones at A = 1.15 um and A = 3.39 um. The helium-neon laser oscillating on its
A = 1.15 um transition was the first gas laser and the first cw laser ever to be operated.®
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FIG. 10.1. Relevant energy levels of the He-Ne laser.

The energy levels of the He-Ne system that are relevant for laser action are shown in
Fig. 10.1. The level notation for He is according to Russell-Saunders coupling with the prin-
cipal quantum number of the given level also indicated as the first number. Thus the 115 state
corresponds to the case where the two electrons of He are both in the 1s state with opposite
spins. The 2°S and 2'S states correspond to a situation where one of the two electrons is raised
to the 2s state with its spin either in the same or opposite direction to that of the other elec-
tron, respectively. Neon, on the other hand, has an atomic number of ten and a number of ways
have been used, such as Paschen or Racah notations, to indicate its energy levels. For sim-
plicity, however, we will limit ourselves here to simply indicating the electron configuration
corresponding to each level. So, the ground state is indicated by the 15*2s?2p® configuration,
while the excited states shown in the figure correspond to the situation where one 2p electron
is raised to excited s states (3s, 4s, and 5s) or excited p states (3p and 4p). One should also
notice that, due to the interaction with the remaining five electrons in the 2p orbitals, these s
and p states are split into four and ten sub-levels, respectively.

It is apparent form Fig. 10.1 that the levels 23S and 2'S of He are nearly resonant with
the 4s and Ss states of Ne. Since the 23S and 2'S levels are metastable (S — S transitions
are electric dipole forbidden and, furthermore, the 23§ — 11§ transition is also forbidden
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due to the change of multiplicity, i.e., spin-forbidden), it is found that He atoms in these
states prove very efficient at pumping the Ne 4s and 5s levels by resonant energy transfer. It
has been confirmed that this process is the dominant one for producing population inversion
in the He-Ne laser, although direct electron-Ne collisions also contribute to the pumping.
Since significant population can be built-up in the Ne 4s and Ss states, they prove suitable
candidates as upper levels for laser transitions. Taking account of the selection rules, we see
that the possible transitions are those to the p states. In addition, the decay time of the s states
(ty = 100 ns) is an order of magnitude longer than the decay time of the p states (7, = 10ns).
So, the condition Eq. (7.3.1) for operation as a cw laser is satisfied. Finally, it should be
noted that the electron-impact excitation rates from the ground state to the 3p and 4p levels
are much smaller than the corresponding rates to the 4s and 5s levels, due to smaller values
of cross section involved. As we shall see, however, direct excitation to the 3p and 4p levels
plays an important role in determining the laser performances.

The above discussion indicates that one can expect laser action in Ne to occur between
Ss or 4s levels, as upper levels, and 3p and 4p levels, as lower levels. Some of the most
important laser transitions arising from these levels are also indicated in Fig. 10.1. For
transitions differing widely in wavelength (AA > 0.2 1), the actual oscillating transition
depends on the wavelength at which the peak reflectivity of the multilayer dielectric mir-
ror is centered (see Fig. 4.9). The laser transitions are predominantly broadened by the
Doppler effect. For instance, for the red He-Ne laser transition (A = 633 nm in vacuum
and A = 632.8nm in air), Doppler broadening leads to a linewidth of ~1.5 GHz (see also
example 2.6). By comparison, natural broadening, according to Eq. (2.5.13), can be estimated
to be Av,,, = 1/2nt = 19 MHz, where = T, 1+ T, Uand t,, 7, are the lifetimes of the
s and p states, respectively. Collision broadening contribute even less than natural broadening
[e.g., for pure Ne, Av, = 0.6 MHz at the pressure of p = 0.5 torr, see example 2.2]. Some
spectroscopic properties of the 633 nm laser transition are summarized in Table 10.1.

The basic design of a He-Ne laser is shown in Fig. 10.2. The discharge is produced
between a ring anode and a large tubular cathode, which can thus withstand the collisions
from positive ions. The discharge is confined to a capillary for most of the tube length and
high inversion is only achieved in the region where the capillary is present. The large volume
of gas available in the tube surrounding the capillary acts as a reservoir to replenish the He-
Ne mixture in the capillary. When a polarized output is needed, a Brewster angle plate is
also inserted inside the laser tube. The laser mirrors are directly sealed to the two tube ends.
The most commonly used resonator configuration is nearly hemispherical since this is easy

TABLE 10.1. Spectroscopic properties of laser transitions and gas-mixture composition in some relevant
atomic and ionic gas lasers

Laser type He-Ne Copper Vapor Argon Ion He-Cd
Laser wavelength [nm] 633 510.5 514.5 441.6
Cross-section [10™'% cm?] 30 9 25 9
Upper-state lifetime [ns] 150 500 6 700
Lower-state lifetime [ns] 10 ~ 10* ~ 1 1
Transition Linewidth [GHz] 1.5 2.5 3.5 1
Partial pressures of gas mixture [torr] 4 (He) 40 (He) 0.1 (Ar) 10 (He)

0.8 (Ne) 0.1-1 (Cu) 0.1 (Cd)
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FIG. 10.2. Internal design of a hard-sealed helium-neon laser (courtesy of Melles-Griot).

to adjust, is very stable against misalignment, and readily gives TEMyy mode operation. The
only disadvantage of this configuration is that it does not fully utilize the volume of the plasma
discharge since the mode spot size is much smaller at the plane mirror than at the concave
mirror. If, however, the left-hand mirror in Fig. 10.2 is chosen to be the plane mirror, the region
of smaller spot size for the near-hemispherical TEMy, mode will be outside the capillary, i.e.,
in a region of low inversion.

One of the most characteristic features of the He-Ne laser is that the output power does
not increase monotonically with the discharge current but reaches a maximum and there-
after decreases. For this reason, commercially available He-Ne lasers are provided with a
power supply designed to give only the optimum current. The fact that there is an optimum
value of current, i.e., of current density J within the capillary is because (at least for the
633 nm and 3.39 um transitions), at high current densities, de-excitation of the He (23S and
21S) metastable states takes place not only by collision at the walls but also by super-elastic
collision processes such as

He(2'S) + ¢ — He(1'S) + ¢ (10.2.1)

Since the rate of this process is proportional to the electron density N,, and hence to J, the
overall rate of excitation can be written as k, + k3J. In this expression k; is a constant that
represents de-excitation due to collisions with the walls and k3J, where k3 is also a constant,
represents the superelastic collision rate of process Eq. (10.2.1). The excitation rate, on the
other hand, can be expressed as k;J, where k; is again a constant. Under steady state condi-
tions we can then write that N;kiJ = (ko + k3J)N*, where N, is the ground-state He atom
population and N* is the excited (2!S) state population. The equilibrium 2'S population is
then given by

kiJ

N*=N——
ky + kaJ

(10.2.2)
which can be seen to saturate at high current densities. Since the steady-state population of
the 5s state of Ne is established by near-resonant energy transfer from He 2'S state, the pop-
ulation of the upper, 5s, laser level will also show a similar saturation behavior as J increases
(see Fig. 10.3). On the other hand, in the absence of laser action, the population of the lower
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relatively high efficiency (~1%). The latter is the result of both the high quantum efficiency
of the copper laser (~55%, see Fig. 10.4) and the high electron-impact cross section for the
2§ — 2P transition. Even higher output powers (~200 W) and higher efficiencies (~3%) have
recently been obtained with Copper-HyBrID lasers.

Copper vapor lasers are used for some industrial applications (such as high-speed
photography, resistor trimming, and more recently, micromachining) and as a pump for
dye lasers. In particular, in high-speed flash photography, the short pulse (tens of ns) and
high-repetition-rate (10-20kHz) are exploited in stroboscopic illumination of various, rapidly
moving, objects (e.g., a bullet in flight). A large facility based on copper-laser pumped dye
lasers (using many copper lasers, each with average power up to 100 W) is currently in use in
a pilot plant, in the United States, for 2%U isotope separation.

10.2.2. lon Lasers

In the case of an ionized atom, the scale of energy levels is expanded in comparison with
neutral atoms. In this case, in fact, an electron in the outermost orbital(s) experiences the field
due to the positive charge Ze of the nucleus (Z being the atomic number and e the electronic
charge) screened by the negative charge (Z — 2)e of the remaining electrons. Assuming, for
simplicity, the screening to be complete, the net effective charge is then 2e rather than simply
e for the corresponding neutral atom. This expansion in energy scale means that ion lasers
typically operate in the visible or ultraviolet regions. As in the case of neutral atom lasers,
ion lasers can be divided into two categories: (1) Ion gas lasers, involving most of the noble
gases, the most notable example being the Ar™ laser, which we consider below, and the Kr™
laser. Both lasers oscillate on many transitions, the most common being in the green and blue
(514.5nm and 488nm) for the Ar™ laser and in the red (647.1nm) for the Krt laser. (2)
Metal-ion vapor lasers, involving many metals (Sn, Pb, Zn, Cd, and Se), the most notable
example being the He-Cd laser, discussed below, and the He-Se laser.

10.2.2.1. Argon Laser®©

A simplified scheme for the relevant energy levels in an argon laser is shown in Fig. 10.6.
The Art ground state is obtained by removing one electron out of the six electrons of the, 3p,
outer shell of Ar. The excited 4s and 4p states are then obtained by promoting one of the
remaining 3p° electrons to the 4s or 4p state, respectively. As a consequence of the interaction
with the other 3p4 electrons, both the 4s and 4p levels, indicated as single levels in Fig. 10.6,
actually consist of many sublevels.

Excitation of the Ar ion to its excited states occurs by a two-step process involving colli-
sions with two distinct electrons. The first collision, in fact, ionizes Ar i.e., raises it to the Ar™
ground state, while the second collision excites the Ar ion. Since the lifetime of the 4p level
(~1078s, set by the 4p — 4 radiative transition) is about ten times longer than the radia-
tive lifetime of the 4s — 3p° transition, excited Ar ions accumulate predominantly in the 4p
level. This means that the 4p level can be used as the upper laser level, for the 4p — 4s laser
transition, and that, according to Eq. (7.3.1), cw laser action can be achieved. It should be
noted that excitation of the Ar ion can lead to ions in the 4p state by three distinct processes
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FIG. 10.6. Energy levels of Ar relevant for laser action.

(see Fig. 10.6): (a) direct excitation to the 4p level starting from the Art ground level; (b)
excitation to higher-lying states followed by radiative decay to the 4p level; (c) excitation to
metastable levels followed by a third collision leading to excitation to the 4p state. Consider-
ing, for simplicity, only processes (a) and (b) one can readily see that the pumping process to
the upper state is expected to be proportional to the square of the discharge current density. In
fact, since processes (a) and (b) involve a two-steps electron collision, the rate of upper state
excitation, (dN,/dt),, is expected to be of the form

(dN»/dt), x N,N; = N? (10.2.3)

where N, and N; are the electron and ion density in the plasma (N, = N; in the positive
column of the plasma). Since the electric field of the discharge is independent of the discharge
current, the drift velocity, vg.s, will also be independent of the discharge current. From the
standard equation J = evy,#N,, one then see that the electron density N, is proportional to
the discharge current density, and, from Eq. (10.2.3) it follows that (dN,/dt), o J*. Laser
pumping thus increases rapidly with current density and high current densities (~1kA/ cm?)
are required if the inherently inefficient two-step processes, considered above, are to pump
enough ions to the upper state. This may explain why the first operation of an Ar* laser
occurred some three-years after the first He-Ne laser.”
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FIG. 10.7. Schematic diagram of a high-power water-cooled ArT laser tube.

From the discussion above, one expects laser action in an Ar laser to occur on the
4p — 4s transition. Since both the 4s and 4p levels actually consist of many sub-levels,
the argon laser is found to oscillate on many lines, the most intense being in the green
(A = 514.5nm) and in the blue (A = 488 nm). From spectral measurements of the sponta-
neously emitted light it is found that the Doppler linewidth Av[, on e.g. the green transition,
is about 3500 MHz. From Eq. (2.5.18) it is seen that this implies an ion temperature of
T = 3000 K. The ions are therefore very hot, a result of ion acceleration by the electric field
of the discharge. Some relevant spectroscopic properties of the Ar ion green laser transition
are summarized in Table 10.1.

A schematic diagram of a high power (>1 W) argon laser is shown in Fig. 10.7. One
sees that both the plasma current and the laser beam are confined by metal disks (of tungsten)
inserted in a larger bore tube of ceramic material (BeO). The use of this thermally conductive
and resistant metal-ceramic combination is necessary to ensure a good thermal conductivity
of the tube and, at the same time, to reduce the erosion problems that arise from the high
ion temperature. The diameter of the central holes in the disks is kept small (~2mm) to
confine oscillation to a TEMgy mode (long-radius of curvature mirrors are commonly used for
the resonator) and to reduce the total current required. A problem that must be overcome in
an argon laser is that which arises from the cataphoresis of the argon ions. Due to the high
current density, in fact, a substantial migration of Ar ions occurs toward the cathode, where
they are neutralized upon combining with electrons emitted by the cathode surface®. Thus
an accumulation of neutral atoms tends to build up at this electrode with a corresponding
reduction of the Ar pressure in the discharge capillary, below its optimum value. To overcome
this problem, off-center holes are also made in the disk to provide return paths for the atoms,
from cathode to anode, by diffusion. The holes are arranged in such a way that no current
flows along this return path on account of the longer path lengths involved compared to that
of the central path. The inner ceramic tube is water cooled to remove the large amount of
heat that it is inevitably dissipated in the tube (some kW/m). Note also that a static magnetic
field is also applied in the discharge region, parallel to the tube axis, by a solenoid. With this

* With reference to the discussion of Sect. 6.4.4., we recall that direct electron ion recombination cannot occur in
the discharge volume since the process cannot satisfy, simultaneously, both energy and momentum conservation.
Electron-ion recombination can therefore only occur in the presence of a third partner e.g., at the tube walls or at
the cathode surface.
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result is a continuous flow of metal vapor from the anode to the cathode. Therefore a sufficient
supply of Cd (~1 g per 1,000 h) must be provided for long-term operation of the laser.

He-Cd lasers can give output powers of 50-100mW, placing them in an intermediate
position between red He-Ne lasers (a few mW) and Ar™ lasers (a few W). Thus, He-Cd lasers
are used for many applications where a blue or UV beam of moderate power is required (e.g.,
high-speed laser printers, holography, cell cytometry, fluorescence analysis of e.g., biological
specimens).

10.2.3. Molecular Gas Lasers

These lasers exploit transitions between the energy levels of a molecule. Depending on
the type of transition involved, molecular gas lasers belong to one of the three following cate-
gories: (1) Vibrational-rotational lasers. These lasers use transitions between vibrational levels
of the same electronic state (the ground state) and the energy difference between the levels
falls in the middle- to the far-infrared (2.5-300 um). By far the most important example of
this category is the CO; laser oscillating at either 10.6 or 9.6um. Other noteworthy examples
are the CO laser (A =~ 5 um) and the HF chemical laser (A =~ 2.7-3.3 um). (2) Vibronic
lasers, which use transitions between vibrational levels of different electronics states: In this
case the oscillation wavelength generally falls in the UV region. The most notable example of
this category of laser is the nitrogen laser (A = 337 nm). A special class of lasers, which can
perhaps be included in the vibronic lasers, is the excimer laser. These lasers involve transitions
between different electronic states of special molecules (excimers) with corresponding emis-
sion wavelengths generally in the UV. Excimer lasers, however, involve not only transitions
between bound states (bound-bound transitions) but also, and actually more often, transitions
between a bound upper state and a repulsive ground state (bound-free transitions). It is more
appropriate therefore to treat these lasers as being in a category of their own. (3) Pure rota-
tional lasers, which use transitions between different rotational levels of the same vibrational
state (usually an excited vibrational level of the ground electronic state). The corresponding
wavelength falls in the far infrared (25 um to 1 mm). Since these pure rotational lasers are
relatively less important than the other categories, we shall not discuss them further in the
sections that follow. We therefore limit ourselves to pointing out here that laser action is more
difficult to achieve in this type of laser since the relaxation between rotational levels is gener-
ally very fast. Therefore these lasers are usually pumped optically, using the output of another
laser as the pump (commonly a CO, laser). Optical pumping excites the given molecule (e.g.,
CH3F, A = 496 um) to a rotational level belonging to some vibrational state above the ground
level. Laser action then takes place between rotational levels of this upper vibrational state.

10.2.3.1. The CO, Laser®9

The laser utilizes, as active medium, a suitable mixture of CO,, N», and He. Oscillation
takes place between two vibrational levels of the CO, molecule, while, as we shall see, the
N, and He greatly improve the efficiency of laser action. The CO, laser is actually one of the
most powerful lasers (output powers of more than 100kW have been demonstrated from a
CO, gas-dynamic laser) and one of the most efficient (15-20% slope efficiency).
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FIG. 10.9. The lowest vibrational levels of the ground electronic state of a CO, molecule and a N molecule (for
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FIG. 10.10. The three fundamental modes of vibration for a CO, molecule: (v1) symmetric stretching mode, (v)
bending mode, (v3) asymmetric stretching mode.

Figure 10.9 shows the relevant vibrational-energy levels for the electronic ground states
of the CO; and N, molecules. N», being a diatomic molecule, has only one vibrational mode
whose lowest two energy levels (v = 0, v = 1) are indicated in the figure. The energy levels
for CO, are more complicated since CO, is a linear triatomic molecule. In this case, there
are three nondegenerate modes of vibration (Fig. 10.10): (1) Symmetric stretching mode, (2)
bending mode, and (3) asymmetric stretching mode. The oscillation behavior and the corre-
sponding energy levels are therefore described by means of three quantum numbers n;, n;
and n3, which give the number of quanta in each vibrational mode. This means that, apart
from zero-point energy, the energy of the level is given by E = n1hv| 4+ nyhv, 4 n3hvs, where
V1, vz, and v3 are the resonance frequencies of the three modes. For example, the 01 10 level*
corresponds to an oscillation in which there is one vibrational quantum in mode 2. Since mode
2 has the smallest force constant of the three modes (the vibrational motion is transverse), it

* The superscript (which we will denote by /) on the bending quantum number arises from the fact that the bending
vibration is, in this case, doubly degenerate. In fact, it can occur both in the plane of Fig. 10.10 and in the
orthogonal plane. A bending vibration therefore consists of a suitable combination of these two vibrations and
the superscript / characterizes this combination; more precisely, /& gives the angular momentum of this vibration
about the axis of the CO; molecule. For example, in the 0290 state (I = 0), the two degenerate vibrations combine
in such a way to give an angular momentum /4 = 0.
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follows that this level will have the lowest energy. Laser action takes place between the 00°1
and 10°0 levels (A 2 10.6 um) although it is also possible to obtain oscillation between 00°1
and 02°0 (A = 9.6 um).

The pumping of the upper 00°1 laser level is very efficiently achieved by two processes:

Direct Electron Collisions. The main direct collision to be considered is obviously as
follows: e + CO,(000) — e + CO,(001). The electron collision cross section for this process
is very large and is appreciably larger than those for excitation to both the 100 and 020 levels,
probably because the 000 — 001 transition is optically allowed whereas, for instance, the
000 — 100 transition is not. Note also that direct electron impact can also lead to excitation
of upper (0, 0, n) vibrational levels of the CO, molecule. The CO, molecule, however, rapidly
relaxes from these upper states to the (001) state by near resonant collisions of the type*

C0,(0,0, 1) + CO5(0,0,0) — CO,(0,0,n — 1) + CO,(0,0, 1) (10.2.5)

This process tends to degrade all excited molecules to the (0, 0, 1) state. Note that, since most
molecules in a CO, laser mixture are in fact in the ground state, collision of an excited with
an unexcited molecule constitutes the most likely collisional event.

Resonant Energy Transfer from N, Molecule. This process is also very efficient due to
the small energy difference between the excited levels of the two molecules (AE = 18cm™").
In addition, the excitation of N, from the ground level to the v = 1 level is a very efficient
process and the v = 1 level is metastable. The 1 — O transition is in fact electric-dipole
forbidden since, by virtue of its symmetry, a N-N molecule cannot have a net electric dipole
moment. Finally the higher vibrational levels of N, are also closely resonant (AE < kT)
with the corresponding CO, levels (up to 00°5), and transitions between the excited levels,
00n, and the 001 level of the CO, molecule occur rapidly through the process indicated in
Eq. (10.2.5).

The next point to consider is the decay of both upper and lower laser levels. We note that,
although the transitions 00°1 — 10°0, 00°1 — 02°0, 10°0 — 01°0, and 02°0 — 01°0 are
optically allowed, the corresponding decay times ty, for spontaneous emission are very long
(we recall that 7y, o 1/v?). The decay of these various levels is therefore determined essen-
tially by collisions. Accordingly, the decay time z; of the upper laser level can be obtained
from a formula of the type

(1/75) = Zap; (10.2.6)

where p; are the partial pressures and a; the rate constants that are corresponding to the
gases in the discharge. Taking, for example, the case of a total pressure of 15 torr (in a 1:1:8
CO; : N; : He partial pressure ratio) one finds that the upper level has a lifetime 7; = 0.4 ms.
As far as the relaxation rate of the lower level is concerned, we begin by noting that the
100 — 020 transition is very fast and it occurs even in a isolated molecule. In fact the energy
difference between the two levels is much smaller than k7. Furthermore, a coupling between
the two states is present (Fermi resonance) because a bending vibration tends to induce a
change of distance between the two oxygen atoms (i.e., induce a symmetric stretching). Levels

* Relaxation processes in which vibrational energy is given up as vibrational energy of another like or unlike
molecule are usually referred to as VV relaxations.



9.4 e Semiconductor Lasers

9.4. SEMICONDUCTOR LASERSG132)

Semiconductor lasers represent one of the most important class of lasers in use today,
not only because of the large variety of direct applications in which they are involved but also
because they have found a widespread use as pumps for solid state lasers. These lasers will
therefore be considered at some length here.

Semiconductor lasers require, for the active medium, a direct gap material and, accord-
ingly, the normal elemental semiconductors (e.g., Si or Ge) cannot be used. The majority of
semiconductor-laser materials are based on a combination of elements belonging to the third
group of the periodic table (such as Al, Ga, In) with elements of the fifth group (such as N, P,
As, Sb) (III-V compounds). Examples include the best known, GaAs, as well as some ternary
(e.g. AlGaAs, InGaAs) and quaternary (e.g., InGaAsP) alloys. The cw laser emission wave-
length of these III-V compounds generally ranges between 630—1,600nm. Quite recently,
however, very interesting InGaN semiconductor lasers, providing cw room-temperature emis-
sion in the blue (~410nm), have been developed and promise to become the best candidates
for semiconductor laser emission in the very important blue-green spectral region. Semicon-
ductor laser materials are not limited to III-V compounds, however. For the blue-green end
of the spectrum we note that there are wide-gap semiconductors using a combination between
elements of the second group (such as Cd and Zn) and of the sixth group (S, Se) (/I-VI
compounds). For the other end of the e.m. spectrum, we mention semiconductors based on
some IV-VI compounds such as Pb salts of S, Se, and Te, all oscillating in the mid-infrared
(4 um-29 pum). Due to the small band gap, these last lasers reuire cryogenic temperatures,
however. In the same wavelength range, we thus mention the recent invention of the quantum
cascade laser,®® which promises efficient mid infrared sources without requiring cryogenic
temperatures.

9.4.1. Principle of Semiconductor Laser Operation

The principle of operation of a semiconductor laser can be simply explained with the help
of Fig. 9.18, where the semiconductor valence band, V, and conduction band, C, separated
by the energy gap, E,, are indicated. For simplicity, let us first assume that the semiconduc-
tor is held at 7 = 0 K. Then, for a non-degenerate semiconductor, the valence band will be
completely filled with electrons while the conduction band will be completely empty (see
Fig. 9.18a, in which the energy states belonging to the hatched area are completely filled by

(a) (b)

FIG. 9.18. Principle of operation of a semiconductor laser.
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electrons). Suppose now that some electrons are raised from the valence band to the conduc-
tion band by a suitable pumping mechanism. After a very short time (~1 ps), the electrons
in the conduction band drop to the lowest unoccupied levels of this band, and, meanwhile,
any electron near the top of the valence band also drops to the lowest unoccupied levels of
this band, thus leaving holes at the top of the valence band (Fig. 9.18b). This situation can be
described by introducing the quasi-Fermi levels, E, » for the conduction band and, E}V, for the
valence band (see Sect. 3.2.3.). At T = 0 K they define, for each band, the energy below which
states are fully occupied by electrons and above which, states are empty. Light emission can
now occur when an electron, of the conduction band, falls back to the valence band recom-
bining with a hole. This, so-called recombination-radiation process, is the process by which
radiation is emitted in light emitting diodes (LED). Given the appropriate conditions, how-
ever, a process of stimulated emission of this recombination radiation, thus leading to laser
action, can occur. It was shown in Sect. 3.2.5. that the condition for a photon to be amplified
rather than absorbed by the semiconductor is simply given by [see Eq. (3.2.39)]

E, <hv <E, —Ep (9.4.1)

In the simple case where T'= 0K, this condition can be readily understood from Fig. 9.18b,
since the non-hatched area in the valence band corresponds to states which are empty, and
a conduction band electron can only fall into an empty state of the valence band. However,
the detailed treatment of Sect. 3.2.5. shows that condition of Eq. (9.4.1) in fact holds for
any temperature and simply means that, for the range of transition energy sv defined by
Eq. (9.4.1), the gain arising from stimulated emission exceeds the absorption. To achieve
condition of Eq. (9.4.1) one must, of course, have E}C — E}V > E,. Itis important at this point
to realize that the values of both E}C and EI’,V depend on the intensity of the pumping process,
i.e. on the number density, N, of electrons raised to the conduction band (see Fig. 3.15).
Actually Ej. = Ej. (N) increases while E;. = E}. (N) decreases as N is increased. Thus, to
obtain El/% — E’FV > E, i.e., to have gain exceeding absorption losses, the electron density N
must exceed some critical value established by the condition

E}. (N) —Ej (N) = E, (9.4.2)

The value of the injected carrier density which satisfies Eq. (9.4.2) is referred to as the carrier
density at transparency®, N;.. If now the injected carrier density is larger than N, the semi-
conductor will exhibit a net gain and, if this active medium is placed in a suitable cavity, laser
action can occur if this net gain is sufficient to overcome the cavity losses. Thus, to obtain
laser action, the injected carriers must reach some threshold value, Ny, larger than N, by a
sufficient margin to allow the net gain to overcome the cavity losses.

Semiconductor laser pumping can in principle be achieved, and indeed has been
achieved, in a number of ways, e.g., by using either the beam of another laser, or an aux-
iliary electron beam, to transversely or longitudinally excite a bulk semiconductor. By far the
most convenient way of excitation is, however, to use the semiconductor laser in the form of a
diode with excitation produced by current flowing in the forward direction of the junction.®¥
Laser action in a semiconductor was in fact first observed in 1962 by using a p-n junction

* Condition (9.4.2) is thus equivalent to the condition N =N; under which a non-degenerate two level system
becomes transparent
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diode, the demonstration being made almost simultaneously by four groups,>=® three of
which were using GaAs. The devices developed during the early stage of semiconductor laser
research made use of the same material for both the p and n sides of the junction and are
therefore referred to as homojunction lasers. The homojunction laser is now only of histori-
cal importance, since it has been essentially superseded by the double heterostructure (DH)
laser where the active medium is sandwiched between p and n materials which are different
from the active material. Homojunction lasers could in fact operate cw only at cryogenic tem-
peratures (7 = 77 K), while it was only after the invention of the heterojunction laser that it
became possible to operate semiconductor lasers cw at room temperature. This development
occurred 7 years after the invention of the homojunction laser (1969)*°*! and opened up the
way to the great variety of applications in which semiconductor lasers are nowadays used.
Homojunction semiconductor lasers will nevertheless be discussed briefly in the next section
since this discussion helps to understand the great advantages offered by the DH lasers.

9.4.2. The Homojunction Laser

In the homojunction laser, the pumping process is achieved in a p-n junction where both
p-type and n-type regions, being of the same material (e.g., GaAs), are in the form of a
degenerate semiconductor. This means that the donor and acceptor concentrations are so large
(~10'® atoms/ cm® ) that the Fermi levels fall in the valence band for the p type, EF,, and
in the conduction band for the n type, Er,. When a junction is formed, and if no voltage is
applied, the band structure will be as shown in Fig. 9.19a, where the two Fermi energies are
seen to be the same. When a forward bias voltage V is applied, the band structure becomes as
shown in Fig. 9.19b and the two Fermi levels become separated by AE = ¢V. We see from this
figure that, in the junction region, electrons are injected into the conduction band (from the
n-type region) while holes are injected into the valence band (from the p-type region). Thus,
under appropriate values of current density, the transparency condition and then the laser
threshold condition can be reached. Actually, one of the main limitations of this device comes
from the very small potential barrier that an electron, in the conduction band, encounters
when it reaches the p-side of the junction. The electron can then penetrate into the p-type
material where it becomes a minority carrier thus recombining with a hole. The penetration
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FIG. 9.19. Band structure of a p-n junction semiconductor laser with zero voltage, (a), and forward voltage,
(b), applied to the junction.
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FIG. 9.20. Typical broad-area p-n homojunction laser.

depth, d, of the electron will then be given, according to diffusion theory, by d = «/E, where
D is the diffusion coefficient and t is the electron lifetime, as established by electron-hole
recombination. In GaAs, D = 10cm?/s and 7 2 3 ns so that d ~ 1 um which shows that the
active region is quite thick being limited by the diffusion length d rather then by the thickness
of the depletion layer (0.1 wm).

A typical configuration of a p-n junction laser is shown in Fig. 9.20, the shaded region
corresponding to the active layer. It is seen that the diode dimensions are very small (some
hundreds of microns). To provide feedback for laser action, two parallel end faces are pre-
pared, usually by cleavage along crystal planes. Often the two surfaces are not provided
with reflective coatings. In fact, since the refractive index of a semiconductor is very large
(e.g., n =3.6 for GaAs), there is already a sufficient high reflectivity (~32% for GaAs) from
the Fresnel reflection at the semiconductor-air interface. Note that, as mentioned earlier, the
thickness of the active region in the direction perpendicular to the junction is d ~ 1 pum.
Because of diffraction, however, the transverse dimension of the laser beam in this direction
(~5 um) is significantly larger than the active region.

A homojunction laser has a very high threshold current density at room temperature
Jn=10°A/ cm?) which prevents the laser from operating cw at room temperature (without
suffering destruction in a very short time!). There are two main reasons for this high thresh-
old value: (1) The thickness of the active region (d ~ 1 um) is quite large and the threshold
current, being proportional to the volume of the active medium, is proportional to this thick-
ness. (2) The laser beam, owing to its comparatively large transverse dimensions, extends
considerably into the p and n regions, where it is strongly absorbed. Given the above reasons,
homojunctions lasers could only operate cw at cryogenic temperatures (typically at liquid
nitrogen temperature 7 = 77 K). For a given laser transition, in fact, the semiconductor gain,
according to Eq. (3.2.37), can be shown to increase rapidly with decreasing temperature and,
also, contact of the diode with liquid nitrogen helps to give a very efficient cooling.

9.4.3. The Double-Heterostructure Laser

The limitations discussed in the previous section prevented any widespread use of
semiconductor lasers until, first, the single-heterostructure, and, immediately after, the
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FIG. 9.21. Schematic diagram of a double-heterostructure where the active medium (hatched area) consists of GaAs,
(a), and InGaAsP, (b).

double-heterostructure lasers were introduced. We will limit our discussion here to the latter
type of laser structure since it is the only one that is now in common use.

Two examples of a double-heterostructure, where the active medium is a thin layer
(0.1-0.2 um) of either GaAs or of the quaternary alloy InGaAsP, are shown in Fig. 9.21a and
b respectively. For the two cases considered, the p and n sides are made of Aly3Gag7As and
InP, respectively. When properly optimized (see Fig. 9.23), the room-temperature threshold
current-density of such a diode structure can be reduced by about two orders of magnitude
(i.e., to ~10°A/ cm?) compared to the corresponding homojunction devices, thus making
cw room temperature operation feasible. This strong reduction of threshold current density
is due to the combined effect of three circumstances: (1) The refractive index of the active
layer n; (e.g., ny = 3.6 for GaAs) is significantly larger than that, n,, of the p-side and n-
side cladding-layers (e.g., n, = 3.4 for Aly3Gag7As), thus providing a guiding structure (see
Fig 9.22a). This means that the laser beam will now be mostly confined to the active layer
region, i.e., where the gain exists (photon-confinement, see Fig. 9.22b). (2) The band gap
E,, of the active layer (e.g., Eg, = 1.5¢V in GaAs) is significantly smaller than that, E,,, of
the cladding layers* (e.g., E,, = 1.8eV for Alp3Gag7As). Energy barriers are thus formed
at the two junction planes thus effectively confining the injected holes and electrons within
the active layer (carrier-confinement, see Fig. 9.22c¢). Thus, for a given current density, the
concentration of holes and electrons in the active layer is increased and therefore the gain is
increased. (3) Since Eg, is appreciably larger than E,,, the laser beam, which has a frequency
v = E, /h, is much less strongly absorbed in the tails of the beam profile (see Fig. 9.22b)
by the cladding layers, the loss arising, in this case, only from free-carriers (reduced
absorption).

To form a double heterostructure, thus taking advantage of all its favorable properties, a
very important requirement must be fulfilled, namely that the lattice period of the active layer
must be equal (to within ~0.1%) to that of the cladding layers'. In fact, if this condition is not
fulfilled, the resulting strain at the two interfaces will result in misfit dislocations being pro-
duced there, each dislocation acting as a rather effective center for electron-hole nonradiative
recombination. For the GaAs/AlGaAs structure, this requirement of lattice matching does not
constitute a limitation because the lattice periods of GaAs (0.564 m) and AlAs (0.566 m) are

* Tt is a general rule for all III-V compounds that, any change in composition that produces a change, in a given
sense e.g. a decrease, of band gap also produces a change, in the opposite sense i.e. an increase, of the refractive
index.

T AIl TII-V compounds crystallize in the cubic structure.
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FIG. 9.22. (a) Refractive index profile, (b) transverse beam profile, and (c) band structure (very schematic) of a
double-heterostructure diode-laser.

very close in value (the atomic radii of Ga and Al are, in fact, almost the same). In the case
of the quaternary compound In;_,Ga,As,P;_,, the alloy can be lattice matched to InP for a
specific y/x ratio, as one can appreciate from the following argument: suppose that, starting
with InP for the active layer, some fraction, x, of Ga is added, substituting for some In in the
lattice (which hence becomes In;_,). Since the radius of Ga is smaller (by ~19 pm) than that
of In, the lattice period of the In;_,Ga,P will be decreased compared to InP. Suppose now
that some fraction, y, of As (As,) substitutes for P (thus becoming P;_,). Since the radius
of As is now larger (by ~10 pm) than that of P, this addition will tend to increase the lattice
period. So, if the y/x ratio of the two substituents has an appropriate value, the two effects will
cancel each other thus resulting in In;_,Ga,As,P;_, being lattice matched to InP. This lattice-
matching condition turns out to be given by y = 2.2 x. Upon changing x, while keeping the y/x
ratio equal to the lattice-matching value, the semiconductor band-gap and hence the emission
wavelength can be changed. In this way the emission wavelength of In;_,Ga,As,P;_, can
be varied between 1,150 and 1,670 nm, for cw room temperature operation, thus encompass-
ing the so-called second (~1300 nm) and third (~1550 nm) transmission windows of silica
optical fibers.

Experimental and theoretical plots of the threshold current density, J;;, vs thickness, d, of
the active layer, for a DH GaAs laser are shown in Fig. 9.23.42 Note that, as d decreases, Jy,
first decreases then reaches a minimum value (J;;, = 1 kA/ cm? ford 0.1 pm) and thereafter
increases. To understand this behavior, we need first to relate the threshold current density, Jy,
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15.3 GaAs/Ga,_,Al As LASERS

According to Table 15.1, we note that the energy gap of binary III-V semiconductors covers
a broad range (from a fraction of 1eV to a few eV) for applications. Since the bandgap
translates to the emission photon energy of lasers, a wide emission spectrum is covered. In
practice, however, operational devices are limited by the availability of substrate materials
and the possibility of lattice matching in the crystal growth of the laser structures. The most
common substrates that are available with relatively low defect density are GaAs and
InP crystals. In the early stage of the crystal growth development, it was realized that a solid
solution of two binary compound semiconductors can form ternary or quaternary alloy
semiconductors. For example, the solid solution of GaAs and AlAs can form Ga,_,Al As
semiconductors. The two most important classes of semiconductor lasers are those that are
based on III-V semiconductors that can be grown on GaAs or InP substrates.

The first system is based on GaAs and Ga,_,Al, As semiconductor crystals. In this case,
the active region is either GaAs or Ga,_, Al As. Since an AlAs semiconductor crystal has a
larger bandgap than that of GaAs, the ternary compound crystal Ga,_, Al As has a bandgap
between those of GaAs (x =0, Egp= 1.43eV)and AlAs (x=1, Egp= 2.1 eV). The subscript
x indicates the fraction of Ga atoms in GaAs that are replaced by Al. The resulting lasers emit
(depending on the active region molar fraction x and its doping) at 0.75 um < A < 0.88 pum.
This spectral region is convenient for short-haul (2 km) optical communications in silica fibers.

The second system has Ga,_,In,As,;_ P, as its active region. The lasers emit in the range
1.1 pm < A < 1.6 um depending on x and y. The region near 1.55 um is especially favorable,
since, as shown in Figure 3.21, optical fibers are available with losses as small as 0.15 dB/km
at this wavelength, making it extremely desirable for long-distance optical communications.
In this section we will consider GaAs/Ga,_, Al As lasers. A generic laser of this type, depicted
in Figure 15.10, has a thin (0.1-0.2 um) region of GaAs sandwiched between two regions of
GaAlAs. It is consequently called a double heterostructure laser. The basic layered structure
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Figure 15.10 A typical double heterostructure GaAs/GaAlAs laser. Electrons and holes are injected
into the active GaAs layer from the n and p GaAlAs. Photons with frequencies near v = E,/h are
amplified by stimulating electron-hole recombination.
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is grown epitaxially on a crystalline GaAs substrate so that it is uninterrupted crystallo-
graphically. The favored crystal growth techniques are liquid-phase epitaxy and chemical
vapor deposition using metallo-organic reagents (MOCVD) [11, 13, 14]. Another important
technique—molecular beam epitaxy (MBE) [11, 13, 15, 16]—uses atomic beams of the crystal
constituents in ultrahigh vacuum to achieve extremely fine thickness and doping control.

The thin active region is usually undoped while one of the bounding Ga,_, Al, As layers is
doped heavily n-type and the other p-type. The difference

NGaAs ~ NGa,_ Al As = 0.62x

between the indices of refraction of GaAs and the ternary crystal with a molar fraction x gives
rise to a three-layered dielectric waveguide of the type illustrated in Figure 3.1. At this point
the student should review the basic modal concepts discussed in Chapter 3. The lowest-order
(fundamental) confined mode has its energy concentrated mostly in the GaAs (high-index)
layer. The index distribution and a typical modal intensity plot for the lowest-order mode are
shown in Figure 15.11. When a positive bias is applied to the device, electrons are injected
from the n-type Ga,_, Al As into the active GaAs region while a density of holes equal to that
of the electrons in the active region is caused by injection from the p side. The density of
holes must equal that of the electrons to achieve charge neutrality.

The electrons that are injected into the active region are prevented from diffusing out into
the p region by means of the potential barrier AE, due to the difference AE, between the
energy gaps of GaAs and Ga,_,Al, As. The x dependence of the energy gap of Ga,_,Al As is
approximated by [13]

E(x< 0.37) =(1.424 + 1.247x) eV

and is plotted in Figure 15.12.

The total discontinuity AE, of the energy gap at a GaAs/GaAlAs interface is taken up
mostly (60%) by the conduction bandedge, that is, AE, = 0.6 AE,, while 40% is left to the
valence band, AE, = 0.4 AEg, so that both holes and electrons are effectively confined to the
active region. This double confinement of injected carriers as well as of the optical mode
energy to the same region is probably the single most important factor responsible for the
successful realization of low-threshold continuous semiconductor lasers [17-19]. Under
these conditions, we expect the gain experienced by the mode to vary as 1/d, where d is the
thickness of the active (GaAs) layer, since at a given total current, the carrier density, hence
the gain, will be proportional to 1/d. To further discuss the dependence on the thickness of
the active region d, we start with the basic definition of the modal gain,

_ Power generated per unit length (in x)

Power carried by beam

—d[2 df2 0
—J a,,|E|2d2+f y|E|2dz—j o, E[dz
= d= —d/2 dr (15.3-1)

J |E|2dz

where 7 is the gain coefficient experienced by a plane wave in a medium whose inversion den-
sity is equal to that of the active medium. The gain coefficient yis given by Equations (15.2-12)
and (15.2-17). The parameter ., is the loss constant of the unpumped n-Ga,_,Al, As and is due
mostly to free electron absorption. 0., is the loss (by free holes) in the bounding p-Ga,_, Al As
region. We note that as d — o0, g > .
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Figure 15.11 (a) The energy bandedges of a strongly forward-biased (near-flattened) double
heterostructure GaAs/GaAlAs laser diode. Note the trapping of electrons (holes) in the potential well
formed by the conduction (valence) bandedge energy discontinuity AE.(AE,). (b) The spatial (z) profile
of the index of refraction which is responsible for dielectric waveguiding in the high-index (GaAs)
layer. (c) The mode profile of the fundamental optical mode in a slab waveguide.

In the case when 7 is a constant over —d/2 < z < d/2. It is convenient to rewrite Equa-
tion (15.3-1) as

g=vyr,-o,, -0, (15.3-2)
with
d/2 —dJ2 o0
f |E|2dz f |EPdz J |E[*dz
=22 r,=:= , T,=2L (15.3-3)
( |E |*dz ( |E*dz ( |E dz



