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ABSTRACT 

Two classes of renormalizable 1 IN expandable two dimensional models 
are analyzed to 0(1IN) and the asymptotic behavior of the renormalized 
two-point functions is nonperturbatively evaluated. 

These results are taken as a benchmark to study the applicability of 
dimensional regularization and perturbative minimal subtraction renormal
ization to the context of the 1 IN expansion. Perturbation theory is applied 
to 0(11 N) diagrams to all orders in the weak coupling constant, and after 
resummation the same finite renormalization group invariant asymptotic 
amplitudes are obtained. 

As a byproduct, the 0(11 N) contributions to renormalization group Z 
functions in the minimal subtraction scheme are extracted and the critical 
index 1) is evaluated and compared to previous nonperturbative results, 
finding complete agreement. 

An Appendix is devoted to the extension of these results to a super
symmetric version of the models . 
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We develop a parametrization of finite size scaling appropriate to the description of N-component systems in the context of the 
1 IN expansion. We apply this formalism to the case of two-dimensional O(N) models and obtain the finite size scaling function 
of the susceptibility both numerically in the whole scaling region and analytically in the perturbative regime. 

In recent years finite size scaling has become an increasingly important tool in the theoretical and numerical 
analysis of critical systems and lattice field theories [ l]. To the best of our knowledge, however, despite the 
impressive theoretical development in this field, no explicit extension (and therefore no concrete application) 
of this formalism has been made in the context of lIN expandable models. 

These models are a typical testing ground of field-theoretical ideas, and especially of new numerical simula
tion algorithms, which must unavoidably face the problem of working with finite size systems and understand
ing finite size effects. Having recently made some progress in the evaluation of lIN corrections for a two-dimen
sional spin model (O(N) sigma model), we decided to explore its finite lattice properties and were eventually 
led to introducing the formalism we are going to explain in this letter. 

The comparison between theoretical analysis and numerical computation appears to be quite satisfactory and 
leads to the conclusion that lIN expanded finite size scaling should prove to be a rather useful tool in the 
numerical analysis oflattice spin systems. 

We shall explicitly discuss the finite size scaling relations from the point of view of the lIN expansion, and 
obtain the lIN expanded finite size relationships whose range of numerical applicability we want to explore. 

Let us try to be rather general as far as possible. Any coordinate-independent physical quantity (like masses, 
susceptibilities, vacuum expectation values of composite operators) defined in the context of a lIN expandable 
finite lattice model will in general depend on four different parameters: 

Q=Q(T, a, L, N), (l) 

where T is the temperature, L d is the physical volume in d dimensions and a is the lattice spacing (i.e. the 
number oflattice sites is (LI a)d). In the infinite volume limit, in the presence of a critical point we can define 
a critical region, in which all separate dependence on T and a can be made to disappear by parametrizing every
thing in terms of the physical correlation length (inverse mass gap) 

T 

~oca exp(f p~:J (2) 

where p(t) is the renormalization group beta function of the model and 0 a~oo when T ~ T,. 
The finite size scaling relation stems from the observation that the infinite volume limit (LI a~oo) can be 

reached by simultaneously moving towards the infinite correlation limit and keeping constant the ratio Lg. 
This corresponds to considering the physical system at criticality enclosed in a finite physical volume. By purely 
dimensional considerations, Land c;being both renormalization group invariant quantities, we should get 
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-o;Qc;-(~T,'-=a,_,_, L='>oNo-f)c ---~ f (QJ ( L' I ~2 , N) ' 
Q(T, a, oo, N) T ..... Tc 

Lf<!=const. 
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where! (QJ is the finite size scaling function of the quantity Q, andf( Q) ~ l when Ll ~~oo. 
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(3) 

Consider now the implications of the lIN expandability on eq. ( 3). Since we shall only focus on the first non
trivial order of the expansion, we can reexpress eq. ( 3) in the form 

Q0 (NT, a, L)+ (IIN)Q1 (NT, a, L)+ ... --~JbQJ(L'I~') + (liN)flQ'(L'I~')+ ... , 
Q0 (NT, a, oo) + ( 1IN)Q1 (NT, a, oo) + .. . T ..... Tc 

Lf{=const. 

(4) 

where, with obvious notation, we have lIN expanded both the physical quantity and its finite size scaling function. 
However we must keep in mind that L 2 I ~2 = L 2m 2 itself is a I IN expandable physical quantity: 

m 2 =m5(NT)+ (liN)ml(NT)+ ... , 

and by substituting eq. ( 5) in the expansion off we get 

_,Q"-0 ("-N~T,_, a=''-=L'"-) + _I_ ( Q1 (NT, a, L) 
Q0 (NT, a, oo) N Q0 (NT, a, oo) 

Q0 (NT, a, L)Q1 (NT,~· oo ))+O(l IN') 
[ Q0 (NT, a, oo)] 

( 5) 

~f bQ1(m5(NT)L 2 ) + ( l IN)f0(Q 1(m5(NT)L 2 )ml(NT)L 2 + ( IIN)f jQ1(m5(NT)L') +0( 1IN2
) (6) 

and by comparison 

Qo(NT, a, L) ~fbQ>(m5(NT)L'), 
Q0 (NT, a, oo) 

Q 1 (NT, a, L) _ Q 1 (NT, a, oo) ~ fo(Q'(m5(NT)L 2
) m 2 (NT)L'+ f jQ 1(m5(NT)L') 

Q0 (NT, a, L) Q0 (NT, a, oo) fbQ>(m5(NT)L') 1 fbQ 1(m5(NT)L 2
) • 

(7a) 

(7b) 

Eq. ( 7b) is obtained by making use of eq. ( 7a) in eq. ( 6) and is the most general form of the lIN expanded 
finite size scaling relation. 

In order to further develop our formalism, we shall restrict our attention on the two-dimensional O(N) non
linear sigma model (see ref. [ 2] and references therein), defined by the action 

(8) 

Preliminary to all developments is a thorough investigation of the Iarge-N finite size scaling function for the 
mass gap. In order to extract this function, it si convenient to analyze the finite and infinite lattice representation 
of the gap equation. In the infinite-volume limit and close to the critical point T,=O we have 

_l_ = f d2p l ~ _!_ln...E_, 
NT (2n) 2 fj 2 +m~ r ..... o 4n a2m~ 

(9) 

where Ji'= ( 41 a2
) I" sin2 (apj2 ), implying 

2 2 ( ) 32 ( 4n) m0 =m 0 NT,oo =2exp -- . 
a NT 

(10) 

We can however introduce the finite-volume mass 

mi=m5(NT,L) (ll) 
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defined by the discrete sum 

l l l 
NT= L' ~ ii'+mi' 

(12) 

where the sum over p runs on all the modes of the reciprocal lattice. 
This representation is suitable for a finite volume weak coupling (small mass) expansion a la Flyvbjerg [ 3]: 

l l [ ~ (mi)"J NT= m'L2 l- L L (-1)" p'2 , 
L n=1 p'f'.O 

(13) 

It is not too difficult to prove the following asymptotic behaviour: 

1 L 
2 

[ L' z; ( 1 )] L: --::-,~-4 ln-,-ln
32

+0 L 2 , 
p'f'.OP L-•= n a 

(14) 

where 2 0 =4.163948,, and 

l ~ 

dn = (2n) 2n m 1 ,m~=-= (mT +mDn. 
( 15, 16) 

(m1,m2)'1<(0,0) 

In the n---+ oo limit we can evaluate 

d""' (2:)2"(1+ ;} e""' n; 2

, (17) 

We would like to notice that the quantity Z0 defined in eq. ( 14) is directly related to the constant Sc defined in 
ref. [ 4] through Z0 = 2S0 • More generally, all the coefficients d" do not depend on the detailed structure of the 
lattice action and therefore lead to a universal definition of the scaling function, related only to the topology and 
the number of finite space dimensions in the physical system. 

A finite size renormalization group invariant variable can now be defined by z= mLL and the Iarge-N finite 
size scaling equation can be expressed in the form 

l (m0 L) 2 4n L 2 z~ 2 2 4n ~ n 2 nd 
-n 

32 
~NT-ln-,~-ln 32 +w(z), w(z)=-,-+4rrL..(-l)(z) "+I· 

T-.0 Q L---+oo Z n=1 
(18) 

Comparing with eq. ( 7a) we can now identify the finite size scaling function 

(19) 

and eq. ( 18) shows that any function of z can be reexpressed as a function of m&L', as expected. 
In the following we shall also be interested in the logarithmic derivative off bm' with respect to m&L 2 • This 

can be achieved by observing that 

m'oL2 a l J<m>( 2 2 _ 2 2 az' a Jiml _ l/z
2
+aw(z

2
)/az

2 

a(m6L 2 ) n ° moL )-moL a(m8L 2 )az2 ln ° (z)- aln(m8L 2 )/az 2 

l 
= - l - -z"2 a"w-(c-z'-o2cc)-c/ a"z'2 • (20) 

From the definitions it follows that 

2 aw(z 2
) 2 a 4rr 4rr ml. 

z az 2 =mLamiNT=- L 2 ~ (fi 2 +m'L)'. (21) 
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In fig. 1 we show the numerical evaluation of the function w(z2
) + ln(z2 I zz) as a function of z. Its large-z 

behaviour can be proven proportional to exp( -z), as expected from the observation that z~co corresponds to 
the physical infinite-volume limit in presence of a non vanishing mass gap, and in this limit we expect exponen
tially damped finite size deviations from the infinite-volume results. From eq. ( 17) it follows that the series 
appearing in eq. ( 18) and defining the function w( z 2 ) has a radius of convergence in z equal to 2n. 

There is a deep correspondence between our results and LUscher's computation of the spectrum of low-lying 
states in the continuum finite-volume hamiltonian formulation of the model [51. By recalling that in the large
Nlimit 

mo =AMs = j32AL , (22) 

we can rephrase our results in the form 

(23) 

and this is the same as Luscher's result in an euclidean lattice formulation of the problem; the function w(z) 
has even the same convergence radius. We refer to LUscher's papers for any further consideration about his 
approach to finite size effects. 

The main purposes of the 0 ( 1 IN) computation are the determination of the 1 IN correction to the finite size 
scaling function, i.e. the function/ fQ) (m6(NT)L 2 ), and a comparison with numerical computations on finite 
lattices in order to have a quantitative estimate of the range of validity of the finite size scaling parametrization. 

Our starting point will be eq. (7b ), specialized to the case when the physical quantity under observation can 
be extracted from the dressed inverse two-point function at some special value of the momentum. We recall 
from ref. [ 21 that the inverse two-point function can be parametrized by 

G-' (p 2
, T, a, L, N) =fi'+m5(NT, a, L) + (liN)I:, (p 2

, NT, a, L) +0( liN') . (24) 

At first sight, the most interesting quantity to be taken into consideration is the zero of this function, corre
sponding in the infinite lattice limit to the value of the physical mass. However there is no simple interpretation 
of this zero value on a finite lattice. A more natural finite lattice operative definition of the mass scale might be 
the second moment of the correlation function (the "renormalized" mass of ref. [ 6 1 ) . However even in this 
case there is no unique definition on the finite lattice, and the study of the infinite lattice behaviour is slightly 
more involved. 

Let us therefore focus on the inverse susceptibility 
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Fig. 1. The logarithm of the Iarge-N finite size scaling function 
w(z 2 ) + ln(z 2 j z~) as a function of z. 
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G -1 0 ) NT 2" I ) 0 ' ( 'T,a,L,N =--x· x=a -; (S(O)·S(x))=xo+(1 N XI+ (liN). 

A few trivial manipulations lead to 

NT 2 - =m 0 (NT, L), 
Xo 

XI II(O,NT,L) 
Xo - m6(NT, L) ' 

thereforefbxl (mijL 2 ) =fbml (maL') and, after substitution in eq. ( 7b ), 

I 1(0,NT,L) _ I 1(0,NT,oo) --(1+ 1 )ml(NT,oo) +f\Xl(maL 2
) 

mi mil - z 2 8w(z2 )18z2 m6(NT,oo) fbX>(mijL 2 ) • 

Recalling that [ 2] 

mf=L'1( -m&, NT, oo), 

we therefore obtain 

f_\_x> _ I 1 (0, NT, L) + I 1 ( -mij, NT, oo) -I1 (0, NT, oo) + ---o~I-'.1 (C,-~m~ij"-, ;.NC'T~, '--oo:-f)-..,. 
fbxl- mi m6 m6mi8w(miL')I8mi · 

For the purpose of analytical computation we may also notice that, in the scaling region [7], 

II(-ma,NT,oo),-II(O,NT,oo) =- aii(P 2,~T,oo)l +3cl-1-ln~. 
mo ap p2= -m6 2 

, the constant c1 is defined in ref. [ 2] 

T(j)T(~) 
c1 =In T(l)TW =0.4861007 .... 

31 January 1991 

(25,26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

For the purpose of completeness we just mention that a similar analysis performed on the formal definition of 
the zero of the correlation function leads to 

J\ml ml(NT,L) 
fbm> = mij(NT,L) 

ml(NT, oo) 
ma(NT, oo) -z"''a,_w-(;-z'-;,cc)-;18;;-z''. 

(33) 

The function! 1x> is in principle completely determined by eq. (30) once all quantities on the RHS are com
puted in the scaling region in the large-L limit. In practice, we may take two different approaches, and compare 
them in search for consistency. 

The first approach is that of performing a finite lattice weak coupling expansion of the susceptibility [ 3] and 
express the results in a scaling form akin to eq. (30). In ref. [3] one can find the following result, exact to 
O(T 2 ): 

x=L 2{1- (N-1 )TS1 + (N-1 )T2 [jS1-!S1( l-1IL 2
)] + (N-1) (N-2)S,T 2

}, (34) 

a 2 1 
8

" = L' J, (fi'a')" · 
(35) 

Let us now perform a 1 IN, large-L expansion of eq. ( 34) to obtain 

/;T "'L'{I I NT- (l-1IN)S1 + T(jS\-!Sl) + ( 1-31N)d2NT}, (36) 

where S1 is simply the large-L limit value of S1: 
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- I 32L 2 

s1 = -4 ln22. n a Zc 

By making use of eq. (18) we obtain 

PHYSICS LETTERS B 

X L 2 I 2 - 2 IS' Is 3d ) l NT"'?+NL [S1 +z ( 2 ~-, ~- , , 

and immediately 

Xo(L) =_I_ X1(L)"' '[S +z'(lS'-lS -3d)]. 
NT mi., Xo(L) _z 1 2 1 4 1 2 

We also need representations in terms of z 2 of the following functions (see ref. [ 2] ) : 

31 January 1991 

(37) 

(38) 

(39,40) 

I 1(-m6,,NT,oo) = m!~- N8"T+2(ln !6nNT+yE)-2+n+(-112n-nl8+4nG1 )NT+O(N'T2 ), (41) 
mo mo 

~-In 4nNT+ 3c1 -YE + (j + 112n)NT- (f,-G1 )N 2T'+O(N 3 T 3 ), 

G1 = 0.04616363 .... 

Once all substitutions are performed in eq. (30) we obtain 

f fx) 4n z 2 
( 16n ) z 4 

6 fbx' =-In? +2+3c~-YE- 2" In 22 +yE + 8" 2 +O(z ) . 

(42) 

(43) 

We notice the complete cancellation of all dependence on L other than the scaling dependence included in the 
definition of z. This is a nontrivial check of consistency between the II Nand the standard perturbative ap
proach to finite size scaling. Eq. ( 43) also provides a benchmark for all numerical evaluation of finite size 
behaviour at least in the regime z << 2n. 

The second approach to the determination of the function f lx' is the numerical evaluation of the RHS of eq. 
( 30) for several values of Ll a andfi= II NT. This procedure has the appreciable advantage of providing a direct 
evidence of finite size scaling and a quantitative determination of the onset of scaling, both in L and in p. Some 
of the quantities appearing in eq. (30) are infinite lattice values of the inverse two-point function at special 
values of the momentum. In order to compute them we made use of the integral representation introduced in 
ref. [ 2] and resorted to accurate algorithms of numerical integration ( 300 point Gauss integration). 

Finite lattice summations were performed for values of Lla ranging from 3 to 160 and fi from 0.7 to 0.95, 
corresponding via eq. (12) to values of z from I to I 0. 

In fig. 2 we present the numerical results for f lx' If if' by drawing lines through the data at fixed /i, together 
with the weak coupling result of eq. ( 43 ). the convergence to a universal finite size scaling function is rather fast 
in the variable Ll a, as already observed in ref. [ 4]. More crucial is the dependence on fi: for values smaller than 
the onset of (infinite volume) scaling at p,. 0.8 we see a significant departure from a universal finite size scaling 
behaviour. This phenomenon is expected and perfectly understandable from the point of view of Wilson's re
normalization group approach. 

Let us now imagine to have a purely perturbative determination off, I fo: this would imply the ignorance of 
the constant appearing in eq. ( 43 ). This constant (as well as the ratio ml AMs) could be in principle determined 
by matching the perturbative series for the finite size scaling function to the expected exponential behaviour at 
large z. However our computation shows that these functions have non monotonic behaviour at intermediate 
values of z, and a very slow approach to the asymptotic regime. It seems therefore very hard to get good ex trap-
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z 

Fig. 2./ po !fbXl as a function of z. The solid lines are numerical 
results for P=O. 70, 0. 75, 0.80, 0.85, 0.90, 0.95 respectively, from 
bottom to top. the dashed line is the result of eq. ( 43 ). 

elations to large z values from perturbative results, at least to the satisfactory level one can reach in the Iarge-N 
limit [5]. 

We thank H. Flyvbjerg for many interesting conversations on this subject and for communicating us his finite 
size results prior to publication. 
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ABSTRACT 

Two classes of renormalizable 1 J N expandable two dimensional models 
are analyzed to 0(1/N) and the asymptotic behavior of the renormalized 
two-point functions is nonperturbatively evaluated. 

These results are taken as a benchmark to study the applicability of 
dimensional regularization and perturbative minimal subtraction renormal
ization to the context of the 1/N expansion. Perturbation theory is applied 
to 0(1/N) diagrams to all orders in the weak coupling constant, and after 
resummation the same finite renormalization group invariant asymptotic 
amplitudes are obtained. 

As a byproduct, the 0(1/N) contributions to renormalization group Z 
functions in the minimal subtraction scheme are extracted and the critical 
index 11 is evaluated and compared to previous nonperturbative results, 

. finding complete agreement. 
An Appendix is devoted to the extension of these results to a super

symmetric version of the models. 

PACS No. 11.10 Gh, 11.15 Pg 

1. Introduction 

The importance of dimensional regularization in the context of perturbative quantum 
field theory cannot be overstressed. Not only it offers the possibility of defining a systematic 
renormalization algorithm, but also one can exploit its methods and results in the analysis 
of critical phenomena by the use of Wilson's e-expansion. 

There has however been till now a rather restricted use of this regularization scheme 
in the context of the so-called 1/N expansion approach. This is essentially due to the fact 
that in the 1/N formulation the propagators of the effective excitations, when computed 
in d dimensions and with nonvanishing mass parameters, can only be expressed in terms of 
hypergeometric functions, which are quite intractable when integrations ore-expansions must 
be performed. One example of this intractability is the fact that a dimensionally regularized 
version of the 1/N expansion may develop In lei singularities in addition to poles [1,2]. 

In turn the 1 J N expansion can be certainly performed (at least in vector models) by 
sticking to two dimensions and choosing such regularization schemes as a sharp momentum 
or a lattice cutoff [3]. 

Moreover, in the context of the evaluation of critical indices, most difficulties can be 
bypassed by performing all calculations directly at the critical value of the coupling constant 
(seen as a function of d) and exploiting the scale properties of correlation functions at criti
cality [4]. In this way not only critical exponents were computed to 0(1/N2 ) [4,5], but also 
one could reconstruct the renormalization group functions (3 and 'Y themselves starting from 
the values of the exponents [6]. In principle, by a generalization of the same algorithm, one 
might also reconstruct, order by order in 1/N, the renormalization factors Z, at least in the 
minimal subtraction scheme. 

However it would certainly be important to be able to perform, at least in principle, 
a direct calculation of the dimensionally regularized Green's functions within the 1/N ex
pansion, in order to verify consistency with standard perturbation theory not only in the 
computation of divergences but also in the renormalized convergent contributions. It would 
also be pleasant to check the renormalization group invariant structure of the renormalized 
Green's functions and to study the summability properties of their perturbative series. 

In the attempt to close the gap between dimensional regularization and 1/ N expansion, 
we started from the observation that most interesting properties of the Green's functions are 
already contained in their asymptotic behavior, i.e. in the limit when all mass parameters 
are very small compared to external momenta. These asymptotic behaviors are well defined 
both in the 1/N expansion and in standard perturbation theory in models not plagued by 
infrared pathologies. Actually, in asymptotically free theories where the appearance of mass 
is a dynamical phenomenon, the prediction of asymptotic behaviors is all that conventional 
perturbation thec1ty can reasonably provide. 

In the massless limit, the propagators of the effective excitations can be expressed in 
terms of elementary functions: their mathematical structure is such that, with appropriate 
manipulations, the correspondence with perturbation theory can be made manifest. More
over, in this limit it is possible to reduce calculations to typical dimensionally regularized 
integrals and to resum the results in a compact and renormalization group invariant form 
ready for comparison with 1/N calculations in different schemes. 
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In the present paper, we consider for definiteness two classes of renormalizable two
dimensional models, O(N) nonlinear sigma and Gross-Neveu, whose structure and 1/N ex
pansion are discussed in Sect. 2. 

In order to establish a benchmark, we computed the relevant 0(1/N) Green's functions 
in a sharp momentum cutoff scheme, for arbitrary nonzero values of the mass parameter m 01 
and presented the results in a renormalization group invariant form in Sect. 3. 

The asymptotic behavior of these Green's functions obtained in the mo -+ 0 limit is 

presented in Sect. 4. 
Finally, Sects. 5 and 6 are devoted to the analysis of O(N) and Gross-Neveu models 

respectively in the context of dimensional regularization. We generated the massless per
turbative series, evaluated the relevant Feynman integrals and proceeded to two different 
resummations of our results, corresponding to an interchange in the order of some limits. 

We could show that the two resummations differ only in their divergent parts, corre

sponding to different choices of renormalization factors Z 1 while the convergent contribution 
is universal, renormalization group invariant and corresponds to the asymptotic expansion 
presented in Sect. 4. The first resllmmation, which we denote by "nonperturbative renor
malization/1 leads to the appearance of the ln lei singularities already noticed in [1,2] and is 
in rather direct correspondence with the sharp momentum regularization scheme. The other 
one ("perturbative renormalization") is just the standard minimal subtraction scheme pushed 
to all orders in the coupling. Its divergent parts are the 1/N contributions to Z factors and 
allow for the determination of fJ and 1 functions, which in turn leads to a perturbative evalu
ation of the 0(1/N) contribution to the critical exponent 1J in full agreement with previously 
derived and conceptually independent calculations. 

The extension of our methods and results to the supersymmetric 0( N) models is briefly 
discussed in the Appendix. 

2. The models and their 1/N expansion 

We are explicitly interested in two classes of models: O(N) nonlinear sigma models [7,8] 
and U(N) Gross-Neveu models [9} in two dimensions. Beyond obvious differences, these 
models share a few common features that suggest a common treatment: 

• asymptotic freedom; 
• dynamic mass generation; 
• existence of exact factorized S matricesj 
• 1/N expandability. 

The _bare continuum Euclidean lagrangian of the O(N) models is 

Nfi J 2 ~ ~ 
S = T d z iJ"S. iJ"S, (2.1) 

where 82 = 1. It can be turned into an effective action for the Lagrange multiplier field a (x) 

introduced in order to implement the constraint: 

N 
S.« (a)~ "2 {Trln [-o + ia (z)]- if! a (z)), (2.2) 

3 

This effective action is suitable for a 1/N expansion around the classical translation invariant 
saddle point (a(x))0 satisfying the unrenormalized gap equation 

J d
2p 1 1 

(2.-)2 p2 + i (a)
0 

= fl""' 2.-j' (2.3) 

where we have introduced the _(rescaled) weak coupling constant f. The propagator of the 
quantum fluctuations around (a) 0 = ~im~ is 

1 4,-k2 ( 

_1_ A(k,mo) = N ---y+T' 
N ln(_ 1 

e=}1+4m~ p· 

In a sharp momentum (SM) cutoff scheme the gap equation takes the form: 

1 1 M 2 

-=-ln
f 2 m~ 

The mass gap m 2 is a 1/N expandable quantity: 

2 2 1 2 (1) 
m =m0 +Nm1 +0 N'J. 

(2.4) 

(2.5) 

(2.6) 

and m~ can be analytically computed by evaluating the pole of the invariant two-point func

tion: 
1 

p'J. +m~ + k~(p2) 

In the SM scheme one obtains [3,10]: 

m~ =2m~ [~7 +ln 7 +IE] 

The scaling part of the free energy density, in turn, can be cast into the form: 

F= N-2m2 
8,-

(2. 7) 

(2.8) 

(2.9) 

Let 1s now recall some results for the renormalization group functions in the SM scheme from 

Ref. [3]' 

N-2 2 [ f (1)] fl(f)=----yr-1 l+N+O N 2 , 

N-1 [ f (1)] ?U)=---yr-1 l+N+O N2 . 

(2.10) 
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The bare continuum Euclidean lagrangian of the U(N) Gross-Neveu models is: 

s = j d'• [~N- ~g (~V>l']. 

The effective action for the Lagrange multiplier field u ( z) is: 

N 
S,ff (u) = -NTrln [~- u (•)] + -f u'(•) 

2~ 

where f =: Ngj1r. The bare saddle point equation is: 

1 J d2
p 1 

2"/ = (2~)' p' + (u): · 

The propagator of the quantum fluctuations around (u) 0 = m 0 is: 

1 2,.-
2._ t.(k,mo) = N -e+ ·1 
N (ln,_

1 

and in the SM regularization scheme: 

1 M 
-=ln-. 
f mo 

The 1/ N expansion of the mass gap is: 

m=mo+~mt+0(~2 ) 
and the 1/N correction is computed from the pole of the fermion two-point function: 

1 

-ip- mo + kE(p) 

Its value is: 

1 [2 1 l m1 =-2mo y+ln 21 +;s 

The free energy density satisfies: 

:F=- N -1m2. 
4,.-

Finally the 0(1/N) renormalization group functions in the SM scheme are: 

f3(!) =-N;, 1 !' [1- 2~ + o(~,)] 

-y(f) =au,) 
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(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

~ + 

Fig. 1. Feynman graphs corresponding to the 0(1/N) contribution to E(p). 

There are deep correspondences between the fermionic and the bosonic models. However, 
in order to compare them properly one must keep in mind that Gross-Neveu models actually 
possess a 0 (2N) symmetry. Therefore comparisons should be made only after a rescaling 
N ---t N/2 in the fermionic results. In particular, in Appendix A the U(N/2) Gross-Neveu 
model will appear as the fermionic part of a supersymmetric action whose bosonic component 
is the O(N) sigma model. 

In these classes of models almost all relevant 0(1/N) results can be obtained from the 
study of the two point correlation function of the fundamental excitations. In turn this 
function can be parametrized in terms of a self-energy function E (p), introduced in Eq. (2.7) 
and Eq. (2.17). 

The 0(1/N) Feynman graphs contributing toE (p) have in both classes the same struc
ture, drawn in Fig. 1. The wavy line is the graphical representation of the propagator 
~ (k, mo), defined in Eq. (2.4) and Eq. (2.14), while the solid line is the bare propagator of 
the fundamental fields (bosons and fermions respectively). 

As a consequence we obtain in the O(N) case [llJ: 

J d'k ll.(k) ll.(O) J d'k {} _1 
E,(p)= (2,.-)' (p+k)'+m~ + -2- (2,.-)'ll.(k)am~ll. (k) 

and in the Gross-Neveu case: 

-jd'k ll.(k) ll.(O)Jd'k {}[_1 1] 
E1 (p) = (2,.-)2 ij +i¥ +mo + -2- (2,.-)2 ll.(k) am, ll. (k)- ,.-j ' 

where we made use of the gap equation and 

{j 1 1 
8mo]=mo 

(2.21) 

(2.22) 

These results are unavoidably regularization dependent. As we shall see, it is however 
not too difficult, starting from the first principles of renormalization, to isolate a finite, 
calculable, scheme independent term and separately compute all divergent regularization 
dependent contributions. 
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3. SM regularization and renormalization 

The simplest way of computing 1/N contributions to the self-energy is the SM scheme. 

Since the f:j_ propagators are finite, the Feynman integrals appearing in E1 (p) are one-loop 

integrals of regular functions. They can therefore he regularized by the procedure of subtract

ing explicitly the highest powers of the integration variable appearing in the Taylor expansion 

of the integrand. 
This procedure obviously introduces a dependence on the cutoff value M 2 appearing as 

a lower limit for the integration of the subtraction terms. However, via the gap equation, 

this dependence can be completely eliminated in favor of an explicit dependence on the 

(renormalized) coupling constant, which in turn can be reabsorbed in the renormalization 

group invariant definition of the physical mass and in the wave function renormalization. 

Let 1s exemplify this procedure by considering the O(N) models. In Eq. (2.21) the func

tion f:j_ ( k) is rotationally invariant in momentum space. We can therefore perform the angular 

integration in the two-dimensional momentum plane by applying: 

r" da 1 1 

Jo 27r (p+k)2 +m~ = J(P2+m~+k'l)2-4p2k2 
(3.1) 

By applying Eq. (2.4) and Eq. (3.1) and taking derivatives we obtain from Eq. (2.21) the 

following (non regularized) representation of the self-energy: 

J;,(p) ~ r= dk' [-
1 

( k'\ 1) 2m
2 

] 
}

0 
{ + 1 - - o 

ln{_
1 

J(p2+m~+k2)2 _ 4p2k2 { 4m~+k2 · 
(3.2) 

A regularized version of Eq. (3.2) is obtained by applying the above described procedure: 

reg - r= 2 p2 + 3r% r= ,2 2m5 
J;, (p)- J;, (p)- JM' dk k'ln(k'jm~) + jM' dk v· (3.3) 

It is convenient to introduce the following identities: 

f= 2 l ( 1) f= k' 2m~ 2 ( M' ) 
Jo dkln{+l 1-e -JMld k2ln(k2/m~)=2mo lnlnm~+1'E' 

\-1 

(3.4) 

dk2~ 1= ' 
0 4mg+k2 

- dk 2 mo = In --1= ' M' 
Ml k2 4mg · 

(3.5) 

We can now exploit the scale properties of the dynamical variables and parametrize the 

self-energy by: 

E;eg (p) = mg:El( p',) + (p2 + mg) (lnln M: +IE) + 2mg (In 
4

m2g + ln ln M: +IE) ; 
m 0 m 0 M m 0 

(3.6) 
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where, by introducing the rescaled variables 

p' 
x=~, m, 

k' 
y=~, 

m, \ ~ Jl+ ~ 
we can easily derive from Eq. (3.3) by the use of Eq. (3.4) and Eq. (3.5) the representation: 

E,(x) ~ r= dy __ I_ [ (y -I ~(I )] 
}, '+ 1 v + -- 1 

ln\-1 (1+y-x)'+4x 2 \ 
(3. 7) 

By comparing Eq. (3.6) with Eq. (2.8) it seems natural to rewrite our results in the form of 

a renormalized two-point function: 

p2 +m2 + -km2"E1(p2jm2) 

l+k(ln~f-IE) 
(3.8) 

satisfying the pole condition :E1 ( -1) = 0. 
The analysis of the Gross-Neveu models goes along the same lines. Let's just quote the 

following representation of the non regularized self-energy function: 

( ''k') ·.1. = 1 P -mo-
- =!:!'__ dk2 1 + 

J;, (p)- 4p' 1 On~ V(P' + m~ + k2 ) 2 - 4p2 k 2 

1= [ '-1

1 

1 1 ] 
mo dk2 + 

2 4 
2 , 

+2 o {ln{+l J(p2+m~+k2)2-4p2k2 k + mo 
\-1 

and its regularized counterpart: 

j;;·•(p)~J;,(p)- rdk'~·"· ~'"· "' 
jM' 

- r= dk2 mo 
jM2 2k2 • 

(3.9) 

(3.10) 

It is worth noticing that the term proportional to -iP requires no regularization, i.e. no wave

function renormalization is needed in this scheme to this order of approximation, consistently 

with the results presented in Eq. (2.20)-
By applying the abovementioned identities and Eq. (2.18) we can reformulate our results 

in the form of a renormalized two-point function: 

1 
(3.11) 

-ip- m + -}, [-iPA (p2 /m2 ) + mB (p2 /m2 )] 
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Fig. 2. The 0{1/N) contribution to the self-energy of the O(N) models f: 1 {:ll) (solid line); its asymptotic 

expansion (dashed line). 

where 

and 

1 = 1 [ 1+y-x ] 
A(x)=4.J. dyeinf.1:_1. 1- V(1+y-x)'+4x 

e -1 

B ( ) _ , r= d 1 [ 1 1- e] 
:r: - 2Jo y +~-

o etne+1 V(1+y-•)'+4• 2 e -1 

The pole condition is now reflected in the relationship: 

A(-1)+B(-1)=0. 

One may check that the following identity is satisfied: 

E,(x) +4(xA(x)- B (x)) = 2 (1+ x) B (x). 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Eq. (3.15) finds a natural interpretation in the context of the supersymmetric O(N) models, 
as shown in the Appendix. 

Eqs. {3.7), (3.12) and (3.13) are ready for numerical computation, as well as analytical 
evaluation at special values of the argument [3]. We plot the self-energy functions in Figs. 2, 3 
together with their asymptotic behaviors, that we shall extract in the next section. 
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Fig. 3. The two components ofthe 0(1/N) contribution to the self-energy of the GIOss-Neveu models A(:~:) 

(upper solid line) and B(:~:) (lower solid line); their asymptotic expansions (dashed lines). 

4. Asymptotic Behavior 

On the ground of general field-theoretical arguments we· expect to be able to obtain 
the asymptotic behavior of any Green function :from perturbative considerations only, and to 
express it in terms of such renormalization group invariants as the so called "running coupling 
constant." 

One of our aims is to show that such a perturbative approach does indeed converge to the 
same asymptotic behavior as one may obtain from strictly nonperturbative considerations, 
like those based on the 1/N expansion. Let's therefore first extract the "true" asymptotic 
behavior from the results of the previous sections. 

According to a reasonable definition of asymptopia, and focusing on the O(N) case, we 
shall define to be "asymptotic" that part of the function ~1 {:r:) /:r: that is not depressed by 
powers of 1/:r: in the large :r: limit. We shall however allow for an z: dependence that may be 
formally expressed as a series in the powers of 1/lnz:. 

An analysis of Eq. {3.7) shows that in the asymptotic regime z: --t oo the integral is 
dominated by the region x ~ y :» 1. We can therefore obtain the relationship 

. 1.= dy [ y ] 1= dy X E1 (x) ~ - -1 - -
1 

--x(lnlnx+'YE), 
:l'-+oo 0 lny .J(y-x)2+ 4x , nyy 

( 4.1) 
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where we kept the subleading term 4x under the square root in order to regularize the 

expression in the region y::::::: ::e. Changing integration variables to z = yjx we obtain 

1= dz 
.!:.±:1 (x) ----t lnz+lnx 
X :e-+oo 0 [---r~z~=- 1]- ;= dz 1 

V(z-1)'+4/x , lnz+lnx ;-(lnlnx+?E). 

(4.2) 

By trivial manipulations of Eq. (4.2) we get the expression 

1 · 1= dz [ z l ;= dz 1 -l;,(x) ~ - -1 - ---(lnlnx+?E) 
x :e-+o:> 0 lnx J(z- 1)2+ 4/::e 1 ln::ez 

f= dz In z [ z l ;= dz In z 1 
- } 0 lnz+lnx ln::e J(z- 1)2+

4
/x - 1 

+ 1 lnz+lnx lnx :;· 

(4.3) 

The first two integrations can be performed analytically, and the term 4/z can be safely 

neglected in the third integral. Therefore we conclude that 

1 • 2 ;,= dz In z 
-l;,(x) ~ -(lnlnz+?E)+1---
::e :e-+o:> lnx 0 lnz+lnx lnx [

_z -1] 
1- z 

j = dz In z [ z 1] 
-

1 
lnz+lnx ln:z: z-1 - 1 -:; 

ln 2 z 1 i ' dz i' dz =-(lnlnx+?E)+1-2 +2 - , , 
0 lnz+lnx 0 lnxln x-ln z 1-z 

( 4.4) 

This expression admits an asymptotic expansion in the form 

= k! = (2k)! 
- (lnln x +?E)+ 1- 2 L k+> + 2 L Zk+> ( (2k+l). (4.5) 

k~o(lnx) k~,(lnx) 

The first two terms of Eq. (4.5) were evaluated in [12] and a few more terms can be easily 

deduced from the renormalization group improved expression of the perturbative two point 

function. 
The corresponding computation in the Gross-Neveu model is much simpler and leads to 

1 r= dy [ y- X ] 

A(x):e--=:4x}o rr;y 1- J(y-x)2+4x 

[ 
z -1] 1 

- lz- 11 
~ 'i= dz . --0 j_ - I j_ -

(4.6) 

1 j 1 dz Li(x) 
= 2 Jo lnz+ln:z: ~ 
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The asymptotic behavior of B(x) can easily be obtained from Eq. (3.15). 

In Figs. 2, 3 we have drawn the asymptotic behaviors as dashed lines; the agreement 

of the asymptotic and exact behaviors at rather low values of the variable is as good as one 

might expect. 
This asymptotic analysis is certainly worth some comment. We must observe that, 

whilst the results are perfectly calculable functions (in the Gross-Neveu case even a known 

special function), they are certainly not expressible on terms of Borel-summable series in the 

running coupling constant fR'"" 1/ln x. This indicates that Borel summability is by no means 

a necessary (or even desirable) feature of the perturbative series: actually the existence of a 

Borel ambiguity is strictly related to the very possibility of occurrence of the phenomenon of 

dynamical mass generation. 

5. Dimensional regularization in the 1/N expansion: the O(N) models 

In order to compare the results presented in the previous sections with standard per

turbation theory, it is certainly convenient to assume the dimensional regularization scheme, 

which will not only allow for a number of extremely useful computation tricks, but also set 

the stage for an analysis of critical behaviors for real d (#- 2) which we shall develop at the 

end of our work. 
In order to generate the perturbative series keeping only 0(1/N) contributions in the 

limit mo -----) 0 without any formal trouble generated by the bad infrared behavior of the 

individual Feynman diagrams, we found it convenient to start from our Eq. (2.21) and modify 

it by adding the quantity 

J d'k t:.(p) =0, 
{3t:.(p)- (2.,..)' (p+ k)' + mi 

vanishing because of the gap equation. As a consequence, 

l;,(p)=f3t:.(p)+j d'k [t:.(k)-t:.(p) + t:.(O) t:.(k) _ii_t:.-'(k)l, 
(2")' (p+k)'+mi 2 Bmi 

and in the limit m 0 -----) 0 

where 

In the same limit 

k' 
t:.(k)~t:.,(k)= 0 , < "" 

' J d'p [ 1 k' 1 1 l 
Ao(k)=, (2.,..)' J;'(p+k)'_P'_(p+k)'. 

t:.(O) _ii_t:.-' (k) = -~t:.-> (k) 
. -2- am~ ap 
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Therefore 

E1 (p) ~ E10 (p) ~ J d'k ~o (k+p)- ~o (p)- ~0 (k) 
m,-o (2.-)' k' + /3~o (p) . (5.5) 

This representation is completely general and free of infrared divergences. Even more impor
tant, one may check that its expansion in powers of 1//3 reproduces the 0(1/N) diagrams 
appearing in the standard perturbative series. 

Let's however consider dimensional regularization: then by definition the second and 
third term in the integral vanish and we obtain 

J d'k ~0 (k) 
E10 (p,/3,d) ~ (

2
.-), (p+k)' +i3~o(p), (5.6) 

where now 

J 
ddp k2 

A0 (k,d)~~ (2.-)'p'(p+k)' 
k' 

= -Sd, 
e 

r(2- id) r(H r(id) 1 
sd =2 1 - -, (4.-J" r(d-I) 2.-

(5.7) 
and d = 2 + e. To simplify notation, and with no loss of generality, 
subtraction scale J.L of dimensional regularization to be equal to 1. 

we have chosen the 

In order to make correspondence with standard weak coupling perturbation theory [8,13] 
it is convenient to introduce the (bare) coupling F::::: NT::::: Sd//3 and represent the 0(1/N) 
two point function in the form 

G(p,F)S! F [!-I E10(p,F)l 
P2 N p2 I 

(5.8) 

where 
E10 (p,F) I I J d'k k2 F 
--"~__c- + 

p2 -I+Fp'fe S, (2.-)' p'(p+k)'I+Fk'fe· 
(5.9) 

We can now proceed to an explicit evaluation of the integral by series expansion: 

E1o(p,F) ~I+ f:(-!)"(!!:)"p'" [~--=--] d'k k
2

(p')_
1
_T (k')•(•2-1ll 

P2 •~ 1 e S, (2.-)' (p + k)' 

= (F)" [ n-!1+
1
e(n-l) ~I+ 2> -!)" - p'" 1- -- : (5.10) 

n=l e n I+ze(n+l) 

r(I-~en)r(I+~en) r(I+e) l 
x r(1- ie(n-1)) r(1 + ~e(n+1)) r(1- ie) r(1 +~e) 
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where we have applied standard results of integration in d-dimensional space. Eq. (5.10) can 
be substituted into Eq. (5.8) to obtain 

N-1 [ I =(-!)"(F)" l G(p,F)~ Np2 F 1-N~-n- ~ p~nD(e,n) , (5.11) 

where 

1 + Oe(n -I) 
D(e,n)~n-(n-1) : C(e,n), 

1+ 2e(n+l) 

r(1- ~en) r(1 +~en) 
C(e,n)~ ( ) ( ) r 1- ie(n-1) r I+ ie(n+l) 

r(I +e) (5.12) 

r(1-H r(1 + H 
n 2 -1 

"'I+ e3 
--

4
- ( (3) +a (e') , 

and we can easily check that all known perturbative results [13] are correctly reproduced. 
In order to renormalize this result we recall that 

GR (p,f) ~ z-1G(p, F~Zd), (5.13) 

where f is the renormalized coupling and 

z--1
- a(~) -1-f/e+ N' z1 ~ 1-lf/e +a(~). (5.14) 

Therefore 

N-1 [ I= (-!)"(Zf )" l GR (p,f) ~ Np' (z-1 z,) f I-N~ -n- +p' D (e,n) 

~ ~;,1 t[~-~~(-~)" ( 1 ~1;1,P·)"n(e,n)] [~+a(~)] 
(5.15) 

The next step requires some exchange between series summation and e - 0 limit, and 
we shall only consider it as heuristic; later on we shall offer a more rigorous derivation. Let's 
therefore consider that Eq. (5.15) is a power series in the powers of 

-fp'fe p' [I l 
1-//e ~ 1-e//;:::; l+e y+lnp +a(e

2
) ~I+eln::, +a(e'), (5.16) 

while the coefficients of the series are polynomials inn and e, and the minimum degree in e 
associated with degree k in n is k + 1. However the power series enjoy the property 

= k' ( I ) 
'""nkxn = . k+l + O ~(I )' f;:;, (!-x) -x 

(5.17) 
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and therefore performing separate summations over the different powers of n appearing in 

the coefficients we obtain the minimum degree in e associated with each summation from 

ek+1 2..: nk 1 + eln _E_ ----t ' -I k+l + 0 (e). = ( )" k'( )k+1 

n~o mo (lnp/mo) 
(5.18) 

Hence in the e --+ 0 limit the only surviving contributions are these generated by the leading 

terms in the coefficients proportional to ek+ 1nk. Expanding the coefficients in en and keeping 

only the leading terms we obtain 

( 
, ) 1 1 (1-e"l'E) 

D(e,n)~n-(n-1) 1- 1 +~en 1 +}e1f>(1-~en) 1+~e1f>(1+~en) 

"'1 +en[-\-+ ~1>(1-}en) + }V>(l+~en) +"l'E] 
1 + 2en 

[
= k = 2k l ~1+cn ~(-}en) -~(-}en) ((2k+1). 

(5.19) 
Substituting in Eq. (5.15) we therefore find 

N - 1 { I [ p
2 = k! 

GR(p,f)~--, f 1+-N lnln----,.+22:: ""' 
Np mo k=O (lnp2 /m~) 

= (2k)!((2k+l) f l} [ (I)] -2~(lnp'/m!)"+1 +ln2(1-//e) 1+0 N ' 
(5.20) 

which fixes wavefunction renormalization in this scheme to be 

-1 1 ( !) Z Zt = 1 + N In 1 - -;; , (5.21) 

while the asymptotic behavior found in the SM scheme is reproduced exactly. 
We would like to call this procedure "nonperturbative renormalization." Due to our 

manipulations we do not expect it to be fully equivalent to standard MS renormalization; it 

must however reproduce the same renormalization group invariant asymptotic behavior, as 

it actually seems to do. To be fully convinced, we must however find a way of performing 
"perturbative renormalization." This is not actually too difficult to achieve [14]. 

Let's go back to Eq. (5.9) and notice that, when expressed in terms of the renormalized 
coupling, the self-energy takes the form 

E10 (p,f) ( /) 1 1 J d'k k' f 
p2 ~ 1

-",;" !+f(p'-1)+S, (2,-)'(p+k)2 p2 !+f(k'-1). 
(5.22) 
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This expression can be represented in terms of a double summation 

E" (p, f) 
P' 

~ [;, (1- f) (f)" f;, Hr (:)p•m 

+f(!.)"~(-1)m(n-1)!_J_<i"k_ k'k'm 
n=l e ==0 m sd (27t)d -. - ,') 

~ 1 + f (f)" f: ~(-l)m (:)p'm 
n=l tn=O 

_ ~(!.)"~(- 1)m(n-l)p'mm-11+ e(m-1)C(e,m) 
~ e ~ m-1 m I+ e(m+l) 

~1+"'~ _ "'(-l)m(n)p'mD(e,m)-2::- - -;ec(e,O), = (/)" n = 1 (/)" 1 
1 

~ n e ~ m n e 1 + -e 
n=l ==0 n=l 2 

(5.23) 
where 

r(1+e) __ . 
C(e,O) = rs(1 +~e) r(1- ~e) 

It is important to notice that the summation on n is just a formal representation of the 

perturbative series in powers off, while the summation on m is, order by order in m, a finite 

sum corresponding to an n-th order Feynman diagram and its perturbative counterterms. 

We can therefore proceed to conventional MS renormalization by first performing the 
finite summations on m and disregarding all contributions vanishing in the limit e --+ 0. Let's 

keep in mind the expansion {5.19) and let's observe that, thanks to the relationships 

f: (-1)m (:) m' ~ Okn ( -1)" n! 
tn=O 

fork s; n, (5.24) 

we can easily prove that 

lim__!__ f: (-l)m (")p'm(em)' ~(-d-)' (-lnp)" 
e-->0 en m=O m dlnp 

(5.25) 

and 

lim f ~ (!.)" f: (-l)m ( n) p'm (em)'~ (-1)' (k -1)!'. 
e----->0 n=l n e m=O m {lnp/mo) 

(5.26) 

As a consequence we obtaln 

EIO(p,f) ~1-lnlnJ>'_-2~ k! -2~ (2k)!((2k+l) 
P" m" D (l '/ ')k+t L.J (l '/ ')a+t o k=O np mo k=l np mo 

f 1- ~e ( !) -In -
2 

+ <1--:- C(e,O)In 1-- (>, 
1 + 2 e e 

(5.27) 
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where we adopted the notation <l ¢ (e) t> to indicate the pole part of a Laurent expandable 
function ¢(e). Again we get the same asymptotic -behavior of the renormalized Green's 
functions as in the SM scheme and in our nonperturbative renormalization approach. 

Wavefunction renormalization in the MS scheme is then easily found to be 

I 1- !e ( f) z-t Z1 = 1 +- <l~-:- G(e,O)ln 1-- t>. 
N 1 + 2e e 

(5.28) 

Eq. (5.28) has far~ reaching consequences. It is a closed form evaluation of the first subleading 
(in 1/N) contribution to the renormalization function z-l Zt in the context of standard 
perturbation theory and the MS subtraction scheme. It also offers the possibility of throwing 
some light on the relationship with nonperturbative renormalizations: indeed if we take the 
limit e --t 0 only after the resummation we find that 

f I- !e ( /) [2 ( /)] ln-+~-2-C(e,O)ln 1-- ---tln- 1--
2 1 + ~e e ~----.o f e ~-1n~~~' (5.29) 

a result consistent with Eq. (5.21) and with [1,2]. 
Finally we can exploit the special properties of the MS scheme to extract some informa

tions on the renormalization group functions of the model. Let's introduce the expansions 

where 

,8(!) ~,So (f)+ ~,81 (f)+ o(~,) ef 
7i 

l+/ 0/1nZ1 

I ( I ) 81n Z 
7 (f) ~ 7o (f) + y.pdf) + 0 N' ~ ,8 (f) &/ ' 

,ilo (f)~ ef- / 2
, 

7o(f) ~f. 

For any function ¢ analytic in a neighborhood of 0 one can show that 

u-eJ :1 <l~(eJ1n(I-DC>~~uJ. 
By use of Eq. (5.31) we can easily prove that 

I [ ,81 (f)] 8 ( -1) I [ 1- V l N 71(!)+-
1
- ~,B,(f) 81 1n ZZ1 ~N! I+~!C(f,o). 

(5.30) 

(5.31) 

(5.32) 

As a consequence we can compute the 0(1/N) contribution to the critical index 11· Indeed 
from the condition {3 (/c.)= 0 we find 

fo "< e +_I_ ,B,(e), 
N e 
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(5.33) 

and from 

~ ~ -e +7(fo) "< -e + fo + ~7,(e) 
we obtain 

I [,il,(e) l I I- ~e 
~ "< -N -- +71 (e) ~ -N e ~-1-C(e,O). e 1 + 2e 

(5.34) 

Eq. (5.34) is a known result (15]. However to the best of our knowledge this is the first 
derivation of the leading (in 1/N) contribution to 11 obtained within standard perturbation 
theory, and therefore showing that weak coupling and 1/N expansion commute to second 
nontrivial order in 1 f N and to all orders in f. 

6. Dimensional regularization in the 1/N expansion: the Gross-Neveu models 

We may repeat this discussion in the case of the Gress-Neveu models, where some 
computational simplification occurs. The mo --t 0 limit of the two point function is already 
manifestly infrared convergent 

J ddk I 
E10 (p) ~ (2rr)d Ll<o (k) ip + i~' 

where 

I 
Ll<0 (k) ~ -'... + A

0 
(k)' 

Ng 

d 1 1 k" J d q _ ~ 2Sd , Ao(k)~h (2rr)d i~+iqiq e 

in dimensional regularization. After the definition F = 2SdN g one obtains 

1 J ~k I F . Eo(p,F)~2Sd (2rr)dip+i~'. m .• >. 

Evaluating the integral by series expansion one obtains 

- ip = (-1)" (F'.)" '"e n -I C(e,n) . 
E10 (p, F) - 4 I: n e p ( ) I + ~e ( n + I) 

n=O 

Nonperturbative renormalization is obtained by the replacement 

f 
F~ 1-f/e' 

leading via the already discussed manipulations to 

ip (m~) ·(P') E10 (/,p) = -2 p2 L1 m~ , 
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(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 



exactly as in the SM scheme. 
Perturbative renormalization in turn is obtained starting from 

1 J ddk 1 f 
~10 (p,f) = 28• (2~)• ip+i¥ 1+ f(k' -1) 

=~~.!.(£)"t(-l)m(")p'm '\m-1) C(£,m) 
4 Ln e m 1+ 2e(m+1) 

n=l m=l 

= ~ ~ .!_ (£)" ~ (-l)m (")p'm '\m-l) C(£,m) 
4 Ln e L m 1+ 2e(m+1) 

n=l m=O 

(6.6) 

+ '__"'- - --, C(,,O). ., = 1 (!)" ' 
4 ~ n e 1 + 2e 

Therefore in the MS scheme, removing all terms vanishing in the e --t 0 limit, we are left with 

·.; = 1 (!)" n (") £m tp _ _ _ 1 m p'm __ 
I; to (p, f) --> 4 L n e L ( ) m 1 + ~em 

n=l m:=O 

--<!-- C(£,0)ln 1-- t> ip ' ( 1) 
4 1 + ~e e 

(6.7) 

ip(ml) ·(P2
) ip ' ( 1) -->--- Lt z --<1--1 C(e,O)ln 1-- t>. 

2 p2 m 0 4 1 + 2e e 

It is obvious that the last term would vanish if we interchanged summation on n and e --t 0 
limit. From Eq. (6.7) we can extract the wavefunction renormalization factor 

Z=l--<1---C(,,O)ln 1-- t>+O-1 ' 1 ( 1) ( 1 ) 
N 4I+~e e N2 

(6.8) 

and the anomalous dimension of the fermionic field 

1 /
2 

_
1 .C(f,O). 

-r= N 41+~! (6.9) 

In turn Eq. (6.9) can be used to derive the critical exponent 

- 1 ,, 1 ( 1 ) 
~ = '(!,) = N 4 1+ ~' c(,, 0) + 0 N2 ' (6.10) 

confirming the results of Refs. [5] and [16]. 
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Appendix A. The supersymmetric O(N) models 

The extension of the formalism developed in the present work to the supersymmetric 
O(N) models requires no major effort. The action of the models [2] is 

N J 2 [, , - , (- ) 2] s = 2~/ d X 2 aeS;/JeSi + 2.;,,,.;,,- • .;,,.;,, (A. I) 

and the fields are submitted to the constraints 

sisi = 1, Si'tfi = 0, 1/Ji = 1/Ji- (A.2) 

The purely bosonic part of the model is just O(N) sigma model while the purely fermionic 
one reduces to U (N /2) Gross-Neveu model. 

Introducing a supermultiplet of Lagrange multipliers (a, u, u) and integrating over the 
original fields we obtain the 1/N expandable effective action 

S,ff (a)= 1!._2 {Tr ln [-0 + ia)- Trln [,- u] + Tr ln [1- -
1
-. u ,..2--- u]} 

-O+ta 'f-u 

N [ 2 • ] +-u-ta. 
4"! 

The gap equation takes the form 

1 J d2
p 1 J d2

p 
2"/ = (2.,.)2 p2 +i(a)0 = (2~) 2 p2+(u):' 

implying i (a} 0 = {u)~ = m~, while {u} 0 = 0; in the SM scheme 

1 1 M 2 

y=2lnm~· 

(A.3) 

(A.4) 

(A.5) 

The propagators of the Lagrange multiplier fields can be easily computed; they are related to 
the corresponding quantities in the bosonic and fermionic models and, with obvious notation, 
they can be shown to satisfy the following (d-independent) identities: 

/;. 0 (k) = (i¥- 2mo) !;., (k) = (k' + 4m~) !;.. (k), (A.6a) 

• _, (k2 2) , j d•q 1 1 1 e + 1 ( ) 
u. = +4m0 2 (

2 
)d - 2--2 2 ~ -On-,-. A.6b 

1r q + m 0 (q + k) + m~ d-+2 41r ., -1 

It is certainly worth observing that Eq. (A.6a) not depending on d means that supersymmetry 
is not broken by dimensional regularization, at least to 0(1/N). One may immediately apply 
Eq. (A.6a) to the calculation of the free energy Fin the 1/N expansion. It is very easy to 
show that, consistently with supersymmetry, F = 0, due to the cancellation between bosonic 
and fermionic one-loop contributions. 
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The 1/ N corrections to the propagators of the fundamental fields can be computed 
along the lines adopted in the previous sections. The diagrammatic representation of the 
contributions is the same as in Fig. 1, but we must remember that the wavy line may now 
represent also the exchange of the fermionic Lagrange multiplier. Without belaboring on the 
evaluation of the individual diagrams, we can collect all results and write down the scalar 
and fermion self-energy contributions: 

~a!-. ' ' J ddk ~.(k) ' J ddk 1 
Et(p) ~ (p +m,) (21r)d (p+k)'+mi 4mo~u(O) (21r)d,. • " 

fermion . J ddk Ll<T (k) 2 J ddk 1 
Et(p) ~ -(ijl+mo) (21r)d (p+k)' +m~ +2m0~.(0) (21r)d ,_, , , 2 • 

(A.1) 

Therefore the scalar and fermion propagators are renormalized by the same mass and wave
function renormalization; in particular in the MS scheme one obtains the following renormal
ized Green's functions: 

where 

scalM 1+k(ln~/-')'E) ___ 1_' 
GR(p,f)~ 1 +j,.2B(J>'/m') p2 +m' 

fermion 1 + b (m ~~- iE) __ 1_ 
GR(p,f)~ l+fr2B(J>'fm') --i1-m' 

m~mo[1-Hy-ln4)]· 

(A.8) 

(A.9) 

Again one immediately verifies from Eq. (A.7) that supersymmetry is unbroken to this order 
by dimensional regularization. In such schemes as SM and MS one obtains 

l'u>~-N;2 t' [l+aU,)J· (A.10a) 

Moreover in the SM scheme one gets 

?(f)~ N; 1 f [1+ au,) l· (A.10b) 

It is interesting to notice that in the light of these results, after proper rescalings, the identity 
(3.15) reflects in a very pictorial way the amalgam nature of the supersymmetric O(N) 
models. 

Finally let's comment about asymptotic behavior and MS renormalization. From 
Eq. (3.15) one gets 

lim 2B(•) ~lim i:t(•) +4A(•) ~ -(lnln• +7E)+1+2f: (2k];+, ((2k+l). (A.ll) 
:r:--->oo :r:-...oo :r: k=l (ln :r:) 
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In dimensional regularization one may show that 

lim j ddk ~.(k) _ Sd ~ (k) + j ddk ~.o (k) 
mo-o (21r)d(p+k)'+mi-F uo (21r)d(p+k)'' 

F 
SdLl"'o(k)=~, m, 1 _, 

(A.12) 

and, after by now standard manipulations, one may get the following representation of the 
above expression: . 

1+~(-1)"(Ur[1-n: 1 c(<,n)], (A.13) 

leading to the asymptotic behavior (A.ll). By applying perturbative renormalization we may 
also extract the relationship 

z-t Z1 ~ 1+ ~ <IC(o,O)ln (1- ?)!>+au,), (A.14) 

implying 

= 1 ~- NoC(e,O), (A.15) 

in agreement with [17]. 

22 



References 

1. C. Rim and W.l. Weisberger, Phys. Rev. Lett. 53 (1984) 965; 
Phy,. Rev. D30 (1984) 1763. 

2. A. C. Davis, J.A. Gracey, A.J. Macfarlane and M.G. Mitchard, 
Nucl. Phy,. B314 (1989) 439. 

3. P. Biscari, M. Campostrini and P. Rossi, Phys. Lett. 242B (1990) 225. 

4. A.N. Vasil'ev, Yu.M. Pis'mak and Yu.R. Honkonen, 
Them. Math. Phy,. 46 (1981) (157); 47 (1981) 291; 50 (1982) 195. 

5. J.A. Gracey, Int. Journ. Mod. Phys. A6 (1991) 395. 

6. S. Hikami and E. Brezin, J. Phys. A: Math. Gen. 11 (1978) 1141. 

7. A.M. Polyakov, Phys. Lett. 59B {1975) 79;. 

8. E. Brezin and J. Zion-Justin, Phys. Rev. Lett. 36 (1975) 691; 
E. Brezin, J. Zion-Justin and J.C. Le Guillou, Phys. Rev. Dl4 (1976) 2615. 

9. D. J, Gross and A. Neveu, Phys. Rev. D10 {1974) 3235. 

10. H. Flyvbjerg, Phy,. Lett. 245B (1990) 533. 

11. V.F. Muller, T. Raddatz and W. Riihl, Nucl. Phy,. B251 [FS 13] (1985) 212; 
Nucl. Phy,. B259 (1985) 745 (E); 
G. Cristofano, R. Musto, F. Nicodemi, R. Pettorino and F. Pezzella, 
Nucl. Phy,. B257 [FS 14] (1985) 505. 

12. J. Orloff and R. Brout, Nucl. Phy,. B270 [FS16] (1986) 273. 

13. D.J. Amit and G.B. Kotli.,, Nucl. Phy,. B170 [FS 1](1980)187. 

14. G. Paffuti and P. Rossi, Phys. Lett. 234B (1990) 85. 

15. R. Abe and S. Hikami, Prog. Theor, Phys. 49 {1973) 442; 
E. Brezin and O.J. Wallace, Phys. Rev. B7 (1973) 1967; 
S.K. Ma, Phy,. Rev. A 7 (1973) 2172. 

16. S. Hikami and T. Muta, Prog. Theor. Phys. 57 (1977) 785. 

17. J.A. Gracey, J. Phys. A: Math. Gen. 23 (1990) 2183. 

23 


