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ABSTRACT 

We compute the O(l/N2 ) correction to the topological susceptibility 

Xt of the two-dimensional continuum CPN - 1 models. We define a measur

able, 1/N expandable correlation length~ and evaluate the dimensionless 

ratio xte ~ 1/ (21rN) (1- 0.38/N). We also compute the second moment 

of the topological susceptibility. 

PACS No. 11.10 St, 11.15 Pg 

1. Introduction 

Two dimensional cpN-l models [1,2] ca.n play an important rOle as a theoretical lab
oratory for the test of analytical and numerical methods in confining, asymptotically free 
quantum field theories. A pleasant feature of these models is the possibility of performing a 
systematic 1/N expansion around the large N saddle point solution. 

A systematic presentation of the results obtained by computing the first nonleading 
order of the 1/N expansion was given in Ref. [3]. In this letter we add an important piece 
of calculation by evaluating the O(I/N2 ) correction to- the topological susceptibility of the 
cpN-l models. At the same time we briefly review some of our previous results explicitly 
extracting those predictions that are independent of the renormalization and regularization 
scheme and can therefore be directly tested· by numerical simulations on the lattice. 

2. The 1/N expansion of the cpN-l models 

The bare continuum lagrangian of the two-dimensional cpN-1 models is [1,2] 

NJ'-S= 
21 

d zDIJ.zDIJ.z, (2.1) 

where z is anN-component complex vector field subject to the constraint Zz = 1 and a 
covariant derivative D~'- = {j~'- + iA~'- has been defined in terms of the composite gauge fields 

A}J- = Ii {:z 81'-z - a}J-z z}. (2.2) 

The 1/N expansion of the generating functional is obtained by introducing Lagrange 
multiplier fields and integrating over the vector fields z. The resulting effective action is 

S,, (a,.\,) = NTrln { -8,8, - i{8,, .\,} + m~ + ia,} + ~ j d'x { -ia, + .\,.\,}. (2.3) 

-im~ is the large N vacuum expectation value of the a field; it is determined as a function 
of f from the saddle point condition 

as •• I = Nj d'p __ 1 __ N _ 0 
Oa a=O - (27r)2 p2 } m~ 2f - ' 

(2.4) 

leading in the sharp-momentum (SM) cutoff regularization scheme [4] to the relationship 

1r 1 M 2 

t=zlnm~· (2.5) 

The propagators of the Lagrange multiplier fields are obtained by taking the second 
derivatives of the effective action at the saddle point: 

J d'q 1 1 
~(a\ = (211' )2 ql + m~ (p + q)2 + m~ 

_1_Jn €+1 
27rp2 ~ ~-1' 

(2.6) 
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J d
2 q 1 J d2 q (p, + 2q,)(p. + 2q.) 

~~:>-
1

=26i<., (211")2 q2+m~- (2·n")l [q2+m~J((p+q)2 +m~J 
(2.7) 

~ (o "- P•P•) 2.. (on'+ 1-2) = (o,.- P•;·) tl(,\. 
i< p2 271" €-1 p 

where e = ..j1 + 4mVp2 • The appearance of a massless pole in the vector propagator (2.7) 
leads to the systematic appearance of infrared divergencies in all expectation values of op
erators that are not gauge-invariant. However these divergencies cancel when one computes 
gauge-invariant expectation values. The Feynman rules of the 1/N expansion are drawn in 
Fig. 1. 

In order to compute higher order corrections to large N expectation values one also 
needs to evaluate the effective vertices (which are nothing but one-loop integrals over the 
z field propagators). For oux purposes we shall introduce the vertices shown in Fig. 2 and 
corresponding to the following expressions: 

J d'q 1 1 1 . 
V,(p,k)~ (2,-)' q'+mi (p+q)'+mi (k+q)'+mi' 

(2.8) 

J d'q (2q, + k,) (2q. + p.) 
v;,.(p,k) ~ (2,-)' [q' +mil [(p+q)' +mi] [(k+q) 2 +mi] 

(2.9) 

(•) -J d'q 1 1 __ 1 ---
v, (p,k)- (2,-)' [q' +mil' (p+q) 2 + mi (k+q)' + mi ' (2.10a) 

(b) ·; d
2
q 1 1 1 1 . 

V:. (p,k)~ (2,-)2 q2 +mi (p+q)'+mi (k+q) 2 +mi (p+k+q)'+mi' 
(2.10b) 

( ) J d'q 1 (2q, + k,)(2q. + k.) 
v.~ (p,k) ~ (2,-)' [q' +mil' [(p+q)' +mi] [(k+q) 2 +mi] 

(2.11a) 

(b) J d2 q 1 2q, + k, 1 2q. + 2p. + k • . 
V,. (p, k) ~ (2,-) 2 q2 + mi (k+q)' + mi (p+q) 2 + mi (p+k+q)' + mi' (2.1lb) 

v(•J ( k)-j d'q (2q,+k,)(2q.+k.)(2qp+pp)(2q.+p.); 
""·P• p, - (2,-)' [q2 +mil' [(p+q) 2 +mi] [(k+q) 2 +mi] 

(2.12a) 

V(b) k) _ J d2 q (2q, + 2p, + k,)(2q. + k. )(2qp + pp)(2q, + 2k. + p.) 

""·P•(p, - (2,-)' [q2 +mil [(k+q) 2 +mi] [(p+q) 2 +mi] [(p+k+q)' +mi] 
(2.12b) 

Some of these quantities have been explicitly computed in Ref. [3], 8.nd we refer the interested 
reader to it for the resulting (rather cumbersome) expressions. Suffice to say that all vertices 
can be analytically computed in terms of elementary functions and that all physically relevant 
(gauge-invariant) combinations can be expressed in terms of the scalar vertices (2.8), (2.10). 
We shall later come back to this point. 
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3. Renormalization group invariant quantities 

From a conceptual and computational point of view, most interesting are those quantities 
Q; that, besides being gauge-invariant, are also solutions of the homogeneous renormalization 
group equation 

[M 8~ +(3(!) :! l Q; ~ 0, (3.1) 

where the renormalization group P-function has been computed to 0(1/ N) within the SM 
renormalization scheme in Ref. [3] and it turns out to be 

!'{ 1/( 3 )} (~') (3(!)~-- 1+-- I+-- +0 - . ,- N 2,- 1- f!,- N' 
(3.2) 

All solutions of Eq. (3.1) can be expressed in the general form 

Q; ~ C,(N) [m' (M'.J)t;, (3.3) 

where .O.i is the dimension of Qi in units of square mass, C, "is a purely numerical coefficient 

and [ ;/ df' l 
m 2 ~ M 2 exp -2 f3 (!') (3.4) 

Eq. (3.2) immediately implies that 

m2 ~ M2 exp en {1+ ~[my +3ln (7 -1) l +0 (;,)} 

~ m~ { 1 + ~ [lnln::, + 3ln (In::, -1) l + 0 u,)} • 
where we made use of the mass-gap equation (2.5). 

(3.5) 

We now want to define a physical correlation length €. However it has been shown 
in Ref. [3] that the natural definition €, related to the large distance exponential decay of 
correlation functions, leads to a coefficient Cy(N) which is a nonanalytic function of 1/N 
around N = oo, a quite unpleasant behavior from a computational point of view. 

We therefore take the following alternative defi~tion: 

j d2 x ~x' (TeP (x) P (0)) 
('-L-_------ J d2 x(TrP(x)P(O)) 

(3.6) 

where Pij ( x) = Zi ( :z:) Zj ( 2:) is a local gauge-invariant composite operator. To justify our 
choice, let's notice that for large N Eq. (3.6) implies ~ = .j2/3 ~. while for N = 2 (0(3) 
nonlinear (7" model) the agreement between the two definitions is within 1%. ~and e never 
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disagree more thao 20%, and a study of the nonanaiytic behavior of the true mass gap shows 
that the agreement improves fast with decreasing N. 

In order to compute e in the 1/N expansion, we only remind from Ref. [3] that the 
following relationship holds: 

(T,P (•) P (D)) = ~: (N' -1) ( N fl(:l +C•ica)) , (3.7) 

where LlT(a) is the sum of the "tadpole" contributions to the full inverse propagator of the 

quantum field a. 
Finally we want to define the renormalization group invariant topological susceptibility 

X,= fd'x(q(x)q(O)), 

where 
i -- 1 

q(:z:) = -eSJ..,DSJ.zD.,z = -e..,v81'Av. 
27r 271" 

From Eq.s. (3.8) and (3.9) one can easily show that 

1 ' -X, = lim --, p ll(>.) (p), 
p~-o (271") 

where &v,) (p) (OILv- p"'p.,jp2
) is the full inverse propagator of the quantum field >.w 

In the l"'ge N limit, Eq. (2.7) trivially implie' [5J 

3 ' ( 1 ) Xt~7J"Nmo+0 N2 . 

4. 1/N computations of~ and Xt 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

The 0(1/N) contributions to the inverse propagators of the a and >.."' fields are drawn 
in Figs. 3 and 4 respectively; sets of diagrams whose contributions sum up trivially to zero 
by some generalization of Furry's theorem have been removed. 

Let's now write down the 1/N contributions to the Lagrange multiplier field propagators. 
After a few simple manipulations, and keeping in mind that we are only interested in the 
"tadpole" contributions to .6.(a) 1 we obtain 

1 J d'k fl;(~) (p) = -N (2,.)1 fl(a) (k) W (p, k) 

1 ( ) 8 -1 ( J d'k ( ) 1 8 -1 ) 
+ Nll(a) 0 om~ ll(al p) (2,,c)' ll(a) k 2 iJm~ ll(•l (k 

1 J d1
k (>) + N (2,.)' t>.," (k) w," (p, k) 

(4.1) 

+>(a) (0) 0~~ fl(:) (p) j (~:~1 fl(>) (k) ~ 0~~ fl(,.w), 
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(A)-1 1 J d2
p 

6.1"" (k) = N (2,-)'fl(a)(P) w,"(p,k) 

1 ( e (>)-1 ( ) j d'p ( 1 a -1 ( ) 
-N D..( a) 0) &m~ L:!.J<" k (211')2 Ll(a) p) 2 &m5 .6-(a:) p 

1 J d2
p (..\) -N (2,.), t>.,. (p) w,",,.(p,k) 

(4.2) 

1 ( 8 (>) -1 ( ) J d1
p ( ) 1 8 -1 ( ) +N Ll(a) 0) &m5 .6.~" k (211")2 Ll(>.) P 2 &m5 D..( A) P ' 

where we have introduced the following combinations of vertices: 

W(p,k) = v,(•l(p,k) + v,(•l(p,-k) + v,('l(p,k), (4.3) 

w," (p, k) = v~:> (p, k) + v~:> (p, -k) + v~;> (p, k) + 5," 8~, fl(;> (p) , ( 4.4) 

" 
w,"·"' (p, k) =V~:!,. (p, k) + v~:!,. (p, -k) + v~!!,. (p, k) - 25,"5,. 8~, fl(a\ (O) 

" 
5 8 fl(>.)-1() 5 8 ll(>.)-1(k) 

- IL" Bm~ pu p - f'U am~ ;LV (4.5) 

-2V, _, (k,p) V, "" (k, p) fl(a) (p- k) 

-2V, _, (k, -p) V'"" ( k, -p) ll(a) (p + k) . 

These combinations are the same as those appearing in the corresponding four~point elastic 
scattering amplitudes, and possess the crucial property of gauge in variance. One can indeed 
verify that 

k,W,"(p,k)=k"W,"(p,k)=O, (4.6) 

k,W,",,.(p,k) = k"W""·P"(p,k) = W'"•'"(p,k)p, = W'"·'"(p,k)pa = 0. (4.7) 

In two dimensions, Eqs. ( 4.6) and ( 4. 7) lead to a unique parametrization of the vertices ( 4.3) 

and (4.4)' 

w," (p,k) = (5,"- k~;") W1 (p,k), (4.8) 

( ) ( 
k,k") ( PeP•) 

w;L.,,pCT p,k = oiL"'-},;2 Opu-~ W2(p,k). (4.9) 

In turn, using the explicit form of the scalar vertices v3' v4(a.) and vP1' one can show that 

W1 (p,k) =- (k' +4m~) [v,l•l (p,k) + v,l•> (p,-k)] 

- (k' +2p' +4mi) v,('l (p,k) +4[V, (p,k) + v, (p,-k)J 
(4.10) 
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and 

where 

w, (p,k) = (k' + 4mi) (p' + 4mi) [v,l•> (p,k) + v,l•) (p, -kl] 
+ (k' + 2p2 + 4mi) (p2 + 2k2 + 4mi) v1') (p, k) 

-4 (k' + p2 + 4m;) [v, (p,k) + v, (p,-k)J 
p2fc2 

-2--, [~'>(a) (p+ k) z~ +~'>(a) (p- k) z~J, 
(p. k) 

Z± = (k' + p2 ± 4mi) V, (TP,k)- ~'>(:) (p)- ~'>(:> (k). 

Analyticity leads to the following properties, that we explicitly verified: 

lim W,(p,k) = 0, 
,r.3_.0 

lim W2 (p,k) = lim W,(p,k) = 0. 
k 3 -0 p 3 --+0 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Eqs. (4.13) and (4.14), together with gauge invaria.nce, are crucial in making Eqs. (4.1) and 

( 4.2) gauge-independent and free of infrared divergences. Moreover they imply the transver

sality of the vector field propagator and the survival of the massless pole. 
In conclusion, we have the following representation of our results: 

1 J d2
k 1 J d'k ~'>;(~)(p)=-N (2")' ~'>(a)(k)W(p,k)+ N (2")' ~'>t>>(k)WI(p,k) 

-~! d
2k ~'>(a)(k)+k 2 ~'>(>)(k) ~c,-1 () 

N {2rr) 2 fc 2 + 4m~ 8m~ (a) p ' 

( 4.15) 

(>) -1 (k) (o kek•) I'> _ 1 (k) 
.6.1"'" = p.v-~ l(A) I ( 4.16) 

_, 1 J d2
p 1 J d2

p 
I'>I(A) (k) = N (2,-)' ~'>(a) (p) W1 (p, k) - N (2,-)2 ~'>(>) ( k) W, (p, k) 

-~! d
2
p ~'>(a)(P)+J"~'>(>)(P) ~c,-1 (k). 

· N (2·n-)2 p2 + 4m~ 8m~ (.\) 

( 4.17) 

Eqs. ( 4.15) and { 4.17) still require an ultraviolet regularization. 
following (asymptotic) functions: 

Let's first define the 

(0) 2Trk2 

l',(a)(k) = ln(k2 /mi)' 
A (0) 2 
u(A)(k)= " I fl' I ?\ ~ . 

Now, according to the rules of the SM scheme, we obtain: 

4 r d'k 
D.~~ ;eo (p) = L\~(~) (p) + N )Ml (27r)2 

2 r d'k 
- N }M' (2,-)2 

(

c,(O) (k) l'>~~(k)) c,-1 (p) +- -k-,- (a) 

( c,~~}k) +31'>~¥,(k)) mi a!.i ~'>(:)(p), 
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(4.18) 

(4.19) 

1 r d'p 
~'>;(~;o• (k) = ~'>;:(~) (k) + N }M' (2,-) 2 

2 r d'p 
- N }M' (2,-) 2 

(0) )) ]' ( 6~~)(p)- l'>(>)(p (2,-) [~'>(,\(k) 
' P' p 

( l'>~~)(p) 31',~~\(p)) mi ~~'>(,'>Ckl· --,- + p'J 8m
0 p 

(4.20) 

The direct evaluation of the counterterms appearing in Eqs. (4.19) and {4.20) .is somewhat 

cumbersome and required an explicit knowledge of the asymptotic behavior of the scalar 

vertices. However the structure of the counterterms is dictated by the renormalizability of 

the model and might have been predicted on purely theoretical grounds. In particular one 

recognizes the appearance of wavefunction and mass renormalization effects, and may trivially 

check. that mass renormalization is consistent with Eq. (3.5). 
The regulated expressions ( 4.19) and (4.20) are ready for numerical evaluation. Moreover 

Eq. (4.19) can be expanded in powers of p'J and Eq. (4.20) in powers of k'J. The necessary 

ingredients a.re the expansions of v3 (p, k), ~(<L) (p, k), v4(&) (p, k) and ~(a) (p + k) in powers 

of pork; these expansion can easily be obtained by expanding the integrands in Eqs. (2.6), 

(2.8) and (2.10) before performing the q integration. Applying the definitions (3.7) and (3.10) 

we obtain the following results: 

e' = _2, {1- ~ [1n1n M + 3ln (1n M -1) + e1] + o(.2...)} 
6ma N ma mo N'l 

1 [1-~+0U,)l, 6m2 (M',j) e, = 12.265001... 

x, = "~ mi { 1+ ~ [lnln:, + 3ln ( ln:, - 1) +ex l +au,)} 

=,.~m'(M',Jl [1+ "; +oU,)J· 

ex = 11.884913 ... 

(4.21) 

( 4.22) 

(4.23) 

(4.24) 

Out of the two dimensioniul physical quantities e and Xt it is possible to construct a 

dimensionless ratio 

2 1 .[ en l 
R = x~e "'< 2,-N 1 + N , 

eR = -0.380088 ... 

( 4.25) 

(4.26) 

CR can be evaluated without making reference to any specific regularization scheme and it is 

therefore the most directly testable prediction resulting from our analysis. 
In passing we note that it is possible to define another dimensionless physical quantity 

by considering the second moment of the topological susceptibility: 

X~=fd'•i•'(q(x)q(O))=-~ lim Bak' [k'l><>J(k)]. 
(27r) k,-o 
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Expanding Eq. (4.27) in powers of 1/N one obtains 

x' ___ 3_ 2._ _1 . a [ , , ( _, ] ( 1 ) 
'- lO,.N + N' (2,.)' ,~":, 8k' k !>(>) k) t>,(>) (k) + 0 N' . ( 4.28) 

Comparii:tg Eq. {4.28) with Eq. (4.20) one easily recognizes that no regularization is needed, 
since the mass counterterm does not contribute to Eq. (4.28) while the other counterterm 
vanishes in the limit M 2 

- co' and therefore, if present, it can be thought as the signal of a 
removable perturbative tail. Numerical evaluation along the lines of Eq. ( 4.20) leads to 

x•- 3 ex• (1) 
t = -101r N + N 2 + O N 3 ' 

ex = 1.53671... 

5. Conclusions 

(4.29) 

( 4.30) 

The main result of our analysis is Eqs. (4.25) and (4.26). Since the coefficient CR is 
reasonably small, we may expect our predictions to hold up to very small values of N. On 
the other side, we believe the two definitions of the correlation length to agree well for all not 
too large values of N. Therefore Eq. (4.25) is also in some sense an interpolating expression 
for the ratio between the topological susceptibility and the mass gap, which we expect to 
hold within a few percent in a wide range of values of N. 

It will be interesting to compare our results to those of accurate numerical simulations 
in the scaling region. 
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Figure Captions 

Fig. 1. The Feynma.u rules of the models. 

Fig. 2. Three and four-point effective vertices of the models. All momenta are entering 

in the diagrams. 

Fig. 3. Diagrams contributing to .6.;(~) (0(1/N) corrections to the scalar propagator). 

Fig. 4. Diagrams contributing to .6.~..\Jv- 1 
( 0(1/ N) corrections to the vector propagator). 
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Fig. 2 Fig. 3 
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