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Critical limit and anisotropy in the two-point correlation
function of three-dimensional O(N) models
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PACS. 05.70Jk – Critical point phenomena.
PACS. 64.60Fr – Equilibrium properties near critical points, critical exponents.
PACS. 75.10Hk – Classical spin models.

Abstract. – In three-dimensional O(N) models, we investigate the low-momentum behavior
of the two-point Green’s function G(x) in the critical region of the symmetric phase. We
consider physical systems whose criticality is characterized by a rotational-invariant fixed point.
In non-rotational invariant physical systems with O(N)-invariant interactions, the vanishing
of space-anisotropy approaching the rotational-invariant fixed point is described by a critical
exponent ρ, which is universal and is related to the leading irrelevant operator breaking rotational
invariance. At N = ∞ one finds ρ = 2. We show that, for all values of N ≥ 0, ρ ' 2.
Non-Gaussian corrections to the universal low-momentum behavior of G(x) are evaluated, and
found to be very small.

Three-dimensional O(N) models describe many important critical phenomena in nature. We
just mention that the case N = 3 describes the critical properties of ferromagnetic materials.
The case N = 2 is related to the helium superfluid transition. The case N = 1 (i.e. Ising-like
systems) describes liquid-vapor transitions in classical fluids or critical binary fluids. Finally,
the limit N → 0 is related to dilute polymers. The critical behavior of the two-point correlation
functionG(x) of the order parameter is related to the phenomenon of critical scattering observed
in many experiments, e.g., neutron scattering in ferromagnetic materials, light and X-rays in
liquid-gas systems.

We will specifically consider systems with an O(N)-invariant Hamiltonian in the symmetric
phase, i.e. where the O(N) symmetry is unbroken. Furthermore, we will only consider systems
with a rotationally symmetric fixed point. Interesting members of this class are systems defined
on highly symmetric lattices, i.e. Bravais or two-point base lattices with a tetrahedral or larger
discrete rotational symmetry.

In the critical region of the symmetric phase and at low momentum, experiments show that
G(x) is well approximated by a Gaussian behavior, i.e.

G̃(0)

G̃(k)
' 1 +

k2

M2
G

, (1)

where MG is a mass scale defined at zero momentum, i.e. MG ≡ 1/ξG and ξG is the second
moment correlation length.
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Our aim is to estimate the deviations from eq. (1) in the critical region of the symmetric
phase, i.e. for 0 < T/Tc−1� 1, and in the low-momentum regime k2 .M2

G. We focus on two
quite different sources of deviations: i) Non rotationally invariant scaling violations, reflecting
a microscopic anisotropy in the space distribution of the spins (assuming that no anisotropy is
generated by their interaction). This phenomenon may be relevant, for example, in the study
of ferromagnetic materials, where the atoms lie on the sites of a lattice, and anisotropy may
be observed in neutron scattering experiments. In these systems anisotropy vanishes in the
critical limit, and G(x) approaches a rotationally invariant form. ii) Scaling corrections to
eq. (1), depending on the ratio k2/M2

G, and reflecting the non-Gaussian nature of the fixed
point.

Several approaches have been considered in order to study the critical behavior of the
two-point function G(x). In lattice O(N) non-linear σ models, we have calculated the strong-
coupling expansion of G(x) up to 15th order on the cubic lattice and 21st order on the diamond
lattice within the corresponding nearest-neighbor formulations. We have analyzed the first few
non-trivial terms of the 1/N -expansion, ε-expansion and of the g-expansion (i.e. expansion in
the coupling at fixed dimensions d = 3) of the two-point function within the corresponding φ4

formulation of O(N) models.
Anisotropy of G(x), for the class of systems we are considering, vanishes at the rotationally

invariant fixed point, with a behavior governed by a universal critical exponent ρ. Non-
spherical moments (i.e. those which vanish when calculated on spherical functions) of G(x)
are depressed with respect to spherical moments carrying the same naive physical dimensions
by a factor ξ−ρ. From a field-theoretical point of view, anisotropy in space is due to non
rotationally invariant (but O(N) symmetric) irrelevant operators in the effective Hamiltonian,
whose presence depends essentially on the symmetries of the physical system, or of the lattice
formulation. The exponent ρ is related to the critical effective dimension of the leading
irrelevant operator breaking rotational invariance. On cubic-like lattices the leading operator
has canonical dimension d+2. In the large-N limit, where the canonical dimensions determine
the scaling properties, one then finds ρ = 2. We show ρ remains close to its canonical value
for all values of N ≥ 0. We mention that for the two-dimensional Ising model the exact result
ρ = 2 holds.

We will present rather accurate determinations of the scaling corrections to the Gaussian
behavior (1), which substantially improve earlier analyses [1]-[5]. The experimental observation
that scaling corrections to the Gaussian behavior (1) are very small is confirmed.

The technical details of our study will be reported in a separate extended paper. Here we
only describe the general features of our analysis and the main numerical results.

For definiteness let us consider the cubic lattice version of the models. We parametrize the
two-point spin-spin function by a multipole expansion in the form

β−1G̃−1(k,MG) =
∞∑
l=0

g2l(y,MG)Q2l(k), (2)

where y ≡ k2/M2
G, and Q2l(k) are homogeneous functions of momenta of degree 2l which are

invariant under the symmetries of the lattice. Their expressions can be obtained from the
fully symmetric traceless tensors of rank 2l, Tα1...α2l

2l (k), by considering all the cubic-invariant
combinations. Odd rank terms are absent in the expansion (2) because of the parity symmetry.
The first non-trivial function is

Q4(k) =
∑
µ

k4
µ −

3

5

(∑
µ

k2
µ

)2

. (3)

Q4(k) corresponds to the leading irrelevant operator that breaks rotational invariance in the
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low-momentum expansion of the Hamiltonian. In the continuum notation this operator has the
form s(x) ·Q4(∂)s(x), and has canonical dimension five in d = 3.

The scaling limit of eq. (2) corresponds to taking MG → 0 while keeping the ratio k/MG

finite. Hence we can parametrize the low-momentum behavior of G−1(k,MG) in the critical
region by

β−1G̃−1(k,MG) = Z−1ĝ0(y)M
2
G + . . .+ Z4Q4(k/MG)ĝ4(y)M

4
G +O(M6

G), (4)

where we have dropped rotationally invariant O(M4
G) terms which we are not interested in,

and we have introduced the quantities

Z−1 =
g0(0,MG)

M2
G

, Z4 = g4(0,MG), (5)

which, in the limit MG → 0, absorb all non-analytical dependence on MG of the corresponding
terms. The functions ĝ0(y) and ĝ4(y) are universal, i.e. they do not depend on the specific form
of the lattice Hamiltonian. They possess a regular expansion around y = 0:

ĝ0(y) = 1 + y +
∞∑
i=2

ciy
i, (6)

ĝ4(y) = 1 +
∞∑
i=1

diy
i. (7)

In the limit N →∞, the models are strictly Gaussian and therefore all the coefficients ci and
di are zero.

We consider the spherical moments m2j =
∑
x |x|

2jG(x), and the leading non-spherical
moments q4,j =

∑
x |x|

2jQ4(x)G(x) which vanish if G(x) is rotationally invariant. The
critical exponent ρ, describing the vanishing of anisotropy, and the coefficients ci and di of
the low-momentum expansion of ĝ0(y) and ĝ4(y), can be determined by studying appropriate
combinations of the above moments in the critical limit. In the critical region

q4,m

m4+2m
∼

1

ξρ
, (8)

where q2,m and m4+2m have the same naive physical dimensions.
In the case of non-Gaussian fixed points, like those corresponding to the theory at finite N ,

the operator s(x)·Q4(∂)s(x) develops an anomalous dimension σ, which causes a departure from
the Gaussian value of ρ, i.e. ρ = 2+σ, σ may be extracted by evaluating the ratio ZZ4/M

2
G ∼

Mσ
G. In turn this combination is easily estimated by taking the moment ratio q4,0/m2 ∼ Mσ

G.
Strong-coupling estimates of σ have been obtained by analyzing and comparing the available
strong-coupling series of q4,0 and m2 on both cubic and diamond lattices. Universality between
cubic and diamond lattice is substantially verified, although the analysis on the diamond lattice
turns out to be less precise.

The exponent σ can also be estimated by other expansions. We have calculated σ to O(1/N)
in the 1/N -expansion:

σ =
32

21π2N
+ O

(
1

N2

)
, (9)

to O(ε2) in the ε-expansion:

σ =
7

20

(N + 2)

(N + 8)2
ε2 + O(ε3), (10)
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Table I. – For various values of N , we report the estimates of σ obtained by our strong-coupling
analysis, and by the first non-trivial terms in the 1/N expansion, ε-expansion and g-expansion. The
errors diplayed in the strong-coupling estimates are a rough estimate of the uncertainty, which takes
into account all the analyses we have performed.

N s.c. 1/N-expansion ε-expansion g-expansion

0 0.00(1) 0.011 0.014
1 0.01(1) 0.013 0.017
2 0.02(1) 0.014 0.018
3 0.03(2) 0.051 0.014 0.018
4 0.03(2) 0.038 0.015 0.018
8 0.02(1) 0.019 0.014 0.015

16 0.009(3) 0.0096 0.011 0.010
32 0.004(2) 0.0048 0.007 0.006

and to O(g3) in the g-expansion:

σ = ḡ2 5408

25515

(N + 2)

(N + 8)2
(1 + ḡ × 0.0450) + O(ḡ4), (11)

where ḡ is the rescaled coupling: ḡ = g(N + 8)/48π. In order to get a reliable quantitative
estimate from the perturbative g-expansion, one should perform a resummation of the series
and then evaluate it at the fixed point value of the coupling ḡ∗. However, one may obtain an
indicative estimate of σ by evaluating the available series (11) at ḡ∗. Estimates of ḡ∗ by various
approaches can be found in the literature (see, for example, ref. [6]).

Our results are summarized in table I, where we show results from the strong-coupling
analysis and from eqs. (9), (10) and (11) for the physically interesting values of N . We consider
also large values of N in order to verify the large-N behavior (9). The errors diplayed in the
strong-coupling estimates should give an idea of the spread of the results from the various
Padé-type and integral approximants we considered in our analysis. The global comparison is
satisfactory. For O(N) models, the values of σ are very small in the whole range N ≥ 0, thus
indicating an essentially Gaussian behavior of this critical exponent.

We have studied the non-Gaussian corrections to ĝ0(y) in the low-momentum regime, and
those of ĝ4(y), by calculations to O(1/N) in the 1/N -expansion, O(ε3) in the ε-expansion,
O(g4) in the g-expansion, and by the analysis of the strong-coupling expansion of G(x).

In table II we report our strong-coupling estimates for c2, c3 and d1 on both cubic and
diamond lattice, obtained by evaluating at βc appropriate approximants (such as Padé and
first-order integral approximants) of the strong-coupling series of corresponding estimators.
One may notice that universality between cubic and diamond lattice is always confirmed. The
good precision of our strong-coupling estimates has been achieved essentially for two reasons:
long series are available, and, even more important, improved estimators have been employed.
We indeed took special care in the choice of estimators for the physical quantities ci and di.
This is very important from a practical point view: better estimators can greatly improve the
stability of the extrapolation to the critical point. Our search for optimal estimators was guided
by the knowledge of the large-N limit. We chose estimators which are perfect for N = ∞,
i.e. do not present off-critical corrections to their critical value ci = di = 0 in the symmetric
phase.

Estimates from the g-expansion and ε-expansion, which are reported in table II, have been
obtained by tentative resummations of the available series based on the method outlined
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Table II. – Estimates of the coefficients c2, c3 and d1 for N = 0, 1, 2, 3, as obtained by the anal-
ysis of the strong-coupling expansion of G(x) on the cubic and diamond lattice, and from tentative
resummations of the available terms of the g-expansion and ε-expansion.

N c2 c3 d1

0 cubic −1(1)×10−4 1.2(1)×10−5 0(1)×10−4

diamond −1(1)×10−4 1.0(1)×10−5 −1(1)×10−4

g-exp. −3.3×10−4 1.1×10−5 −1.3×10−4

ε-exp. −2.5×10−4 0.7×10−5 −1.1×10−4

1 cubic −3.0(2)×10−4 1.0(1)×10−5 −1.7(5)×10−4

diamond −3.0(2)×10−4 1.0(2)×10−5 −3(1)×10−4

g-exp. −3.9×10−4 1.3×10−5 −1.6×10−4

ε-exp. −3.1×10−4 0.8×10−5 −1.3×10−4

2 cubic −3.9(2)×10−4 1.1(1)×10−5 −2.3(2)×10−4

diamond −4.1(4)×10−4 1.0(2)×10−5 −3(1)×10−4

g-exp. −4.2×10−4 1.3×10−5 −1.7×10−4

ε-exp. −3.4×10−4 0.9×10−5 −1.4×10−4

3 cubic −4.1(1)×10−4 1.1(2)×10−5 −2.5(2)×10−4

diamond −4.5(3)×10−4 1.1(3)×10−5 −2.6(3)×10−4

g-exp. −4.3×10−4 1.3×10−5 −1.8×10−4

ε-exp. −3.6×10−4 0.9×10−5 −1.5×10−4

in ref. [7]. The relatively few terms of the series do not allow a reliable estimate of the
corresponding uncertainty. For the g-expansion, a check of stability would suggest an apparent
uncertainty . 20% at small values of N , which decreases with increasing N . The comparison
of the results from all the approaches we have considered is definitely good.

All calculations agree in indicating that the inequality

ci � c2 � 1 for i ≥ 3 (12)

is satisfied for allN . This show that, in the critical region of the symmetric phase, the two-point
Green’s function is substantially Gaussian in a large region around k2, i.e. for |k2/M2

G| . 1, for
all N from zero to infinity. Another important consequence of the relation (12) is the possibility
of evaluating the zero of ĝ0(y) closest to the origin, y0, to a rather good approximation by the
relationship −y0 ' 1+c2. The quantity −y0 in turn is the scaling limit of the ratio of the second
moment correlation length with the “true” correlation length obtained from the damping factor
in the exponential long-distance behavior of G(x). Direct calculations of this ratio confirm the
above approximate relation for y0. Similar results have been obtained in the two-dimensional
O(N) models [8].

In general, models defined on non-Bravais lattices such as the diamond lattice are not
parity-invariant, and odd-rank operators are allowed in the corresponding expansion of the
effective Hamiltonian. We finally discuss how space-parity violating terms, when they exist,
vanish approaching the rotationally invariant fixed point. This fact should be described by
a critical exponent ρp which should be universal in systems breaking parity at a microscopic
level, such as ferromagnetic materials having the structure of a diamond lattice. ρp can be
evaluated on the nearest-neighbor formulation of O(N) models on the diamond lattice, which
is not parity invariant. In the correspoding Gaussian theory, or the large-N limit of O(N)
models, one has ρp = 3. In general, for finite N , ρp may differ from its Gaussian value. The
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strong-coupling analysis of the odd moments of G(x) on the diamond lattice shows that the
correction to the Gaussian value of ρp is very small. We estimated that 0 ≤ ρp − 3 . 0.01 for
all N ≥ 0.
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