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We discuss several examples of three-dimensional critical phenomena that can be de-
scribed by Landau–Ginzburg–Wilson φ4 theories. We present an overview of field-
theoretical results obtained from the analysis of high-order perturbative series in the
frameworks of the ε and of the fixed-dimension d = 3 expansions. In particular, we dis-
cuss the stability of the O(N)-symmetric fixed point in a generic N-component theory,
the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems
with noncollinear order, and the multicritical behavior arising from the competition of
two distinct types of ordering with symmetry O(n1) and O(n2) respectively.
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1. Introduction

In the framework of the renormalization-group (RG) approach to critical

phenomena, a quantitative description of many continuous phase transitions can

be obtained by considering an effective Landau–Ginzburg–Wilson (LGW) theory,

containing up to fourth-order powers of the field components. The simplest example

is the O(N)-symmetric φ4 theory,

HO(N) =

∫

ddx

[

1

2

∑

i

(∂µΦi)
2 +

1

2
r
∑

i

Φ2
i +

1

4!
u
∑

ij

Φ2
i Φ

2
j

]

, (1)
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where Φ is an N -component real field. This model describes several universality

classes: the Ising one for N = 1 (e.g. liquid–vapor transition), the XY one for

N = 2 (e.g. superfluid transition in 4He), the Heisenberg one for N = 3 (isotropic

magnets), and long self-avoiding walks for N → 0 (dilute polymers). See e.g. Refs. 1

and 2 for recent reviews. But there are also other physically interesting transitions

described by LGW theories characterized by more complex symmetries.

The general LGW Hamiltonian for an N -component field Φi can be written as

H =

∫

ddx

[

1

2

∑

i

(∂µΦi)
2 +

1

2

∑

i

riΦ
2
i +

1

4!

∑

ijkl

uijklΦiΦjΦkΦl

]

, (2)

where the number of independent parameters ri and uijkl depends on the symmetry

group of the theory. An interesting class of models is that in which
∑

i Φ2
i is the

only quadratic invariant polynomial. In this case, all ri are equal, ri = r, and uijkl

satisfies the trace condition3

∑

i

uiikl ∝ δkl .

In these models, criticality is driven by tuning the single parameter r. Therefore,

they describe critical phenomena characterized by one (parity-symmetric) relevant

parameter, which often corresponds to the temperature. Of course, there is also (at

least one) parity-odd relevant parameter that corresponds to a term
∑

i hiΦi that

can be added to the Hamiltonian (2). For symmetry reasons, criticality occurs for

hi → 0. There are several physical systems whose critical behavior can be described

by this type of LGW Hamiltonians with two or more quartic couplings (see, e.g.

Refs. 1 and 4). More general LGW Hamiltonians, that allow for the presence of

independent quadratic parameters ri, must be considered to describe multicritical

behaviors arising from the competition of distinct types of ordering. A multicritical

point can be observed at the intersection of two critical lines with different order

parameters. In this case the multicritical behavior is achieved by tuning two rele-

vant scaling fields, which may correspond to the temperature and to an anisotropy

parameter.5

In the field theory (FT) approach the RG flow is determined by a set of RG

equations for the correlation functions of the order parameter. In the case of a

continuous transition, the critical behavior is determined by the stable fixed point

(FP) of the theory, which characterizes a universality class. The absence of a stable

FP is instead an indication for a first-order transition, even in those cases in which

the mean-field approximation predicts a continuous transition. But, even in the

presence of a stable FP, a first-order transition may still occur for systems that

are outside its attraction domain. The RG flow can be studied by perturbative

methods, by performing an expansion in powers of6 ε ≡ 4− d or a fixed-dimension

(FD) expansion in powers of appropriate zero-momentum quartic couplings.7 In

these perturbative approaches, the computation and the resummation of high-order

series is essential to obtain reliable results for three-dimensional transitions (see
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Refs. 1 and 2 for reviews). Beside improving the accuracy, in some cases high-order

calculations turn out to be necessary to determine the correct physical picture in

three dimensions.

In this paper we give an overview of the perturbative FT results obtained for

a number of three-dimensional transitions described by LGW Hamiltonians. In

Section 2 we discuss the stability of the O(N)-symmetric fixed point under generic

perturbations in three-dimensional N -component systems. In Section 3 we discuss

the critical behavior of Ising-like systems with quenched disorder effectively coupled

to the energy, for instance the randomly dilute Ising model. In Section 4 we consider

frustrated spin models with noncollinear order, whose critical behavior is effectively

described by an O(M) ⊗ O(N)-symmetric Hamiltonian with M = 2. Finally, in

Section 5 we discuss the predictions of the O(n1) ⊕ O(n2)-symmetric φ4 theory

for the multicritical behavior observed near the point where two critical lines with

symmetry O(n1) and O(n2) meet.

2. Stability of the O(N)-Symmetric Fixed Point

In order to discuss the stability of the O(N) FP in a generic N -component system,

it is convenient to consider polynomial perturbations P
a1,...,al

m,l , m ≥ l, which are of

degree m in the N -component field Φa and transform as the l-spin representation

of the O(N) group. Explicitly formulae can be found in Ref. 8. In addition, one

should also consider perturbations containing derivatives of the field. At least near

four dimensions, one can use standard RG arguments to show that, beside the

O(N)-symmetric terms P2,0 = Φ2 and P4,0 = (Φ2)2, only three other perturbations

should be considered, P ab
2,2, P ab

4,2, and P abcd
4,4 . The stability properties of the O(N)

FP depend on the RG dimensions ym,l of these perturbations.a

In Table 1 we report FT estimates of the RG dimensions ym,l for N = 2, 3, 4, 5,

obtained from the analysis of six-loop FD and five-loop ε series.8–10,b The quadratic

perturbations P ab
2,2 are relevant for the description of the breaking of the O(N)

symmetry down to O(M) ⊕ O(N − M). Since y2,2 > 0, they are always relevant.

The RG dimension y4,2 is negative for any N , so that the corresponding spin-2

perturbation P ab
4,2 is always irrelevant. On the other hand, the sign of y4,4 depends

on N : it is clearly negative for N = 2 and positive for N ≥ 4. For N = 3 it is

marginally positive, suggesting the instability of the O(3) FP under generic spin-4

quartic perturbations. Actually, the stability of the O(N) FP can be inferred from

the RG flow of the cubic-symmetric LGW Hamiltonian for an N -component field

Hc =

∫

ddx







1

2

N
∑

i=1

[(∂µΦi)
2 + rΦ2

i ] +
1

4!



u

(

N
∑

i

Φ2
i

)2

+ v

N
∑

i

Φ4
i











. (3)

aNote that P ab
2,2 and P abcd

4,4 are RG eigenoperators, while P ab
4,2 must be in general properly sub-

tracted, i.e. the RG eigenoperator is P ab
4,2 + zP ab

2,2 for a suitable value of z.
bResults obtained in other theoretical approaches and in experiments can be found in Refs. 1 and
8 and references therein.
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Table 1. Three-dimensional estimates of the RG dimensions ym,l from ε and FD expansions.

N y2,0 = ν−1 y2,2 φT ≡ y2,2ν y4,0 y4,2 y4,4 φ4,4 ≡ y4,4ν

2 ε 1.497(8) 1.766(6) 1.174(12) −0.802(18) −0.624(10) −0.114(4) −0.077(3)
FD 1.493(3) 1.184(12) −0.789(11) −0.103(8) −0.069(5)

3 ε 1.419(11) 1.790(3) 1.260(11) −0.794(18) −0.550(14) 0.003(4) 0.002(3)
FD 1.414(7) 1.27(2) −0.782(13) 0.013(6) 0.009(4)

4 ε 1.357(15) 1.813(6) 1.329(16) −0.795(30) −0.493(14) 0.105(6) 0.079(5)
FD 1.350(11) 1.35(4) −0.774(20) 0.111(4) 0.083(3)

5 ε 1.333(36) 1.832(8) 1.40(3) −0.783(26) −0.441(13) 0.198(11) 0.151(9)
FD 1.312(12) 1.40(4) −0.790(15) 0.189(10) 0.144(8)

∞ 1 2 2 −1 0 1 1

The point is that the cubic-symmetric perturbation
∑

i Φ4
i is a particular combina-

tion of the spin-4 operators P abcd
4,4 and of the spin-0 term P4,0. The RG flow for the

cubic-symmetric theory has been much investigated using various FT and lattice

techniques.1 The O(N) FP turns out to be unstable for N > Nc with Nc ≈ 3. The

most accurate results have been provided by analyses of high-order FT perturbative

expansions, six-loop FD and five-loop ε series, see e.g. Refs. 11 and 12, which find

Nc . 2.9 in three dimensions, and the existence of a stable FP characterized by a

reduced cubic symmetry for N ≥ Nc. These results imply that the O(N)-symmetric

FP is unstable under spin-4 quartic perturbations for N ≥ 3, and can be applied

to establish the stability of the O(N) FP in any physical critical phenomenon that

is effectively described by a generic LGW Hamiltonian for an N -component field.c

3. Randomly Dilute Ising Model

In the last few decades many theoretical and experimental studies have investigated

the critical properties of statistical models in the presence of quenched disorder.

A typical example is obtained by mixing a uniaxial antiferromagnet with a non-

magnetic material, such as FexZn1−xF2 and MnxZn1−xF2. These materials can be

modeled by the randomly dilute Ising model (RDIM)

HRDIM = J
∑

〈ij〉

ρiρjsisj , (4)

where the sum is extended over all nearest-neighbor sites of a lattice, si = ±1

are the spin variables, ρi are uncorrelated quenched random variables, which are

equal to one with probability x (the spin concentration) and zero with probability

1 − x (the impurity concentration). Above the percolation threshold of the spin

cNote that the condition that
∑

Φ2

i is the only quadratic invariant forbids the presence in the
Hamiltonian of any spin-2 term P ab

2,2. Analogously, the trace condition
∑

i uiikl ∝ δkl forbids
quartic polynomials transforming as the spin-2 representation of the O(N) group, i.e. the operators
P ab

4,2.
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Table 2. Critical exponents for the RDIM universality class.

γ ν α β

six-loop FD (Ref. 16) 1.330(17) 0.678(10) −0.034(30) 0.349(5)
Monte Carlo (Ref. 18) 1.342(10) 0.684(5) −0.051(16) 0.3546(28)
FexZn1−xF2 (Ref. 13) 1.31(3) 0.69(1) −0.10(2) 0.359(9)

concentration, the critical behavior of the RDIM belongs to a new universality

class that is distinct from the Ising universality class of pure systems, and that is

shared by all systems with quenched disorder effectively coupled to the energy. See,

e.g. Refs. 1, 13 and 14 for recent reviews.

Using the FT approach and the replica method, one arrives at the effective LGW

Hamiltonian Hc,
15 cf. Eq. (3), which is expected to describe the critical properties

of the RDIM in the limit N → 0. The most precise FT results for the critical expo-

nents have been obtained by analyzing the FD six-loop expansions.16,17 The major

drawback of the FT perturbative approach is the non-Borel summability of the

series due to a more complicated analytic structure of the field theory correspond-

ing to quenched disordered models. Nevertheless, series analyses seem to provide

sufficiently robust estimates, which are in good agreement with experiments and

recent Monte Carlo simulations. The results of the six-loop analysis are reported

in Table 2, where they are compared with estimates obtained in Monte Carlo sim-

ulations of the RDIM and in experiments on uniaxial magnets. The values of the

exponents are definitely different from those of the pure Ising universality class,

where, e.g. ν = 0.63012(16).19

Using the FT approach, one can also compute the critical exponent φ describ-

ing the crossover from random-dilution to random-field critical behavior in Ising

systems, and in particular the crossover observed in dilute anisotropic antiferro-

magnets when an external magnetic field is applied.13 The crossover exponent φ is

related to the RG dimensions of the quadratic operator ΦiΦj (i 6= j) in the limit

N → 0.20 Six-loop computations21 provide the estimate φ = 1.42(2), which turns

out to be in good agreement with the available experimental estimates, for example

φ = 1.42(3) for FexZn1−xF2.
13

Finally, we mention that six-loop perturbative series for multicomponent sys-

tems with quenched disorder, taking also into account a possible cubic anisotropy,

have been computed and analyzed in Refs. 16 and 22.

4. Frustrated Spin Models with Noncollinear Order

In physical magnets noncollinear order is due to frustration that may arise either

because of the special geometry of the lattice, or from the competition of different

kinds of interactions.23 Typical examples of systems of the first type are stacked

triangular antiferromagnets (STA’s), where magnetic ions are located at each site

of a three-dimensional stacked triangular lattice. On the basis of the structure of

the ground state, in an N -component STA one expects a transition associated with
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a breakdown of the symmetry from O(N) in the HT phase to O(N − 2) in the LT

phase. The nature of the transition is still controversial. In particular, the question is

whether the critical behavior belongs to a new chiral universality class, as originally

conjectured by Kawamura.24 On this issue, there is still much debate, FT methods,

Monte Carlo simulations, and experiments providing contradictory results in many

cases (see e.g. Ref. 1 for a recent review of results). Overall, experiments on STA’s

favor a continuous transition belonging to a new chiral universality class.

The determination of an effective LGW Hamiltonian describing the critical be-

havior leads to the O(M) ⊗ O(N)-symmetric theory24

Hch =

∫

ddx

{

1

2

∑

a

[(∂µφa)2 + rφ2
a] +

1

4!
u

(

∑

a

φ2
a

)2

+
1

4!
v
∑

a,b

[(φa · φb)
2 − φ2

aφ2
b ]

}

, (5)

where φa, a = 1, . . . , M , are N -component vectors. The case M = 2 with v > 0

describes frustrated spin models with noncollinear order;d N = 2 and N = 3

correspond to XY and Heisenberg systems, respectively. Recently the Hamiltonian

(5) has been also considered to discuss the phase diagram of Mott insulators.25 See

Refs. 1 and 23 for other applications.

Six-loop calculations26 in the framework of the d = 3 FD expansion provide a

rather robust evidence for the existence of a new stable FP in the XY and Heisen-

berg cases corresponding to the conjectured chiral universality class, and contra-

dicting earlier studies based on much shorter (three-loop) series.27 It has also been

argued28 that the stable chiral FP is actually a focus, due to the fact that the eigen-

values of its stability matrix turn out to have a nonzero imaginary part. The new

chiral FP’s found for N = 2, 3 should describe the apparently continuous transitions

observed in STA’s. The FT estimates of the critical exponents are in satisfactory

agreement with the experimental results, including the chiral crossover exponent

related to the chiral degrees of freedom.29 We also mention that high-order FT

analyses of two-dimensional systems have been reported in Ref. 30.

On the other hand, other FT studies, see e.g. Ref. 31, based on approximate

solutions of continuous RG equations, do not find a stable FP, thus favoring a weak

first-order transition. Monte Carlo simulations have not been conclusive in setting

the question, see, e.g. Refs. 32, 33 and 34. Since all the above approaches rely

on different approximations and assumptions, their comparison and consistency is

essential before considering the issue substantially understood.

dNegative values of v correspond to magnets with sinusoidal spin structures.
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5. Multicritical Behavior in O(n1) ⊕ O(n2) Theories

The competition of distinct types of ordering gives rise to multicritical behavior.

More specifically, a multicritical point (MCP) is observed at the intersection of two

critical lines characterized by different order parameters. MCP’s arise in several

physical contexts, for instance in anisotropic antiferromagnets, in high-Tc super-

conductors, in 4He, etc. The multicritical behavior arising from the competition of

two orderings characterized by O(n) symmetries is determined by the RG flow of

the most general O(n1)⊕O(n2)-symmetric LGW Hamiltonian involving two fields

φ1 and φ2 with n1 and n2 components respectively, i.e.5

Hmc =

∫

ddx

[

1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 +
1

2
r1φ

2
1

+
1

2
r2φ

2
2 + u1(φ

2
1)

2 + u2(φ
2
2)

2 + wφ2
1φ

2
2

]

. (6)

The critical behavior at the MCP is determined by the stable FP when both r1 and

r2 are tuned to their critical value. An interesting possibility is that the stable FP

has O(N) symmetry, N ≡ n1 + n2, so that the symmetry gets effectively enlarged

approaching the MCP.

The phase diagram of the model with Hamiltonian (6) has been investigated

within the mean-field approximation in Ref. 35. If the transition at the MCP is

continuous, one may observe either a bicritical or a tetracritical behavior. But it

is also possible that the transition at the MCP is of first order. O(ε) calculations

in the framework of the ε expansion5 show that the isotropic O(N)-symmetric FP

(N ≡ n1 + n2) is stable for N < Nc = 4 + O(ε). With increasing N , a new FP

named biconal FP (BFP), which has only O(n1)⊕O(n2) symmetry, becomes stable.

Finally, for large N , the decoupled FP (DFP) is the stable one. In this case, the two

order parameters are effectively uncoupled at the MCP, giving rise to a tetracritical

behavior.

The O(ε) computations provide useful indications on the RG flow in three di-

mensions, but a controlled extrapolation to ε = 1 requires much longer series and

an accurate resummation exploiting their Borel summability. For this purpose we

have extended the ε expansion to O(ε5).8 A robust picture of the RG flow predicted

by the O(n1) ⊕ O(n2)-symmetric LGW theory can be achieved by supplementing

the analysis of the ε series with the results for the stability of the O(N) FP (cf.

Section 2), which were also obtained by analyzing six-loop FD series, and with non-

perturbative arguments allowing to establish the stability of the DFP.36 Since the

Hamiltonian (6) contains spin-4 quartic perturbations with respect to the O(N) FP,

the results for the spin-4 RG dimension y4,4 (cf. Table 1) imply that the O(N) FP

is stable only for N = 2, i.e. when two Ising-like critical lines meet. It is unstable in

all cases with N ≥ 3. This implies that for N ≥ 3 the enlargement of the symmetry

O(n1) ⊕ O(n2) to O(N) does not occur, unless an additional parameter is tuned

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

00
3.

17
:5

82
9-

58
38

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

PI
SA

 o
n 

10
/1

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 15, 2004 10:55 WSPC/140-IJMPB 02335

5836 P. Calabrese et al.

beside those associated with the quadratic perturbations. For N = 3, i.e. for n1 = 1

and n2 = 2, the critical behavior at the MCP is described by the BFP, whose criti-

cal exponents turn out to be very close to those of the Heisenberg universality class.

For N ≥ 4 and for any n1, n2 the DFP is stable, implying a tetracritical behavior.

This can also be inferred by using nonperturbative arguments36 that allow to de-

termine the relevant stability eigenvalue from the critical exponents of the O(ni)

universality classes.

Anisotropic antiferromagnets in a uniform magnetic field H‖ parallel to the

anisotropy axis present a MCP in the T−H‖ phase diagram, where two critical lines

belonging to the XY and Ising universality classes meet.5 The above results predict

a multicritical behavior described by the BFP, contradicting the O(ε) calculations

that suggested the stability of the O(3) FP. Notice that it is hard to distinguish

the biconal from the O(3) critical behavior. For instance, the correlation-length

exponent ν differs by less than 0.001 in the two cases.

The case N = 5, n1 = 2, n2 = 3 is relevant for the SO(5) theory37,38 of high-

Tc superconductors, which proposes a description of these materials in terms of a

three-component antiferromagnetic order parameter and a d-wave superconducting

order parameter with U(1) symmetry, with an approximate O(5) symmetry. Within

the SO(5) theory, it has been speculated that the antiferromagnetic and supercon-

ducting transition lines meet at a MCP in the temperature-doping phase diagram,

which is bicritical and shows an effectively enlarged O(5) symmetry. There are also

recent claims in favor of the stability of the O(5) FP based on Monte Carlo simu-

lations of three-dimensional five-component systems.39 Our results on the RG flow

of the O(2) ⊕ O(3) theory show that the O(5) FP cannot describe the asymptotic

critical behavior at the MCP, unless a further tuning of the parameters is per-

formed. Therefore, the O(5) symmetry is not effectively realized at the point where

the antiferromagnetic and superconducting transition lines meet. The multicritical

behavior is either governed by the tetracritical decoupled fixed point or is of first-

order type if the system is outside its attraction domain. The predicted tetracritical

behavior may explain a number of recent experiments that provided evidence of a

coexistence region of the antiferromagnetic and superconducting phases, see, e.g.

Ref. 40. The O(5) FP is unstable with a crossover exponent φ4,4 ≈ 0.15, which,

although rather small, is nonetheless sufficiently large not to exclude the possibility

of observing the RG flow towards the eventual asymptotic behavior for reasonable

values of the reduced temperature, even in systems with a moderately small break-

ing of the O(5) symmetry, such as those described by the projected SO(5) model

discussed in Refs. 38 and 41.
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