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Abstract 

The renormalized zero-momentum four-point coupling gr of O(N)-invariant scalar field theories 
in d dimensions is studied by applying the 1/N expansion and strong-coupling analysis. The 
O(l/N) correction to the /3-function and to the fixed point value g~- are explicitly computed. 
Strong-coupling series for lattice non-linear tr models are analyzed near criticality in d = 2 and 
d = 3 for several values of N and the corresponding values of g~' are extracted. Large-N and 
strong-coupling results are compared with each other, finding a good general agreement. For small 
N the strong-coupling analysis in 2d gives the best determination of g~' to date (for N = 2, 3 it 
is comparable with the best Monte Carlo estimates); in 3d it is consistent with available ~b 4 field 
theory results. 

PACS: 11.10 Kk, 11.15 Pg, 64.60 Fr, 75.10 Ilk 

1. Introduction 

The study of the fixed-point behavior is a crucial problem of quantum and statistical 

field theories, not only from a purely theoretical point of view, but also in order to clarify 
such phenomenologically relevant issues as the existence (and quantitative estimates) 

of triviality bounds. 

For understandable reasons most theoretical effort has up to now been directed towards 
the analysis of  a few selected models, including O(0) ,  O(1) ,  O ( 2 ) a n d  O(3) in three 
dimensions and 0 ( 4 )  ("Higgs") models in four dimensions. In our view, it is very 
useful to extend the analysis to the case of a generic symmetry group O(N)  and to 
models living in an arbitrary number of space dimensions d, Apart from opening the way 
to new possible physical applications, such a generalization may offer the possibility of 
testing and cross-checking the several different methods that have been applied to the 
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problem at hand, thus putting on firmer grounds results that often rely only on a single 
approach and whose generality cannot therefore be fully understood. 

In making these statements, we have especially in mind the possibility of system- 
atically extending the application of two very well known techniques: strong-coupling 
and 1/N expansion. These two techniques enjoy relevant advantages: finite convergence 
radius for the strong-coupling expansion and non-perturbative interpretation of results 
for the 1/N expansion. Nonetheless they suffer from some drawbacks: lack of control 
on the accuracy of the resummation techniques in the strong-coupling case, poor infor- 

mation on the convergence properties and technical difficulty in the extending the series 
for the 1/N expansion; these problems have often discouraged people from pursuing 
these approaches. 

Nevertheless we think, and we hope to show convincingly in the present paper, that 
a renewed effort in these directions may prove very fruitful. We emphasize that the 
systematic comparison of the two classes of results can be crucial in establishing their 
reliability: agreement of the 1/N expansion with strong-coupling results for N ~> N can 
be taken as evidence of its summability down to ~/. 

The convergence properties of the 1/N expansion in O(N)-symmetric models have 
been analyzed in the past. Avan and de Vega [ 1 ] showed the Borel summability of the 
1/N expansion in less than four dimensions, and argued in favor of convergence (for 
N > 2) in two-dimensional non-linear o- models, where the known exact S-matrix is 

analytic in 1/N, even in the absence of a convergent weak-coupling expansion. Moreover, 
Kupiainen [ 2] has proven rigorously that the I /N  expansion of O(N)-symmetric models 
in the lattice strong-coupling phase is an asymptotic series. 

The present paper is organized as follows. 
In Section 2 we introduce our notation for the general O(N)-invariant scalar field 

theory with quartic interaction in the continuum formulation and define the quantity that 
we are going to study: the renormalized zero-momentum four-point coupling gr, whose 
behavior in the scaling region and fixed-point value for arbitrary N and d is the object 
of our investigations. This quantity is related to the so-called Binder cumulant. We 
compute the next-to-leading 1/N correction to the renormalized coupling as a function 
of the bare coupling and the renormalized mass by reducing it to a set of Feynman 
integrals that can be evaluated in the continuum 1/N expanded model without any 

regularization for all d < 4. We show how to compute the 1/N correction to the 
fl-function fl(gr) = mr dg~/dm~ and the fixed point value gr such that fl(gr) = O. 

In Section 3 we give an exact evaluation of gr in one dimension by solving exactly 
the one-dimensional non-linear or models for arbitrary N, and draw from this example 
some general indication about the possible dependence of g* on the parameter N. 

In Section 4 we review the available results on non-linear tr models in two and 
three dimensions on the lattice and present our explicit computations of 1/N effects for 
the above models at criticality. We briefly comment on the case d = 4 and O(1/N) 
logarithmic deviations from scaling. 

In Section 5 we analyze and discuss the strong-coupling series for the renormalized 
coupling of the non-linear tr models in two and three dimensions on the lattice and 
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for arbitrary N, which we extracted from the results of Liischer and Weisz [3] as 

elaborated on by Butera et al. [4]. Strong-coupling results are compared to all available 
calculations presented in the literature (~b 4 field theory at fixed dimensions and Monte 
Carlo simulations) and to our 1/N results, finding a good general agreement. 

Finally in Section 6 we draw some conclusions. 
An explicit representation of the 1/N correction to the /3-function is exhibited and 

discussed in Appendix A. 

2. The renormalized coupling and its 1/N expansion 

According to the previous discussion it is interesting to form a renormalization-group 
invariant dimensionless combination of vacuum expectation values playing the r61e of 

a renormalized four-point coupling and to study its behavior in the proximity of a 
critical point. In particular we are interested in O(N)-invariant scalar field theories in 
arbitrary dimensions d ~< 4 and we wish to apply 1IN expansion techniques to the 
above-mentioned problem. 

From the point of view of the 1IN expansion the standard notation is somewhat 
inconvenient: we shall therefore define our own conventions, trying to establish cor- 
respondence with the literature as far as possible, and especially trying to make all 
relationships with Refs. [3,5-8] as transparent as we can. 

The usual O(N)-invariant Euclidean continuum Lagrangian takes the form 

1 8 1 2Jr2 go c = + + (1)  

It is however convenient to redefine the quartic coupling (both bare and renormalized) 
according to the definition 

"g =- Ng (2) 
3 

We shall also define 

_ - 2 1 , g  1 4,  
~0  ' ~ , - - ^  , s - -  , ( 3 )  

g0 

and introduce an auxiliary field a. 

The resulting effective Lagrangian is 

N 
£. = ~ [Ba~,sa,,s + i~Jot(s 2 -  l )  + Tot2] , (4) 

and after performing a Gaussian integration over the field s we obtain 

N [Trln/~ (-at,31, + ia) - i[tc~ + Toe2] , (5) £=~- 
which reduces to the usual effective large-N action for the non-linear or model in the 
limit T ---+ 0. 
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Fig. 1. Feynman rules for the 1/N expansion. 

Correspondence with Refs. [3,5-8] is established by the relationships 

2K 1 K 2 
/3= N '  Y= N2a (6) 

Renormalization is performed according to the following prescriptions for the two- 
and four-point correlation functions of the field ~b: 

and 

/,(2) (p, _p),~# =/'(2) (p2) 8,,#, 

/'(2) (p2) = Z r  I [m 2 -I- p2 -4- O(p4)] , (7) 

1 F ( 2 - d / 2 )  ( ~ ) a / 2 - 2  [ d 1 3 ( 4mo2"~ - I ]  
+too r 2 j 

+y. ( l l )  

F (4) (0, 0, 0, 0)~#r8 = F (4) (0) (8~8r8 + 8,,,8~8 + 8~,88~r ) , 

_ Z - 2 ~  2 2-a/2 /"(4)(0) = r N(mr)  • (8) 

Let us now notice that 

-N/'(4'(0'0'0'0)aa3'7[/'(2,(0,0)ota]2 (m2~)a/2=(l+2)'~r.  (9) 

Eq. (9) will be our working definition of the renormalized four-point coupling. 
In order to compute the leading and next-to-leading contributions to gr in the contin- 

uum 1IN expansion, we shall need an evaluation of the corresponding contribution to 
the two-point function and to the zero-momentum four-point function. 

The evaluation of the Feynman rules shown in Fig. 1 is essentially straightforward. 
We only mention that the bare propagator of the ~b field is expressed in terms of a 
"bare" large-N mass parameter m02 introduced by the gap equation 

dap 1 
(2~)a p2 +mo 2 =/3 + 2Tm°2 ' (10) 

while the propagator of the Lagrange multiplier field a is defined to be ( 1 IN)A(k, m2), 
where in turn 

1 f ddp 1 1 
A-,(k, mo)=~2 j (21r)d p2 +m~ (p+k)2+m2o +9'  
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Fig. 2. Graphical definition of fundamental integrals. 

The relevant higher-order Lagrangian effective vertices are obtained by taking derivatives 
of A - l  (k) with respect to m0 2, according to the correspondence table 

V(3)(O,k,k) =--a-~02d-I (k), 

02 A_ I 2V(4)(O,O,k,k)+V(4)(O,k,O,k) =- V(3)(O,k,k) = (am2)2 (k), (12) 

where the mass dependence is suppressed in the arguments. The derivatives appearing 
in Eq. (12) may be evaluated by a generalization of the so-called "cutting rule" of 
Ref. [9], whose d-dimensional form is 

am2o 2 09 = k2+4mg [(3-d)A-I(k)+d-l(O)+y(d-4)]. (13) 

In writing Eqs. (10) and ( 1 1 ) some ultraviolet regularization, when needed, is assumed, 
Actually our final results will turn out to be independent of the regularization as expected 
on physical grounds. 

Eq. (9) shows that in order to compute gr to any definite order in the 1/N expansion 
we must be able to compute the quantities F (2) (p), F (4) (0) and mr 2 with the same pre- 
cision. Leading order calculations are straightforward. Next-to-leading contributions may 
be formally represented in terms of a few fundamental integrals, which are graphically 
represented in Fig. 2 and listed below: 

x}a)(p2,mg)= f ddk d(k. mg) 
(27r) a (p + k) 2 + mg'  (14) 

(b),..2, 1A(0,m2) f ,ffakav(3)(O,k,k)d(k,m~), (15) 
~'1 ' ~ " ' 0 1  = - -  I.¢,7r)" 

Bl(m~)=[ ddk A(k, m2) 2 
(16) J (2,n-) a (k 2 + m2) 2 • 

It is very easy to show that the two-point function and the renormalized mass are 
respectively 
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0 g "\ 

io--~mo2 = -- +2 
, ', = © 

and 

Fig. 3. Identities among Feynman graphs. 

1 [x la ' (p2 ,rn2)+21b)(m20)]+O(~-  ) r~2)(p2) =p2 + m 2 + (17) 

2 too2+ 1 [xla) ,-(b). 2. a21a)(p2,m02) ] (~2_____) m r =  -~ ( O , m ~ ) + ~ q  t r n o ) - - m  2 Op 2 + 0  . 
p2=O 

(18) 

Explicit use of Eqs. (12), leading to the graphical identities drawn in Fig. 3, allows us 
to obtain the representation 

2 o q ,~,(a)... 2. L c9 2(b)tm2.~] 
- N F  (4) (0) = A(0, m02) 1 + ~__Om---~nzl to, m o) + N c~m2o 1 ~" 0JJ 

~ B l ( m  o) + 0  . (19) 

It is now important to notice that, in order to obtain a finite result, gr must be 
expressed in terms of the renormalized mass mr 2. This is achieved by inverting Eq. (18), 
which leads to 

[- 
2 1 ] a)(o ' 

L 
~,(b)fm2, ~ 2 a2]a)(p2,m2) ] (~------) 

+ ~1 ~"~r, - mr Op2 + 0 . 
p2=O 

(2o) 

and, as a consequence, 

2 1 [2~a) (p2, m2) - F(2)(p2) =p2 + mr + -N 
Ca) 2 2 axial(p2, m2) ] 

21 (0,m,) +mr ap 2 
p2=O 

(21) 
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X [ "~la)(0' m2) Xl(b) _2,(fUr , ox}a)(p2,m2)l ] . (22) 
[ m2r " + m~ 01) 2 02=0 

Collecting all the above results and substituting into Eq. (9) we obtain the following 
representation of the renormalized coupling: 

{ 1 [1-- yA(0'm~)] ( d - 2 )  "~,=(m2r)a/2-2za(O,m~) 1 + -~ 

[,}a'(~0. mr2 ) Y(b) (mr2)o '}a ' (p2 ,m2r ) l ]  
x [ m2 r + --1 m2r . . . .  OP 2 j,2_--O 

(a) 2 2 ,o 2=0 
12[- 0xla) (0, m2) aX l(t,) (mr)2 2 dX1 (p ,mr) 1 

+-N [ 8m~ + Om~ Op 2 

- 2A-l(O, mr)Bl(mr) . 

From now on, we suppress the m 2 dependence in A. Substituting Eqs. (14), (15) and 
(16) and making explicit use of Eq. (13), one obtains the following representation: 

I [1 - (3 - d)2  ~ = (m~)a/2-2A(O) 1 + -~ 

3] 1 dak k +N f ( - - ~ )  a A ( )  [(k22m~ 3m~ ( d / 2 - 4  2 ( d -  1) 
+m2r)3 + (k2+m~)(k2+4m2r) \ - ~ m ~  k-'~-+~mzr/.l 

[ dak 1 [ 2m ] 
- l ( d -  4)yA(0) J (--~-~) aA(k)'~ L ( k2 + mr2) 3 

3m 2 ( d / : - 2  2 ( d -  1)'~] 
+ (k2 + mZ)(k 2 + 4m~) \k-2q-m-~ + kS~-4mTJJ 

a (k )  a(k2 + 4m?)2 

(2~r)a (k 2 + 4m~)2 [ (k 2 + rn~) 
(d-4)yA(O)] } + 0  • 

(24) 

Further computational simplification is achieved by making use of the following straight- 
forward consequence of Eq. ( 13): 

,:1-1 (0) A(k) 2 = 4m~ + (4 -- d) k 2 
4m 2 + (4 - d)yA(O)k ~A(k) 

2k2(k 2 + 4mr 2) 0d(k) (25) 
--4m~+(4--d)yA(0)k 2 8k 2 ' 
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which may be applied to Eq. (24) in order to get rid of the d(k)  2 dependence in the 
integrand, while a partial integration may eliminate the dependence on OA(k)~Ok 2. It is 
easy to recognize that whenever d < 4 and T ~> 0 all integrations are finite. The final 
result can be formally expressed by the relationship 

gr=~rO)(x)-~'-~$r ~,~1 q- O , (26) 

where all dependence on the renormalized mass and the bare coupling can only come 
through the dimensionless combination x =- m4-d/'~o. Specifically one obtains 

g0) = + x , (27) 

where 

4-d f 1 m r dap 1 1 F (2 - d/Z) 
g'~ = 2 (27r) a (p2 + m2) 2 = 2 (47r)a/2 (28) 

is the inverse of the large-N fixed point value of the renormalized coupling. 
Eq. (26) is the obvious starting point for the construction of the 1/N expanded 

/3-function of the model, via the relationship 

/3(~r) = m r ~ m  ~ = (4 - d) x('~r) dx x=x('~,) 

= fl(°) (~r) + l f l ( ' )  (~r) + 0 (~-----), (29) 

where x(~r) is obtained by inverting the equation ~ = ~r(x), and it admits in turn a 
I / N  expansion in the form 

X(gr) = X(O)(gr) dc- ~X(I)(gr)  -'~ O ( ~ -  ) . (30) 

It is easy to recognize that Eq. (27) implies 

1 1 
x(°)(~r) = ~- - - - ,  (31) 

g~ g. 

and therefore the large-N limit of the fl-function reduces to 

fl(°)(~r) = (d - 4)~',.  1 - ~-, . ( 3 2 )  

This is the standard (large-N) one-loop result provided that we identify 

a - d _  F ( 3 - d / 2 ) _ ~ 0 .  (33) 
g. (4q'r) d/2 

A simple consequence of Eqs. (26), (27), (30) and (31) is the relationship 

x(I)('~,) 1 ~ 1 )  (x(°) (~,)).  (34) = ~r~gr 
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We may now consider the expansion of Eq. (29) in powers of 1/N and notice that 

the derivative of ~rl)(x)  with respect to x (°) may be exchanged with a derivative with 
respect to ~ .  As a consequence, after some manipulations we can prove the relationship 

,--( I ) function of gr  l where notable simplifications occur when evaluat'ng gr directly as a 
g:-l. In particular 

mrd-4zl(k) ' 1 + grll(k/m~)' (36) 

where 

/ 1 l ]  1 dap m r 
II(k/mr) = 2  (2¢r)dp2+mr2 (p+k)2+m2r p2+m2r (37) 

is a regular dimensionless function with the property / / ( 0 )  = 0 and a finite d ~ 4 
limit. As long as d < 4 one may show that fl(1)(~r) is well defined and finite for all 
0 ~< gr ~< g*- We obtained an explicit integral representation of fl(l)(~r) for arbitrary 
d, and showed that the series expansion of such a representation in the powers of gr 
may be obtained also in the d ~ 4 limit and reproduces all known results as long 
as comparison is allowed. The representation of fl(1)(~r) and a short discussion of its 
features are presented in Appendix A. The non-perturbative properties of fl(I) (~r) when 
d ~ 4 will be analyzed and discussed in a separate publication. 

For what concerns the very important issue of the fixed point of ~r, we must notice 
that the/3-function vanishes when x ~ 0, i.e. when 

g"~ = g, + l ~ ' ) ( O )  + O r . (38) 

Eq. (24), supplemented with Eq. (25), lends itself to an easy evaluation in the limit 
x ~ 0, corresponding to the limit 9' ~ 0. The final result is 

E l) (0) = g. [(3 - d)2 d-1 

f ddk do(k) (4._m~ ( 2 )  m2r ~] 
- (27r)d(k2+m2)2 \ k 2 + m ~ + 9  - 1  k2+4rn~J j,  (39) 

where 

do(k) =~imd(k). (40) 

Notice that the fixed-point value of the renormalized coupling may be obtained directly 
by computing the 7 ~ 0 limit of the coupling gr in the scaling region. However, this 
is nothing but the value taken by gr in the corresponding continuum limit field theory, 
which is the usual non-linear o- model in d dimensions. In turn this is the limit of 
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the lattice non-linear tr model when fl --* tic, the value of the coupling such that the 
renormalized mass (i.e. inverse correlation length) is equal to zero in the lattice y ~ 0 
limit. 

3. Non-linear tr models  in one d imens ion  

Before discussing the general d-dimensional case, let us illustrate some features of 
the problem by solving the simple but not trivial one-dimensional case. One-dimensional 
non-linear o- models are a completely integrable system, both on the lattice and in the 
continuum [ 10,11,14]. Indeed in any lattice formulation with nearest-neighbor interac- 
tions the two- and four-point correlation functions are easily expressed in terms of two 
quantities that in turn are related to vacuum expectation values of the model defined on 
a single link. 

Without belaboring on the rather trivial manipulations needed to derive these re- 
sults [ 10,11], we simply quote that in any O(N)-invariant o- model theory satisfying 
the constraint s • s = 1, one may write 

o b B i-mL t), 
( s . , s . )  = N 

( ( a  t ) l ~ , b )  ( 1 ) ) = B 2 2  I N ( N + 2 )  - ~ b ' a t ) b  "~'a] (41) s . , s . ,  sC sa  " _ ac a . _ . ,  1 ,y,  bca 1 

for n ~> m, and 

a b c d l l n -m+q-p  ~abcd B22 BI 
(SmSnSpSq)c = ~ll N ( N  + 2) 

+Babtsca--~fl-(B~IP-n)-BP~n)] (42) 

for q/> p ~> n t> m, where m, n, p, q are integer numbers labeling lattice sites, 

~abcd ~ ~ab~'d nt - t~ac t~bd _.}_ ~td ~bc, (43) 

and 

Bll = (Sl • SO), B22 = N((s l  • s0)  2) - -  1 (44) 
N - 1  

where expectation values are taken in the single-link model: Bjl and B22 are the character 
coefficients in the (pseudo) character expansion of the model [ 10,11 ], or, equivalently, 
the coefficient of the expansion of the theory in hyperspherical harmonics. The re- 
sults corresponding to different orderings of the lattice points are obtained by trivial 
permutations. 

Zero-momentum lattice Fourier transforms can be computed as functions of B~I and 
B22 by performing trivial summations of geometric series. One may then easily recognize 
that 
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F(2)(O)a a = 1 + Bl___._____Ll ' (45) 
1 - Bll 

2 (1 -- B l l )  2 
m r .-~ , ( 4 6 )  

B~l 

while after some purely algebraic effort one obtains 

B22 / 1 + BII \ = 4 ( N  - l) ~ [, / 2 NIP( 4 ) ( O ) aabb 

1 + Bll 16Bll 
-4NB~I  (1 - Bll)  3 (1 -- BIj) 3 2. (47) 

As a consequence, by applying Eq. (9) one obtains 

( 2 )  1 [ 2 ( 1 -  B.I) 3 4NB~t 
1 + gr- V / ~  L ( i  + B11~ + 1 + Bll 

16BI1 1 - BII~  ] 
d (1+B11)  2 4 ( N - 1 ) l _ ~ 2 2 n 2 2  ] .  (48) 

We now want to take the critical limit, which, as shown in Ref. [ 14], depends in a 
complicated way on the specific Hamiltonian, as in one dimension there are infinitely 

many universality classes. We will restrict ourselves to those theories for which mr --, 0. 
Thus Eq. (46) implies Bll ---* 1. When N >/ 1 we have also [14] B22 -* 1, so that 

( I + 2 ~ g ~ = 2 ( N + 2 ) - 4 ( N - 1 )  lim l - B , , .  (49) 
\ /v] BII'-+I 1 -- B22 

The quantity (1 - B I j ) / (1  - B22) characterizes the universality class as being simply 
the ratio of the mass gap in the spin-one and spin-two channels. Within the universality 
class corresponding to the standard continuum limit, we have 

1 --Bll N -  1 
lim ~ = ~ (50) 

8 ,~1 1 - B22 2N 

and, as a consequence, 

(1 + 2 )  g"~ = 8 (1 - ~ N )  (51) 

for N ) 1. This solution agrees perfectly with the prediction resulting from Eq. (39). 
When N < 1 we have no general argument for the behavior of B22 in the massless 
limit. We may however restrict our attention to the universality class corresponding to 
the standard continuum limit, and within this class we may consider the specific lattice 
example of the minimal nearest-neighbor coupling. For this action one may show that 
for arbitrary N 

I1v/2( N/3) IN/2+I ( N/3) BI1 
Bll = 1N/2-1(N/3) ' B22 = IN/2-1(N/3) - 1 -- ---~-. (52) 

When N/> 1 Bjl is strictly smaller than one for all finite values of 13 and only in the 
limit/3 ~ oo the massless regime is attained, in which case B22 ---* 1 as well, as expected 
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Fig. 4. f* vs. N for l-d O(N) models. 

from the general argument. However, when N < l one may numerically check that a 

finite value tic exists such that Bll (tic) = l: as a consequence, B22(f lc)  = l - l / f i c  v s I. 

Since B22 is strictly different from one in the massless limit, we get from Eq. (49) that 

within this universality class 

( I  + 2 )  g"~ = 2 ( N +  2) (53) 

for N < 1. Let us notice that the two solutions connect very smoothly to each other 

(the function and its first derivative have the same left and right limit) because of  the 

double zero at N = 1 in the contribution that does not vanish when N > 1. Fig. 4 shows 

(1 + 2 / N )  ~r vs. N. 
This is very reminiscent of  what is going to happen when d = 2: for small N tic is 

finite and there is a domain of  analyticity in N for gr around N = - 2 ,  while for large N 
tic is infinite (asymptotic freedom) and analyticity in 1 I N  is present. The two regimes 
seem to meet smoothly at N = 2. 

As a further check of  our results we may consider the N = 0 case. This is a very simple 
model of  self-avoiding walks in one dimension. All computations are straightforward 

and one obtains, with the notations adopted here, 

lim ( 1 +  2 )  ~ N--,o -~ gr = 4, (54) 

in full agreement with our general formula. Also intermediate steps are reproduced, with 

the identification BI1 = fl, B22 = 0. 
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4. Non-linear (r models in higher dimensions 

219 

Lattice non-linear tr models, which we may choose to describe in terms of the standard 
O( N)-invariant nearest-neighbor action 

SL = - N i l  ~ Sx " Sx+t~ (55) 
X,l.t 

subject to the constraint Sx 2 = 1, when considered on a d-dimensional lattice with 
d < 4 have a non-trivial critical point tic <<. oo whose neighborhood (scaling region) 
is properly described by a renormalized continuum field theory. This theory is in turn 
nothing but the y ~ 0 limit of the standard O(N)-invariant scalar field theory (linear o" 

model). We may therefore study the critical properties (and in particular the fixed-point 
value of the renormalized coupling) of the symmetric phase of the O(N) model by 

exploring the region fl ~ tic of the lattice model. 
The left-hand side of Eq. (9) has a simple reinterpretation in terms of quantities 

defined within the associated lattice spin model. Setting 

X = ~ ( S o .  Sx), m 2 = ~ x 2 ( s o .  Sx), 
x x 

se2= m2 _ 1 
X 4  = Z (so " SxSy " Sz)c, (56) 

2dx  m2r ' 
J,y,z  

one can argue that the combination 

)(4 (57) 
X 2 ~  d 

should either admit a non-trivial limiting value or vanish with logarithmic deviations 
from scaling when the critical line is approached. This is essentially a consequence of 
the existence of an unique diverging relevant scale in the scaling region. It is furthermore 
trivial to show that in the scaling region, mr ~ 0, 

N '¥4 ( 2 ) f - -  1+ (58) 

and in particular 

f*=_ f ( f l c ) =  ( l  + 2 ) g"~. (59) 

We also mention that f can be written in terms of the Binder cumulant defined on a 
L d lattice 

UL = 1 + 2 ( (S .  S) 2) (60) 
N ( ( s . s ) )  2' 

where S = ~ x  Sx. Indeed, 

f =  N lim UL • (61) L---* oo 
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As already mentioned in Section 3, there is a crucial dependence on the space di- 
mensionality as well as on N. In two dimensions it is well known that models with 
- 2  ~< N ~< 2 are well described at criticality by conformal field theories with c ~< 1. 
In particular at N = - 2  the fixed point is Gaussian, N = 0 corresponds to a model 
of self-avoiding random walks, N = 1 is the solvable Ising model, and N = 2 is the 
XY model showing the Kosterlitz-Thouless critical phenomenon, characterized by an 
exponential singularity at a finite tic. 

When - 2  ~< N ~< 2 the critical point occurs at a finite value of tic. When N /> 3 
there is apparently no criticality for any finite value of ft. This is consistent with the 
Mermin-Wagner theorem on the absence of spontaneous symmetry breakdown for two- 
dimensional continuous symmetry and with the weak-coupling (large-fl) prediction of 
asymptotic freedom and dynamical mass generation for this class of models. Large-N 
results and the 1/N expansion are completely consistent with the above picture [ 12,13 ]. 
From the point of view of the renormalized coupling analysis it is however impossible to 
distinguish between the two behaviors, since they are both compatible with a non-zero 

value of f*.  
We now briefly present some large-N results regarding f and its limit at tic. On the 

lattice, using the action (55), the large-N limit of f ( f l )  can be easily obtained from 
the saddle-point equation 

f ddq 1 
fl = (2¢r)d ~2 + mo 2' (62) 

where ~2 -- 4 ~ sin2(q,,/2), and the relation 

2 
f (fl) = -m~o_ d \-~m2o j . (63) 

In 2d the above equations are made more explicit by writing 

2_~ l + k  fl = kK(k),  f = 4rr kE(k ) , (64) 

where k = (1 + m2/4) -I, K and E are elliptic functions. Fig. 5 shows f ( f l )  vs. 8. In 
the large-fl limit the continuum result (28), i.e. f*  = 8rr, is recovered. 

Our 1IN expansion analysis of Section 2 leads to the evaluation of the O(I/N) 
correction to f*.  Indeed, in two dimensions, 

i f*  = 87r 1 + - ~ + O  (65) 

with f l  = -0.602033 .. . .  In three dimensions we face a quite different situation. The 
critical point occurs at a finite value tic for all values of N. At N = c~ [ 15] 

f lc(N=oc) = f 
d3q 1 

(27r)3 ~2 - 0.252731 . . .  (66) 

The four-point renormalized coupling f ( f l )  at N = oc is shown in Fig. 6. At the critical 
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Fig. 5. f ( f l )  vs. fl for 2d O(c~) model. The dotted horizontal line represents the continuum value f* = 8~r. 
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Fig. 6. f ( f l )  vs. fl for 3d O(oo) model. The dotted horizontal line represents the continuum value f* = 16zr. 
The dashed vertical line indicates the critical point tic = 0.252631... 
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point f* = 167r. It is also possible to estimate the deviation of tic(N) from Eq. (66) 
by the 1/N expansion technique presented first in Ref. [ 15], leading to the relationship 

t ic(N) = tic(OO) + -~ + 0 , (67) 

where 

i'"lla ' ;] 2 + ------"-----2 ' b, = - ( 3 A(°)(q) (2~)3 (ff2)2 [ 2(p + q )  2(p - q )  

= d3r 1 
t 2,/rX 3 --.------. 2" (68) 

) r ~ ( r + q )  

Numerically bl ~ -0.117. It is also important to have an estimate of the value of the 
internal energy E at the criticality 

el (~_____) 
Ec(N) = Ec(OO) + ~ + O . (69) 

We notice that 

1 0 
E = (Sx. Sx+~) = - - - -  In Z(t i ,  N) 

Nd afl 

I m~ 1 [ ~ - ( b )  2 ]  (~____) 
=I-2--~+~-~+~- ~ +~, (too) +0 , (70) 

where .~b)(m02) is the lattice counterpart of 271 b) (m02), defined in Eq. (15). By setting 
d = 3 and by considering the m 2 ~ 0 limit we then obtain 

1 
Ec(N) =I 

6tic(c~) 

.[ 2 i,'q,.°2(q)] +-~ tic(-OO) 2 +tic(OO--------) (2~r)3 ~ j +0 . (71) 

Numerically we obtained Ec(oO) = 0.340537... and el -~ -0.07, For the three- 
dimensional case our O(1/N) calculation of f* gives 

[,, f*=16¢r  1 + ~ + O  (72) 

with f t  = -1.54601 .. . .  
In the two- and three-dimensional O(N) models a number of techniques have been 

applied to the determination of f*. In particular we mention the ~b 4 field theoretical 
approach at fixed dimensions proposed by Parisi [ 16] and developed in Refs. [ 17,18], 
also making use of Borel resummation techniques (see for example Refs. [ 19,20] for 
a review on this approach). This method has been applied to N = l (Ising models) in 
2d [ 18], N = 0, l, 2, 3 [ 17,18,21 ] and many larger values of N [ 21 ] in 3d, leading to 
a rather precise estimate of f*, especially in 3d. In order to compare our results with 
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the field theoretical calculations we must keep in mind that it is customary to rescale 

the coupling in such a way that for all values of N the one-loop fixed point value of the 
new coupling ~ be exactly one [ 17,18]. By comparing the one-loop expression of the 
fl-function, which in our notation would be 

N + 8  r ( 3 - d / 2 ) ~ 2 0 ( ~ 3 r )  ' (73) 
/3(~r) = (d - 4)gr -4- T ('4~') ~-~ gr + 

we find 

~. N + 8 F ( 2  - d/2) f , .  
= N + ~  2(47r)a/2 (74) 

We also mention a determination of f*  for N = 0 in 3d by working directly with the 
self-avoiding random walk model [22], which turns out to be in full agreement with 
the corresponding ~b 4 field theoretical calculation [ 17,18]. 

Estimates of f*  can also be obtained by Monte Carlo simulations using the lattice 
formulation of the theory, by directly measuring f( /~) .  Numerical studies concerning 
the four-point coupling have been presented in the literature for some two-dimensional 
models: for N = 1 [23], and N = 2,3 [24]. The comparison with these works must 
take into account the extra factor N in our definition (61) of the four-point coupling f .  

Finally let us briefly comment on the d = 4 case. In this case it is not possible to 
define a non-trivial limit for the non-linear o- model in the strict 9' = 0 regime, at least 
within the 1IN expansion, since we obtain the naive result A(k) = 0 implying ~r = 0. 
This is however consistent with the common expectation that O(N)-invariant models in 
four dimensions may only have a trivial fixed point, in which case the critical region 
should be characterized by logarithmic deviations from scaling. That this is the case 
has been shown by Ltischer and Weisz by making use of the strong-coupling expansion 
in a beautiful series of papers [3,5-8]. Kristjansen and Flyvbjerg [25] in turn have 

developed the lattice 1IN expansion of the O(N)-invariant models in four dimensions 
both in the symmetric and in the broken phase, finding substantial agreement with 
Refs. [3,5-8] at N = 4 in the region around criticality. 

We may add that, by properly manipulating the expression presented in Appendix A 
in the limit d ~ 4, it is possible to compute exactly (albeit only numerically) the 
I /N  correction to the/~-function of the (~b2) 2 model for all values of the (running) 
renormalized coupling. In turn these results might be used to improve our understanding 
of the non-perturbative limit of a strongly interacting Higgs sector on the line traced by 
Refs. [26,27], where the leading order result was analyzed. 

5. Strong-coupling analysis 

The non-triviality issue can be also investigated by high-temperature series methods 
formulating the theory on the lattice. We consider the nearest-neighbor formulation 
(55) of O(N)  vector models. Notice that in (55) we have introduced a rescaled inverse 
temperature/3. 
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The strong-coupling expansion of f ( /3)  has the following form: 

O O  

Ad(/3) =~ /3d/2 f ( /3 )  = 2 + E aifl i. (75) 
i=1 

Series up to 14th order of the quantities involved in the definition of f ( /3) ,  i.e. X, 
m2 and X4, have been calculated by Ltischer and Weisz [3], and re-elaborated on by 
Butera et al. [4]. From such series one can obtain Ad(/3) up to 13th order. We mention 

that, for other purposes, we have calculated the strong-coupling series of the Green 
function G(x)  =_- (so • Sx) up to 21st order in 2d, and up to 15th in 3d, obtaining the 
corresponding series of the energy, the magnetic susceptibility and the second moment 
correlation length to the same order [28]. 

We also considered strong-coupling series in the energy f ( E ) ,  which can be obtained 
by inverting the strong-coupling series of the energy E =/3 + 0(/33) and substituting in 
Eq. (75) 

f ( E ) =  ~ 2 +  eiE . (76) 
i---1 

From our strong-coupling series of the energy [28], we could calculate Bd(E)  =- 
Ed/2 f (E)  up to 13tb order. 

Before describing our analysis of the above series based on the Pad~ approximants 
(PA's) technique (see Ref. [29] for a review on the analysis of strong-coupling series), 
we recall that PA's are expected to converge well to meromorphic analytic functions. 
More flexibility is achieved by applying the PA analysis to the logarithmic derivative of 
the strong-coupling series considered (Dlog-PA analysis), and therefore enlarging the 
class of functions that can be reproduced to those having branch-point singularities. In 
general more complicated structures may arise, such as confluent singularities, which 
are sources of systematic errors for a PA (or Dlog-PA) analysis. In particular confluent 
singularities at tic, i.e. confluent corrections to scaling arising from irrelevant opera- 
tors [ 18,301, lead in general to a non-diverging singularity of f ( /3)  at tic. Indeed in 
the presence of confluent singularities we would expect f ( /3 )  to behave as 

f (/3) ~-- f*  + c (tic - /3) ,a (77) 

close to/3~, with A > 0. Such a behavior close to/3c cannot be reproduced by PA's or 
Dlog-PA's, while it could be detected by a first or higher order differential approximant 
analysis [ 31 ]. Therefore, in order to reduce systematic errors, one should turn to a more 
general and flexible analysis, such as differential approximants, which, on the other 
hand, require many terms of the series to give stable results. We tried also this type of 
analysis without getting stable and therefore acceptable results, very likely due to the 
relative shortness of the available series. We then expect PA and Dlog-PA analysis to be 
subject to larger systematic errors when confluent singularities are more relevant, as in 
3d models at small N, where they represent a serious problem also in the determination 
of the critical exponents from the available strong-coupling series. 
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It is important to notice that the accuracy and the convergence of the PA estimates 

may change when considering different representations of the same quantity, according 
to how well the function at hand can be reproduced by a meromorphic analytic function. 
By comparing the results from different series representations of the same quantity one 
may check for possible systematic errors in the resummation procedure employed. To 

this purpose, in our study we will compare estimates of f* coming from the strong- 

coupling series of both f ( /3)  and f (E ) .  Exact results at N = c~ presented in the 
previous section, beside giving an idea of the behavior of f ( f l )  at finite N, represent 
useful benchmarks for strong-coupling methods. 

The most direct way to evaluate f* - f ( f lc)  would consist in computing [l/m] PA's 

At/,,, (fl) from the available series of Ad (fl), and evaluating fl-d/2At/m (fl) at the critical 
point tic (at least if fl~ < cx~; if tic = co things are trickier as we will discuss below). 
This simple procedure works already reasonably well, but we found more effective a 
Dlog-PA analysis, which showed a greater stability and whose results will be presented 
in the following. 

Our Dlog-PA analysis consisted in computing [I/m] PA to the strong-coupling series 

of the logarithmic derivative of Ad(fl), indicated by Dlogt/,,,Ad(fl), and subsequently 
a set of corresponding approximants ft/m(fl) to f ( f l ) ,  which are obtained by recon- 

structing f ( f l )  from the logarithmic derivative of Ad(fl): 

2 / 
ft/m(/3) = ~ exp dfl' Dlogt/.,Ad(/3'). 

0 

(78) 

All the approximants with 

l + m > ~  10, r n / > l / > 4  (79) 

were considered in order to check the stability of the procedure. Notice that, for given 

l, m, the number of terms of the series of Ad(fl) used by the corresponding Dlog-PA is 
n = l + m + 1. Once the approximant ft/m(fl) is computed, if tic is finite, its value at 

tic provides an estimate of f*.  
This requires a rather precise determination of tic, which is in some cases available 

in the literature from strong-coupling and numerical Monte Carlo studies. When tic was 
not known, we estimated it from a Dlog-PA analysis of the strong-coupling series of the 
magnetic susceptibility (up to 21st order in 2d and 15th in 3d). Our strong-coupling 

determinations of tic in 3d models at large N compare very well with the O(I /N)  
calculation (67), as shown in Fig. 7. Let us notice that the error on the value of /3  is 
small enough not to be relevant for the estimate of f*.  

In order to better understand the analytic structure of f ( f l )  we have done a detailed 
study of the complex-plane singularities of the Dlog-PA's of Ad(/3). We have first 
checked hyperscaling. A violation of hyperscaling would lead to a behavior f ( /3)  
Aa(/3) ,.~ (tic - /3 )"  for/3 --+ tic, and thus the Dlog-PA's would show a simple pole at 
/3 = tic. We recall that a Dlog-PA analysis is in general very efficient in detecting power- 
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law singularities. We have found no evidence of  such a pole, confirming hyperscaling 
arguments. However, notice that when 1 > A > 0 Eq. (77) implies a behavior 

DlogAd(fl)  ,', (tic - fl)4-I (80) 

close to tic. In two dimensions za _~ 1 and therefore we do not expect to find singularities 
around tic. This is confirmed by the analysis of  A2(fl) .  In three dimensions, while at 
large N we have A = 1 + O ( 1 / N )  [32] ,  at small N we expect d _~ 0.5; thus A3(fl) 
should behave as in Eq. (80) ,  and in the Dlog-PA's the singularity should be mimicked 
by a shifted pole at a fl larger than tic. Indeed in the analysis of  A3(fl) we have found a 
singularity typically at fl ~ 1.1-1.2tic. This fact will eventually affect the determination 
of  f ( f l )  close to tic by a systematic error. However, since the singularity is integrable, 
the error must be finite and the analysis shows that such errors are actually reasonably 

small. 
Sometime the PA's showed spurious singularities on the positive real axis (or very 

close to it) for fl < tic. We considered these approximants defective, and discarded 
them from the analysis. Such defective PA's were a minority, as the tables show. The 
only stable singularity detected by the Dlog-PA's of  Ad(fl)  lies in the negative fl axis 
and closer to the origin than tic: it turns out to be nothing but a regular zero of  A d ( f l ) .  

The position of  this negative zero is reported in the Tables l, 2, 3 and 4 for several 
values of  N. 

As final estimates of  f* ,  reported in Tables 5 and 6, we take the average of  the 
values f l / , ( f l c )  from the non-defective PA's using all available terms of  the series, 
i.e. those with n = l + m + 1 = 13. The errors displayed in Tables 5 and 6 are just 
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Table 1 
For some 2d O(N) tr models with N < 2 we report the critical point,/3c; the estimate of the singularity of the 
PA's closest to the origin, flo, which corresponds to a regular zero of A2(fl); the values of the approximants 
fl/m(fl) at the critical point. Asterisks mark defective PA's 

N tic /3o 5/5 4/6 5/6 4/7 6/6 5/7 4/8 

- I  0.3145(I) -0.1315 5.27 5.32 5.27 5.28 5.27 5.31 * 
- i / 2  0.3492(1) -0.1506 7.87 * * 8.04 7.85 8.10 8.00 

0 0.379052(1) [38] -0.1653 10.51 * * 10.43 10.54 10.48 * 
!/2 0.408545(8) -0.1774 12.60 12.72 12.68 * 12.66 12.61 12.63 
1 0.4406867... -0.1878 14.65 14.72 14.70 14.67 14.69 * 14.57 

3/2 0.4804(1) -0.1969 16.76 16.76 16.76 16.60 16.83 16.83 16.47 

Table 2 
For the 2d XY model (N = 2) we give some details on the analysis of the series of f(/3) (first line) and 
f ( E )  (second line). We report the critical point,/3c (Ec); the estimate of the regular zero of A2 (/3) ( B2 (E) ) 
closest to the origin,/~o (Eo); the values of the approximants ft/m(fl) (fl/m(E)) at tic (Ec). Asterisks mark 
defective PA's 

N 5/5 4/6 5/6 4/7 6/6 5/7 4/8 

2 /3c= 0.559(3) [34,351 /30 = -0.2049 19.27 19.44 * 18.71 * * 18.24 
Ec=0.722(3) [341 Eo= -0.2179 18.28 18.46 18.30 18.35 18.29 * 18.17 

Table 3 
We give some details of the strong-coupling analysis of the series f(/3) (first line) and fCE) (second 
line) for two asymptotically free models: N = 3,4. We report the estimate of the regular zero of A2(/3) 
(B2 (E)) closest to the origin,/30 (Eo); the values of the approximants ft/,n (/3) (fl/,n (E)) at a value/3 (E) 
corresponding to a correlation length ~: ~ 10. The values of E and £ are taken from Ref. [371 for N = 3, and 
Ref. [36] for N = 4. Asterisks mark defective PA's, i.e. PA's having singularities for/3 ~< ~ (E ~< /~) 

N ~ 5/5 4/6 5/6 4/7 6/6 5/7 4/8 

3 flo = -0.2188 B=0.5  11.05(1) 20.3 20.6 * 20.0 * 19.5 19.8 
El) = --0.2330 E = 0.60157 I 1.05( 1 ) 19.9 20.0 19.9 19.9 19.9 19.9 19.8 

4 flo = --0.2305 /3 = 0.525 10.32(3) 21.8 22.4 * 21.3 * 20.6 21.0 
Eo = --0.2456 E = 0.60089 10.32(3) 21.2 2 1 . 3  21.3 21.3 21.2 21.4 21.1 

indicat ive;  they are the var iance around the es t imate  o f  f *  o f  the results c o m i n g  f rom 

all PA's cons idered  (cf.  ( 7 9 ) ) ,  which should give an idea o f  the spread o f  the results 

c o m i n g  f rom different  PA's. Such errors do not always provide  a rel iable es t imate  o f  

the sys temat ic  errors,  which  may  be underest imated especial ly when the structure o f  the 

funct ion (o r  o f  its logar i thmic  der ivat ive)  is not  well  approximated  by a meromorph ic  

analyt ic  funct ion.  In such cases a more  rel iable  est imate o f  the systematic  error  wou ld  

c o m e  f rom the compar i son  o f  results f rom the analysis o f  different  series represent ing 

the same quantity,  which  in general  are not  expected to have the same structure. 

For  this reason we  have considered the series in the energy variable, which we have 

analyzed exact ly as f ( f l ) .  In this case instead o f  tic we needed Ec, the energy at the 

critical point.  When  the value o f  Ec was not avai lable in the literature, we es t imated it 
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Table 4 
For 3d O(N) tr models we present a summary of the analysis of the strong-coupling series of f( /3)  (first 
line) and f ( E )  (second line) at some values of N. We report the critical point,/3c (Ec); the estimate of 
the regular zero of A3 (/3) ( B3 (E) ) closest to the origin, /3o (E0) ; the values of the approximants fr/m (/3) 
(f l /m(E)) at/3c (Ec). Asterisks mark defective PA's. Errors due to the uncertainty of/3c and Ec are at most 
of the order of one in the last digit of the numbers reported (except for some cases where they are given 
explicitly). We mention that at N = 1 and N = 2 our strong-coupling analysis led to Ec = 0.332(3) for both 

N /3c, Ec /3o, Eo 5/5 4/6 5/6 4/7 6/6 5/7 4/8 

--1 0.19840(3) -0.109 * 11.2 11.3 10.9 10.6 10.7 * 
0.350(5) --0.117 9.3 9.4 9.7 * 10.1 10.5 10.3 

0 0.21350(1) [381 -0.134 19.7 19.8 19.6 19.8 * 19.4 * 
0.333(5) -0.146 * 18.1(3) * 18.4(2) 18.3(2) * * 

1 0.221652(4) 13911 --0.149 25.4 26.0 25.3 25.8 25.4 24.8 * 
0.3301(1) 14111 -0.166 24.3 24.3 24.3 24.4 24.4 24.4 24.4 

2 0.22710(1) [40] --0.160 29.4 29.6 29.4 29.6 29.4 * 29.6 
0.3297(2) [421 -0.180 28.9 28.9 28.9 29.0 28.9 28.9 28.9 

3 0.231012(12) [43,44] -0.168 32.5 32.3 * 32.4 32.5 32.4 32.4 
0.331(3) --0.191 32.2 32.2 32.2 32.3 32.3 32.3 32.3 

4 0.2339(1) -0.175 34.9 34.5 35.3 34.6 34.9 34.7 34.7 
0.333(2) -0.200 34.8 34.8 34.7 34.9 34.8 34.9 34.8 

8 0.2407(1) -0 .19 40.5 39.9 41.1 40.2 40.6 40.4 40.3 
0.334(1) -0.224 40.5 40.5 * 40.8 40.6 40.7 40.7 

16 0.2458(1) -0 .20 44.8 44.3 45.2 44.6 44.9 44.7 44.7 
0.3370(5) -0.246 44.8 44.8 * 45.1 44.9 45.0 45.0 

24 0.2479(I) -0.21 46.5 46.1 46.8 46.4 46.6 46.4 46.4 
0.3379(3) --0.260 46.4 46.5 47.0 46.7 46.6 46.7 46.6 

32 0.2492(2) --0.22 47.5 47.1 47.6 47.3 47.5 47.4 47.4 
0.3384(3) --0.268 47.3 47.4 47.7 47.5 47.5 47.5 47.5 

48 0.2502(1) --0.22 48.4 48.1 48.5 48.3 48.4 48.3 48.3 
0.3390(3) --0.280 48.2 48.3 48.5 48.5 48.4 48.4 48.4 

oo 0.252731... --0.25 50.24 50.12 50.31 50.21 50.27 50.25 50.24 
0.340537... --0.34 50.15 50.23 50.36 50.32 50.26 50.29 50.26 

Table 5 
For 2d O(N)  tr models we report the critical point fit.; f* from our strong-coupling analysis, f.~ the O( 1/N) 
calculation of f* ,  f~/N; f* from q~4 field theory at fixed dimensions, f~t; f*  from Monte Carlo simulations, 

f~,~ 

N ~c f ~  f~/N f~*t .]*c 

- I  0.3145(1) 5.29(3) 
- 1 / 2  0.3492(1) 8.0(1) 

0 0.379052(1) [38] 10.51(5) 
! /2  0.408545(8) 12.63(5) 

1 0.4406867... 14.63(7) 
3/2 0.4804(1) 16.7(2) 

2 0.559(3) [34,35] 18.2(2) 
3 o~ 19.8(4) 
4 oo 21.2(5) 

oo o~ 

20.09 
21.35 
25.1327... 

15.5(8) [18] 14.3(1.0) 123] 

17.7(2) [241 
19.6(2) 1241 
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Table 6 
For 3d O(N) tr models we report f* as estimated by the analysis of the strong-coupling expansion of f ( f l ) ,  
f* .f* sc,a' from the analysis of the series of f ( E ) ,  f'so,e," the O(1/N) calculation of f*,  f~/N; f* from ~b 4 

field theory at fixed dimensions, f~. In Ref. [21] data of f* were reported without errors, and differences 
with Refs. [ 17,181 should be due to a different resummation procedure 

-1  10.7(4) 10.3(6) 
0 19.4(3) 18.3(3) 17.86(5) ]18,171 17.62 1211 
I 25.1(5) 24.4(1) 23.72(8) I18,171 23.47 1211 
2 29.5(1) 28.9(1) 28.27(8) 118,171 28.03 121] 
3 32.4(1) 32.3(1) 31.78(9) I18,171 31.60 [211 
4 34.8(3) 34.8(1) 30.84 34.41 1211 
8 40.4(4) 40.7(1) 40.55 40.93 [211 
16 44.8(3) 45.0(1) 45.41 45.50 121] 
24 46.5(2) 46.6(2) 47.03 47.13 1211 
32 47.4(2) 47.5(1) 47.84 47.94 1211 
48 48.3(1) 48.4(1) 48.65 
oo 50.25(6) 50.27(6) 50.2654... 
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Fig. 8. AEc -- Ec(oO) --Ec(N) vs. I /N in 3d models, as estimated by a strong-coupling analysis. The dashed 
line represents the O( I /N)  calculation (cf. Eq. (69)). 

by the first real positive singularity found in the analysis of the available strong-coupling 
series of the magnetic susceptibility expressed in powers of E. This procedure provides 
an estimate of Ec much less precise than tic (see Table 4 for the values obtained in 
3d), but sufficiently good to our purposes, given that f(E) is smooth around Ec. In 
Fig. 8 we compare our determinations of Ec in 3d models with the large-N result (71), 
showing agreement within the uncertainty of the strong-coupling results. 
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Fig. 9. fr/6(fl) vs. fl/flc for various values of N < 2 in two-dimensional models. 

In asymptotically free models where tic = co, the task of determining f*  from a 
strong-coupling approach appears much harder. On the other hand, since at sufficiently 

large fl we expect that 

I f(M) - f * l  "~s ¢-2, (81) 

a reasonable estimate of f*  could be obtained at fl-values corresponding to large but 

finite correlation lengths, e.g. ~ > 10, where the curve f ( f l )  should already be stable 
(scaling region). Notice that this is the same idea underlying numerical Monte Carlo 

studies. Another interesting possibility is to change variable from fl to the energy E, and 
analyze the series in powers of E. In the energy variable the continuum limit is reached 
for E ~ 1, and therefore the strong-coupling approach to the continuum limit appears 
more feasible. In order to reach the continuum limit from strong coupling, we believe 
this change of variable to be effective especially for the analysis of dimensionless ratios 
of physical quantities. 

To begin with we present the results obtained for the 2d models. PA's for - 1 ~< N < 2 
are quite stable, giving estimates of f*  very close to each other as shown in Table 1, 

where the values of the approximants f t / , , ( f l )  at tic are reported. For N < - 1 ,  due 
to the instability of the corresponding PA's, we could not get reliable estimates of f*.  
Fig. 9 shows f r /6( f l )  vs. fl/flc for various values of N. Differences in the other PA's 
were of the order of the width of the lines drawn in the figure. Final estimates of f*  
are reported in Table 5. In order to check possible systematic errors in our analysis, 
we applied the above procedure to the 13th order series of B2(E) of the Ising model 
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Fig. 10. Some ft/m(fl) are plotted vs. fl for the 2d XY model (N = 2). The vertical dotted lines indicate the 
critical point:/3c = 0.559(3) [34,35]. Monte Carlo data from Ref. [24] are also shown. 

(N  = 1). The value of f ( E )  at Ec = v~ /2 ,  the energy value at tie, must give again 

f*.  As in the analysis of A2(fl),  approximants f t /m(E) turn out to be rather stable, 
leading to the result f* = 14.64(10), which is perfectly consistent with the estimate 
f*  = 14.63(7) coming from the analysis of A2(fl). 

For the Ising model (N = 1) our estimate of f*  is in agreement with the result of 
Ref. [33], obtained by a slightly different strong-coupling analysis (the value reported 

there is f*  - 14.67(5)),  and with the estimates by ~b 4 field theory calculations at fixed 
dimensions [ 18] and numerical Monte Carlo simulations [23] (see Table 5). 

The 2d XY model (N = 2) is expected to follow the pattern of a Kosterlitz-Thouless 
critical phenomenon, whose critical region is characterized by a correlation length di- 

verging exponentially with respect to z - tic - / 3 :  s ~ ~ exp(b /z  ~) with o- = 1/2. For 

this model the values of f t /m(fl)  and f t /m(E) respectively at tic = 0.559(3) [34,35] 
and Ec = 0.722(3) [34] are reported in Table 2. Fig. 10 shows various non-defective 

f t /m(fl)  at N = 2, comparing them with the Monte Carlo results obtained recently by 
Kim [24] for correlation lengths: 5 < s c < 70. The agreement is very good especially 
for PA's obtained using all available 13 terms of the strong-coupling series. PA's of the 
series in E turn out to be more stable, as shown in Table 2 and in Fig. 1 l, giving a 
perfectly consistent result for f*.  Our final estimate is f*  = 18.2(2) which is slightly 
larger than the Monte Carlo result f*  = 17.7(2) [24] (this number has been obtained 
by taking only data for s ¢ > 25 of Ref. [24] and taking into account the extra factor N 
in our definition (58)) ,  but definitely consistent. 

When N >~ 3 the critical point moves to infinity making the determination of f*  
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Fig. 11. Some f l /m(E) are plotted vs. E for the 2d XY model (N = 2). The vertical dotted lines indicate the 
value o f  the energy at the critical point: Ec = 0.722(3),  estimated from Monte Carlo data 134l. Monte Carlo 
data from Ref. [24] are also shown. 

from strong coupling harder. For such models our analysis should be considered just 

exploratory due to the shortness of  the available series, but as we will see the results look 

promising. In order to give an idea of  the stability of  our resummation procedure in this 

case, in Table 3 we report the values taken by ft/,,(fl) and ft/, ,(E) for pairs of  fl and 

E corresponding to a correlation length ~: _~ 10. In Fig. 12 various ft/m(fl) at N = 3 are 

drawn and compared with the Monte Carlo results of  Ref. [24] ,  obtained for correlation 

lengths 10 < s c < 120. The curves corresponding to different ft/,,(fl) are very close up 

to fl -~ 0.5 (see also Table 3). At fl > 0.5 we observe that curves from different PA's 

become more and more stable with increasing n = l + m + 1, improving the agreement 

with the Monte Carlo data. Anyway, the agreement is quite good, even for fl ~ 0.6, 

corresponding to ~ -~ 65. Fig. 13 shows some approximants ft/, ,(E) computed from 
the series in the energy. At E = 1 they give consistent results within 5-10%. Similar 

results are observed for N = 4, as shown in Fig. 14, where some ft/m(fl) are plotted. 

Notice that at fl = 0.6 s c ~ 25 [36].  
In order to get an estimate of  f*  for both N = 3 and N = 4 we considered the 

values o f  ft/,,(fl) and fL/,,(E) at the largest values of  fl and E where they are still 
stable, i.e. fl _~ 0.5 and E -~ 0.6, which correspond to an acceptably large correlation 
length ge _~ 10. So, from data in Table 3, our final estimate at N = 3 is f *  _~ 19.8, 

with an uncertainty of  few per cent, which compares very well with the Monte Carlo 
result f*  = 19.6(2) (obtained by fitting all data reported in Ref. [24] to a constant) 
and O(I /N)  calculation f*  ~- 20.09. At N = 4 our estimate is f*  -~ 21.2 against 
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f*  -~ 21.35 coming from the O(I/N) calculation. 
Fig. 15 summarizes our 2d results: it shows our strong-coupling estimates of f*  vs. 

N, comparing them with the available estimates of f*  from alternative approaches: ~b 4 

field theory, Monte Carlo and 1/N expansion techniques. There is a general agreement, 
in particular the O ( I / N )  calculation f*  ~ 8zr (1 -0 .602033 /N)  fits very well the data 

down to N = 3. Furthermore we observe the linear approach of f*  toward zero for 

N ~ - 2 ,  similar to the d = 1 case. 

Let us now consider 3d O(N)  tr models, which show a critical behavior at a finite fl 
for all values of N. In order to check possible systematic errors we analyzed both the 

strong-coupling series of f ( f l )  and f (E) .  Table 4 shows a summary of the estimates 

of f* from the values of the approximants ft/m(fl) at tic and fl/m(E) at Ec. Final 
estimates of f*  from the analysis of the strong-coupling series in fl and in E are 
reported in Table 6. We recall that the errors displayed in Table 6 are related to the 
spread of the PA results, while an estimate of  the true systematic errors could only come 
from the comparison of results from different series associated to the same quantity. 

Fig. 16 shows typical curves of  f ( f l )  obtained by [6/6] PA's (sometimes we used 
[7/5] PA's when the [6/6]  ones were defective). The error bars displayed at fl/fl~ = 1 
show the spread of the estimates of f*  from different non-defective [l/m] PA's. 

At large N, typically N />  3, both series of f ( f l )  and f (E )  give consistent results, 
which should be an indication of small systematic errors. As further check of our 
resummation procedure in the large-N region, we repeated our analysis at N = c<~. We 
found that most of the approximants ft/m(fl) constructed from the 13th order series 
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f. 

of A3(fl), if plotted in Fig. 6, would not be distinguishable from the exact curve. 
The analysis of the N = c~ 13th order series of A3(fl) and B3(E) would have given 
respectively f* = 50.25(6) and f* = 50.27(6) against the exact value f* = 167r = 
50.2654 . . . .  Therefore everything seems to work fine at large N. On the contrary, at 
small N there are discrepancies between the analysis in/3 and in E, which are definitely 
larger than the typical spread of the PA estimates of f*  from each series. Such differences 
give somehow an idea of the size of the systematic errors of our analysis when applied 
to these values of N. 

In Table 6 for comparison we also give the results from ~b 4 field theory and 1/N 
expansion. Fig. 17 summarizes all available results for f*.  There, as a strong-coupling 
estimate of f* ,  we show the average of the results from the series f ( /3)  and f(E), 
while their difference is used as an estimate of the systematic error. 

At large N, N >~ 8, there is substantial general agreement: estimates from the strong- 
coupling approach, O(1/N)  calculation f* _~ 16qr (1 - 1.54601/N), and ~b 4 field theory 
differ at most by 1% to each other. At small N, N = 0, 1,2, our strong-coupling estimates 
show relevant discrepancies with the field theoretical calculations, which are of the size 
of the differences between the results coming from the analysis of f(/3) and f ( E ) ,  
and therefore they should be caused by systematic errors in the strong-coupling analysis 
employed. Anyway, such discrepancies are not dramatic; indeed they are at most 5% 
and decrease with increasing N. 

In conclusion we have seen that in two and three dimensions 13 terms of the strong- 
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coupling series of Ad(fl) and Bd(E) are already sufficient to give quite stable results, 
which compare very well with calculations from other techniques, such as t~ 4 field 

theory at fixed dimensions, Monte Carlo simulations and the 1/N expansion. Of course 

an extension of the series of f would be welcome, especially for two reasons: 
(i) to further stabilize the PA's in the asymptotically free models and obtain reli- 

able estimates at values of fl corresponding to large correlation lengths s c > 100, and 
moreover check whether the change of variable fl --+ E allows one to get a reliable 
strong-coupling estimate of f*  in the continuum limit E -+ 1; 

(ii) to see whether the apparent discrepancies at small N in 3d with the more precise 
t~ 4 field theory calculations get reduced. 

An extension of the series of f(fl) may also allow a more accurate and flexible 
analysis, like differential approximants, which in general require many terms of the 

series in order to give stable results, and which could provide a better reconstruction 
of f(fl) from its strong-coupling series, taking properly into account the confluent 
singularities, which should be the major source of systematic error in 3d models at 

small N. 
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6. Conclusions 

We computed the dependence of the renormalized four-point coupling gr from the 
renormalized mass mr and the bare coupling to O(1/N) for O(N)-invariant (¢~2)2 d 
theories (d <~ 4) in the symmetric phase. As a consequence, we obtained expressions 
for the fl-function and its fixed point g~' within the same approximation. 

We extracted an independent determination of g~ from the strong-coupling analysis 
of the O(N)  non-linear or models, which we performed for d = 2, 3 and selected values 
of N in the whole range N > -2 ,  applying resummation techniques both in the inverse 
temperature variable fl and in the energy variable E. In two dimensions and for N 
sufficiently large (N ~> 3) in three dimensions we found a good agreement with the ~b 4 
fixed-dimension field theory estimates, and we could also check consistency with the 1/N 
prediction, thus seemingly indicating good convergence properties of the 1/N expansion 
at least when applied to the above quantities. In three dimensions and for small N, 
however, some discrepancy between resummations of the series in fl and in E occurred, 
which we interpreted as an indication of systematic errors, and which was also reflected 
into a small disagreement with results presented in the literature and obtained with 
other techniques, like ~b 4 field theory at fixed dimensions. Such discrepancy might be 
significantly reduced by knowing a few more terms in the strong-coupling series, whose 
feasibility seems to be well within the range of present day strong-coupling techniques. 
In our opinion improving the strong-coupling analysis might lead to a determination of 



238 M. Campostrini et al./Nuclear Physics B 459 (1996) 207-242 

the fixed point value of the renormalized four-point coupling with a precision comparable 
to, or even better than, the best available results. We stress the crucial role played by 
the comparison of series in the variables/3 and E in order to estimate the relevance of 
systematic errors. 
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Appendix A 

By applying Eq. (35) to Eq. (24) and making explicit use of Eq. (36), we may 
obtain the following explicit representation of the O( 1/N) contribution to the/3-function 
of O(N) models in d dimensions: 

fl(I)(gr) = (d - 3)2d-lflo 

+2(d_l)2(d_4+3O~r)2 f ddu 1 1 
(2~)~ [1 +~ra(U)] 2 (4 + u2)~ 

f ddu I f lo'gr+d-4 flo'gr 
+ 2 j  (-5-ff~)a t (1 +~ n ( u ) )  2 1 +~rn(u) 

[ 1 3 ( d / 4  - 2  d - l ) ]  
x (l +u2)  3 + ( 1 + u 2 ) ( 4 + u  2) \ 1 + u  2 4"+--u -2' 

2 dau d / (~Og'r + d - 4) 2 
+ ,77u  

x (1+u2)3 + ( l+u2)(4+u2) k i-~--~.2 +4-T~.2 
f d du flogr + d - 4 flogr + d / 2 -  2] 

- 4  J (2¢r)d ( l+ '~rFl (u ) )3 -O~_~-~u-~J  

x ( 4 + u 2 )  2 f l o ~ + d - 4  l_~u 2. 

f ddu flo'gr(/3ogr+d-4) l (  ) 
-4   4+u V ' (A.1) 

where we have introduced the rescaled integration variable u =. k/mr. By noticing that, 
according to its definition (37), 
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Fig. A.I .  ~ ( l ) ( ~ )  vs. g for the three-dimensional case. 

1 
0 >~ H ( u )  >>. - - - ,  (A.2) 

g. 

it is easy to get convinced that all integrals appearing in Eq. (A.I) are well defined and 
finite as long as d ~< 4 and ~r < g.. Moreover it is possible to perform a series expansion 
of Eq. (A. 1 ) in the powers of ~r, reproducing order by order standard perturbation theory 
results [21 ], and in particular to leading order 

, 8,80 (a .3)  
7,--0 

for all values of d. 
For the sake of comparison in Figs. A.1 and A.2 we plot the funct ion/30)(]) ,  where 

has been defined as in Refs. [ 17,18,21 ] such that ]* = 1 at N = c~ (see also Section 4 
and Eq. (74)) ,  respectively for d = 3 and d = 2. 

We recall once more that 

N + 8  fl.o d ~. ' (A.4) g = ~ 4 -  
and by definition we set 

o o  

/3(1)(,~) = (4 - d) ~ / 3 n ~  n+2. 
n = l  

(A.5) 

In Table A.1 we report all values in d = 1,2,3 such that /3, > 10 -3. As a check of 
accuracy of the perturbative expansion we may employ the identity 
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Fig. A.2./3C J)(~) vs. ~ for the two-dimensional case. 

Table A. 1 
We report the values of/3n, defined in Eq. (A.5), in d = 1,2,3 such that/3, ~ 10 -3. Notice that in two 
dimensions/31 = ~ + J2-~zr2 - - ~ b t ( l / 3 )  = -10.33501055 

d = l  d = 2  d = 3  

fll 388 -10.33501055 164 
27 27- 

f12 I I 8...._.27 5.00027593 1.34894276 108 

f13 335 -0.08884297 0.15564589 162 
134 iOOOl -0.00407962 0.05123618 46656 

/35 605 0.00506747 0.02342417 11664 
2o045 0.00491122 0.01264064 /36 1119744 

f17 -- 38671 0 . 0 0 3 7 7 3 6 4  0 .00757889  5038848 
1231807 0 .0028 1096 0 .00489401  

/~8 322486272 

/39 _ 21367 0 .00211235  0 . 0 0 3 3 4 0 2 4  10077696 
f110 89062753 0.00161697 0.00237987 

69657034752 
fl l  1 28651973 0 . 0 0 1 2 6 2 6 7  0 .0017  5481 

34828517376 

i l l2 0.00100476 0.00133070 

/313 0.00081329 0.00103290 

,814 0.00081770 

oo 

6 + ~ fin = - f J ,  
n=l 

( A . 6 )  
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where f l  was defined and evaluated in Section 4 (cf. Eqs. (65) and (72)) .  Notice that 
for d = 3 the coefficients fin for n ~< 5 can also be extracted from the literature [21], 
and Eq. (A.6) is already satisfied within 1% precision by the six-loop fl-function. We 
mention that, in the case d = 1, flCl)(~) may actually be computed analytically, and the 
result is 

f l ( I ) ( ~ )  _ 3~'2( 1 - ~ )3 /2  
4(3 + g)4 (648 - 3732~ + 5512~ 2 - 2183~, 3 - 330~ 4 - 27~ 5) 

6~'2 (81 - 6~ + 1750~ 2 - 1598~ 3 + 509~ 4) (A.7) 
(3  -~- ~)4  

The definitions (A.4) and (A.5) are obviously inappropriate in the limit d ~ 4, in 
which case one may verify that 

/~(1 ) ( g r )  8/30~r 2 2A-3 -> - 9/3og r + O ( ~ )  (A.8) 

where/3o ~ 1/(167r2). Eq. (A.8) in turn can be compared to the known perturbative 

evaluation around d = 4: 

N + 8 ,, ~_2 3(3N + 14) 2,=-_3 
/3 (g r )  = (d - 4)gr q- - ' - - ~ P o g r  N'2 flogr + O(~r), (A.9) 

finding complete agreement to O(1/N) .  
It is conceivable to reinterpret the d --~ 4 limit of Eq. (A.1) in a non-perturbative 

sense by a principal-part prescription for the singularity occurring at the Landau pole 
identified by the condition 

1 
/ / ( i / )  = - - -  (A.10) 

Work in this direction is in progress. 
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