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Abstract 

We construct sequences of "field theoretical" lattice topological charge density operators which 
formally approach geometrical definitions in 2D CP s - l  models and 4D SU(N) Yang-Mills 
theories. The analysis of these sequences of operators suggests a new way of looking at the 
geometrical method, showing that geometrical charges can be interpreted as limits of sequences 
of field theoretical (analytical) operators. In perturbation theory, renormalization effects formally 
tend to vanish along such sequences. But, since the perturbative expansion is asymptotic, this does 
not necessarily lead to well-behaved geometrical limits. It indeed leaves open the possibility that 
non-perturbative renormalizations survive. @ 1997 Elsevier Science B.V. 

PACS: ll.10.-z; ll.15.Ha; 75.10.Hk 

1. Introduction 

The investigation of  the topological properties of  4D SU(N) gauge theories re- 

quires non-perturbative calculations. Lattice techniques represent our best source of  

non-perturbative calculations. However, investigating the topological properties of  QCD 
on the lattice is a non-trivial task. Topology on the lattice is strictly trivial, and one 

relies on the fact that the physical topological properties should be recovered in the 
continuum limit. 

In the so-called field theoretical method [ 1 ], one constructs a local analytical function 
qL(X) of  the lattice fields which has the topological charge density q(x)  as its classical 
continuum limit: 

qL(X) , adq(x) +O(ad+l) .  (1) 

qZ(X) is not unique, indeed infinitely many choices differing for higher-order O(a d+l) 
terms can be conceived. In this quite straightforward approach the major drawback is that 
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related physical quantities, such as the topological susceptibility, can only be obtained 
after removing cut-off dependent lattice artifacts. The classical continuum limit must be 
in general corrected by including a renormalization function [2], 

qL(X) ----* a d Z ( ~ ) q ( x )  + O(ad+l), (2) 

where Z ( g  2) is a finite function of the bare coupling ~ going to one in the limit 
g2 ~ 0. The relation of the zero-momentum correlation of two qz(x)  operators, 

X L  -~ ~ ( q L ( X ) q L ( O ) ) ,  (3) 
X 

with the topological susceptibility Xt is further complicated by an unphysical background 
term, 

xL(g  2) = adZ(g~)2Xt + M(g2),  (4) 

which eventually becomes dominant in the continuum limit. So in order to extract Xt 
from this relation one needs to evaluate Z(g~) and M(f0) ,  which is a hard task. 

In order to overcome the problems caused by the above cut-off effects, other meth- 
ods have been proposed. The so-called geometrical method [3,4] meets the demands 
that the topological charge on the lattice have the classical correct continuum limit and 
be an integer for every lattice configuration in a finite volume with periodic boundary 
conditions. In 4D SU(N)  gauge theories this can be achieved by performing an interpo- 
lation of the lattice field, from which the principal fiber bundle is reconstructed. Since 
on the lattice each configuration can be continuously deformed into any other, integer 
valued geometrical definitions cannot have an analytical functional dependence on the 
lattice field. Due to their global topological stability, geometrical definitions should not 
be affected by (perturbative) renormalizations. On the other hand, as a drawback of 
their non-local nature (leading to non-analyticity), they may be plagued by topologi- 
cal defects on the scale of the lattice spacing, dislocations [5,6], whose non-physical 
contribution may either survive in the continuum limit (as in the SU(2) gauge theory 
with Wilson action [6] ), or push the scaling region for the topological susceptibility to 

large-fl values. 
Field theoretical and geometrical definitions may appear as two quite different ap- 

proaches to the problem of studying physical topological properties. An interesting 
connection between them can be conceived by exploiting the following consideration. 
Noting that geometrical definitions Qu can be written as a sum of local non-analytical 
terms, Qg = Y'~x qg(x),  one can construct sequences of field theoretical (analytical) def- 
initions q(L k) ( x ) formally approaching qg( x ) as k ~ co. An example of such sequences 
has been already given for 2D CP N-1 models [7]. 

The construction and analysis of these sequences lead to a new interpretation of the 
geometrical charges. They can be considered as limits of appropriate sequences of ana- 
lytical operators, whose perturbative renormalizations formally tend to vanish along the 
sequences. The asymptotic nature of the perturbative expansion, which emerges from 
explicit calculations of the renormalizations, does not necessarily lead to well-behaved 
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geometrical limits. It indeed leaves open the possibility of a residual non-perturbative 
renormalization, which would manifest itself in the contribution of lattice defects (the 
so-called dislocations) to the geometrical charge. We cannot prove that the expectation 
values involving the operators of the sequences constructed in this paper converge to 
the corresponding geometrical limit. However, a numerical analysis seems to show that 
such a convergence actually occurs at least for sufficiently large/~. Within this interpre- 
tation one may clarify the meaning of the geometrical charge from a field theoretical 
point of view, and account for possible discrepancies with other approaches. Moreover, 
with increasing k, one may hope that q(L k) and their correlations enjoy a progressive 
suppression of the renormalization effects, while for not too large k their sensitivity to 
lattice topological defects is reduced. The convergence of the sequence of topological 
susceptibilities to the corresponding geometrically defined quantity would imply that, for 
k sufficiently large, non-perturbative renormalization effects must eventually arise when 
the geometrical charge is affected by dislocations. We shall exhibit some numerical 
evidence of this phenomenon. 

Our study is mainly done in the context of 2D CP N-I models [8,9], which are very 
useful theoretical laboratories for testing non-perturbative numerical methods conceived 
to study topological properties. We present an analysis based on large-N and perturbative 
calculations, and numerical simulations. We then sketch an extension to QCD, where we 
shall construct a sequence of analytical topological charge density operators approaching 
Liischer's geometrical definition [4]. 

2. Sequences of topological charge density operators in two-dimensional CP N-! 
models 

2.1. Topology in two-dimensional CP N-l models 

Two-dimensional CP lv-j models are defined by the action 

S= ~-f d2xD/zzD/~z , (5) 

where z is an N-component complex scalar field subject to the constraint ~z = 1, 
and the covariant derivative D~, = au -4- iA/~ is defined in terms of the composite field 
Au = iEc)uz. Like QCD, they are asymptotically free and present non-trivial topological 
structures (instantons, anomalies, 0 vacua). A topological charge density operator q(x)  
can be defined, 

1 
q( x ) = ~--~e/z~a/~A~, (6) 

with the related topological susceptibility 

,V, = f d2x(q(x)q(O)) .  (7) 
J 
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A pleasant feature of these models is the possibility of performing a 1 I N  expansion. A 
large-N analysis of the topological susceptibility shows that Xt = O( 1 I N ) .  One indeed 
finds [ 10] 

l(0 0 ) (l) 
x , ~  = ~  1 + o  ~ , (8) 

where ~:~ is the second-moment correlation length. 
Most lattice studies of 2D CP N-1 models have been performed using the following 

actions: 

= - g 3  Y~. I~.+~.z,I 2, (9) SL 
n,/z 

where fl = 1 / (2 f ) ,  Zn is an N-component complex vector, constrained by the condition 
f ,  Zn = 1, and 

S(L g) -~ --g1~ ~ (Zn+#Znl~n,lz Av ZnZn+Nan,lz -- 2), (10) 
n,lz 

where, beside the field z, a U(1) gauge field ,~n,u has been introduced, satisfying 
~,,~,~n,~ = 1. The latter lattice formulation, S(L g), turns out to be particularly convenient 
for a large-N expansion (see Ref. [11 ] for a review). 

The original geometrical construction for the topological charge proposed by Berg 
and Liischer [4] is 

Qg = ~ qn, 
n 

1 
qn= ~-~Im [lnTr(Pn+~+~Pn+~,Pn) +lnTr(Pn+~Pn+u+~Pn)] , I~ ~ u, (11) 

where Pn = fn ® Zn and the imaginary part of the logarithm is to be taken in (-0r,  or). 
For the lattice formulation (10) an alternative geometrical definition can be given in 
terms of the "gauge" field /l,,~. Introducing the plaquette operator 

Uh,n = "~n,i ~n+i,2~n+2,i ~n,2 ' (12) 

one defines Qg,a by 

Qg,a = ~ qa,n, Ua,n = exp(i2orqa,n), (13) 
n 

where qa,n E ( -½,  ½). In view of large-N and perturbative calculations, we write the 
infinite volume limit of q,~.n in the form 

1 
qa,n = -~-~ez, v( On,~ + On+~,v - On+~,~z - On,v), (14) 

where 0,,~ is the phase of the field An,u, i.e. An,t, -- ei°"'J'. 
On a finite volume and for periodic boundary conditions qn and qa,n generate integer 

values of the total topological charge for each configuration. They are not analytical 
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functions of the lattice fields z and h, and fail to be defined on a zero-measure set of 
"exceptional" configurations. The main feature that makes these functions different from 
the ones which we term "analytical" is the absence of single valuedness. 

Many Monte Carlo studies of the topological properties of 2D CP/v-I models have 
been presented in the literature. A wide range of values of N has been considered, both 
small and large in order to test large-N calculations. The present state of art is briefly 
summarized in the following. 

For N = 2, that is for the 0(3)  non-linear or model, recent simulations using the 
so-called classical perfect action [ 12,13] and for a relatively large range of values of 
fl seem to favor what is suggested by semiclassical arguments, that is that Xt would 
not be a physical quantity for this model, in that a non-removable ultraviolet divergence 
affects the instanton size distribution. On the lattice this would manifest itself in the 
fact that lattice estimators of Xt do not properly scale approaching the continuum limit. 
Earlier claims of scaling [ 14] were probably originated by the relatively small range of 
values of fl considered, and therefore scaling violations could easily be hidden behind 
the statistical errors. 

For N > 2 Xt should be a physical quantity. At N = 4 the apparent failure of the 
geometrical method is probably caused by a late approach to scaling of the geometrical 
definition (11) when using standard lattice actions such as (9) and (10) [15-17,7]. 
Evidences of scaling and consistent results have instead been obtained by employing 
the field theoretical and cooling methods using action (10) and its Symanzik improve- 
ment [7], and a geometrical method in the context of the classical perfect action 
approach [ 18 ]. 

At larger N, N > 10, the geometrical estimator (11) shows scaling already at reason- 
able values of the correlation length using both action (10) and its Symanzik improve- 
ment [7,19]. The available Monte Carlo data at N > 10 show that the dimensionless 
quantity X t ~  approaches, although slowly, the large-N asymptotic behavior (8), and 
quantitative agreement (within a few per cent of statistical errors) is found at N = 21. 

In the following we shall construct sequences of operators approaching the geometrical 
definitions ( 11 ) and (13), and study their main features. 

2.2. Sequences of operators approaching geometrical definitions 

To begin with, we consider, within the lattice formulation (10), a sequence of analyt- 
ical operators q~ak, ) approaching the geometrical definition q~,n expressed in terms of An,u 
fields. By taking appropriate combinations of the plaquette operator ua,n (cf. Eq. (12) ), 
one can define a sequence of local operators q~k) which differ from qa,n by higher and 3.,n 
higher-order terms [7] 

1 * (-1)/+, ( ) 2  , 
q(a~ = ~ Z l k 2k I (2~----ff Im(ua,n) 

l=l  
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k! 2 
(27"f) 2k'~2k+ 1 + "/,~ ,n • (2k + 1) ! ~a,n O("~2k+3)  (15) 

Similarly, one may define 

Tr( Pn+i+~Pn+i Pn) Tr( Pn+~Pn+i+~Pn) (16) 

u~,~ = iTr(P~+i+~p~+ipn)l, u2,n = iTr(e~+~e~+i+~p~)l, 

and the quantities qj, n (J = 1,2) by 

uj, n = exp( i2zrqj, n) (17) 

(qj, n E ( -½,  1)),  so that one can write 

qn = ql,n + q2,n. (18) 

A sequence of operators approaching the geometrical definition ( 11 ) can then easily be 
constructed by 

q(k) = q(k) _a_ ,~(k) 
l ,n ~ ~/2,n ' 

q~,k n) 1 ~-~ ( -1 ) /+ '  (2__k) 2 
= 2--'~ t=l l k l - - ~  Im(uj'n)t 

k! 2 
¢,'~ ~2k 2k+l  _2k+3x 

=qj,. ( 2 k + l ) ! t  zzr) q],n +O(q j ,  n )" (19) 

Strictly speaking these functions are not analytical everywhere (they are not polynomials 
in the fields), but preserve the property of single valuedness. 

Once the above definitions are given, one can consider sequences of lattice topological 
susceptibilities, either in terms of A or z fields: 

X (k) = ~-'~(q(k)q(ok) ) = l i m  ( ~ ( k ) ( p ) ~ ( k ) ( _ p ) ) .  ( 2 0 )  
p2 ---~ 0 

n 

Under some general assumptions, which essentially amount to assuming the applicability 
of an OPE to the correlation q L ( x ) q L ( y )  when x ~ y, the relation between X (k) and 
the continuum topological susceptibility ~'t is 

)((k) ( f l )  = a2Z(k) ( f l ) 2X t  + M(k) ( f l ) ,  ( 2 1 )  

where M ~k) can be written in terms of the identity I and the trace of the energy- 
momentum tensor operator T --- 2 ~ - ~ z D ~ z ,  plus higher-order terms in a [20], 

M~k) ( f l )  = p~k) ( f l )  (I) + a2A Ck) ( f l )  (T) + O(a4). (22) 

The expression of the background term M in terms of the identity and of the trace of the 
energy-momentum tensor (which are the only RG invariant operators of lower or equal 
dimensions sharing the same quantum numbers of ,~t) may be obtained by comparing 
the OPE's of q L ( x ) q L ( y )  and q ( x ) q ( y ) ,  and by taking their difference. 
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2.3. Large-N and perturbative analysis 

The sequence ,,(k) is particularly suitable for analytical calculations, which will show ~/,~,n 
the main features of such constructions. The reasons that make things easier are the 
following. In the lattice formulation (10) and in both 1/N and perturbative expansion 
the variable 0n,tz (defined by An,u :- e ia"") is used as a fundamental field, whose 
propagator can be easily derived [ 11 ]. In the infinite volume limit the expression of 
the geometrical charge density qa,n is linear in terms of On,u (cf. Eq. (14)), therefore 
one can easily obtain the propagator of qa,n. The use of the qa,n propagator simplifies 
considerably the study of the large-N behavior of the renormalization effects in the 
sequence 'ta.~-(k), in that ql,k~ Can be written as polynomials in q,~,n (cf. Eq. (15)). The 

leading non-trivial orders of the corresponding Z(a k) (fl), pJk)(fl), and a(a k) (fl) can be 
obtained by evaluating tadpole-like diagrams, whose lines are the qa,n propagators, and 
whose vertices are the coefficients of the powers of qa,n in Eq. (15). This occurs also 
in the evaluation of the leading non-trivial order in standard perturbation theory. 

In the large-N limit one can unambiguously identify the terms associated to Z (k) (fl), 
p(k) (fl) ,  and A (k) (fl). It has been explicitly demonstrated that Qg, a and the correspond- 
ing susceptibility Xa in the infinite volume limit are not subject to renormalizations in 
the large-N limit [21], that is 

Xa = E qa,nqa,o ~ a2xt (23) 
n 

in the continuum limit (the same has been shown for the definition (11) too). Using 
Eqs. (13) and (23), one can deduce the following relationship valid in the lowest 
non-trivial order of 1IN expansion: 

~'lqCk)q(t)\ [1 + 2 ( 2 k +  1)tek(q2k0)] + a  2 Z - , \  a,n a,0 / ,  X (k) ~/_..~\ a,n A,OI ~ a2xt ~ iq~k+lqZk+l\ (24) 
n n 

where ak = -(27r)2kk!2/(2k + 1)!. 
An asymptotic expansion in powers of the large-N mass [ 11 ], m0, allows one to 

separate the mixing with the identity from the term of dimension two (i.e. proportional 
to a 2) in Eq. (21), which contains the physical signal. This is achieved by expanding 
the qa,n propagator in powers of m0, 

(q 'a(P)qa(-P))  = Do + m2Dl + O(m4). (25) 

Using results of Ref. [ 11 ], the calculation of the functions Do and DI is quite straight- 
forward. Then by comparing Eq. (24) with Eqs. (21) and (22), one can write down 
explicit analytical expressions for P(a k) (fl), Z(a k) (fl), and A (k) (fl) in the lowest non- 
trivial order of 1/N [22]. In the following we shall discuss some of their properties. We 
shall not report their complete expressions because they would not be very illuminating. 

The zero-dimensional mixing with the identity, which dominates the Monte Carlo 
signal in the continuum limit, turns out to be 
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(l) 
Pa(k ) ( f l )=O ~ . (26) 

The renormalization functions corresponding to the terms of dimension two turn out to 

be 

Z ~ ) ( f l ) = I + O ( N - - - - £ )  a , (27) 

(l) 
A(ak ) ( f l )=O ~ . (28) 

In order to derive the lowest non-trivial order contribution to A(a k) (fl) ,  we have used 

the fact that in the 1/N expansion (T) = O(1) ,  indeed one finds [11] 

(T) ~:~ = ~ + O . (29) 

In the fl ~ cxz limit the large-N expressions of P f f ) ( f l ) ,  Z f f ) ( f l ) ,  and A(ak)(fl) 
reduce to formulas that could have been obtained by standard weak-coupling perturbation 

theory. The correspondence between large-N expansion and standard perturbation theory 

is obvious for Z (k) (fl) and p ( k ) ( f l ) :  it suffices to recognize that for m0 = 0 and fl 

o~ the large-N 0-propagator reduces to the corresponding perturbative propagator. This 

correspondence has been explicitly verified also for A (k) (fl) .  One obtains 

Z ( k ) ( f l )  = 1 - k! + 0 L\- I J ' 

and for large k 

(3o) 

A ( k ) ( f l )  ~ (2k)! \ f l N J  " (32) 

Eqs. (30 ) - (32 )  show the mechanism of systematic improvement of the local operators 

q(k). As k ---* oo, q(a k) ~ qa and the lowest-order renormalizations are proportional to 
higher and higher powers of 1/ft. However, the coefficients of the leading non-trivial 
term grow so fast with k that the convergence to zero of Z ( k ) ( f l )  - 1, p ( k ) ( f l )  and 
A (k) (fl) cannot be uniform for fl ---* oo. This fact leaves open the possibility that for 
fixed fl some non-perturbative renormalization effects may eventually survive as k ~ cx~, 
i.e. as the sequence approaches the geometrical definition. 

Inspired by this phenomenon, we suggest the following general picture. The geomet- 
rical charge can be interpreted as the limit of a sequence of field theoretical (analytical) 
operators. As far as (at a given r )  the renormalization effects tend to vanish along 
the sequence, the geometrical object provides a well-behaved lattice estimator of the 
topological charge. If on the contrary the renormalization effects do not disappear for 

k,4 4k+2 , (__,  2k+, 
p(k)(fl)~_ ( 2 k + l ) !  3 \flN,/ +OL\I3Nj j~(2k)! \flNJ , (31) 
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k ~ c~, some pathology should arise in the geometrical method, such as the contribution 
of short-distance topological defects. The asymptotic nature of the perturbative expan- 
sion, which manifests itself in the growing of the corresponding coefficients, leaves open 
the possibility of a background term behaving, for example, as ~ exp ( - c f l ) ,  which 
does not get suppressed in the limit k ~ c~. According to the value of c, either this term 
is suppressed in the continuum limit, or it survives and spoils the expected asymptotic 
behavior of Xt, which should behave as a quantity of dimension d. The absence of 
non-perturbative effects at finite fl would be guaranteed by a convergent perturbative 
expansion of the renormalizations. A good continuum limit of the geometrical definition 
would be assured by a perturbative expansion in which the limit k ~ c~ commutes with 

the continuum limit fl ~ oe. 
The calculation of the renormalizations is more involved for the sequence expressed 

in terms of the z fields, but the conclusions are qualitatively the same. In particular, 
since the expansion of qn in terms of perturbative fields (for example in Valent's 
parametrization [23] ) starts with a bilinear term, it is easy to see from Eq. (15) that 

Z (k) (fl) - 1 and p(k) (fl) will get the leading contribution from diagrams with 2k and 
2k + 2 loops, respectively. Therefore, 

Z (kl (fl) = 1 + 0 , (33) 

( 1 ~ 2k+2 ] 

p k (8) = 0 J .  (34) 

These results hold for both lattice actions (9) and (10). 

2.4. Numerical analysis by heating method 

Since estimators involving the field '~n,u are subject to large fluctuations in Monte 
Carlo simulations, in our numerical analysis we shall consider the sequence approaching 
the geometrical definition in terms of z fields only, i.e. q~k) defined in Eq. (19). We 
present a numerical investigation of the corresponding renormalization effects by using 
the so-called heating method [24,25] (see Ref. [7] for an implementation of this 
method to 2D CP N-1 models). The study of the renormalization effects by heating 
method relies on the possibility of somehow separating the various contributions in 
Eq. (21) in off-equilibrium simulations. This is made possible when they are originated 

by lattice modes which behave differently under local thermalization (large vs. small 
scale modes, Gaussian vs. topological modes). Assuming such a distinction of lattice 
modes, estimates of the multiplicative renormalization Z ~k~ are obtained by measuring 
Q~k~ = )-~n q~k) on ensembles of configurations constructed by heating an instanton-like 
configuration (carrying a definite topological charge Q~k~) for the same number nu of 
local updating steps. The plateaus showed after a few heating steps by data plotted as 
a function of nu give the desired estimates of Z ~k). Similarly, the background signal 
M ~) can be estimated by measuring X ~k) on ensembles of configurations constructed by 
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heating the flat configuration. Again, the plateaus of data as function of nu, if observed, 
should provide estimates of M (k) [25,26]. 

We performed our simulations on a 1002 lattice. This lattice size should be sufficiently 
large in order to estimate Z and M even at large/3, in that they are expected to be short 
ranged (scaling with a) ,  and therefore have very small finite size effects. On the other 
hand, in order to determine Xt, one must take lattices with L >> s c. In the following 
we describe the main results we have obtained for N = 4 and N = 10 using the lattice 
action S~ g) (cf. Eq. (10)) .  

For /3 ~ 1 (where the correlation length is sufficiently large to expect scaling to 

hold [7] ), the multiplicative renormalization Z (k) turns out to be very close to one for 

small values of k already. For example for N = 4 and at /3 = 1.25 (which corresponds 
to ~c ~ 28) we found Z (l) _~ 0.96, Z (2) ~'~ 0.98, Z (3) _~ 0.99 . . . . .  suggesting a smooth 

limit to one for k ~ c~. For comparison we mention that the polynomial topological 

charge density definition considered in Ref. [7], 

q(p ) i 
= -~-~ Z ejz~Tr [PnAuPnA~Pn] 

tzu 

(35) 

I p (where A~,P(x) = 3[ n+~ -- Pn-~] ), has Z (p) ~_ 0.42 at this value of ft. At larger 
N, Z (k) get closer to one, as expected from their dependence on N. For example, at 

N = 10 and/3 = 1.0 (corresponding to (6 -~ 17) we found Z (l) _~ 0.985, Z (2) ~ 1.000, 

Z (3) "~ 1.0000 . . . . .  and Z (p) -~ 0.35. 

When using the action (10), at N = 4 and /3 ~ 1.25 the geometrical definition 

(11) is affected by spurious contributions from short-ranged lattice structures, which 
1 2 turn out not to be negligible in order to determine Xt from Xg = v(Qg) [7]. This 

fact emerges clearly also by observing the behavior of Xg in the heating of the fiat 
configuration, in that the initial global geometrical charge (which is zero) appears to 

be soon modified by the local thermalization process even if the correlation length is 
rather large, as it occurs at fl -~ 1.25. In the same heating process, data of X (k) appear 
strongly correlated to those of  Xg, indicating that the above-mentioned short-ranged 

configurations contribute somehow to X (k) too (even for small k). In the analysis of 
X (k) such spurious contributions may be interpreted as renormalization effects, but at 

these values of N and /3 we were not able to estimate them by using the heating 
method. It is possible that in this case the required sharp distinction of the lattice modes 
contributing to the different terms in Eq. (21) does not occur, or it is not sufficient to 
make the heating method work. 

In a sense, the so-called lattice defect contributions to the geometrical definition Xg 
may be seen as the limit k ~ c~ of the mixings in X (k), which does not seem to 
vanish at N = 4 and values of 13 corresponding to ~:6 < 102. Their effect probably 
disappears in the large-fl limit. Indeed at 13 -- 1.6, where the correlation length should 
be about one order of magnitude larger than a t /3  = 1.25, we found no trace of  short- 
ranged topological defects in the heating procedure. We got the following estimates of 
the mixing contribution M (k) to X(~): M (1) -~ 3 x 10 -7, M (2) ~ 5 X 10 -8, M (3) ~< 
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10 -8 . . . . .  while for the lattice susceptibility associated with the operator (35) we found 
M (p) '~ 7 x 10 -6. fl >~ 1.6, and therefore ( > 102, may then be sufficiently large 
for the geometrical definition (11) to be effective in the determination of Xt- We also 
quote some data at fl = 2 where the correlation length should be about two orders of 
magnitude larger than at fl ~_ 1.25, we found M O) -~ 2.5 x 10 -8, M {2) < 2 x 10 -l°,  
M (3) <~ 10 -11 . . . . .  and M (p) _~ 2.9 x 10 -6. Notice that in order to determine Xt at 

fl = 1.6 one would need to perform simulations on a very large lattice with L >> s ~, and 
therefore L > 103 in order to avoid sizeable finite size effects. These numerical results 
are consistent with the picture outlined in the previous subsection. 

Of course the onset of scaling for Xg depends on the lattice action. In this respect 
actions better than (10) may exist. A substantial improvement with respect to action 
(10) has been observed when using its Symanzik tree improvement [7]. 

As suggested by Eq. (34), things get improved with increasing N. For N > 10 (using 
the action (10) ) the geometrical definition ( 11 ) seems to provide a good estimator of Xt 
already at reasonable values of the correlation length [7]. For example at N = 10, Xg~ 2 

shows good scaling for sc~ > 10 [7], and for shorter and shorter ~:c at larger values of 

N. At N = 10 and fl = 1.0, the heating procedure provided the following estimates of 
the background signal M {k) in X{k): M O) ~ 0.5 x 10 -6, M (2} < 0.5 × 10 -7, M (3) ~< 
0.5 × 10 -8, M (4) ~ 10 -9 . . . .  and M {p) ~- 0.7 x 10 -5 for the operator (35). The mixings 

in Eq. (21) rapidly disappear with increasing k. The sequence of X (k} approaches Xg 
which in this case appears to be free of lattice artifact contributions. Taking into account 
that for N = 10 we have XtsC~ -~ 0.017 [7], at fl --- 1.0 renormalization effects turn out to 
be very small and negligible for k = 1 already (in the evaluation of a2xt renormalizations 

for k = 1 lead to corrections of about one per cent). 
From the above discussion it seems that, at least when using the action (10), little 

practical improvement is achieved by the use of the operators defined by the sequences 
q{k}. Indeed at low N (and at least for fl _~ 1 ) they appear to be sensitive to short-ranged 
lattice defects, whose contributions to renormalization effects seem as difficult to evaluate 
as for the corresponding geometrical definition (the heating method apparently fails in 
these cases). The use of standard polynomial or smeared field theoretical operators 
(smeared operators similar to those defined in Ref. [27] and with the same features can 
be easily constructed for CP N-1 models) and the cooling method [28] appears more 
convincing when this phenomenon occurs. When the geometrical definition provides a 
good estimator of topological activity, as at large N, the behavior of q(k) is that formally 
predicted by perturbation theory. But in this case it would be more convenient to use 
the corresponding geometrical definition, whose use is further justified by our analysis. 
However, when the renormalization effects do not tend to vanish (at fixed fl) along the 
sequence, we cannot take for granted that the physical predictions based on the use of 
the corresponding geometrical definition will be correct, 

In order to construct improved field theoretical operators one may put together both 
the idea of smearing the operators [27] and that of defining sequences approaching 
geometrical definitions. This may be achieved by constructing sequences of operators 
in terms of smeared fields, instead of lagrangian fields. This should provide optimal 
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field theoretical operators with a more effective suppression of the renormalization 
effects, and corresponding geometrical limits probably less sensitive to unphysical short- 
distance lattice topological defects. We mention that for 4D SU(2) gauge theory a 
geometrical charge defined on appropriate blocked variables has been tested [ 29 ]. Unlike 
the original geometrical charges, which turned out to be affected by dislocations, the 

blocked definition produced a topological susceptibility consistent with that obtained by 
alternative cooling and field theoretical methods. 

3. Construction of the sequence for SU(N) Yang-Mills theories 

We sketch an extension of the above study to S U ( N )  Yang-Mills theories in four 
dimensions. Among the different geometrical definitions of lattice topological charge 
available in the literature, we consider that one proposed by Liischer in Ref. [4]. In 
the following we will heavily refer to this work. Ltischer's geometrical definition can 
be written as a sum of local terms Qg = ~-]~n qn, where qn is a gauge invariant function 
of the link variables. We show that it is possible to define a sequence of operators q~k) 
sharing the following properties. 

(i) For each k, q~n k) is a gauge invariant, polynomial function of the link variables 
of the single elementary hypercube c ( n ) ,  possessing the appropriate (classical) 
continuum limit; 

(ii) The operators -(k) tend, at least formally, to qn for k ~ c~. qn 
qn is obtained by the lattice fields of the hypercube c ( n )  through a complicated inter- 

polation procedure. An essential ingredient is the raising of link variables to fractional 
powers (this is the non-analytical step in the definition), according to the following 
prescription. For u E SU(  N ) ,  setting 

u = exp(igeoaaa),  (36) 

one may define the fractional power u y, 0 ~< y ~< 1, as 

u y = exp(iyg¢Oaaa) (37) 

(for convenience, we explicitly introduced the bare coupling constant g, in terms of 
which the perturbative weak-coupling expansion is defined). 

We construct a sequence of gauge invariant analytical operators q~n k), which differ 
from the geometrical definition qn by O(g k+l), i.e. 

q~n ~) = qn + O (gk+l). (38) 

To this purpose, we consider a polynomial approximation u[j] ( y )  of U y, of degree j in 
u and u t, so that 

u y = u[j] (y)  + O(g2j+l). (39) 

The polynomial functions u[jl (y) can be easily constructed. We then make the appropri- 
ate substitutions u y ~ u[j] ( y )  in the expression of Liischer's topological charge density 
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qn, SO as to obtain q~k~ as an approximation O(g k+l) of qn that contains polynomials 

of minimum degree in the link variables. 
The lattice susceptibilities X (k) = ~-'],(q~nk)q(ok) ) should be related to the continuum 

topological susceptibility Xt by 

X (k) ( f l)  = a4Z (k) (/~)2Xt -1- M (k) (f l ) ,  (40) 

where 

M(k) (f l)  = p(k)( f l )  (I) + a4a (k) (fl) (T) + O(a6). (41) 

Assuming (perturbative) non-renormalization for the geometrical definition q,, and using 

Eq. (38) one can infer that (fl = 2N/g  2) 

Z ( k ~ ( f l ) = l + O ( - ~ ) ,  (42) 

P ~ k ' ( f l ) = O ( - ~ ) ,  (43) 

where 

k 
l = -  for even k, 

2 
k + l  

l - for odd k. (44) 
2 

An analysis of the behavior of the coefficients z (k) and p(~) of the leading non-trivial 
order in Z (k) and pig) can be more easily carried out for even k, for which all the 
corresponding diagrams are substantially tadpoles. A rough estimate of the behavior of 
p~k~ and z ~k~ may be obtained by counting all the contractions to form k /2  tadpoles, 

p(k) ~ z(k) ~ k! 
(k /2)!"  (45) 

Here the dependence on N has been overlooked, in that all contractions have been 
considered as giving the same contribution. This is true only in the case of commuting 
generators, as in the case of U(1) gauge theory. Nevertheless, Eq. (45) should give an 
idea of the behavior at large k, at least for not too large N. On the other hand, at large 
N, contractions of non-sequential generators in the traces are suppressed by powers of 
1 IN, so that the contractions contributing at N = c~ are considerably reduced, leading 
probably to p(k) ,,~ z~k) ~ O(1) .  

Then, as already observed for the sequences constructed within the CP N-I models, 
the lowest-order renormalizations are proportional to higher and higher powers of 1/fl. 
However, at finite N the corresponding coefficients of the leading non-trivial order grow 
so fast with k that the convergence to zero of the renormalization functions cannot be 
uniform for fl --~ oo. Again, with increasing N, renormalization effects should be further 
suppressed in the sequence, suggesting that at least at large N the geometrical charge 
should be free from dislocations. 
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