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Abstract

We consider the Landau-Ginzburg—Wilson Hamiltonian wilin) x O(m) symmetry and
compute the critical exponents at all fixed points t@©?) and to Ge3) in ae = 4 — d expansion.
We also consider the corresponding non-lineamodel and determine the fixed points and the
critical exponents to G?)intheé=d — 2 expansion. Using these results, we draw quite general
conclusions on the fixed-point structure of models wittn) x O (m) symmetry forn large and all
2<d < 4.0 2001 Elsevier Science B.V. All rights reserved.

PACS 05.70.Jk; 64.60.Fr; 75.10.Hk; 11.10.Kk; 11.15.Pg
Keywords: Critical phenomena; Frustrated modelsgn) x O (n)-symmetric models; Field theoryy
expansiong-expansion

1. Introduction

The critical behavior of frustrate® Y and Heisenberg spin systems with noncollinear
order has been the subject of many recent theoretical studies, where the standard tools
of renormalization-group (RG) theory have been applied to field theories which were
conjectured to be appropriate for the description of the systems under investigation (see,
e.g., Refs. [1,2] for reviews on this issue).

The critical behavior of these systems is rather controversial. Indeed, while experimen-
tally there is good evidence of a second-order phase transitielonging to a new (chiral)

E-mail addresses: pelissetto@romal.infn.it (A. Pelissetto), rossi@df.unipi.it (P. Rossi), vicari@df.unipi.it
(E. Vicari).
1The experimental results are reviewed in, e.g., Refs. [1,3]. Essentially, experiments with hexagonal
perovskites find a clear second-order phase transition except for GRCIl@ results for helimagnetic rare
earths are instead less clear. We also mention Ref. [4] where it is shown experimentally that chiral order and spin
order occur simultaneously, thereby supporting Kawamura’s [5,6] conjecture that chiral transitions are different
from the standard (n) transitions.

0550-3213/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
PIl: S0550-3213(01)00223-1



606 A. Pelissetto et al. / Nuclear Physics B 607 [FS] (2001) 605634

universality class, theoretically the issue is still debated. On one side, field-theoretical stud-
ies based in approximate solutions of the RG equations (ERG) do not find any stable fixed
point and favor a first-order phase transition [7—9]. On the other hand, perturbative field
theory gives the opposite answer: a stable fixed point is identified with exponents in agree-
ment with the experiments [10]. Monte Carlo simulations [11-13] do not help clarifying
the issue. While simulations of the antiferromagn@ig:) model on a stacked triangular
lattice find a second-order phase transition with exponents reasonably near to the exper-
imental ones, modified spin systems which supposedly belong to the same universality
class apparently favor a first-order transition [£3}lote that the existence of a new chiral
universality class does not exclude the possibility that some systems undergo a first-order
transition. Indeed, they may lie outside the attraction domain of the stable fixed point and
thus belong to runaway RG trajectories. In this case, a first-order transition is expected.

The field-theoretical studies have been focusing either on the so-called Landau—
Ginzburg—Wilson (LGW) Hamiltonian witl® (n) x O(2) symmetry or on the correspond-
ing nonlinear sigma (N&) model. In this paper we will study a generalization of these
theories, by considering gene@ln) x O (m) Hamiltonians and we will try to understand
the nature of the fixed points of the theory. In particular, we will relate the LGW and the
NLo descriptions showing explicitly that the stable fixed points of the two models are ex-
actly the same, as conjectured in Refs. [14,15,32], for values afidn consistent with
the existence of a second-order phase transition. Moreover, we will clarify the nature of
the unstable fixed points. However, this analysis will only be valid in the largegion,
where, by using the large-expansion, we will be able to identify nonperturbatively all
fixed points of the different Hamiltonians.

Since the larger expansion plays a major role in our discussion, our results will only
be valid forn > n(m,d), i.e., in the region of large- analyticity. Such a function is
conjectured to be identified with the lim& (m, d) on which the LGW chiral and antichiral
fixed points merge. The function™ (m, d) has been the object of extensive studies that
tried to understand whether, in the physical cédse3 andm = 2, in(m, d) was smaller or
larger than three. In this case, studies using various approaches@agg~ 4 (Refs. [8,
16,17]), 5 (Ref. [9])~ 6 (Ref. [10]). Here, we will provide another determination, together
with generalizations for other values af, that substantially confirms previous findings,
i.e.,n(2,3) ~ 5. Since the results that we will present are essentially adiabatic moving from
the larger and smalle = 4 — d region, they are not expected to provide the (essentially
nonperturbative) features of the models in the region bal@w d). Therefore, the fact that
n(2,3) > 3 does not necessarily imply an inconsistency with the field-theoretical results
of Ref. [10], where a rather robust evidence for stable chiral fixed points was found for
O(n) x 0(2) models withn = 2, 3 in fixed dimensior/ = 3. Such fixed points are not
analytically connected with the largeand smalle criticalities discussed above.

2 Note that not all modified models show a first-order phase transitions. Some of them have a behavior that is
compatible with a second-order phase transition. However, the measured exponents do not satisfy the condition
n > 0, which must be satisfied in unitary (reflection-positive) models as these are, so that, the measured exponents
can only be effective ones. This is interpreted as a signal of a first-order phase transition. However, there is also
the possibility that the results are strongly biased by corrections to scaling induced by the constraint.
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We will also show that form > 2 the identifications(m,d) = n*(m,d) may not
be correct ford near two dimensions. Indeed, in this case a new critical line appears
which corresponds to the merging of the chiral fixed point with thesNintichiral fixed
point.

In order to obtain quantitative predictions for all and n, we have extended the

€ = 4 — d expansion of the LGW theory to ordef and theé = d — 2 expansion of
the NLo model to orderé? for all n andm. Also, we present (1/n2) results for the
LGW theory.

The paper is organized as follows. In Section 2 we define the general class of models
with O(n) x O(m) symmetry that will be considered in the paper and find a general
representation that is the starting point of the laigexpansion. In Section 3 we compute
the O3) contributions to the critical exponenjsandv—1 within thee = 4 — d expansion
of the LGW Hamiltonian. In Section 4 we analyze in detail the: Expansion of the
LGW Hamiltonian withO (n) x O (m) symmetry to @1/n?), thereby extending the results
of Ref. [14]. Interestingly enough, we can determine the larg&pansion of the exponents
at all fixed points and show explicitly their different physical nature: at the stable fixed
point both tensor and scalar excitations propagate, while at each unstable fixed point
one of the degrees of freedom is suppressed. At the Heisenberg fixed point there are
only scalar excitations, while at the antichiral one, there are only tensor excitations. In
Section 5 we discuss the/id expansion of a more general theory in which the coupling
to a (gauge) vector field is included, extending the results of Ref. [18]. In Section 6
we extend to arbitrary values ofi and to Qé?) the é-expansion of Nz models,
evaluating the unstable fixed point and the coalescence valueuofier which the two
fixed points actually disappear. We also identify the “gauge” criticality of the models.
In Section 7 we draw some general conclusions and present a new determination of the
functionn(m, d).

2. Models

We will consider a non-Abelian gauge model coupled to a scalar field with gauge
symmetry O(m) and global symmetryO(n). In particular, we consider a set af
n-dimensional vectorsp, = {¢as}, « =1,...,m, a =1,...,n, a vector field Afjﬂ
antisymmetric it and 8, and the Hamiltonian density

1
H= > Z(au‘ﬁa +goAM ¢,s —FOZ% - Mo(Z%)

o

OZ Gu- 95— 92031+ 3F2+ ZZA“'SA“*“ 2.1

where F,,, is the non-Abelian field strength associated with the fiek)ff. This
Hamiltonian is gauge-invariant (with loc# (m) invariance) forsqg = 0, and in this case
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it has already been studiédn Ref. [18]. Forzg =0 andAfiﬁ = 0 we obtain a generic
LGW Hamiltonian density with globab (m) x O (n) invariance:

1 1
=3 ;@mwz + Ero;m% a “0<Z¢2>
1
+ 02 (B 6p)° — $247]. (2.2)
"L

Assumingn > m, stability requiresig > 0 andwg = ug + (1 — N)vg/N > 0, whereN =
min(m, n).

Other particular cases of the Hamiltonian (2.1) are interesting. If weget vp and
ro = —von1/6 and take the limivg — +o0 keepingn fixed, we obtain arO (n) x O (m)
o-model coupled to a® (m) vector field. The Hamiltonian density is given by

1 1 fo
H=> > (9.0 + 20A% ¢ ) + 4F3U > > AP A, (2.3)
o ap

where the fieldg satisfy the constraint

b - Pp = 1180p- (2.4)

This limit is well defined only ifn > m, otherwise the constraint (2.4) cannot be satisfied.

In the absence of the kinetic term for the vector field, the Hamiltonian density depends
quadratically on the vector field that can then be eliminated by integration. We obtain a
new Hamiltonian of the form

H—ZZ 0ute)’

This is theo-model studied in Refs. [14,15,32]. In order to recover the notafiafs
Ref. [15], we setp, = /71 andn = 2ton1/(gén1 + t0). Then

_— — 2. 25
" S +t)§(¢aau¢,g $p0uby) (2.5)

~ 1 & 1 “ )
H=2m) o e + (5772 - m) > (e u85)%, (2.6)
a=1 a>pB
where the fieldg, arem n-componentvectors (or equivalentlyx n matrices) withh > m
subject to the nonlinear constraint

€ - € =5aﬂ~ 2.7

In order to study the large-behavior of these models we rewrite the general Hamil-
tonian (2.1) in such a way that the dependence on thegigid quadratic. This is obtained

3 Hikami's couplings [18], labelled by the subscript, are related to ours by the correspondeneg: =
(o —v0)/3, vy =v0/6, A = py + 2vyg = up/3.

4 Notice that oum; are consistent with the couplings employed in Section 4 of Ref. [15], but they are twice
as big as the couplings defined in Appendix B of Ref. [15], due to a slight inconsistency in the notation adopted
by these authors. The couplings are related to those of Ref. [14] by =1/T +1/T’, no = 2/T. For easy
comparison, the reader should keep in mind that, due to the consteinig, eg = —€g - 9, €.
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by introducing two auxiliary fields: a scalar fiekland a symmetric and traceless tensor
field 78, i.e., such thar'®# = TA* T** =0, By means of these auxiliary fields we can
rewrite the Hamiltonian (2.1) as

H=He— —T“— — — A4+ -F 2.8
eff > 5 S+ > +4 s (2.8)
where
1
Hett=5) $u  X“"¢p, (2.9)
o, p
and

X = —0,,0,6°F +ro8* — 280A% 8, + voT*P + woSs*F + g§ALY A% (2.10)

Note that the effective action for the fields is the most general one which @(m)
covariant. Therefore, the analysis of this class of models provides the critical behavior
of the most generad (m) x O (n) theory.

3. e-expansion for the Landau—Ginzburg—Wilson model
In this section we study the LGW Hamiltonian (2.2) and report our results for the critical

exponents and thé-function to ordek?3, thereby extending the results of Ref. [19] to three
loops. We consider the massless theory and renormalize it usingSrseheme. We set

¢ =[Zpw, )]0, (3.1)
uo = € Zu(u, V)N, (3.2)
vo = € Zy(u, V)N, (3.3)

where the renormalization constants are normalized soZhét, v) ~ 1, Z, (4, v) ~ u,

and Z,(u,v) ~ v at tree level. Herel,; is a d-dependent constant given byd‘l =
24-174/217(4/2). Moreover, we introduce a mass renormalization consfani, v) by
requiringZ, I"+? to be finite when expressed in termsioéndv. HereI" %2 is the two-
point function with an insertion ap2. Once the renormalization constants are determined,
we compute the8 functions from

d
. Bl =u8—” : (3.4)
1%

uo,vo uo,v0

au
ﬂu(ua U) = Ma_
m

and the critical exponents from

dlogZ

_dlogZy) (3.5)
dlogu 10,10
dlogZ

At h (3.6)
dlogu Uo.v0

v=_2—-n— m)fl. 3.7)
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For theg-functions we obtair?

Bu=—€u+

mn+8 5 (m—l)(n—l)( v) 3mn+14 5
uc — vl u -

6 3 2 12
+( Hn—-1) . 13 v+ S
me D v 18” 24"Y 36”

17 5 8[331712}12 +922nn + 2960+ ¢ (3)(480mn + 2112

x { — 4[79mn + 1318+ 768 (3)]u’
+ [555mn — 460(m + n) + 6836+ 403% (3) Juv
— 2[213nn — 358(m + n) + 1933+ 960; (3) Juv?
+ [123mn - 3090m + n) + 817+ 216 (3) |0}, (3.8)

m+n—-8 , 5mn+82,
v J—
6 36
Smn —11(m +n) +53 5, 13mn —35(m +n)+99 5
+ 18 weT 72 v

By =—€v+2uv+

o4

+ 5a 6{52m2 2 _ 5Tmn(m + n) — 2206nn — 111(m? + n?)

+ 4291(m + n) — 8084

+[~1416nn + 32160m + n) — 7392:(3)|

U3M

* @{ 39m2n? + 35mn(m + n) + 1302nn + 36(m? + n?)
—240Xm +n) + 5725

+[768nn — 1824m +n) + 4896 £ (3)|

MZU

1728

n {78m2 2 _ 35mn(m +n) — 2114nn + 3182m + n) — 12520

+ [~1152nn + 2304m +n) — 1036@;(3)}

3
n % [~13m2n? + 368nn + 3284+ (192nn + 2688 £ (3)]. (3.9)

5 \We mention that for the particular case= m = 2 one may derive the corresponding four-lasgxpansion
from the series reported in Ref. [20] for the so-called tetragonal model. Indeed an exact mapping [16] exists
bringing from the LGW Hamiltonian (2.2) witi = n = 2 to the tetragonal model considered in Ref. [20]. Note
that our renormalized couplings differ from those definedrior 2 in Ref. [6]. Kawamura’s couplingsg , vk
are related to ours by = 12N, ug, v =6N, vk .
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For the critical exponents we obtain:

n= mn7—2|- 2u2 +(m—-1n— 1)1)(%3 — ;—6> _ Lmn —1—12;(211;11 + 8)u3
+ %v[vz(zmn — 5m — 5n + 26)
— 6uv(mn —m —n + 10) + 6u?(mn + 8)], (3.10)
%22_ mn6+2u+ (m—lzs(n—l)v 5(m;2+2)u2
v u mn +2)(5mn + 3
+5(m — 1)(n — 1)1)(4—8— 3—6> _ mn )2(88 +3D 3
% v[3v3(7Tmn — 16m — 16n + 79)

— uv(61mn — 58n — 581 + 550) + 12u?(5mn + 37)].

(3.11)
As discussed at length in Refs. [1,6,19], the critical behavior of these systems depends on
the values of: andm. In general, thegg-functions admit four solutions: the Gaussian fixed
point @* = v* = 0), the O (mn) Heisenberg fixed point{ = 0) and two new fixed points
with nontrivial values ofx* andv*, the chiral and the antichiral fixed points. These two
additional fixed points do not exist for allandm, but, at fixedn, only forn > n*(m) and
n < n~(m). The functions:* (m) will be computed below. The critical behavior depends
on the stability of the fixed points. At fixed, for the physically relevant case > 1, the
e-expansion predicts four regimes:

(1) Forn > n™(m), there are four fixed points, and the chiral one is the stable one.

(2) For n=(m) < n < n™(m), only the Gaussian and the Heisenbadgn x m)-
symmetric fixed points are present, and none of them is stable.

(3) Forny(m) <n < n~(m), there are again four fixed points, and the chiral one is
the stable one. For smaldl the chiral fixed point has < 0 form <7 andv > 0
form > 7.

(4) Forn < ng(m), there are again four fixed points, and the Heisenligtg x n)-
symmetric one is the stable one.

The antichiral fixed point is Gaussian far— 1 andm = —2 (or, equivalently fon — 1

andn = —2). Indeed, form — 1, u* — 0 for the antichiral fixed point, so that, from
Egs. (3.10) and (3.11), we obtain= 0 andv = 1/2 at ordere3. Form = —2 we obtain

u* = 3v*/2 and agaim = 0 andv = 1/2 at ordere3. We conjecture that this holds to

all orders ine, and in Section 4 we will provide a largeinterpretation of these results.
The general behavior for andm is better understood from Fig. 1. In particular, the two
functionsn® (m) are nothing but the two different branches of the curve that separates the
region in which no fixed point is stable from the region in which the chiral fixed point is
the stable one. Note that the boundaries of the different regions are symmetric under the
exchangen, m). Because of this symmetry it is more natural to consider the behavior in
the variables

Y =m-+n, A=m—n. (3.12)
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20 |

10 n

Fig. 1. The fixed-point structure in thén,n) plane ford = 4. The solid line represents the

curvesn®(m). The dashed line shows (m) and the symmetric curve obtained interchanging
andm.

At fixed A there are then three regions:

(1) For ¥ > X% only the Gaussian and the Heisenb&@gn x n)-symmetric fixed
points are present and none is stable.

(2) ForXy < X < X there are four fixed points and the chiral one is stable.

(3) For X < Xy, there are four fixed points and th®(m x n)-symmetric one is the
stable one.

Using the above results, we can compute éhexpansion of:*(m) andny (m). For
n*(m) we expand

nE(m) =ng +nye+nze®+0(3). (3.13)
Then, by requiring

Bu(u* v*;n®) =0,  By(u*,v*;n¥)=0, (3.14)
and

det 9(Bus Bv) (u*, v*; n¥) =0, (3.15)

a(u,v)

we obtain

ng =5m+ 2+ 2s, (3.16)

nf:—sm—zzp%(zsm%rzzm—sz), (3.17)

nt = z%% v S% e g;@ P SQi: (3. (3.18)

Here
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=6(n —1)(m +2),
R1= — 33024+ 18880n + 45444n? + 9288n> — 1883n* — 417m°
+21m8 + 4m”,
Ry = — 253952— 1602561 + 17619212 + 13924063 4 7756n*
—5854n° — 389n° 4-58n" 4 5m®,
R3 = 1632+ 1184n — 137612 — 426m° + 31m* + 8m>,
R4 = 6176— 29601 — 123012 + 73m> + 20m*,
Q1= (m +8)%(m +2)(m — 1)(m — 7)2,
Qo2=m+8)(m+2)(m—L(m—7). (3.19)
Form = 2 this expression is in agreement with that given in Ref. [17]. The expression for
nf are singular forn = 7. However, this is not the case fe}, and indeed, by taking the

limit we obtain

23871617 5487
+ 3). 3.20
"2 = 9331200 " 320 °© (3.20)

Forng(m) we have

nH(m)—i|:4 2¢ + (6;(3) )ez+o(e3)}, (3.21)

which is a trivial generallzatlon of the result of Ref. [17]. The calculation of the functions
X1 (A) and Xy (A) follows the same lines. In particular,

) = —l—i—;s—l- S(5A2—24—2§)+O(62), (3.22)

85
wheres = /6(A2 + 18).
From our calculation of the RG functions we can derive the fixed points of the theory.
We expand

u* = uie + use? + uze® + 0(64), V¥ = v1€ + vp€? + v3ed + 0(64). (3.23)
Following Ref. [19] we define

= (mn+8)(m+n—82+24m—1)(n—1)(m+n—2),
Dy, =mn(m +n) — 10(m + n) + 4mn — 4,

Run=(m~+n—872—12m —1)(n — 1). (3.24)
We then easily find:
1 1
uf =3" —(m+n—8)Bm,,[ i :|:6R1/2]
v = 6By [ Dinn T 6RmY ], (3.25)

where we indicate by-+) the stable chiral fixed point and kiy-) the unstable antichiral
one. In order to computef and vé‘t, it is convenient to define two additional auxiliary
functions:
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(Bmn + 14) .3 11 13 5
Si=——-——— Dn-1 — —v7 ),
L ot On =D =D ggud — v+ gt
(5mn + 82) 5mn — 11(m +n) + 53
SZE—TMEU]_'F 18 Mlv%
13mn — 35(m + n) + 99
— = V3, (3.26)
Then, theO (¢?) coefficients of the fixed points are given by
L2t - s LDt s
uy ==+6 Rl/z ,
2 S 1— mn+8 + (m— l)(n l) S
PP ui 1S (3.27)
2 R1/2

The expressions fomgt, v§ are particularly cumbersome and they will not be reported
here.

Once the fixed points are determined, the critical exponents are computed by expanding
in power ofe the exponent series computed at the fixed point. Such a computation gives us
the exponents only for

n>5m+2+2/6(m+2)(m—1), (3.28)

or

n <5m+2—2/6(m+2)(m—1). (3.29)

Indeed, if these bounds are not satisfied the fixed points are complex and therefore also the
exponentseries. In order to obtain series for the exponents in all the relevant domain we can
perform the following trick. For > n*, which is the case of physical interest, we set

nt(m, €) + An and reexpand all series in powersedteepingAn fixed. In particular, for

An = 0 we obtain the critical exponents fer= ™. In such a case, forn = 2 we obtain:

_ 1, 53
'7—486 + 2886 ,
1 1 J6 1
Z=—2_Z 2( Y- —
v < te (50 50)
397 37\/6 /6
3
¢ (15000 15000 1000;(3)+ ot (3)> (3.30)

4. The Landau—-Ginzburg—Wilson theory in the large# limit

In this section, we study the largebehavior of the LGW theory (2.2) at fixed. The
starting pointis the general Hamiltonian (2.8) wﬁﬁﬁ = 0. In the high-temperature phase
the symmetry is unbroken and thus the relevant saddle point is given by

(S)=0.  (Tup)=0. (4.)
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Correspondingly, we obtain the gap equation:
dép 1 60

—_— =, 4.2
2m)d p2+ M2 nm (4.2)
whereM? = rg 4+ woo . For theo-model (2.3) we obtain analogou$ly
al 1
14 . m (4.3)

@m)d p2+ M2 n°
From the gap equation we can obtain the scaling of the mass and thus the expdfant
wo # 0, proceeding as in the case of the ordin@ny:) model, we obtain for 2 d < 4

1
=—. 4.4
v=-—y (4.4)
However, forwg = 0, we obtain simpl;M2 = ro, indicating
1
= 45
V=3, (4.5)

for all values of the dimensiod.

Within the largen limit we can recover the critical behavior of the theory at all fixed
points. For generiag and ug, satisfyingw > 0, vg > 0 we obtain the critical chiral
behavior. The standard Heisenberg behavior is obtained by seiging0, while the
antichiral critical behavior is obtained at the stability boundary, i.e., by setting O. It
is easy to see the different types of excitations that appear in these cases: at the chiral fixed
point both the scalar and the tensor degrees of freedom propagate, while at the Heisenberg
and antichiral fixed points one observes only the scalar and the tensor degrees of freedom
respectively. Note that, as a consequence of Egs. (4.4) and (4.5), the Heisenberg and the
chiral point have the same exponents fioe oo, and that they differ from those of the
antichiral point which shows mean-field behavior in all dimensions.

In order to perform the calculation we heavily relied upon the results obtained by
Vasil'ev et al. [21,22], who studied the models corresponding:te- 1 with a method
which lends itself to a reasonably simple extension, appropriate to the case we are
investigating. In order to make our presentation self-contained, we must briefly review
the essentials of the method.

One first considers the second Legendre transform with respect to the field and the
two-point function [23]. We indicate by)g“’ﬂb(p), Ds(p), and D?ﬁ”"s(p) the dressed
propagators of the fielg*“ and of the auxiliary fields and7*#. Herea, 8, y, ands go
from 1 tom, while a andb go from 1 ton. It is useful to factorize the group dependence
and to introduce scalar propagators

D3P (p) = 8% 59 Dy (p), (4.6)

1 2 _
DY (p) = 5 (5%/35 + 8995PY — ZSQﬂSV’S)DT(p). 4.7

6 This result can be obtained by using Eq. (4.2) and by taking the limit considered before Eq. (2.3). Notice that,
in order to keepM2 finite in the limit, o must converge te:n; asvg — oco.
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=

(1) 2 3) 4)

Fig. 2. The graphs appearing in the second Legendre transform. The continuous line represents
the dressed propagator of thefield, while the dashed line indicates the dressed propagator of an
auxiliary field.

Also we can reabsorb the coupling andwg in the fields. Using the same notations of
Ref. [21], we have for the second Legendre transform

1 1 1 n
r= > Trlog Dy + > Trlog Ds + > Trlog Dr + E(yl(S) +y1(T))

1 1 1
+ anyz(S) + gn(m —D(m+2)yAT) + gnmys(SS)

1
+ gnlm = D(m +ya(T'S) + ﬁ(m — 1)(m? - 4)yx(TT)

1 1
+ 51 m?ya(SSS) + gn®m — 1)(m + ) (ya(SST) + ya(STT))
2

+ 55 = Dm? = H(m+4) ya(TTT) + . (4.8)

In this equationys, .. ., ya, are the graphs reported in Fig. 2 and the letters in parentheses
indicate which auxiliary fields are propagating in the graph. In these graphs one should
use the scalar dressed propagafﬁgsand Dr while each vertex is trivially one. In the
equation we have of course reported only those graphs that are relevant for the computation
of the critical indices at order/:2. The group-theoretical factors in Eq. (4.8) have been
obtained by using Egs. (4.6) and (4.7) and keeping into account that the yerfexas

the form:

1 2
baatpp TV’ — 56‘“’ (6“1’6*“5 + 8%495B7 — n—q&“‘“&”). (4.9)

Eq. (4.8) is completely general and can be used in the computation of the critical indices
for all fixed points: while we should keep into account all terms for the chiral fixed
point, we should seT’ = 0 andS = 0 for the Heisenberg and the antichiral fixed points,
respectively.

From Eq. (4.8) we can derive the skeleton Dyson equations for the dressed propagators.
It is enough to compute the variation &f with respect to the dressed propagators. We
obtain for the fieldp the equation

- 1
del —A+u+gi(S)+ %(m — D (m+2)g1(T) + g2(SS)

+ 1(m —D(m+2) g2(ST) + iz(m - 1)(m2 - 4) g2(TT) +mng3(SS)
m dm
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Fig. 3. The graphs appearing in the Dyson equations. The continuous line represents the dressed
propagator of the field, while the dashed line indicates the dressed propagator of an auxiliary field.

+ %(m — 1) (m + 2)(g3(STS) + 2g3(T SS) + ga(T'ST) + 2g3(T T S))
+ 2 (m—1)(m® — 4)(m+4 ga(TTT) +--- =0, (4.10)
8m

while for the auxiliary fields we have

Dyt +es+ %gzl +nmgs(S) + g<m +2)(m — 1)gs(T)
n2m2 I’lz
+Tge(SS)+7(m+2)(m—1)g6(TT)+~-~=0, (4.11)
Drl+er + 2ga+ =g5(S) + =—(m — 2)gs(T)
2 2 2m
2
+n?g6(ST) + g—mon +2)(m — A ge(TT) + -+ =0, (4.12)

Herecs andcy are two constants; a momentum-independent contribution due to the
tadpolesA = p2 4+ M2, andg; are the graphs reported in Fig. 3. As before, in parentheses
we report which auxiliary fields are propagating. Each line is associated to a scalar dressed
propagator, while the vertices are one.

The critical exponents are determined following closely the method of Ref. [21]. As in
Ref. [21] we introduce two auxiliary functions:

r(5-x) a(x - 9)
=_2 " = </ 4.1
a(x) o p(x) w2t (4.13)
ax—yalx+y—9%
q(x,y) = ( 7 2), (4.14)
a(x)a( — 5)
Note the trivial symmetry of the functiap(x, y) which will play a role below:

q(x.y)=q(x. 5 — ). (4.15)

The calculation of the An correction starts from assuming far— 0 the following
behavior of the dressed propagators:

A
Dy (x) = xz_aXX(1+ Bxx? +...), (4.16)
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whereX is any of the fields. Herey is related to the dimension of the field. F&r= ¢
we haveay = d/2 — 14 n/2. The correction term we report is the analytic one in the
temperature and therefove= 1/(2)). From Eq. (4.16) we obtain for the inverse functions:

D)_(l(x) _ y plax)

W[l — BXQ(O[X, )\,))CZ)L +-- ] (417)

Plugging these expressions in the skeleton equations and equating the corresponding terms
we obtain six equations for the amplitudes. Such equations have nontrivial solutions only
if

as=or=2—-n=4, (4.18)
and the following consistency equations are satisfied:
M
plag) = 2;1)(/3), (4.19)
[q(ap. ) +1]q(B, 1) =2, (4.20)
whereM is a group-theoretical factor that depends on the fixed point:
1
Mt = E(m +1 (chiral f.p.)
1
M={M = %(m —1(m+2) (antichiralf.p.) (4.21)
1
MHE == (Heisenberg f.p.)
m

Note thatM~ = 0 for m = 1, —2, a result which follows from the fact that only a
symmetric traceless tensor propagates. Eq. (4.19) allows the determination of the first
largen coefficient appearing in the expansion of the exponent

=Ty B (4.22)
n n n

Forny we obtain

n1= Mnia, (4.23)
where
AI'(d — 2
n1=-— ( ) (4.24)

re-9rg-nrg-ariE+y’
and the dependence on the fixed point is encoded in the fattdihe quantityy1 is the
well-known result for thern = 1 model; among its most important properties we wish to
mention thatj1; — 0 both in thed — 4 and in thed — 2 limit.

Eq. (4.20) should allow the determination of the exponertiowever, there is a subtle
point that has been overlooked in the previous analyses. It is convenient for our discussion
to introduce the auxiliary function

r(n,\)= |:q<2+% —1,k> +1]q(2—n,k), (4.25)
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which corresponds to the left-hand side of Eq. (4.20). Because of Eq. (4.15), the function
r(n, A) has the symmetry

r(n, ) =r(n, % —2). (4.26)

As a consequence, onegis fixed by solving Eq. (4.19), we still have the possibility
of finding two different solutions forkA = 1/2v. It is convenient to parametrize the two
solutions by

4 4

Using Eg. (4.20) and the fact thatis of order ¥n, one can show that alsois of order
1/n and therefore has an expansion of the form

Py ii<i—1+p>. (4.27)

PR T (4.28)
The coefficientp; is computed from Eg. (4.20) using the fact thatfdarge

q(§—1+3n.4-1+p)=q($—1+3n.1-p)

4—d 2,01) 1
=—(1-—=)+0(r ). 4.29
d < ni () (4.29)
We then obtain
p1= Mpa1, (4.30)
where
(d-1d-2)
=M1 4.31
011 1—4 n11 ( )

As we observed the consistency equations are satisfied for two independent chaices of
In order to associate to correct one to each fixed point we use thedagimates of the
exponenw given in Egs. (4.4) and (4.5). Then we have

d 1 .
——1+=Mtpy1 chiralf.p,
2 1 n
A=11-—~-M pn1 antichiral f.p, (4.32)
n
d 1 .
5L+ ~M*"py; Heisenberg f.p.
n

The corrections of order/k? can be obtained by generalizing the arguments of Refs. [21,
22]. One must only pay attention to insert proper group-theoretical factors in front of
the corresponding: = 1 contributions: they can be obtained from Egs. (4.10), (4.11),

and (4.12).
We introduce the following definitions:
d?+2d -4
HF 2
= v+ —, 4.33
M1 (7711)|: + 2d(d—2)] (4.33)
-1 32+ 8d — 30d? + 7d°
HF 2 2
= ———— | d—-2)(4+2d —d°)¥ , (4.34
P21 (m2) (d—4)2|:( )( + ) + dd—4) i| ( )
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where
d d
WEw(d_z)—i_I/f(Z_E)_1/”<§_2)_1/f(2). (4_35)
Also:
a d d6—d
77(21) = (7711)2<4_dllf + 2((4—d))2)’ (4.36)
dd—3 d(d—2
n‘f’f=(nn)2< i_d)llur il—d))’
o dd-2 3
i = ﬁ“ﬂﬂz[ﬂd ~ ¥+ dd - 3Ry +2d 8
6 4 12
dd—2)
,Oéli) = m(mﬁz
4(d - 3) 3 2d(d — 3)2 , ,
[(d—Z) ¥+ 5d@d =R+ == (6R1— Ro— R3) +d
12(4—d) 16
+d+20- "m0 _4_d], (4.37)
where
d
RlEW<§—1> - v¥'(D),
/ ’ d , d ,
RZEWC’—@—I/f(2—5)—w<§—1>+w<1),
d d
RSEI/f(d—3)+Iﬂ<2—§> _W<E—1> -¥ Q). (4.38)

Recalling the above considerations about the choice iof conjunction with the choice
of the critical point, we can now write down our final results for the £xpansion of the
critical exponents in the (n) x O(m) models, both for the chiral (stable) critical point
and for the antichiral (unstable) one:

m+1 1[ (m+1)? m+3 m?+3m+4
t= 77711 ;[ 2 77511F + 4 néal) 8 ngl)
+ o(%), (4.39)
n
- m—1D(m+2)
R — ]
1[m—102m+2? yp (m—Dm?>—4
+ = a2 M1 T s a1

(m =D Mm% =2 (m+4) 1
+ - ] +0( %) (4.40)
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L1 2 m+1

U Td-2 W@-22 2 ™

2 1[(m+1)2 up m+3 @ m2+3m+4

W22 4 ATt g &
2 (m+17?%, 1
- ol = 4.41
a—2 4 | *tPE) (4.41)
_ 1+1(m—1)(m+2)
vV =+ ————————
2 2 2mn piL
11[m-1D2m+2?% yp  (m—Dm>-4
202 mz  a Tz A
—D(m*—4(m+4 — 1)%(m + 2)?
N (m —21)(m _ )(m )péﬁ”r (m —1)"(m +2) Pfl}
8m 4m?
1
+o<—3>. (4.42)
n
The expressions for the stable fixed point at ordér toincide with those of Ref. [14].
Note thatn™ = 0, v~ = 1/2 for m = —2,1, in agreement with oug-expansion

results.

It is possible to expand the above largeesults in powers of = 4 — d. The resulting
expressions can be compared with the dhexpansion results for the LGW Hamiltonian
presented in the previous section. We find full agreement both for the stable and the
unstable fixed point for akz, thus confirming our identification of the largefixed points
with the perturbative ones.

Ford = 3 the larges expansions simplify to:

4m+1) 16(m2—Tm — 26) 1
t= ol = ). 4.43
7 3nm? 27274 (n?’) (4.43)
_ Am—-D(m+2) 16(m —1)(m + 2)(m®—8m —2) 1
= = 4.44
3mnm? 27m2n2m4 + O(n?’)’ ( )
y_q_160m+1D) 1 (40m®+3m+4) 64Gm®+19m +32)
VvV = _— - — —
3nm? n? 2 274
1
+o<?), (4.45)
n
1 N 4m+2)(m —1)
vV == _
2 3mnn?
(m—1)(m +2)

73 7| 16(13m% + 4m + 28) + 270n + 4)(m — 2)7]

+o<%>. (4.46)

n
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5. The 1/n-expansion in the presence of a vector field

It is quite instructive to extend the discussion of the previous paragraph to the more
general case in which gauge-invariant vector degrees of freedom are allowed. This
corresponds to studying the general Lagrangian (2.1) ayithO.

In the largen limit one starts from Egs. (2.8) and (2.9) with= 0. As discussed by
Hikami [18], the gauge kinetic term is irrelevant fér< 4, as well as th@'? and $2 terms
in Eq. (2.8). Thus, the largedimit can be studied by keeping only into accoufys. The
discussion of the fixed points is identical to that presented in the previous Sectjgg: 0
a new set of fixed points appear: for genagc- 0, wo > 0 we have the chiral-gauge fixed
point in which all excitationsg, 7%#, A;’iﬂ) propagate; fowg = 0 we have the antichiral-
gauge fixed pointX®®, A%?), for vo = 0 the Heisenberg-gauge fixed poist 4%’), and
for ug = vo = wo = 0 the pure gauge fixed poim&ﬁﬁ).

Here, we want to compute the critical behavior fior~ oo, keeping only the leading
correction. Since the model is gauge-invariant, the largropagator of the fieIdAfiﬁ
is not uniquely defined. Indeed, by integration over the figldve obtain a coupling
%AZ’SAL"SM%’V‘;, where in momentum space

M7 (p) = %(6”8’% — 8%0857) (pyupy — p28,0) M (p?), (5.1)
which is not invertible. A propagator for the fieLdfjﬂ is obtained by adding a gauge-
fixing term, that introduces a longitudinal term, makes the matrix invertible, but does not
contribute to physical quantities [24].

The calculation is completely analogous to that performed in the previous section. For
the second Legendre transform, we obtain to orddy@)

nm(m — 1)
8
wherey; andy, correspond to the graphs reported in Fig. 2, all group-theoretical factors
have been explicitly singled out, at{ A = 0) is the expression reported in Eq. (4.8).

Generalizing the results of Refs. [18,24] we obtain then

1
F=F<A=0)+§TrlogDA+%y1<A)+ ya(A) + -+, (5.2)

d?—-1
2

whereM is a group-theoretical factor defined in Eq. (4.21) (for the pure-gauge fixed point
M = 0) andp; is the I/n contribution to the exponent defined in Eq. (4.27). Note that
the result (5.3) does not depend on the gauge fixing used to define the propagator of the
field A. In principle, one could also compute a gauge-fixing dependent expgrerttits
significance is not so clear, since, because of the gauge invariance, th¢ fielels not
have a well-defined anomalous dimension.

As a check we can compare our results with those obtained in perturbation theory for
the gauge Hamiltonian (2.1) witly = 0. Hikami [18] determined the following one-loop
B functions in theMS scheme:

p1= ,011|:M + (m — 1)], (5.3)
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Bu=—€u+

i 8 - 1Dn-1/1
mn6+ u2+(m )6(11 )<§v2—uv)

3 9 2
— E(m — Dua + é(m —Da ],

i -8 3 9
By = —€v+ %vz + 2uv — é(m — Dva + Z(m — 2)a21|,

n 11
=— — —Zm-2)|a? 5.4
Ba 6a+[12 3 " )]a (5.4)
where « = Nyg°. These expressions generalize the results presented in Section 3.

Choosing thex* = 0 solution of the fixed-point equations we obtain the four critical points
already discussed. However, if we choose the solution

I - 0(e?) (5.5)
o —€|:1—2—§(m_ :| + €7), .

we find another set of four critical points, corresponding to the distinct roots of a quartic
algebraic equation. This equation cannot be solved in closed form, but it is easy to find its
roots in the form of a series in the powers gf:l The relevant terms in the expansion of
the roots are:

e Chiral-gauge fixed point:

* 1 2—10m * 1 32—-10m
o0, ===+ 100, (5.6)
6e n n 6 n n

e Antichiral-gauge fixed point:
u' _m—1_ (m—1)(16+88m— 10m?)

. O(e),
6¢ mn m2n2 +0(
* 1 12+ 32m — 10m?
R n +0O(e). (5.7)
6 n mn
e Heisenberg-gauge fixed point:
w* 1 27m3—117m°490m — 8
—=—+ 53 + O(e),
6 mn mén
* 27m —2
v _ # + O(e). (5.8)
6¢ n
e Pure-gauge fixed point:
o 27(m—1 *27(m — 2
“_z#JrO(e), v—:#—i—O(e). (5.9)
6¢ n 6¢ n

Thus, the gauge model has in general 8 fixed points and, at least for|dhgechiral-gauge
fixed point is the stable oné Substituting these expressions into the relationship [18]
mn+2 , (m-Dm-1) , 3(m-1) ,

-1 2
v 5 5 v e + O(¢9), (5.10)

7 This is not true for generig andm. In order to obtain the general fixed-point structure, one should generalize
the analysis performed in Section 3.
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we find a ¥n expanded form of the @) contribution to the critical exponemtfor each
of the four solutions:

2—¢+ (48n — 42)S +0(e2,n7?) chiral-gauge f.p.
n
6(m — 1)(8 1
. 2 (m—1)@Em+1) ¢ +0O(e2,n7?) antichiral-gauge f.p.

1_ m n 5.11)
v 45m2 — 45m + 6 € ®
2—e+—— " 1 0(?,n?) Heisenberg-gauge f.p.

m n
2 45(m — 1S + 02 n2) pure-gauge f.p.
n

It is then a matter of trivial algebra to verify that these expressions are in full agreement
with the e-expansion of the four solutions discussed above in the context of the 1
expansion, which explains the names we have given to each fixed point. Again, we think
it is important to notice that the conformal bootstrap approach can naturally accommodate
for the expansion ddll solutions, not only the stable ones.

6. Theeé-expansion ofO (n) x O (m) nonlinear ¢ models

The LGW Hamiltonian is the natural tool for the study of the critical behavior of systems
near the upper critical dimensieh= 4. If one is interested in the critical behavior near
the lower critical dimension, one can still use perturbation theory, applied however to the
nonlinears models (Nlo). The degrees of freedom of the Mlmodels should correspond
to the interacting Goldstone modes of the system, while the effect of the massive modes is
only taken into account in the form of constraints for the massless fields. In this context, it
is possible to perform an expansion in powers ef d — 2. In the present paper we extend
the results of Refs. [14,15,32,33] to a gen&dah) x O (m) symmetry group and to @?).
Comparing with our previous/k expansion results we will be able to identify the nature
of the fixed points of the N&. In particular, we will show explicitly that the stable fixed
point of the generic model can be identified with the stable fixed point of the LGW theory.
We consider the Hamiltonian (2.6). This Hamiltonian is geometric in nature, and its
variables are best understood as generalized coordinates spanning a manifold. The cases
we shall be interested in correspond to manifolds that are coset spaces. More specifically,
we must study the coset space (remembersihan)

o) x O(m)

, (6.1)
O(m—m) x O(m)
which is topologically equivalent to
_O0m 6.2)
O —m)

Associating fieldsr! with the Goldstone modes that correspond to the broken generators

{Lie(Om)) — Lie(O(n —m))}, (6.3)
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the Hamiltonian may be formulated in purely geometric terms, i.e.,

~ 1
H= Eg[J(JT)Vn[VnJ. (6.4)

The couplingsT; = 1/n; are related to the independent entries of the tangent-space
metricn; ;.

A number of important RG properties of the biLmodels have been derived in the
general case by Friedan [25] and specialized to the models of interest in Refs. [15,32,33].
If R;yjxr andRy; are, respectively, the Riemann and Ricci tensor for the mgtricthe
RG g functions of the model can be written to two-loop order as

g

1J - 1
Prs=s ds 2_6771]+RIJ+ERIPQRR5QR+"'- (6.5)

The number of algebraically independghfunctions8; coincides with the number of
independent couplingg. Therefore, we should consider ty$afunctions associated with
T1 andT>. The fixed points are determined from the equations

Bi(T1, T5) =0, (6.6)

that can be perturbatively solved in powersof
The evaluation of the two-loog functions for arbitraryn andn requires no special
skills, but it takes some time and effort in view of the many computational steps involved.
Without belaboring on the intermediate steps, we report here our final results:
0Ty

Pr=—sos

=—éT1+|n—-2- mT_lx]Tf+ [A+BX + CX?| 13 +O(T}),

/325—3%
m—2 n—m

=—¢T: S
ez—i—_ > + >

+0O(T4), (6.7)

xz] T? +[DX?+ EX3+ FX*+ G]1}

whereX is shorthand for the rati®1/ 7> and we have defined the coefficients:
3
An,m)=2m(mn —m) —n + é(m —1D(m—2),
3 3
B(n,m)=—(m—1) E(” —m)+ é(m -2,
Clnm) = (m —1)| Sn—my+ 2
n,m)=m 8 n—m g |

D(n,m) = Z(n —m)(m — 2),

E(n,m)= —%(n —m)(m — 2),
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F(n,m)= %(n —m)(2m — 3),

G(n,m)= %(m —2)2 (6.8)

Our results were submitted to a number of basic consistency checks:

(i) whenm = 1 there is noj, coupling, and31(T1) reduces to the well-knowg function
for the vectolw -model defined on the coset spa@én)/ O (n — 1);

(i) whenm = 2 our expressions reduce to those of Ref. [15];

(iii) when m = n there is nay1 coupling 2 and the model reduces to a standérch) x
O (n) principal chiral model. One may verify thab(7>) is directly related to the knowg
function of these models [26].

One may also consider the “gauge” limit = 0, which was studied by Hikami [18]: the
identification with Hikami’s coupling i1 — 1/z. One must however recognize that the
limit is singular, and as a consequence the funcfgh'®{r) is not obtainable from our
expressions by setting = 0 (with the notable exception @i = 2 models). If we assume
n2 = 0 from the very beginning of our calculation, the result is

B9%) = &t + (n — 212+ [2m(n — m) —n]r® +O(r*), (6.9)

consistent with that reported in Ref. [18].

The g-functions (6.7) are the starting point for the perturbative evaluation of the critical
points and exponents to(€7). A consistent ansatz for the simultaneous solutions of the
equationss; (T}, T;) = 0 is the following:

Ty = 1€ + €2 + 0(&%), (6.10)
X* = Xo+ X1& + O(&?). (6.11)
It is straightforward to obtain the following algebraic equationsfand Xo:
1 -1
1 2
1 m—2 n—m_,
——Xo+ ——— X5=0. 6.13
ot T T ©.13)

They are trivially solved by

Xi_n—Zi\/(n—Z)Z—(n—l)(m—Z)
0~ n—1 ’
1 -1
Z=n-2-"""x% (6.14)
5 2

Iterating the procedure we may also obtain
L (D=AXH?+(E—-B)(X5)3+ (F - OX$)*+G
! Xz[(n—2) — (n — DX3](n —2— 21 x7)

: (6.15)

81f n = m the vectorse” are an orthogonal basis iR™ and therefore satisfy the completeness relation
Yo (V- (w- ) =v-w for all vectorsv, w. Then, it is a simple matter to show that the second term in
Eq. (2.6) is one half of the first one.
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L [m—1_, A+BX;+C(X5)? 1

ts =[ X7 — —— X } T2 (6.16)
2 n-2-mts -2t

This analysis shows the existence of a couple of nontrivial fixed points of the RG equations.

However, it is evident from Eq. (6.14) that such a pair of solutions does not exist for all

m andn: for some valueg(at is indeed complex. Repeating the analysis we performed in

Section 3 for the-expansion, we see that these two fixed points exist only fefi ™ and

n <n~,where

. m+2+vm2—4 1\/m+2 m2+4+mvm2—4 5
nT = = €
2 2V m—21+vm?—4)y(m+~m?—4)

+0(&?). (6.17)

Note that for€ small, we haven <7t <m+1andi™ < m. Thus, since: > m, all models
with integern > m + 1, have a a pair of nontrivial fixed points, at leastd@mall. Beside
these two fixed points, there is also a fixed pointfpe= 0 and7T, = 7 that belongs to the
universality class of th& (m) x O (n) principal chiral model. Such a fixed point always
exists perturbatively fom > 2 and in particular is the only present foe= m.
As one may easily notice, the expansion (6.17) is singular when2. This is related
to the following peculiar feature ofi = 2 models: for any value of the (unstable) fixed
point corresponds to the solutidfi* = 0, and as a consequence we observe its coalescence
with the “gauge” fixed point obtained by setting = 0. This phenomenon does not happen
for m > 2. In this case, the gauge fixed point and the antichiral fixed point are distinct.
The exponeny is easily computed. To two-loop order we have

n=—&+(n—mTj + (m—1)T; +O(&3). (6.18)

Substituting the expression of the fixed point, we obtain

N D T A E
n=(n—m)(1é + 12€°) + (m 1)|:X06+<X0 X2 )6] ¢+ 0(e°). (6.19)

We can expang at the stable critical point in powers of i, obtaining

m+1 3m2+Tm+6 1\1.
n= + +0| =) |€

2n 8n? n3
m+1  3m+1)2 1\7-2 3
— — . .2
[ o + e + O<n3)]e + O(€°) (6.20)

If we compare such expression with ti#éeexpansion ofy™ as obtained from the
largen expansion of Section 4, Eq. (4.40), we find complete agreement, confirming the
identification of the two fixed points.

In NLo models the evaluation of stability goes together with the evaluation of the critical
exponent, since both are related to the eigenvalues of the derivative matrix

pi
—(Ty, T5). 6.21
More precisely, stability requires that the above matrix possesses only one positive

eigenvaluer,. = v—1. The presence of two positive eigenvalues signals the instability of
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the fixed point. It is possible to evaluate the above-mentioned eigenvalues in the context of
theé expansion, obtaining:

Ay =& —vo(n,m)E2 4+ 0(&3), (6.22)
A— = A(n, m)E + p(n, m)E% + O(&3), (6.23)
where
a112a221+ a111a222 — 122211 — A1214212
v2(n,m) = ,
ai11+ a21
r(n,m)=1—a111— a1, ra2(n, m) =vo(n,m) — ai12— axz. (6.24)

Here we defined

a111= 1 Xo= —ai121Xo,

2
az11=—(n —m)t1 Xy = —az21Xo,

m-—1
a2 = > (t1X1+t2X())—112(A+ZBX0+3CX8),
m— 2
a122=—— 12 + 17 (B + 2C Xo),
az12=—(n —m)(21XoX1 + 12X3) — 11(2DXo + 3EX§ + 4F X3),
azz2= (n —m) (11 X1+ 12Xo) + t7(D + 2EXo + 3FX§ — G/ X3). (6.25)

The 1/n expansion ob evaluated at the stable fixed point coincides with&hexpansion
of v™ obtained in Section 4. The result of the expansion is:

+11 +121 1
Uz:m —+(m ) ;4‘0( )

> 5 - (6.26)

n

Notice that the coalescence valii€ can be easily determined within téeexpansion by
imposing the condition

A_[A%, m]=0. (6.27)

While the stable fixed point is identified with the chiral fixed point of hé1) x O (m)

LGW model, the unstable one is unrelated to those of the LGW model. In order to
understand its nature, it is again useful to consider the largait. From Eg. (6.14) one
observes thak, ~ 1/n asn — oo. Therefore, the fixed point survives in the large-

limit if we scale the coupling constants &= O(1/n), T» = O(1). Then, for large: the

B functions decouple. Moreover, whifgy (T1) gets no contributions beyond one loop (as
usual in vector models¥2(T>2) turns into thes function of anO(m) x O (m) principal

chiral model [26]. Therefore, in this case the pattern of spontaneous symmetry breaking is
highly nontrivial, even in the striot — oo limit. This can be understood from Egs. (2.8)
and (2.9). In the large-limit the relevant Hamiltonian is

1
H = Hef + EOAZ. (6.28)
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Now, the field¢ couples only to the gauge-invariant degrees of freedom, and thus at the
saddle point the field&fjﬂ is a pure gauge transformation, i.e.,

A% = (07%9,0)*, (6.29)

where O is an O (m) matrix. Thus, forn — oo, the Hamiltonian can be rewritten as the
sum of two terms:

1 2 to _
H = E;qsa : (8M8H+M )¢a+E TraMO 18#0’ (6'30)

where, as in Section 442 = ro+ woo . Thus, the unstable fixed point is directly related to
the nontrivial fixed point of the principab (m) x O (m) chiral model.
Finally, we consider the gauge limji = 1/¢, n2 = 0. We find a nontrivial fixed point:

1 n—2mm—m)_,

*= é o(&3). 6.31

=&+ 27 €“+0(e%) (6.31)
Correspondingly we obtain:

_ . 2m(n—m)—n .

1__ *\ 2 3

VESBE=Et — o€+ 0(€). (6.32)

The 1/n expansion of the above result gives
2m —1
vloer 224 0@, (6.33)
n

and one may easily check that it agrees with &hexpansion of the results found in
Section 5 for the stable fixed point of the gauge model, see Eq. (5.3) Muithv .

The behavior of Nk models in the case = n — 1 is worth a special discussion [33].
In this case one may naturally define a newomponent fiela, such thag, - e, =1 and
ey - €, =0, and one can show that

1 it 1 1
H = an;%ea <08y + (5”1 - an)aue,, - 0,6p. (6.34)

Whenn1 = 72, this is the Hamiltonian of am® (n) x O(n) principal chiral model. The
stable fixed point is characterized by the property ffiat= 1 and one finds:

2 1
tl:n—z’ t2=—n_2. (6.35)
Direct substitution shows that
1
vl=eq §g2+0(g3), (6.36)
n - n— 1,_,2 ~3
n:n_ze—n_ze +O(e). (6.37)

As one may easily check, these exponents coincide with those obtained in the case
Therefore, the symmetry of th@ (n) x O(n — 1) model is dynamically promoted to
O (n) x O(n) atthe stable fixed point, thus generalizing the results of Ref. [15] concerning
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the caseO (3) x O(2). This property is certainly true for sufficiently small> 2, but at
this level of analysis it is impossible to establish the maximum dimensitor which a
stable critical point possessing the enlarged symmetry can be found.

7. Conclusions

At this stage of our analysis, we can draw quite general conclusions on the general
fixed-point structure of the models witB (n) x O(m) for all dimensions X d < 4.

By comparing thet-expansion results near two dimensions, ¢hexpansion results near
four dimensions and the largeresults, we have been able to identify the nature of all
(stable and unstable) fixed points of these models. In particular, the LGW stable fixed
point coincides with the stable one of the dimodel. We thus quantitatively confirm one

of the conclusions of Refs. [15,32]: abave2, d) in the (m, d) plane a second-order phase
transition occurs, and with varying, for n large enough, the critical exponents smoothly
interpolate between Nt and GLW model values.

The unstable fixed points, which give rise to different types of tricritical behavior and
crossover phenomena, are instead unrelated and correspond to systems with completely
different types of excitations.

The correspondence we have found holds only for sufficiently large valued.ef, for
n > n(m,d), which is the region of analyticity of the largeexpansion. Since the/&
expansion commutes with the= 4 — d expansion of the LGW Hamiltonian, one may
expecti(m, d) to coincide withn ™ (m, d) in a neighborhood of = 4; n™ (m, d) might in
turn be evaluated within the/z expansion by solving the coalescence equation:

vim,nT,d)=v " (m,n",d). (7.2)
The estimate obtained from the lowest order approximationois:

1\ p11(d)
Tm,d)~?2 1-= .
n"(m,d) <m+ )4—d

m

(7.2)

This expression has been obtained by solving exactly the equatioh(k, n ™, d) =
1/v=(m,n*,d), where Yv*(m,n*,d) and I/v—(m,n™,d) are expanded to ordey/i.
This expression shows the correct qualitative behavior for afl 2 < 4 and a rough
quantitative agreement. It is possible to improve the approximation by including tfe 1
correction in Eq. (7.1). Fom = 2 andd = 3, it predictsn™ (2, 3) ~ 5.3, in substantial
agreement with the results obtained by using the ERG approach [8,9], the perturbative
expansion in fixed dimension [10], and, as we shall show belove-#sgansion.

We want now to understand the behaviorigfn, d) near two dimensions. Near two
dimensions, using the NL. model results we know that the (LGW and &)_stable fixed
point exists only forn > 7% (m, d), so that in this cas@(m,d) = n*(m,d). Thus, for
generic values of we conjecture

nt(m,d) ford.(m)<d <4,

o
n(m, ) {ﬁ+(m,d) for 2< d < d.(m),
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Fig. 4. Sketch of the coalescence line as a function of the dimedsion

whered,(m) is a critical dimension that we cannot determine with our means. Of course,
this expression is valid for > m. The symmetry under exchangeméndm, implies the
existence of a similar boundary curve in the regiog m, obtained by interchanging
andm. A sketch ofii(m, d) is reported in Fig. 4.

Now, let us discuss the behavior of the LGW fixed pointsdoee 2. Since the LGW
stable fixed point is equivalent to that of the &lmodel, and, for alk > 2, m > 2 except
n=2,m =2, the NlLo model is asymptotically free, we expect = oo, a conclusion
that is confirmed by the large-expression (4.41). On the other hand,dog 2, Eq. (4.42)
predictsv~ = 1/2 without I/n and 1/n? corrections. It is thus natural to conjecture that
v- =1/2foralln > 2 andm > 2, i.e., that the LGW antichiral fixed point is a Gaussian
fixed point. The casen = 2, n = 2 needs a special discussion. Using the fact that the
0(2) x 0(2) LGW model is equivalent to the so-calledn model® with m =n = 2
[16,27] one can show that in the< O region a stable fixed point exists for all values
of d [1,2]. Finally, ford — 2, using ther-model results of the previous section, one finds
that it becomes Gaussian.

We want now to use the knowledge @fm, 2) in order to obtain some informations
onn(m, 3). For this purpose we will make two hypotheses: first we will assdme) < 3,
so thatn(m, 3) = n* (m, 3); second, we will assum&(m, d) to be sufficiently smooth in
d atm fixed, so that we can use the interpolation method of Ref. [29]. Such a method has
provided very precise estimates of critical quantities (see, e.g., Refs. [29,30]).

9The mn model withm = 2 describes: XY models coupled by ar® (n)-symmetric interaction. Using
essentially nonperturbative arguments (see, e.g., Ref. [27]) related to the specific-heat exponenx bf the
universality class, one can argue that dbk d. with d. > 3 there is a stable fixed point belonging to tki¢
universality class, while fo# > d, there is a stable fixed point with the tetragonal symmetry. This fact has been
recently confirmed by high-order field-theoretical calculations in three dimensions [2,28].
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Let us first consider the cage= 2. We start from [17]

14
1(2,4—¢€)=12+46— (12+ §~/6>e

137 91 13 47 2 3
[H)_l_ﬁ) 6 <€+a)\/é>§(3)j|6 +O(6 )

= 2180 2343¢ + 7.09%2 + O(3). (7.3)
Following Ref. [29], we rewrite this equation in the following form
1(2,4—€) =2+ (2—€)(9.90— 6.67¢ + 0.16¢2) + O(3). (7.4)

Note that the new perturbative series is much better behaved than the original one,
the coefficients of the series decreasing rapidly. Settirg 1, we obtain an estimate
forn(2, 3):

7(2,3) ~5.3(2), (7.5)

where the “error” indicates how the estimate varies from two loops to three loops. It should
not be taken seriously; it should only provide an order of magnitude for the precision of

the results. The estimate (7.5) is in good agreement with the determinations of Ref. [9,10]:
n(2,3) ~ 5 (Ref. [9]),~ 6 (Ref. [10]). We can try to estimate the exponentsifer (2, 3),

by using Eq. (3.30). The coefficients decrease steadily svdhd thus we can simply set

€ =1, obtaining

n~0038  v~0.63 (7.6)

It is also interesting to compute the exponentsifee 6, m = 2, andd = 3, in order to
make a numerical comparison with the results of Ref. [31] who fauad.700(11), y =
1.383(36), and the ERG results of Ref. [9] who foundx= 0.707,y ~ 1.377. If we use our
O(n~?) expansions for the critical exponents, we obtair: 1.22 andv ~ 0.63. We can

also use the-expansion, by using the method explained at the end of Section 3. In this
case, we must fiAn = 6 — n*(2, 3). Conservatively, we have § An < 1. Then, from

the perturbative series we estimate: 0.63—-0.64,y ~ 1.24-1.26, which is rather close to

the largen result, and somewhat lower than the numerical results of Refs. [9,31]. It is also
worth mentioning that forn = 6 the fixed-dimension field-theoretical approach does not
find fixed points that are sufficiently stable with respect to the order of the expansion up to
six loops [10]. We believe that these apparent discrepancies among the various approaches
deserve further investigation.

Our expressions may also be employed in order to establish an upper bound on the
critical dimensionalityd.(n, m) for the existence of a stable fixed point analytically
connected with the critical point found in the¢/1 expansion. This bound can be obtained
by forcing the conditiorz (m, d;) = n. In particular, one may determine the dimensi@n
such that, ford < d. the O(3) x 0(2) has a nontrivial fixed point with symmetry
O(4) [15]. This corresponds to solving the equatiof?, d.) = 3. If we use Eq. (7.4),
we findd, ~ 2.71. We may compare our result to those obtained in the ERG approach:
d. = 2.83 (Ref. [7]), 2.87 (Ref. [8]). They are in substantial agreement with our result,
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when allowing for the systematic errors of both approaches. It should also be noticed that
our interpolation (7.5) is also in very good agreement with the ERG results of Refs. [7,8]
for all € [34].

These analyses can be repeated for larger values 8fnce onlyz ™ (m, 3) seems to be
rather precisely determined, we only report the results for this quantitynFei3 and 4
we have the constrained estimates

7(3,3) ~9.1(9), (7.7)
(4,3 ~12(1). (7.8)
For largem we have
fi(m, 4 — €) =m(9.90— 10.10¢ + 2.66¢2 + O(e3, m 1))
=m + (2 — €)m[4.45— 2.83¢ — 0.084¢> + O(e3, m~1)], (7.9)

where, as already observed, the coefficients of the constrained series are smaller than
the original ones. Setting = 1, we obtainiz(m, 3) ~ 2.5m. Note that the larges:
approximation is already good at= 4.

It is very important to notice that, since all extrapolation techniques are adiabatic in
their parameters, it is not possible to catch the (essentially nonperturbative) features of
the models in the region below. As a consequence there is no inconsistency between
the present statements and our results [10] conce@ing x O (2) models fom =2, 3in
fixed dimension! = 3. The fixed points we found fer= 2, 3 are certainly not analytically
connected with the large-and smalle = 4 — d criticalities discussed in this paper.

Finally, we recall that an enlarged parameter space foralw) x O (m) symmetric
models with critical dimensiod@ = 4 leads to the appearance of several new, generally
unstable, fixed points, that physically correspond to tricritical transitions and give rise to
crossover phenomena. It is important to recognize that the conformal bootstrap approach
to the 1/n expansion allows a consistent treatment of all these criticalities. Systems with
O(n) x O(m) symmetry may also possess a “gauge” criticality, which can be described
by the appropriate /ln= expansion as well as within theexpansion of the Hamiltonian
for scalar chromodynamics and within tlieexpansion of a class of gauge-invariant
NLo models.
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