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In this talk we present the exact  solution of the most  general one-dimensional O(N)- invar ian t  spin model  taking 
values in the sphere S ~v-1 , with nearest-neighbour interactions, and we discuss the possible continuum limits. All 
these results are obtained using a high-temperature expansion in terms of hyperspherical harmonics. Applications 
in higher dimensions of the same technique are then discussed. 

We will report here some new results concern- 
ing the study of one-dimensional a-models [1] 
and the generation of high-temperature series in 
higher dimensions [2]. 

Both studies rely on the use of hyperspheri- 
cal harmonics, for which some new formulae have 
been obtained [1]. Let us first review the defini- 
tion of the hyperspherical harmonics. Define in 
R g the angular momentum 

n a~ : i(x~O~ - x~O~) (1) 

and 

L 2 = L° L . ( 2 )  
a<~ 

The hyperspherical harmonics are simply the 
eigenfunctions of L 2 on the unit sphere S N-1 C 
RN: 

L2Y~m(c r) = Ar],f,~(o) (3) 

with,~l = l ( l + N - 2 ) ,  ~ E S N-1. The index 
l = 0, 1 , . . .  labels the eigenspaces El, and we 
will refer to it as spin. Each eigenvalue is highly 
degenerate: the index m labels an orthonormal 
basis within each El. The choice of this basis 
is completely arbitrary but for our purposes we 
have foit und useful to use an overcomplete set in 
terms of Cartesian multipoles, i.e. 

v~,,~ = v ~ a -  (4) 
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Y2,,Z = ~ / N ( N +  2)/2 ( a " a  ~ -  1 6 a ~ ) ( 5 )  

Y~,~,...,, = st (a"'...a °' - Traces) (6) 
where "Traces" is such to make Yl,a~...a~ com- 
pletely symmetric and traceless and 

[2tF(l q- N/2)] U2 
m = i t! r(N/2) (7) 
is a normalization factor. Using this representa- 
tion we have been able to obtain a general expres- 
sion for the Clebsch-Gordan coefficients appear- 
ing in symmetric tensor products of irreducible 
representations and scalars built from them. If 
we define 

C,n Id~t3 =/da(a)Yhma(cOYt2m2(a)Ytsm3(a ) (8) 1 T I I 2 ~ 3  

we have computed exact expressions for 

2 Cl11213 E Cl'1213 (~111213 = r n , r n 2 r n a  v r n l  r n 2 r n 3  (9) 
77'1 )~2 )~3 

and for the 6-j symbols T4(11, l~, la; 14, 15, 16) when 
one of the spins li is 1 or 2. 

Using the hyperspherical harmonics one can 
study the possible continuum limits of a generic 
one-dimensional a-model [1]. Consider the most 
general Hamiltonian with nearest-neighbour cou- 
plings: 

H = E l 2 ( a ~ '  a~+,) (10) 
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with ax E S N-1 .  The starting point is the ex- 
pansion of the Boltzmann weight 

e - z v ( ~ ~ + I )  -- F0(fl) x 

1 +  v( x) • ( 1 1 )  

I----1 

where vl(~) are coefficients that  depend on the 
explicit form of 12 and satisfy Iv~(~)l < 1. In 
terms of these quantities it is easy to compute 
the two-point function in the spin-k channel. We 
get 

(Y~(a0)" Yk(~) )  = & v k ( f l )  I~1 (12) 

where Ark is the dimension of Ek. If 0 < vk (fl) < 
1, the two-point function is a pure exponential 
and we define a mass mk(fl) as 

= - l o g  ( 1 3 )  

To study the critical limit we must investigate 
the limit ~ ---* c~ (no critical point can exist for 
finite fl in one dimension). Thus the problem of 
studying the possible continuum limits is reduced 
to the determination of the asymptotic behaviour 
of vk (fl) for fl --~ oo. If in this limit m~ --* C ¢ 0 
the corresponding continuum two-point function 
is trivial (white noise): 

(Yk(o'o)" Yk(o'x))cont -- const X ~(x) .  (14) 

Thus a non-trivial continuum limit is obtained 
only if mk(f~) --* 0 (i.e. vk(f~) --+ 1) as/~ --* co at 
least for some values of k. The various universal- 
ity classes are then characterized by the limiting 
mass ratios rnk/rnt. 

A detailed study [1] has shown the existence 
of infinitely many families of universality classes. 
The standard N-vector universality class is ob- 
tained, for instance, by considering functions 12(t) 
which have a unique absolute minimum at t = 1. 
In this case one can show that  

mk(f~) = h(fl)Ak (15) 

with A(~) ---* 0 for fl ---* cx), so that  in the contin- 
uum limit we have 

mk ~ 
- ( 1 6 )  

ma ~ 

Analogously it is easy to recover the R P  N-1 uni- 
versality class: if, for instance, 12(t) has absolute 
minima at t = ±1 with Y ' (± l )  ¢ 0, then we can 
prove that,  in the limit/~ ---* oc, 

m~k A2k 
- ( 1 7 )  

rn2z A2z 
m2k+l 

- o ¢  ( i s )  
m21 

Besides these two cases there are many other pos- 
sibilities. If, for instance, i;(t) has minima at 
t - to ¢ ±1 and t = 1 and some technical condi- 
tions are satisfied [1] (physically they correspond 
to requiring that the contributions of the two min- 
ima to the free energy are comparable in the con- 
t inuum limit), we get new universality classes in 
which the mass ratios are not related to the eigen- 
values ~k of L 2. 

All these results can be interpreted in another 
framework. In one dimension a continuum field 
theory is simply a continuous-time Markov pro- 
cess on the target manifold. Now, the generator 
of a continuous-time Markov process is the convex 
combination of a diffusion part (a second-order el- 
liptic operator) and a jump part  (a positive ker- 
nel) [3]. Physically, this means that  the particle 
diffuses for a while according to the specified dif- 
ferential operator, and then, at exponentially dis- 
tributed random times, jumps according to the 
specified probability kernel. On the sphere S N-1 
for N >_ 3, the only SO(N)-invariant  second- 
order operator is the Laplace-Beltrami operator 
L 2 (and multiples thereof). The Markov process 
corresponding to pure diffusion on S N-1 is the 
standard N-vector universality class. One can 
consider also processes with a jump part. It is 
easy to see that  there is an infinite-dimensional 
family of possible SO(N)-invariant  jump kernels 
K: indeed, one can specify an arbitrary probabil- 
ity distribution of jump angles 0 E [0, ~r]. Corre- 
spondingly one finds an infinite-dimensional fam- 
ily of possible continuum limits. For instance the 
case we were mentioning above [12(t) with min- 
ima at t -- to and t = 1] corresponds to a process 
with diffusion and a jump distribution if(0 - 00), 
cos 0o = to. Analogous considerations can be ap- 
plied to R P  N-1. The standard R P  N-1 univer- 
sality class corresponds to pure diffusion on the 
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Figure 1. Finite-size-scaling function for the 
spin-2 susceptibility for N = 4. The different 
curves correspond to the N-vector universality 
class (B = 0), to the R P  N-1 universality class 
(B = c¢) while B = 1 corresponds to one of the 
intermediate universality classes introduced in [4]. 

manifold R P  N - l ,  while processes with diffusion 
and jumps give rise to new universality classes. 

In two dimensions we argued some time ago 
[4] that  there exists a one-parameter family of 
universality classes for O(N)-invariant a-models 
taking values in S N - l ,  which can be obtained 
by taking appropriate limits in a mixed isovec- 
tor/isotensor model. The same universality 
classes are identified in one dimension: besides 
being obtained as limits of a mixed model, they 
also arise as limits of a Hamiltonian of type (10) 
for suitable I). They correspond to Markov pro- 
cesses on S g -1  with diffusion and jumps of It. 
• For all the Hamiltonians (10), we have more- 

over computed [1] the finite-size-scaling (FSS) 
functions for the susceptibility and the correla- 
tion length in periodic boundary conditions, as 
well as the first correction to them. Interest- 
ingly enough, the qualitative shape of the one- 
dimensional FSS functions is very similar to that 
of their two-dimensional counterpart [4]: see Fig- 
ure 1 for an example. 

Let us now turn to the second subject of this 
talk: the problem of generating high-temperature 

series in dimension d > 2. We will use here the 
m 

general method explained in [5]. Consider a the- 
ory with fields ¢ and Hamiltonian 

H = ~ g ( ¢ ~ ; / 3 )  + ~ h ( ¢ x , ¢ ~ ; / 3 )  (19) 

where the second sum is extended over all lat- 
tice links {xy), and assume a high-temperature 
("strong:coupling") expansion of the form 

e h(¢x'¢';~) = F0(/3) 1 + ~ h n ( ¢ , , ¢ ~ ; / 3 )  (20) 

with hn(¢, ,  Cy; fl) -.~/3 a for/3 ~ 0. In the present 
implementation of the program one must assume 
an additional property: that the integral 

f d ¢ ,  (¢, ,  ¢y l ; /3 )""  h-k (¢x, Cyk ;/3)(21) eg( ¢~ ;fl ) hn l 

vanishes if )-'~i ni is odd. This property allows 
us to relate every non-vanishing high-temperature 
graph to one or more lattice random walks (RW). 
However, we must notice that there are inter- 
esting models for which this property does not 
hold: for instance, the R P  N-1 and the C P  N-1 
a-models. An additional simplification can be ob- 
tained if one requires an orthogonality property: 

~ ¢ x  Cyl;fl)hn2(¢x, ¢y2;/3) = 0(22) eg( (o~ ;[3 ) hn 1 

if n l ¢  n2. In this case all high-temperature 
graphs can be generated by considering only non- 
reversal RW. We refer to [5] for details on the 
practical implementation. 

For this very general class of theories we have 
computed [2] the two-point functions 

Gl(X) = (h1(¢0,¢~;/3)) (23) 

a2(z)  = (h2(¢0, ¢, ;  /3)) (24) 

for various lattices in d : 2, 3. The result is writ- 
ten as a sum of abstract graphs which have a pair 
of integers (n, L) associated to each link (in [5] 
these diagrams were called skeleta): the integer n 
indicates the spin associated to the link, while L 
is its length. For instance, to the graph appearing 
in Figure 2 we associate the expression 

L I - 1  L ~ - I  

1-[ [I 
k=O h=O 
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Figure 2. A simple strong-coupling graph, i j 
l 

j i 
= Aij,k~ 

= B i j kJmn  

k i j 

La-I 

l ]  (25) 
l--0 

with ¢~ = ¢0 ~ = ¢0 a and Ck, = ¢ 2  3 = ¢L3" This 
expression must then be integrated over all fields 
with measure de exp[g(¢; ~)]. 

To go further one must specify the fields and 
the specific model and compute the explicit con- 
tribution of each skeleton. For O(N)-invariant 
a-models with nearest-neighbour interactions we 
write 

H = y ~  12(~r~ • a N;/3) (26) 

and expand V(a~. au;fl) as in (11); then we ex- 
press all Green's functions in terms of the pseu- 
docharacter coefficients vt(fl). What must then 
bc computed is the group-theoretic factor of each 
skeleton. We have written a program in MATH- 
EMATICA that does this for an arbitrary skele- 
ton. If the spin associated to each link is small 
(l <_ 4), the program is very efficient: the most 
complicated skeleta require ~ I rain of CPU-time 
on a Sun4/330 with 24 Mbytes of RAM. 

The computation can be simplified if one uses 
the explicit knowledge of C~,~ and of the 6-j 
symbols 7~(11,12,/3;/4, 15,16). Indeed, one can ap- 
ply recursively the rules appearing in Figure 3 
where 

(27) A i j  ;kt --  

7~(j, i, k; l, m, n) 
Bijk;lrnn = C?jk (28) 

Figure 3. Reduction relations for bubbles and 
triangles. 

These two rules allow the complete computation 
of nearly all the graphs which appear in our ex- 
pansions; only for a few of the graphs higher-order 
symbols need to be computed. 
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