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Application of the O(N)-hyperspherical harmonics to the study of the
continuum limits of one-dimensional o-models and to the generation of
high-temperature expansions in higher dimensions
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In this talk we present the exact solution of the most general one-dimensional O( N )-invariant spin model taking
values in the sphere SV, with nearest-neighbour interactions, and we discuss the possible continuum limits. All
these results are obtained using a high-temperature expansion in terms of hyperspherical harmonics. Applications

in higher dimensions of the same technique are then discussed.

We will report here some new results concern-
ing the study of one-dimensional -models [1]
and the generation of high-temperature series in
higher dimensions [2].

Both studies rely on the use of hyperspheri-
cal harmonics, for which some new formulae have
been obtained [1]. Let us first review the defini-
tion of the hyperspherical harmonics. Define in
RY the angular momentum

L% = i(2°05 — 2P04) (1)

and

L* = ) L*PLef (2)
a<p

The hyperspherical harmonics are simply the
eigenfunctions of L? on the unit sphere S¥—1 C

RN
L*Yim(0) = MYim(0) 3)

with A = Il + N — 2), ¢ € S¥~1. The index
1 = 0,1,... labels the eigenspaces E;, and we
will refer to it as spin. Each eigenvalue is highly
degenerate: the index m labels an orthonormal
basis within each E;. The choice of this basis
is completely arbitrary but for our purposes we
have foit und useful to use an overcomplete set in
terms of Cartesian multipoles, i.e.

Yie = VNo® (4)

Y2,aﬁ = N(N + 2)/2 (o’ag'ﬁ — ]_1,_6047) (5)
Yier.oo = m(e®...0% — Traces) (6)

where “Traces” is such to make ¥; 4, o, com-
pletely symmetric and traceless and

_[2'va+ N1
= e @

is a normalization factor. Using this representa-
tion we have been able to obtain a general expres-
sion for the Clebsch-Gordan coefficients appear-
ing 1n symmetric tensor products of irreducible
representations and scalars built from them. If
we define

Cltes = 40N Yism, (0)Yim () Yigms (0) (8
we have computed exact expressions for

Cliy, = D CoalmsCiimiams (9)
my,mz,ms

and for the 6-j symbols R(I1,1z2,1s;l4,15,1s) when

one of the spins /; is 1 or 2.

Using the hyperspherical harmonics one can
study the possible continuum limits of a generic
one-dimensional o-model [1]. Consider the most
general Hamiltonian with nearest-neighbour cou-
plings:

H =) Vog 0r41) (10)
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with o, € S¥~1. The starting point is the ex-
pansion of the Boltzmann weight

e—ﬂv(a,-a,+1) - Fg(ﬂ) x

(1+§:v:(/3)Yz(ax)%(%+1)) (11)

=1

where v;() are coefficients that depend on the
explicit form of V and satisfy |v(8)] < 1. In
terms of these quantities it is easy to compute
the two-point function in the spin-k channel. We
get

(Yi(00) - Yi(os)) = Neur(B)!! (12)

where A} is the dimension of E. If 0 < vx(8) <
1, the two-point function is a pure exponential
and we define a mass mi(3) as

mi(8) = —logve(B) - (13)

To study the critical limit we must investigate
the limit # — oo (no critical point can exist for
finite 8 in one dimension). Thus the problem of
studying the possible continuum limits is reduced
to the determination of the asymptotic behaviour
of v(B) for B — oo. If in this limit my — C £ 0
the corresponding continuum two-point function
is trivial (white noise):

(Yi(00) - Yi(0z))eont = const x 8(z) . (14)

Thus a non-trivial continuum limit is obtained
only if mg(B) — 0 (i.e. vg(8) — 1) as § — oo at
least for some values of k. The various universal-
ity classes are then characterized by the limiting
mass ratios my/my.

A detailed study [1] has shown the existence
of infinitely many families of universality classes.
The standard N-vector universality class is ob-
tained, for instance, by considering functions V()
which have a unique absolute minimum at ¢t = 1.
In this case one can show that

mi(8) = A(B) (15)

with A(8) — 0 for § — o0, so that in the contin-
uum limit we have

my Ak

Analogously it is easy to recover the RPN ~! uni-
versality class: if, for instance, V(t) has absolute
minima at ¢t = +1 with V/(£1) # 0, then we can
prove that, in the limit § — oo,

maj Azk
ML L 17
ma At (1n
M2kl _ (18)
moy

Besides these two cases there are many other pos-
sibilities. If, for instance, V(¢) has minima at
t =t9 # £1 and ¢ = 1 and some technical condi-
tions are satisfied [1] (physically they correspond
to requiring that the contributions of the two min-
ima to the free energy are comparable in the con-
tinuum limit), we get new universality classes in
which the mass ratios are not related to the eigen-
values Ay of L2.

All these results can be interpreted in another
framework. In one dimension a continuum field
theory is simply a continuous-time Markov pro-
cess on the target manifold. Now, the generator
of a continuous-time Markov process is the convex
combination of a diffusion part (a second-order el-
liptic operator) and a jump part (a positive ker-
nel) [3]. Physically, this means that the particle
diffuses for a while according to the specified dif-
ferential operator, and then, at exponentially dis-
tributed random times, jumps according to the
specified probability kernel. On the sphere SV—1
for N > 3, the only SO(N)-invariant second-
order operator is the Laplace-Beltrami operator
L? (and multiples thereof). The Markov process
corresponding to pure diffusion on SV~ is the
standard N-vector universality class. One can
consider also processes with a jump part. It is
easy to see that there is an infinite-dimensional
family of possible SO(N )-invariant jump kernels
K: indeed, one can specify an arbitrary probabil-
ity distribution of jump angles 8 € [0, #]. Corre-
spondingly one finds an infinite-dimensional fam-
ily of possible continuum limits. For instance the
case we were mentioning above [V(¢) with min-
ima at t = to and ¢ = 1] corresponds to a process
with diffusion and a jump distribution §(6 — 8y),
cos fy = tg. Analogous considerations can be ap-
plied to RP¥-1. The standard RPN~! univer-
sality class corresponds to pure diffusion on the
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Figure 1. Finite-size-scaling function for the
spin-2 susceptibility for N = 4. The different
curves correspond to the N-vector universality
class (B = 0), to the RPY~! universality class
(B = o0) while B = 1 corresponds to one of the
intermediate universality classes introduced in [4].

manifold RPY-! while processes with diffusion
and jumps give rise to new universality classes.
In two dimensions we argued some time ago
[4] that there exists a one-parameter family of
universality classes for O(N)-invariant o-models
taking values in SV~ which can be obtained
by taking appropriate limits in a mixed isovec-
tor/isotensor model. The same universality
classes are identified in one dimension: besides
being obtained as limits of a mixed model, they
also arise as limits of a Hamiltonian of type (10)
for suitable V. They correspond to Markov pro-
cesses on SV~! with diffusion and jumps of .
" For all the Hamiltonians (10}, we have more-
over computed [1] the finite-size-scaling (FSS)
functions for the susceptibility and the correla-
tion length in periodic boundary conditions, as
well as the first correction to them. Interest-
ingly enough, the qualitative shape of the one-
dimensional FSS functions is very similar to that
of their two-dimensional counterpart [4]: see Fig-
ure 1 for an example.

Let us now turn to the second subject of this
talk: the problem of generating high-temperature

series in dimension d > 2. We will use here the
general method explained in [5]. Consider a the-
ory with fields ¢ and Hamiltonian

H = Zg(¢z§ﬂ) + Zh(¢x;¢y;ﬁ) (19)
z {=y)

where the second sum is extended over all lat-

tice links (zy), and assume a high-temperature

(“strong-coupling”) expansion of the form

eh9=858) — Fy() [1+Zhn(¢x,¢y;ﬁ)} (20)

with hn (s, ¢y; B) ~ 8" for 3 — 0. In the present
implementation of the program one must assume
an additional property: that the integral

ﬁ‘ﬁx eg(¢r;ﬂ)hn1(¢::y ¢y1;ﬁ) e hm; (¢z, ¢yk; ﬂ)(21)

vanishes if 3. n; is odd. This property allows
us to relate every non-vanishing high-temperature
graph to one or more lattice random walks (RW).
However, we must notice that there are inter-
esting models for which this property does not
hold: for instance, the RPV-1 and the CPN-1
o-models. An additional simplification can be ob-
tained if one requires an orthogonality property:

/d¢x eg(%;ﬂ)hnl(ﬁbz, by1; B)hny (02, dya; B) = 0(22)

if ny # na. In this case all high-temperature
graphs can be generated by considering only non-
reversal RW. We refer to [5] for details on the
practical implementation.

For this very general class of theories we have
computed [2] the two-point functions

Gi(z) = (h1(do,9s;0)) (23)
Gy(z) = (h2(do, ¢z;8)) (24)

for various lattices in d = 2, 3. The result is writ-
ten as a sum of abstract graphs which have a pair
of integers (n, L) associated to each link (in [5]
these diagrams were called skeleta): the integer n
indicates the spin associated to the link, while L
is its length. For instance, to the graph appearing
in Figure 2 we associate the expression

Ly-1 La-1

IT Ani(k, 85413 8) T Pnalh, 6543 8) x
k=0 h=0
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Figure 2. A simple strong-coupling graph.

Li-1

H hn3(¢?l ¢?+1)ﬁ) (25)
=0

with ¢} = ¢2 = 43 and ¢, = 6% = ¢, This
expression must then be integrated over all fields
with measure d¢ exp{g(¢; 8)]-

To go further one must specify the fields and
the specific model and compute the explicit con-
tribution of each skeleton. For O(N)-invariant
o-models with nearest-neighbour interactions we
write

H =Y V(oz-0y; ) (26)

{zy)

and expand V(o - oy; B) as in (11); then we ex-
press all Green’s functions in terms of the pseu-
docharacter coefficients v;(3). What must then
be computed is the group-theoretic factor of each
skeleton. We have written a program in MATH-
EMATICA that does this for an arbitrary skele-
ton. If the spin associated to each link is small
(I < 4), the program is very efficient: the most
complicated skeleta require ~ 1 min of CPU-time
on a Sun4/330 with 24 Mbytes of RAM.

The computation can be simplified if one uses
the explicit knowledge of CZ, ; and of the 6-j
symbols R(ly, 12, 13;14,15,1s). Indeed, one can ap-
ply recursively the rules appearing in Figute 3
where

A, _ ka,(s__ (27

SHIEES N 1) )
R '1ilk;1) )

Bijnimn = (1—2'”"_) (28)

C

ik

m n k
Z' . . .
J t J
= Bijk,imn

Figure 3. Reduction relations for bubbles and
triangles.

These two rules allow the complete computation
of nearly all the graphs which appear in our ex-
pansions; only for a few of the graphs higher-order
symbols need to be computed.
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