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We consider a definition of the QCD running coupling constant a(#) related to Wilson loops of size r xt with 
arbitrary fixed t/r.  The schemes defined by these couplings are very close to the MS scheme for all values of 
t/r; in the t /r  --* co limit, the "qq force" scheme is recovered. We propose a definition of correlation length, also 
related to Wilson loops, which can be applied to the Monte Carlo evaluation of a(tt) up to very large momentum 
scales by use of finite-size scaling techniques. 

1. I n t r o d u c t i o n  

A precise determination of A~-g in units of a 
physical mass scale is an important  goal of lattice 
QCD; it involves an accurate determination of 
~ - g ( # )  at some large momentum scale #, where 
per turbat ion theory is reliable and accurate. On 
phenomenological grounds, a direct computat ion 
of (~-g(t t~mzo) would be most welcome. 

In the last few years, considerable progress has 
been achieved towards this goal [1-6]; however, 
the tasks of performing lattice calculations at 
large momentum scales turns out to be quite hard 
and therefore some kind of per turbat ive extrapo- 
lation has to be employed. 

In order to reach very large momentum scales 
without per turbat ive  extrapolations,  the compu- 
tat ion of o~(#) requires finite-size scaling techni- 
ques, which permit  to reach very small distan- 
ces without the need of very large lattices. The 
power of this approach has been illustrated recen- 
tly by a s tudy of two-dimensional spin models in 
the extremely small distance region [7]. 

This kind of technique requires a careful choice 
both of the observable and of the correlation 
length ~: they must be easy to measure to high 
precision on the lattice, and must enjoy well- 
defined finite-size properties. Furthermore in our 
case we require (~(tt) to be close to ~ - g ,  to reduce 
errors due to neglected orders in the perturbat ive 
conversion to the MS scheme. 

In the following we will present new definitions 
of a (#)  and ~ addressing the above points. 

2. C o u p l i n g  c o n s t a n t  

A useful definition of running coupling constant 
is derived from the static quark-ant iquark force 
F ( r )  by the relationship 

F(r) = --CF r-----5---- , (1) 

4 (We prefer to where CF = (N 2 - 1) / (2N)  = 5" 
write (~qq with a momentum scale dependence, 
rather then with a length scale dependence, as 
often seen in the literature). 

This definition is well suited for as lattice com- 
putation [4,5], but is unsuitable for our purposes, 
since the computat ion of F(r) requires a t --~ co 
limit procedure in order to evaluate F(r),  and it 
is not clear how to implement it on a finite lattice. 
We therefore propose to modify the definition (1) 
to avoid the limiting procedure. 

The weak coupling expansion of the Creutz ra- 
tio is 

02 In W(r,  t) 
x ( r ,  t )  - 

OrOt 

= --cFA(x)-~ (1 + O(a) )  , (2) 

where x = t / r  (we can choose x > 1 without loss 
of generality), and 

arc tan(1 /x)  ] A(x) -- 2 arctan(x) + 1 + . (3) 

The renormalization properties of the Wilson 
loop operator  [8,9] allow the definition of a run- 
ning coupling constant c~x(1/r) parametr ized by 
X :  

=  x(1/r) (4) 
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Table 1 
The quantity R = ln(A~/A~-g) as a function of x 
and of the number  of fiavours N I .  

X 

1 -0.20758 
5/4 -0.11177 
4/3  -0.08975 
3/2 -0 .05567 
5/3 -0.03131 
7/4 -0.02178 

2 -0.00069 
3 0.03187 
4 0.03979 
10 0.04557 
~x~ 0.04691 

N f  = 0  N I = 2  N I = 4  
-0.27875 
-0.18145 
-0.15852 
-0.12242 
-0.09603 
-0.08554 
-0.06189 
-0.02341 
-0.01317 
-0.00500 
-0.00324 

-0.37270 
-0.27343 
-0.24930 
-0.21053 
-0.18146 
-0.16970 
-0.14266 
-0.09637 
-0.08308 
-0.07175 
-0.06945 

Since by definition 

lim x(r, t) = F(r), (5) 
t---~ OO 

we have 

lira a~(1/r) = aqq(1/r). (6) 
x ----+ oo  

We computed the quanti ty R(x) = In(Ax/A~--g), 
where As is the x-dependent A-parameter  asso- 
ciated with a s  (p), by s tandard perturbat ion the- 
ory [10]. Here we only present a summary  of the 
results in Table 1, for N = 3 and different choi- 
ces of x and N I .  It is interesting to notice that  
R(x) is reasonably small for all x > 1; in the case 
x = 2, N$ = 0, R is negligible, i.e., A2 ~ A~-g. 

3. Finite  size scaling 

On the lattice the quanti ty 

¢ ( r ,x )  = x c ( r ,  xr ) ,  a , ( 7 )  

where Xc is the usual Creutz ratio, is a natu- 
ral es t imator  of x(r, xr). By measuring ¢( r ,x )  
at different scales r keeping x fixed, one may ea- 
sily extract  the corresponding running coupling 
a~(l/r). 

In the scaling region the following finite size 
scaling relations hold: 

and 

¢(~,r,x,L) ~ - re(x ,  L, ~L ) ¢(~,r,x,c¢). (9) 

Finite size scaling functions like f~ and f¢ can be 
reconstructed by performing simulations on re- 
latively small lattices, and we should be able to 
keep a << r even when r is very small (in physical 
units). 

4. Correlat ion length 

A crucial ingredient in finite size methods is a 
suitable definition of correlation length ~, which 
can be measured to high precision in a Monte 
Carlo simulation. In two-dimensional spin mo- 
dels, very good results were obtained using ~ de- 
fined from the second moment  of a correlation 
function [7,11]. We propose a similar definition of 

for (confining) gauge theories, s temming from 
a correlation function which is easily constructed 
from Wilson loop and has the correct properties: 

r ( r ,  t) - W(r ,  t) 
W(½r '  ½t) 2 . (10) 

The perimeter- term divergence cancels in the ra- 
tio, leaving a distance-independent multiplicative 
renormalization, and the area law insures expo- 
nential fall down at large distances. 

From Y(r,t) we can define a second moment  
type correlation length: 

1 f o  dr f~'~ d tY(r , t ) r t  
~ = 2 f o  dr f}'~ dtY(r, t)  ' (11) 

where ~ is a free parameter  (~  > 1), which can 
be chosen to optimize the measurement  (we intro- 
duced ~ to avoid potential  problems with "very 
thin" loops which are present in the integral for 
2.~---- O O ) .  

In the case of an exact area law for the Wilson 
loop, we would get ~ = 1/a. 

The measurement of ax and ~y up to a large 
scale tt leads to a direct determination of the fl- 
function of the SU(3) lattice gauge theory and of 
the adimensional quanti ty ~yA~-g. 

This quanti ty still needs to be converted to a 
more phenomenological scale, such as r0 [12]; but 
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this is a rather minor problem, since it involves 
only a measurement of ~y/ro ,  which can be per- 
formed at the values of fl of our choice. 

11. P. Rossi and E. Vicari, Phys. Rev. D48 (1993) 
3869. 

12. R. Sommer, Nucl. Phys. B411 (1994) 839. 

5. S u m m a r y  an d  o u t l o o k  

We presented a definition of a(#)  in terms of 
Wilson loops which is very close to a~-g(#). This 
definition can be applied without changes in the 
case of QCD with dynamical fermions. 

Moreover, we presented a definition of correla- 
tion length (~- in pure gauge QCD which is si- 
milar to "second moment" correlation lengths in 
spin models. (In the case of unquenched QCD a 
"physical" definition such as the inverse nucleon 
mass can be used.) 

Both quantities do not require any extrapo- 
lation to long distances and enjoy well-defined 
finite-size scaling properties. Therefore they are 
well suited for a Monte Carlo study reaching a 
very large momentum scale by use of finite size 
techniques. 
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