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We report progress in the computation and analysis of strong-coupling series of two- and three-dimensional 
O(N) rr models. We show that, through a combination of long strong-coupling series and judicious choice of 
observables~ one can compute continuum quantities reliably and with a precision at least comparable with the 
best available Monte Carlo data. 

1. C o m p u t a t i o n  o f  s t r o n g - c o u p l i n g  series  

We perform the computat ion of strong- 
coupling series applying the method presented in 
Ref. [1]. It  involves essentially the calculation of 
a geometrical factor, common to all spin models 
admit t ing a character-like expansion, and of a 
group-theoretical factor, independent of the lat- 
tice connectivity. 

We focused on the two-point fundamental  
Green's functions G(x, y) and on the free energy 
F.  Their geometrical factors are computed by ge- 
nerating all paths connecting x and y in the first 
case and all closed paths in the second case, and 
then reducing each path  to a group-theoretical 
diagram; this is done by an ad-hoc computer  pro- 
gram. The group-integration technique for O(N)  
models is covered in Ref. [2]. 

The orders of the expansion reached so far are 
presented in Table 1. In order to generate longer 
series for the wall-wall correlation length ~ ,  we 
computed higher orders of selected large-distance 
Green's functions. Computa t ion  is in progress for 
the two-point Green's  functions in the adjoint re- 
presentation. So far we computed it on the square 
lattice to 20th order. 

To give an idea of the complexity of this compu- 
tations, the evaluation of all the two-point funda- 
mental Green's  functiond to 15th order involves 

24 x 109 nontrivial paths. 
In order to check and compare with our strong- 

coupling results, we computed the large-N li- 
mit of the nearest-neighbour 0 ( N )  a models on 
the relevant lattices and verified that  its strong- 
coupling expansion concides with the large-N li- 
mit of our strong-coupling series. 

Table 1 
Order of computed strong-coupling series 

l a t t i c e  G F ~ 

c u b i c  15 16 12 

d i a m o n d  21 24 13 

s q u a r e  21 24 16 

h o n e y c o m b  30 32 25 

2. P h y s i c a l  q u a n t i t i e s  

From the Green's function we can derive many 
interesting quantities. On each lattice we corn- 
pute 

x 

m2 1 
~a - 2dx'  Ma - ~a' 

~( z Ill ,  O ,  

w = (1) 
xm4 

Furthermore,  on the square lattice we define 

M~ = 2(cosh #~ - 1), 

where G- l (p l= i t t~ ,  p2=0) = 0, (2) 

M ~ = 4  c o s h ~ - I  , 

( where d -1 p2=  = O. (a) 

#~ and ~a determine the long-distance exponen- 
tial decay of G(x) on the side and on the diagonal 
respectively. In the continuum limit Ms = Md = 
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Similar quantities are defined for the other lat- 
tices. In particular, on the honeycomb lattice we 
define M~, the equivalent of M8 2. 

In a generalized lattice Gaussian model, and 
therefore in the large-N limit of O(N) cr models, 
the following results hold: 

M~2 (/3) M~(/3) 
M~(/3-----) - M~(~)  = 1, 

( M2( /3) )  -1 
w(/3)= 4 + ~  . (4) 

We can transform a series in powers of/3 in a 
series in powers of the energy E,  since we com- 
puted to high orders E(fl)  =/3  + 0(/33). 

3. S t r o n g - c o u p l i n g  ana lys i s  o f  t h e  2-d 0 ( 3 )  
cr m o d e l .  

Details of the strong-coupling analysis we de- 
scribe in this section can be found in Ref. [3]. 

In asymptotically free models, where/3c = 0% 
the task of determining physical continuum quan- 
tities from a strong-coupling approach appears 
difficult. Neverthless, as we shall see below, the 
strong-coupling analysis provides quite accurate 
continuum limit estimates when applied directly 
to dimensionless renormalization-group invariant 
ratios of physical quantities, essentially by exploi- 
ting the following ideas: 

(i) Let us indicate with R(/3) a dimensionless 
renormalization-group invariant quantity. Since 
at sufficiently large/3 R(/3) behaves as 

1 
R(/3) - / r  ~ ~ 2 ,  (5) 

where R* is the fixed point and therefore conti- 
nuum value, a reasonable estimate of R* may be 
obtained at/3-values corresponding to large (but 
finite) correlation lengths, where the curve R(/3) 
should be already stable (scaling region). This is 
the same idea underlying Monte Carlo studies. 

(ii) Another interesting possibility is to change 
variable from/3 to the energy E, and analyze the 
series in powers of E,  which are obtained by in- 
verting the strong-coupling series of the energy 
E = /3  + 0(/3 3) and substituting into the original 
series in powers of ft. It should be easier to reach 

the continuum limit this way, since it occurs at a 
finite value of E,  i.e. for E ~ 1. 

Furthermore dimensionless renormalization- 
group invariant ratios of physical quantities are 
expected to have a simpler analytical structure 
(in the fl or E complex plane), which may be 
better approximated by standard Pad~-type ap- 
proximants. 

The analysis of both the strong-coupling series 
calculated on the square and honeycomb latti- 
ces offers us the possibility of testing universality, 
which represents also a further check for possible 
systematic errors in the analysis employed. 

In our analysis of the strong-coupling series 
we constructed [I/m] Pad6 approximants (PA's) 
and Dlog-PA's of both the series in/3 and in the 
energy. While simple [I/m] PA's provide directly 
the quantity at hand, in a Dlog-PA analysis one 
gets a [l/m] approximant by reconstructing the 
original quantity from the [I/m] PA of its logari- 
thmic derivative. Continuum estimates are then 
obtained by evaluating the approximants of the 
energy series at E = 1, and those of the /3 se- 
ries at a value of/3 corresponding to a reasonably 
large correlation length. 

As final estimates we take the average of the 
results from the non-defective PA's using all avai- 
lable terms of the series. The errors we display 
are just indicative, they are the variance aro- 
und the estimate of the results coming from PA's 
using also a few less terms of the series, which 
should give an idea of the spread of the results 
coming from different PA's. Such errors do not 
always provide a reliable estimate of the syste- 
matic errors, which may be underestimated espe- 
cially when the structure of the function (or of 
its logarithmic derivative) is not well approxima- 
ted by a meromorphic analytic function. In such 
cases a more reliable estimate of the systematic 
error would come from the comparison of results 
from the analysis of different series representing 
the same quantity, which in general are not expec- 
ted to have the same structure. 

By rotation invariance the ratio r - M 2 / M ~  
(on the square lattice) should go to one in the 
continuum limit. Therefore the analysis of such 
ratio should be considered as a test of the pro- 
cedure employed to estimate continuum physical 
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quantities. From G(x) up to 0(/321) we could cal- 
culate the ratio r up to O(/314). Our final estima- 
tes for r*, the value of r at the continuum limit, 
are r* = 0.9997(13) from the energy analysis, and 
r* = 1.0001(6) from the/3  analysis performed at 
/3 = 0.55, corresponding to a correlation length 

~- 25. The precision of these results is remarka- 
ble. 

Calculating a few G(x) up to 23rd order, we 
obtained the ratio s ~ M2/M~ up to 16 TM order 
on the square lattice. No exact results are known 
about  the continuum limit s* of the ratio s, except 
for its large-N limit: s* = 1. Both large-N and 
Monte Carlo est imates indicate a value very close 
to one. From a 1 / N  expansion [4]: 

0.006450 ( 1 ) 
s* = 1 g + O ~ . (6) 

Monte Carlo simulations at N -- 3 [5] gave the 
est imate s* = 0.9985(12). 

The analysis of the strong-coupling series of s 
leads to s* = 0.999(3) from the E-approximants ,  
and s* = 0.998(1) from the ~ approximants  eva- 
luated at/3 = 0.55, in full agreement with the esti- 
mates from the 1IN expansion and Monte Carlo 
simulations. With increasing N,  the central esti- 
mate  of s* gets closer to 1. 

On the honeycomb lattice, G(x) up to 30 th or -  

de r  allows to calculate sh =-- M~/M 2 up to 20 th 

order. The analysis of the energy series yields the 
est imate s~ = 0.997(3), in agreement with the re- 
sult from the square lattice. 

On the square lattice, the analysis of the 
strong-coupling series of w = m~/(xm4) leads 
to the est imates w* = 0.2498(6) from the energy 
analysis at E = 1, and w* = 0.2499(6) from the/3 
analysis a t /3  = 0.55. On the honeycomb lattice 
we estimated w* = 0.248(3). Again, universality 
is confirmed. 

The comparison with the exact N --- oo calcula- 
tions shows that  quantities like s and w, which de- 
scribe the small momentum universal behaviour 
of G(p) in the continuum limit, change very lit- 
tle from N = 3 to N = oo, indicating that  the 
two point function is substantially Gaussian at 
small momentum.  Differences must eventually 
appear  at large momentum,  as predicted by sim- 
ple weak coupling calculations supplemented by 

a renormalization group resummation.  But  the 
large momentum regime is hardly reachable by 
a strong-coupling analysis. Impor tan t  differences 
are however present in other Green's  functions 
even at small momentum,  as shown in the ana- 
lysis of the four-point zero-momentum renorma- 
lized coupling, whose definition involves the zero- 
momentum four-point correlation function [6]. 

4. Strong-coupling analysis of  the 2-d X Y  
model.  

The two dimensional X Y  model is conjectured 
to experience a Kosterli tz-Thouless critical phe- 
nomenon, characterized by an exponentially di- 
vergent correlation length. Setting T ------/3c --/3, 

(8) 

A renormalization group analysis applied to the 
1 Coulomb gas model predicts: ~ /=  ¼, o' = 7 and 

0 _ _ _ !  16" 
Support  to the presence of this phenomenon 

has been provided by Monte Carlo techniques 
(eft. e.g. Refs. [8-10]), and by strong-coupling 
expansion method ((eft. e.g. Ref. [111). Since we 
computed the series on the honeycomb lattice and 
extended the series on the square lattice series up 
to 0(~21), we performed a new strong-coupling 
analysis. 

In order to check the Kosterli tz-Thouless cri- 
tical behaviour we have analyzed the strong- 
coupling series of In X and ln (~ / /3 ) ,  which should 
behave as 

l n x  ~,- ]n (~2/ /3 )  ,'--, "r - a .  (9) 

A zero value for the exponent a would indicate 
a standard power-law critical behaviour. Be- 
side PAs, we also employed integral approximants  
(IA's) [7], which allow a more general analysis 
as they can reproduce a larger class of behavio- 
urs close to criticality, reducing possible systema- 
tic errors in the resummation of the series. On 
the other hand, in order to get stable and the- 
refore acceptable results, IA's  require in general 
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more terms in the series to be restrained than 
Dlog-PA's. We have observed this fact also in 
our strong-coupling analysis; indeed often Dlog- 
PA's turned out to be more stable than IA's, but 
subject to a larger systematic error, which emer- 
ged from the comparison of results from different 
series. 

From an unbiased IA analysis of the series of 
In X for the square lattice we found tic = 0.558(2) 
and cr = 0.5(1), which strongly support the KT  
critical behaviour. The same analysis on the ho- 
neycomb lattice led to /~e = 0.877(3) and a = 
0.4(1). 

We also performed biased IA analysis determi- 
1 leading ning the value of tic such that a = 5, 

to a biased estimate: tic = 0.559(1), which is in 
agreement with a corresponding biased analysis of 
Monte Carlo data: fie = 0.559(3) [8], and with a 
quite precise Monte Carlo renormalization group 
determination of tic [10]: tic = 0.5599(3). On the 
honeycomb lattice, by the same analysis, we fo- 
and fie = 0.881(2). 

In order to determine the exponent T/ we con- 
sidered the quanti ty 

( A , ~ - 2  1 l n ( ~ g / 3 ) ]  - ~ + O ( r ~ )  (10) 

close to fl~. Resumming the corresponding se- 
ries by PA's and Dlog-PA's and evaluating it 
at f3e ~- 0.559, one finds a quite stable result: 

= 0.228(1). This result is confirmed on the ho- 
neycomb lattice: ~/ = 0.231(2). These estimates 

__  1 of ~/do not agree with the expected value 7 / -  ~, 
they are about  10% far from it. On the other 
hand when analyzing the series in the energy we 
got again a rather stable result but ~ = 0.207(5), 
indicating the presence of a sizeable systematic 
error of about 10%. The agreement between the 
square and honeycomb lattice results may be ac- 
cidental, and may be partially explained by the 
fact that  the origin of the systematic error in the 
analysis should be similar. 

A source of systematic error may be the O(T ~) 
correction expected in Eq. (10) which cannot be 
reproduced by PA's or Dlog-PA's. Eq. (10) im- 
plies a behaviour 

DlogA~(/3) ,,~ (/3c - f l ) a - 1  (11) 

close to /3e. In the Dlog-PA's the above singu- 
larity should be mimicked by a shifted pole at a 
fl larger than fie- Indeed in the analysis of the 
series of A n we have found a singularity typically 
at ~ - 1.1 + 1.2 tie. This fact will eventually 
affect the determination of A n close to fie by a 
systematic error. However since the singularity is 
integrable the error must be finite, and the ana- 
lysis shows that such errors are actually reasona- 
bly small. The behaviour (10) could be reprodu- 
ced by IA's, but we did not get sufficiently stable 
and thus acceptable results from them. 

In conclusion the strong-coupling analysis of 
order strong-coupling expansion of G(x) on the 
square and honeycomb lattices substantially sup- 
ports the Kosterlitz-Thouless critical phenome- 
non. 
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