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~Dipartimento di Fisica dell'Universith di Pisa, Italy. 

The renormalized zero-momentum four-point coupling g~ of O(N)-invariant scalar field theories in d dimensions 
is studied by applying the 1IN expansion and strong coupling analysis. 

The O(a/N) correction to the /3-function and to the fixed point value g* are explictly computed. Strong 
coupling series for lattice non-linear cr models are analyzed near criticality in d = 2 and d = 3 for several values 
of N and the corresponding values of g* are extracted. 

Large-N and strong coupling results are compared with each other, finding a good general agreement. For 
small N the strong coupling analysis in 2-d gives the best determination of g* to date (or comparable for N = 2, 3 
with the available Monte Carlo estimates), and in 3-d it is consistent with available ¢4 field theory results. 

1. I n t r o d u c t i o n  

In the study of statistical or quantum field the- 
ories a general problem concerns triviality, that  
is whether the continuum theory describing the 
critical behavior is non-interacting. Triviality is 
widely conjectured for the O(N) ¢4 models in 
four dimensions, leading to the important  physi- 
cal result t h a t  the Higgs model can be interac- 
ting only when keeping the cut-off finite. To the 
purpose of investigating the triviality issue, one 
may study the behavior at criticality of the zero- 
momentum four-point renormalized coupling gr, 
in that  a non-zero critical limit of g, would imply 
a non-trivial interacting continuum theory. 

Here we report on a study addressing the sca- 
ling behavior of the zero-momentum renormalized 
coupling constant in the symmetric phase of two 
and three-dimensional O(N)-invariant  scalar mo- 
dels. We consider two quite different approaches: 
the 1/N expansion of the O(N) ¢4 continuum 
theory, and the strong coupling expansion of the 
lattice O(N) ~r models. The results obtained by 
these techniques are then compared with the avai- 
lable results from other approaches, offering the 
possibility of testing and cross-checking the seve- 
ral different methods which can be applied to the 
study of the critical behavior of O(N)-invariant  
scalar models. The full details of this work can 
be found in Ref. [1]. 

2. C o n t i n u u m  f ie ld  t h e o r y  

In the symmetric phase of  the O(N)-invariant  
Euclidean continuum theory, defined by the La- 
grangian 

1 ~0 ~ g0 (~2)2 £ : ~Ot, ¢ • ¢ +  1 272 (1) 
~P0¢ + 4! . . . .  

the renormalization at zero momentum is perfor- 
med using the following prescription for the two 
and four-point correlation functions of the field ¢: 

-p)o  : z ;  -1 + + o(p')]  (2) 

1~(4)(0,0,0,0)a/~76 Z - 2 g ' "  2 , 2 - -  a .  = - , ~ - t m ,  J ~ o ~ 7 ~  ( 3 )  

where ~,~3"rt =- ¢5a3¢5"~ + 6a'rc53s + 6a6~5~'r" Ac- 
tually we considered the following definition of 
zero-momentum four-point coupling: 

N + 2  _ N  F(4) (0, 0, 0, 0),~,~3 a 
f =  ~ g , =  [r(~)(0,0)~o]~ m, (4) 

When ra~ --~ 0 the renormalized coupling con- 
stant is driven toward an IR stable zero f* of the 
fl-function 

9(f) -- ,~, 0-~71~0,~. (~) 
A non-zero value of f* signals a non-trivial con- 
t inuum limit. Then evaluating the other renor- 
realization functions at f* one may get the criti- 
cal exponents. The three-dimensional/3-function 
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of O(N) models is known up to 0 ( fz ) ,  provi- 
ding, after suitable resnmmation procedures, ra- 
ther precise determinations of the fixed point f* 
and critical exponents [2-4]. In 2-d the/3-function 
is known up to O ( fs )  for N = 1 [2,3]. 

The field theoretical approach to O(N) mo- 
dels lends itself to a systematic 1/N expansion, 
which represents an important  source of non- 
perturbative information. We evaluated the le- 
ading and next-to-leading contributions to the/3- 
function /3(f), obtaining from its zero the fixed 
point coupling: 

f* = 8 r [ 1  0.602033 (~____..~)] + o (e) 

in two dimensions, and 

f* = 167r 1 ~ + 0  ~ (7) 

in three dimensions. The large-N limit of f* is 
different from zero because of the definition (4), 
indeed g~* vanishes in the large-N limit consisten- 
tly with the fact that  the large-N limit of the 
continuum O(N) scalar models is Gaussian type. 

Notice that  the fixed-point value of the renor- 
malized coupling may be obtained directly by 
computing the g0 ---' c~ limit of the coupling f 
in the scaling region. However this is nothing but 
the value taken by f in the corresponding con- 
tinuum limit field theory, that  is the O(N) non- 
linear cr model in d-dimensions. A general result 
concerning O(N) scalar models is that  the corre- 
lation functions of the O(N) non-linear a model 
are identical to the correlation functions of the 
O(N) ¢4 field theory at the IR fixed point (see 
e.g. Ref. [5]). 

3. L a t t i c e  O(N) ~ m o d e l s .  

Lattice O(N) non-linear cr models, which we 
may choose to describe in terms of the standard 
nearest-neighbor action 

S L  = - N / 3  . (8) 
X,/ . t  

-2 1, have a nontrivial subject to the constraint s= = 
critical point fie _< c~ in d < 4, whose neighbo- 
rhood (scaling region) is described by the renor- 
realized continuum O(N) non-linear o" theory. We 

may therefore study the critical properties (and 
in particular the fixed-point value of the renor- 
realized coupling f*)  of the symmetric phase of 
the O(N) model by exploring the critical region 
/3 ---, fc of the lattice model (8). 

The left-hand-side of Eq. (4) has a simple rein- 
terpretation in terms of quantities defined within 
the associated lattice spin model. Setting 

x 

>, 
x 

m2 

2dx ' 

x, = >e, (9) 
a~ j ] / ,Z  

where ~ plays the role of the inverse zero- 
momentum renormalized mass, then when ~ ~ oo 

N X4 , f* . (10) 
X2~ a 

The properties of lattice O(N) c~ models, as 
of their continuum counterparts, depend crucially 
on the space dimensionality as well as on N. In 
3-d, O(N) models show a power-law type criti- 
cal phenomenon at finite /~e for all values of N. 
In 2-d, models with - 2  < N < 2 can be de- 
scribed at criticality, which occurs at a finite fc,  
by conformal field theories with c < 1. In par- 
ticular for N < 2 the critical behavior is power- 
law type, while the N = 2 or XY model pre- 
sents the Kosteraitz-Thouless critical phenome- 
non, which is characterized by an exponential di- 
vergence of the correlation length at a finite f t .  
For N > 3 there is not criticality for any finite 
value of/3. Such models are asymptotically free, 
with /3c = oo. Notice that  from the point of 
view of the renormalized coupling analysis it is 
however impossible to distinguish these different 
behaviors, since they are all compatible with a 
non-zero value of f*.  

The lattice formulation lends itself to numerical 
studies by Monte Carlo simulations. Numerical 
studies concerning the four-point coupling have 
been presented in the literature for N = 2, 3 in 
2-d [6], for N=I  in 2-d and 3-0 [7]. 
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4. S t r o n g  c o u p l i n g  e x p a n s i o n  a p p r o a c h .  

Another approach to the study of critical phe- 
nomena in lattice theories is to deduce the beha- 
vior in the critical region from the exact strong co- 
upling series expansion, analyzed by suitable re- 
summation methods. The strong coupling expan- 
sion of the lattice zero-momentum four-point re- 
normalized coupling f(fl) has the following form 

Within the lattice formulation (8), series up to 
14 th order of the quantities involved in the de- 
finition of f(~) ,  i.e. X, m2 and X4, have been 
calculated by Lfischer and Weisz [8], and rielabo- 
rated by Butera et al. [9]. From such series one 
can obtain An(/3) _~/3~/2 f(/3) up to 13 th order. 

In order to evaluate f* _-- f(/3e) we found a 
Dlog-Pad~ analysis to be the most effective. Our 
analysis consisted in computing [I/m] Pad~ ap- 
proximants to the strong coupling series of the lo- 
garithmic derivative of Aa(fl), let's indicate them 
with Dlogt/,,~Aa(/3), and then a set of correspon- 
ding approximants ft/m(fl) to f(13), which are 
obtained by reconstructing f(fl) from the loga- 
rithmic derivative of Ad(/3): 

f0 f u m ( f l )  - -  fl~z/= exp d/3' D l o g l / m A a ( f l '  ) . (12) 

Once these approximants are computed, if tic is 
finite, their values at ~c give an estimate of f*. 

In asymptotically free models where /3c -= co, 
the task of determining f* from a strong coupling 
approach appears much harder. On the other 
hand, since at sufficiently large 13 we expect that  

If(/J) - f*l "~ (-=, (13) 

a reasonable estimate of f* could be obtained at 
fl-values corresponding to large but finite corre- 
iation lengths where the curve f(/3) should be al- 
ready stable (scaling region). Notice that  this is 
the same idea underlying numerical Monte Carlo 
studies. In order to get an estimate of f* we con- 
sidered the values offl/ , , ,( f l)  at the largest values 
of ~ where they are still stable, for example for 
N = 3 at 13 ~ 0.5, corresponding to an acceptably 
large correlation length: ~ "~ 10. 

We mention that  confluent singularities at tic, 
i.e. confluent corrections to scaling arising from 
irrelevant operators, represent a source of syste- 
matic error for a Dlog-PA analysis, which is 
expected to be larger when confluent singulari- 
ties are more relevant, as in 3-d models at small 
N. In order to reduce such systematic errors one 
should turn to more general and flexible analysis, 
such as differential apptoximants. We tried this 
type of analysis without getting stable and the- 
refore acceptable results, very likely due to the 
relative shortness of the available series. 

In order to check for systematic errors, we re- 
peated our analysis to the strong coupling series 
in the energy f (E) ,  which can be obtained by in- 
verting the strong coupling series of the energy 
E =/3  + 0(/3 3) and substituting in Eq. (11): 

f ( E )  = ~ / ~  2 +  ~ ,E  ~ . (14) 
i - 1  

The difference between the estimates of f* co- 
ming from f(fl~) and f (Ec) ,  as determined by the 
analysis of the strong coupling series of respecti- 
vely f(/3) and f (E) ,  gives an idea of the size of 
the systematic error. 
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Figure 1. f* vs. N in twNo dimensions. Re- 
suits from our strong-coupling analysis, Monte 
Carlo simulations [6], and field theoretical calcu- 
lations [2,3] are shown. The dashed line repre- 
sents the O(1/N)  calculation. 
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Figure 2. f* vs. N from " our strong coupling 
analysis in three dimensions. For comparison field 
theoretical estimates [2-4] are also shown. The 
dashed line represents the O(1/N) calculation. 

Fig. 1 summarizes 2-d results: it shows our 
strong coupling estimates of f* versus N, com- 
paring them with the available results from alter- 
native approaches: $4 field theory, Monte Carlo 
and 1/N expansion techniques. There is a general 
agreement, in particular the O(1/N) calculation 
fits very well data  down to N = 3. 

Fig. 2 shows all available results for f* in 3- 
d. At large N, N >_ 8, there is a substantial 
general agreement: estimates from the strong co- 
upling approach, O(1/N) calculation and ~b 4 field 
theory differ at most by 1% to each other. At 
small N, N = 0, 1, 2, our strong coupling estima- 
tes show discrepancies with the field theoretical 
calculations, which are of the size of the differen- 
ces between the results coming from the analysis 
of f(/3) and f ( E ) ,  and therefore they should be 
caused by systematic errors in the strong coupling 
analysis employed. Anyway such discrepancies 
are not large, indeed they are at most 5% and 
decrease with increasing N. 

In conclusion we have seen that 13 terms of the 
strong coupling series of Aa(~) are already suffi- 
cient to give quite stable results, which compare 
very well with calculations from other techniques, 
such as 6 4 field theory at fixed dimensions, Monte 
Carlo simulations and 1/N expansion. Of course 
an extension of the series of f(fl) would be wel- 

come, especially for two reasons: 
(i) To further stabilize the PA's in the asymp- 

totically free models, and check if the change of 
variable/3 --* E and the analysis of the series in E 
allow one to get reliable strong-coupling estimates 
of f* in the continuum limit, which is reached at 
a finite value E --* 1, making the strong coupling 
approach to the continuum limit apparently more 
feasible. This idea has already given good results 
in the determination of the continuum limit of 
other dimensionless RG invariant quantities from 
strong coupling expansion [10]. 

(ii) To see if the apparent discrepancies at small 
N in 3-d with the more precise ¢4 field theory cal- 
culations get reduced, possibly using more flexible 
analysis, like differential approximants, which in 
general require many terms of the series in order 
to give stable results. 
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