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Critical behavior of the correlation function of three-dimensional O(N)

models in the symmetric phase

Massimo Campostrini, Paolo Rossi, Andrea Pelissetto, and Ettore Vicari,
Dipartimento di Fisica dell’Universita and I.N.F.N., I-56126 Pisa, Italy

We present new strong-coupling series for O(N) spin models in three dimensions, on the cubic and diamond
lattices. We analyze these series to investigate the two-point Green’s function G(z) in the critical region of the
symmetric phase. This analysis shows that the low-momentum behavior of G(z) is essentially Gaussian for all N
from zero to infinity. This result is also supported by a large-N analysis.

1. INTRODUCTION

Three-dimensional O(N)-symmetric spin mo-
dels describe many important critical phenomena
in nature: the case N = 3 describes ferromagnetic
materials, where the order parameter is the ma-
gnetization; the case N = 2 describes the helium
superfluid transition, where the order parameter
is the quantum amplitude; the case N = 1 (Ising
model) describes liquid-vapor transitions, where
the order parameter is the density.

The critical behavior of the two-point correla-
tion function G(z) is related to critical scattering,
which is observed in many experiments, e.g., ne-
utron scattering in ferromagnetic materials, light
and X-rays scattering in liquid-gas systems.

In the following we will focus on the low-
momentum behavior of the Fourier-transformed
correlation function G(k) in the critical region of
the symmetric phase, 1.e., for

k| S1/6,  0<T/T.-1<1L

2. LATTICE MODELS

Let us consider an O(N)-symmetric lattice spin
models described by the nearest-neighbor action

S=-NBY & &, (1)
links

where 8 = 1/T', 5§is an N-component real vector,
and z;, z, are the endpoints of the link. The
two-point correlation function ‘is defined by

G(z) = (5, - 5o). (2)
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In order to simplify the study the critical beha-
vior of G(z), we introduce the dimensionless RG-
invariant function

G 0; 8
L(k;8) = ;—) . (3)
G(k; B)
In the critical region of the symmetric phase,
L(k,3) is a function only of the ratio y = k? /M3,
where Mg = 1/£¢; the second-moment correla-
tion length ¢ is defined by

13, 2°G(z)
6 >,Gz)
M is the mass-scale which can be directly ob-

served in scattering experiments. L(y) can be
expanded in powers of y around y = 0:

(4)

€%

Liy)=1+y+1y), l(y)=20iyi- (5)

I(y) parameterizes the difference from a generali-
zed Gaussian propagator. The coefficients ¢; can
be expressed as the critical limit of appropriate
dimensionless RG-invariant ratios of the spheri-
cal moments

Moj = Z 2 G(x). (6)

Another interesting quantity related to the
low-momentum behavior of G is the ratio s =
M? /M2, where M is the mass-gap of the theory.
Its critical value is s* = —1vp, where yo is the zero
of L(y) closest to the origin.
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In the large-N limit, {(y) is depressed by a fac-
tor of 1/N. The coeflicients ¢; can be obtained
from a 1/N expansion in the continuum [1]:

o 0.0044486 n o 0.0001344

€2 = N s 3 — N 3
0.00000658 _, 0.00000040 7

(’,4:——'—7\7——, Cs_—T—... ()

We are presently computing the order 1/N? of
the expansion. We expect that the pattern esta-
blished by the 1/N expansion

KKl 1>3 (8)
will be followed by all models with sufficiently
large N. This implies s* — 1 ~ ¢,: indeed, in the

large-N limit,
0.0045900
I .

The coefficients ¢; can also be computed from
an e-expansion of the corresponding ¢* theory
around d = 4 [2[:

s* =1

(9)

., N +2
e e, 10
oz (10)
where ¢ =4 — d and
ey >~ —0.007520, esz ~ 0.0001919. (11)

3. STRONG-COUPLING EXPANSION

We computed the strong-coupling expansion of
G(x) up to 15th order on the cubic lattice, and up
to 21st order on the diamond lattice. Our techni-
que for the strong-coupling expansion of O(N)
spin models was presented in Ref. [3].

We took special care in the choice of estimators
for the “physical” quantities ¢; and s*. This step
is very important from a practical point of view:
better estimators can greatly improve the stabi-
lity of the extrapolation to the critical point. Our
search for optimal estimators was guided by the
requirement of a regular strong-coupling expan-
sion (e.g., no In 3 terms) and by the knowledge of
the large-N limit (we chose estimators which are
“perfect” for N = oc).

The strong-coupling series of the estimators
were analyzed by Padé approximants, Dlog-Padé

approximants and first-order integral approxi-
mants (see Ref. [4] for a review of the resumma-
tion techniques; see also Ref. [5]). For diamond
lattice models with NV # 0, 3. was not known, and
we estimated it from the strong coupling series of
the magnetic susceptibility.

Qur strong-coupling results on cubic and dia-
mond lattices are compared with the results of
the 1/N expansion and of the e-expansion in Ta-
ble 1. One may notice that universality between
cubic and diamond lattice is always confirmed;
furthermore, the agreement with the s-expansion
and with the 1/N expansion is satisfactory.

The predicted pattern c3 € ¢z < 1 is veri-
fied for all N. We can conclude that the two-
point Green’s function is essentially Gaussian for
all momenta with |k%| < M2, and that the small
corrections are dominated by the (k%)* term.

4. APPROACH TO CRITICALITY

We investigated the approach to criticality,
with special attention devoted to anisotropy (vio-
lation of rotational invariance). Let us introduce
the anisotropy estimators

l4 — Z [f4($7y) + f4(ya Z) + f4(2a :L.)] G($7y7 Z)’

Y,
falz,y) = (z° +4°)° — 8%y (12)
lgg = Z [fe(x,y) + fo(y, 2) + fo(z, 2))
Ty,
xG(z,y,z),
folz,y) = (° +4°)° = 8(z*” + z%y*);  (13)
leoy = Z [2° + 9% + 2% — 45229227 G(x, v, 2).
€,Y,z

(14)

In the critical limit, lo; are depressed with respect
to the spherical moments m,;. In the large-N
limit one can show that

Agj = 21l g2 (15)

25

We analyzed the strong-coupling series of

Y
B?‘jwi = l]‘, N (16)
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Table 1
Comparison of strong-coupling expansion on cubic and diamond lattices with 1//N and e-expansion
N lattice 10%c, 10%¢3 104(s* — 1)
0 cubic [10%cs| S 2 1.2(1) 1.2(3)
diamond [10%cs| <1 1.0(1) 1.0(5)
g-expansion —2.35 0.60
1 cubic -2.9(2) 1.1(1) ~2.3(5)
diamond -3.1(2) 1.0(2) -2.2(3)
£-expansion —2.78 0.71
2 cubic ~3.8(3) 1.1(1) -3.5(5)
diamond —4.2(3) 1.1(3) -3.5(2)
e-exXpansion —3.01 0.77
3 cubic —-4.0(2) 1.1(2) ~4.0(4)
diamond —4.2(3) 1.1(3) —3.5(2)
g-expansion -3.11 0.79
4 cubic ~4.1(2) 1.2(1) —4.0(4)
diamond —4.7(2) 1.0(2) —4.0(2)
g-expansion -3.13 0.80
1/N —11.12 3.36 —11.48
8 cubic -3.5(2) 1.0(2) -3.7(3)
diamond —4.0(1) 0.7(5) —4.0(4)
e-expansion —2.94 0.75
1/N -5.56 1.18 —5.74
16 cubic —2.4(2) 0.70(5) ~2.7(2)
diamond —2.65(5) 0.5(5) -2.9(2)
g-expansion ~2.35 0.60
1/N —2.78 0.84 —2.87

for all values of N, we found that B,;, have a
finite (but non-universal) T — T, limit. This
supports the validity of Eq. (15) for all V.
Ratios of Ajgj;; are universal quantities; we
found that at criticality Ag:1/As ~ 0.95 and
Ag 2/Ag,1 ~ 0.75 {within one per mill) for all NV.
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