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Interacting physical systems in the neighborhood of criticality (and massive continuum field theories) can often 
be characterized by just two physical scales: a (macroscopic) correlation length and a (microscopic) interaction 
range, related to the coupling and measured by the Ginzburg number G. A critical crossover limit can be defined 
when both scales become large while their ratio stays finite. The corresponding scaling functions are universal, 
and they are related to the standard field-theory renormalization-group functions. The critical crossover describes 
the unique flow from the Gaussian to the nonclassical fixed point. 

Every physical situation of experimental rele- 
vance has at least two scales: one scale is intrinsic 
to the system, while the second one is related to 
experimental conditions. In Statistical Mechanics 
(SM) the correlation length ~ is related to exper- 
imental conditions (it depends on temperature), 
while the interaction length (Ginzburg parame- 
ter) is intrinsic. The opposite is true in Quan- 
tum Field Theory (QFT): here the correlation 
length (inverse mass gap) is intrinsic, while the 
interaction scale (inverse momentum) depends on 
the experiment. Physical predictions are func- 
tions of ratios of these two scales and describe the 
crossover from the correlation-dominated (~/G or 
p/m large) to the interaction-dominated (~/G or 
p/m small) regime. In a properly defined limit 
they are universal and define the unique flow be- 
tween two different fixed points. 

In this discussion we will consider the crossover 
between the Gaussian point where mean-field 
predictions hold (interaction-dominated regime) 
to the standard Wilson-Fisher critical point 
(correlation-dominated regime). 

Massive continuum field theory is the natural 
setting for a description of this critical crossover 
behavior, not only in QFT, where only two scales 
characterize (super)renormalizable theories, but 
also in SM, where in principle one might expect 
many scales (lattice spacing, geometry of interac- 
tions, ...) to play a role, and universality may be 
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questioned. As we will discuss, critical crossover 
scaling exists and is universal when two scales be- 
come very large with respect to any other (micro- 
scopic) scale. Their ratio becomes the (universal) 
control parameter of the system, whose transition 
from 0 to oc describes the critical crossover. 

In recent years there has been extensive work 
[1-11] aiming at the identification of the correct, 
theoretical and experimental, definition of the 
critical crossover limit. We give here a sketch 
of the argument for d-dimensional N-component 
vector spin models, but the notion may easily be 
extended to many other physical systems. 

Let us start with the standard Landau- 
Ginzburg Hamiltonian on a d-dimensional lattice, 

74 = Z ½J(£' - £J)[¢(Zi) - ¢(Zj)]2 
i , j  

U ~ 4 

i 

where ¢(Zi) are N-dimensional vectors. We will 
first consider the short-range case in which J(Z) is 
the standard nearest-neighbour coupling. For this 
model the interaction scale is controlled by the 
coupling u and the relevant parameters are the 
(thermal) Ginzburg number G and its magnetic 
counterpart Gh defined by: 

G = u 2 / ( 4 - d ) ,  G h  : u ( d + 2 ) / [ 2 ( 4 - d ) ] .  (2 )  
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Under a renormalization-group (RG) transfor- 
mation G scales like the (reduced) temperature, 
while Gh scales as the magnetic field. For t = 
r -  rc << G and h << Gh one observes the 
standard critical behaviour, while in the oppo- 
site case the behaviour is classical. The crit- 
ical crossover l i m i t  corresponds to considering 
t, h, u --~ 0 keeping t = t / G  and h = h / G h  fixed. 
This limit is universal, i.e. independent of the 
detailed structure of the model: for Hamiltoni- 
ans (1) the same behaviour is obtained as long 
as the interaction is short-ranged, i.e. for any 
J(~) such that  ~-'~ x 2 J(~) < +0o. The crossover 
functions can be computed in the standard con- 
tinuum ¢4 theory [3-5]. A dimensional analysis 
shows that  (using the subtracted bare mass and 
removing the cutoff) finite results can be obtained 
directly in terms of the dimensionless variable 
u / t2 -d /2  = ~dl2-2, and no further limiting proce- 
dure is required. It is important to observe that  
the critical crossover functions are related to the 
standard continuum RG functions if one expresses 
them in terms of the zero-momentum four-point 
renormalized coupling g. The crossover functions 
are well studied [3-5] in the fixed-dimension ex- 
pansion when d = 3. 

Let us now consider the long-range case. We 
assume that  J(Z) has the following form 

J for ~ E  D, 
J(~) = 0 for £ ¢ D, (3) 

where D is a lattice domain characterized by some 
scale R. Explicitly we define R and the corre- 
sponding domain volume VR by 

1 
• (4) Va - Z 1, R 2 _-- 

2d VR 
$ED $ED 

The shape of D is irrelevant for our purposes 
as long as VR "~ R d for R --+ co. The con- 
stant J defines the normalization of the fields. 
In our discussion it is useful to assume a long- 
range normalization, i.e. J = 1/VR,  since with 
this choice the limit R --+ c~ is well-defined. No- 
tice the this is not the normalization that  is com- 
monly used discussing short-range models. In- 
deed, in the latter case, one defines J = R - 2 / V R ,  
so that  the propagator behaves as k 2 for k --+ 0. 

To understand the connection between the theory 
with long-range interactions and the short-range 
model let us perform an RG transformation [9]. 
Define new ("blocked") coordinates Yi = x i / R  
and rescale the fields according to 

¢(Yi) = Rd/2¢(RYi ) ,  h(Yi)  = Rd /2h(Ry i )  • (5) 

The rescaled Hamiltonian becomes 

= _ _ 

i,j 

] • + , ( 6 )  

where now the coupling J(Z) is of short-range 
type, i.e. independent of R. Being short-ranged, 
we can apply the previous arguments and define 
Ginzburg parameters: 

G -~- ( u R - d )  2/(d-4) --~ U2/(d-4)R-2d/(4-d),  (7) 

Gh .-~ R -d/2 ( u R - d )  (d+2)/[2(d-4)] 

----- u (d+2)/[2(d-4)] R -3d/(4-d).  (8) 

Therefore, in the long-range model, the criti- 
cal crossover limit can be defined as R -~ oo, 
t , h  --+ 0, with t" ~ t / G ,  h - t / G h  fixed. The 
variables that  are kept fixed are the same, but a 
different mechanism is responsible for the change 
of the Ginzburg parameters: in short-range mod- 
els we vary u keeping the range R fixed and fi- 
nite, while here we keep the interaction strength 
u fixed and vary the range R. The important 
consequence of the argument presented above is 
that  the critical crossover functions defined using 
the long-range Hamiltonian and the previous lim- 
iting procedure agree with those computed in the 
short-range model, apart from trivial rescalings. 

Let us give a few examples. Let us intro- 
duce magnetic susceptibility, correlation length 
and magnetization in the usual way: 

Z = Z ( ¢ o ' ¢ ~ ) ,  (9) 

~2 = 1 Z x  2 <¢0" ¢~), (10) 
2dz 

x 

M = (¢o)- (11) 
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Then one can show that in the limit t -+ 0, 
G, Gh ~ 0 with t and h fixed the following 
rescaled quantities have a finite limit: 

X. =- xG ~ Fx('t,h), (12) 

~2 - R-2~2G ~ F~2(t,h), (13) 

M. -- M G / G h  -+ FM(t,h), (14) 

where F x (t, h), F~: (t, h), and FM (t, h) are uni- 

versal apart from a rescaling of t and h and of 
the functions themselves. Comparison with ex- 
perimental data is usually performed introducing 
effective exponents. For instance, for h = 0, we 
can define 

")'eft (5 = -td dlog F x (t, 0), ( 1 5) 

t" d l o g  F~, (t, 0). (16) Ve" (t) - -  2 

These functions can be related to the standard 
RG functions if one expresses them in terms of 
the zero-momentum four-point coupling g. In the 
high-temperature phase one finds for instance (cf. 
Ref. [41) 

%ff(g____~) = 7(g__~) (17) 

d%ff 
u(g)Z(g)'-~.q = 7(g) - 7ef(g), (18) 

where 7(g), u(g), and ~(g) are the standard RG 
functions. These effective exponents interpolate 
between the classical and the non-classical value. 
As an example, in Fig. 1, we report the graph of 
%ff(~ in the high- and low-temperature phase for 
the Ising model (the computation has been done 
using the results of Refs. [3-5]). These curves are 
in good agreement with numerical results for the 
long-range Ising model [12], even for very small 
values of R, i.e. for interactions extending over a 
few lattice spacings. 

The ideas we have presented here can be explic- 
itly checked in the large-N limit. All the crossover 
functions can be computed in the whole (t, h)- 
plane for 2 < d < 4 and universality (model inde- 
pendence) can be explicitly checked. For instance 
for the effective exponents defined in Eqs. (15) 
and (16) one finds in three dimensions 

~feff(t) ---- 2 / )e f f ( t  ) = 1 + (1 + %t~ -1/2, (19) 

"1 ........ I ....... 1 ....... 1 ....... 1 ....... 1 ...... 1 ....... 1 ....... 1 .... . . .  I ...... 
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Figure 1. Effective susceptibility exponent as a 
function of t" for the high- (%tr) and low- (Tefr) 
temperature phase of the three-dimensional Ising 
model. 

where cx is a non-universal constant. 
One can also study the corrections to the lead- 

ing universal behaviour. If R is chosen as in Eq. 
(4), one verifies that the corrections to the univer- 
sal crossover functions scale as 1/R  d (for generic 
choices of scale one would observe instead 1~R- 
corrections). 

The discussion of these non-universal effects 
can be extended to all values of N considering a 
perturbative expansion around the mean-field so- 
lution. Consider for instance the long-range Ising 
model 

NZ 
74 = --~- Z g(zi - Zj) s(Zi) " s(x~), (20) 

i,j 

where J(Z) is defined in Eq. (3). For N = 1 and 
for a particular choice of D this is the model that 
has been studied in Refs. [8,9,12]. Computing 
the corrections to mean field allows us to deter- 
mine the corrections to fic (R) for R -+ co for the 
Hamiltonian (20). One finds for d > 2 

f d% 1 (211 Zc(R) = rt(k) 

with corrections of order R -2d ( multiplicative 
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logarithms appear for some special values of d, 
for instance for d = 3). Here 

1 eikx ) 
II(k) = ~nn Z ( 1 -  , (22) 

xED 

and the integral is extended over the first Bril- 
louin zone. Expanding the integral in powers of 
R one finds 

/3c(R) = 1 + ~-d + " "  (23) 

where a depends on the precise definition of the 
domain D. In two dimensions there are logarith- 
mic corrections and one finds 

1 
/3c(n) = 1 + ~ l o g n  2 + O(R-2). (24) 

By considering the mean-field limit one can also 
relate the non-universal constants that  appear in 
the definition of the crossover scalin~ functions. 
To give an example, consider ~ for h = 0. The 
function Fx(t, 0) can be computed in perturba- 
tion theory, cf. Ref. [4], obtaining a function 
F~ ~(t~. On the other hand, if one considers the 

model (20) one obtains a different F~r(t~. As we 
explained above we should have 

F~r(t) = a x F~r(bt) . (25) 

The analysis of the mean-field limit provides ex- 
act expressions for ax, which depends on the ob- 
servable, and b, which depends only on the model. 

Finally we want to discuss the crossover scaling 
limit for models that  have/3c = +c~. This is the 
case of the two-dimensional N-vector model with 
N > 3. For these theories define 

( ) ~ ' -  R 2 1 + ~ l o g R  ~ - ¢~ (26) 

and consider the limit R ~ ~ with t" fixed. One 
finds that  the limits defined in Eqs. (12) and 
(13) still exist and define crossover functions of 
t. For t" ~ +oc these functions show mean-field 
behaviour, while standard asymptotic scaling is 
observed for t ' ~  - ee .  Notice that  one can use t" 
as a variable instead of t also when ~c is finite. In 
thiscase, however, nothing new is obtained, since 
t - t is simply a constant for R -4 cx~. 

The model with Hamiltonian (20) can be stud- 
ied in the limit N --+ 0. In this case it can be 
rewritten in terms of self-avoiding walks (SAWs) 
[13] with long-range jumps. To be explicit, we de- 
fine an n-step SAW with range R as a sequence of 
lattice points {w0,. "-, wn} with w0 = (0, 0, 0) and 
wj+i E Dn(wi), such that  wi ~ wj for all i ~ j .  
Then, if cn,n(x) is the number of n-step SAWs 
with range R going from 0 to x, we indicate with 
Cn,R the total number of n-step walks and with 
E~, n the mean square end-to-end distance. They 
are defined as: 

C,,R = ~ c,,n(x), 
X 

(27) 

(28) E2,n __ 1 Z x2cn,n(x)" 
Cn'R x 

One can then prove that  

"~n c l i mx ( ~ )  = Z ~  n,n (29) 
N-+0 

n----0 

1 
lim ~2(~)X(f~ ) = E~'~cn, ,E~,g.  (30) 

N~O 2d n=0 

where ~ = fl/Vn and X and ~2 are defined in the 
model (20). 

The crossover limit is trivially defined remem- 
bering that  n is the dual variable (in the sense of 
Laplace transforms) of t. Therefore we should 
study the limit n ~ cx), R --+ c~ with ~ -- 
nR -2a/(4-u) fixed. From Eqs. (12) and (13) we 
obtain that  the following limits exist: 

c-n,n- cn,nt3c(R) n -~ go(n), (31) 
--2 I~2 D--a/(4--d) En,  R -~ J...~n,R,i, --"t g E ( n ) ,  (32) 
where the functions 9c(n) and gE(n) are related 
by a Laplace transform to F x (t', 0) and F~2 (t, 0). 
Explicitly 

/5 F× (t, O) = du gc(u)e -ut, (33) 

F¢,(t,O)F×(t,O)- 2d dugc(u)gE(u)e-"t" 
(34) 

Using perturbation theory it is possible to derive 
predictions for E~ and cn. For E~ we can write 

gE,PT(n)  ---- aE n hE(Z) ,  (35) 
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Figure 2. Results for /~2/(6~) .  The solid line is 
the the theoretical prediction (35), (36). 

Figure 3. Results for F-'~/gE,PT(n). We use the 
same symbols as in Fig. 2. 

where z = (~/l) z/2. The function hE(z) has been 
computed in perturbation theory to six-loop or- 
der [14]. Resumming the series with a Borel- 
Leroy transform one finds that  a very good ap- 
proximation is provided by [15] 

hE(z) = (1 + 7.6118z + 12.05135z2) °'z75166 . (36) 

Comparison with a detailed Monte Carlo simu- 
lation for the Domb-Joyce model indicates [15] 
that  this simple expression differs from the exact 
result by less than 0.02% for z < 2. 

The constants aE and l appearing in Eq. (35) 
are non universal. For our specific model they are 
given by 

aE = 6 ,  l = (47r) 3. (37) 

We have performed [16] an extensive simulation of 
this model of long-range SAWs generating walks 
of length up to N .~ 7.104. The domain D was 
chosen as follows: 

In the simulation we varied P between 2 and 12. 
Let us describe the results for the end-to-end dis- 
tance. Analogous results can be obtained for en,R. 

In Fig. 2 we report our results for E2,R to- 
gether with the perturbative prediction RE,PT(~) 
defined in Eqs. (35,36). The agreement is very 
good although one can see clearly the presence of 
corrections to scaling. In order to see better the 
discrepancies between the numerical data  and the 
theoretical prediction we report in Fig. 3 the ra- 
tio F-/2n,R/gE,PT(n ). In this plot the corrections 
to scaling are clearly visible: points with differ- 
ent R fall on different curves that  converge to 1 
as expected. For p = 12, the deviations are less 
than 0.2%. It is interesting to observe that  the 
corrections change sign with ~. For ~ < 2.102, 
the corrections are negative, while in the opposite 
case they are positive. 

The corrections to scaling are expected 1 to 
scale as R -d. To check this behaviour let us con- 
sider 

- 1] (39/ 

The plot of AE;n, R is reported in Fig. 4. A good 
scaling behaviour is observed confirming the the- 
oretical prediction for the corrections. This nice 

ZThis behaviour should be observed only for quantit ies 
that  are defined using R as scale. If  we were considering 
for instance E~j~p -s/(4-d) we would of course obtain the 

same universal l imiting curve, but  now with corrections of 
order 1/p. 
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Figure 4. Results for AE;~,R. We use the same 
symbols as in Fig. 2. 

scaling indicates also that the approximation (36) 
can be considered practically exact at our level of 
precision. 

We have also defined an effective exponent ueff 

E 2 1 log / 2°,R  (40) 21og--  

It is reported in Fig. 5. It shows the expected 
crossover behaviour between the mean-field value 
u = 1/2 and the self-avoiding walk value u = 
0.58758(7) [15]. 
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