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Three-dimensional spin models of the Ising and XY universality classes are studied by a combination of high- 
temperature expansions and Monte Carlo simulations. Critical exponents are determined to very high precision. 
Scaling amplitude ratios are computed via the critical equation of state. Our results are compared with other 
theoretical computations and with experiments, with special emphasis on the X transition of 4He. 

1. INTRODUCTION 

The notion of universality is central to the 
modern understanding of critical phenomena. It 
is therefore very important to compare high- 
precision theoretical and experimental determi- 
nations of universal quantities, such as critical 
exponents or universal ratios of amplitudes, for 
systems belonging to the same universality class. 

Critical exponents and amplitudes parametrize 
the singular behavior of thermodynamical quan- 
tities in the vicinity of a critical point. In 
the high-temperature (symmetric) phase t > 0, 
CH w A+ltldQ, x M C+lt(-7, .$ M f+ltl+‘, where 

t = (T - Tc)/Tc is the reduced temperature, CH 

is the specific heat, x is the magnetic suscepti- 
bility, and 5 is the correlation length. In the 
low-temperature (broken) phase t < 0, H -+ 0, 
CH z A-lt(-a, x x C-Itl-~, < M f-ItI-” (in the 
case of Ising), M M BItlo, where A4 is the magne- 
tization. On the critical isotherm t = 0, H # 0, 
x M CclHI-~/fia, 6 M fclHI-v/~a. At the critical 
point t = 0, H = 0 at nonzeromomentum, the 
two-point function behaves like G(q) x Dqfle2. 

The critical exponents are universal, and are in- 
dependent of the phase; they are related by the 
scaling and hyperscaling relations. The ampli- 
tudes are not universal, and their value depends 
on the phase; it is however possible to define uni- 
versal ratios of amplitudes, which are indepen- 
dent of the normalization of H, M, and T. 

The universality classes of Ising and XY in 

three dimensions have been the subject of many 
theoretical studies. Nonetheless, we believe that 
further refinement is worthwile: many critical 
phenomena in nature fall into these classes, and 
the precision of experiments is ever improving; 
moreover, several theoretical techniques can be 

applied and compared to each other. 
High-temperature (HT) series expansion is one 

of the oldest and most successful approaches to 
the study of critical phenomena. We are extend- 
ing the length of the series available for wide fam- 
ilies of models belonging to the classes of univer- 
sality we are interested in; so far we computed the 
two-point function of the three-dimensional Ising 
class to 25th order on the bee lattice, and four-, 
six-... point functions to 21st, lgth... order [l]. 

Work is in progress on the SC lattice and on the 
XY class. 

The precision of the results which can be ex- 
tracted from long HT series is mainly limited by 
the presence of confluent corrections with nonin- 
teger exponents. Let us consider, e.g., the mag- 
netic susceptibility x; near the critical tempera- 
ture, it behaves like 

x = Ct-? (1 + ao,r t + a(& + . . . 

+ a& + alp + . . . + a2,1P2 + . ..). 

While the exponents A, As, . . . are universal, the 
coefficients a are model dependent. For the mod- 
els we are interested in, A N 0.5 and A2 2 2A; 
therefore it is very helpful to select one-parameter 
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families of models, and tune the irrelevant param- 
eter X to the special value X* for which al,1 = 0; 
we will call such models “improved”. 

Monte Carlo (MC) algorithms and finite-size 
scaling techniques are very effective in the deter- 
mination of X* and PC, but not as effective in the 
computation of critical exponents or other univer- 
sal quantities. On the other hand, the analysis of 
HT series is very effective in computing universal 
quantities, but not in computing X* and PC. 

The strength of the two methods can be com- 
bined by computing X* and DC by MC, and feed- 
ing the resulting values into the analysis of HT 
series (by “biasing” the analysis); this greatly im- 
proves the quality of the results. 

In order to keep systematic errors under con- 
trol, we always select several different families of 
models in the same universality class and check 
that they give compatible results for universal 
quantities. 

2. CRITICAL EXPONENTS 

Without further discussion, we present in Ta- 

ble 1 a selection of results for the critical expo- 
nents y, v, and n of the three-dimensional Ising 
model; for other exponents, see Ref. [2]. We com- 
pare the most precise theoretical results and ex- 
periments. IHT denotes our results [2]; HT is 
a “traditional” HT determination [3]; MC are 
Monte Carlo results [4]; FT are results from a 
g expansion in fixed dimension [5]. Experimental 
results are LV for liquid-vapor transitions; BM for 
binary mixtures; MS for uniaxial magnetic sys- 
tems; MI for micellar systems; cf. Refs. [2] and 
[6] for bibliographical details. The agreement be- 
tween the different determinations is overall sat- 
isfactory. 

On the theoretical side, similar techniques can 
be applied to the XY model, with results of com- 
parable quality. The experimental situation is 
quite different: one extremely precise experiment 
on the A transition of 4He [7] overshadows the 
field. We present results for the critical expo- 
nents y, q, and (I (we remind that du = 2 - o) in 
Table 2 (cf. footnote 2 in Ref. [8] for discussion of 
the experimental results). Theoretical results are 
taken from Refs. [9] (IHT), [8] (IHT*), [3] (HT), 

Table 1 
Comparison of determinations of critical expo- 
nents of the three-dimensional Ising model. 

IHT 1.237:(4) 0.630;2(23) 0.03&4) 
HT 1.2384(6j 0.6308(j) 
MC 1.2367(11) 0.6296(7) 0.0358(g) 
FT 1.2405(15) 0.6300(15) 0.032(3) 

1.233(10) 
k 1.228(39) 

0.042(6) 
0.628(8) 0.0300( 15) 

MS 1.25(2) 0.64(l) 
MI 1.237(7) 0.630(12) 0.039(4) 

Table 2 
Comparison of determinations of critical expo- 
nents of the three-dimensional XY model. 

Y rl 
4He -0.01;56(38) 
IHT 1.3179(11) 0.0381(3) -0.0150(17) 
IHT* 1.3177(5) 0.0380(4) -0.0146(8) 
HT 1.322(3) 0.039(7) -0.022(S) 
MC 1.3177(10) 0.0380(5) -0.0148( 15) 
FT 1.3169(2Oj 0.0354(25) -0.011(4) 

[8] (MC), and [5] (FT). There is disagreement be- 
tween IHT* and experiment; it would be interest- 
ing to improve further the theoretical computa- 
tion, and to have an independent confirmation of 
the experimental measurement. 

3. CRITICAL EQUATION OF STATE 

The critical equation of state is a relation be- 
tween thermodynamical quantities which is valid 
in both phases in the neighborhood of the critical 
point (cf., e.g., Ref. [lo]). 

In order to determine the critical equation 
of state, we start from the effective potential 
(Helmholtz free energy) 

F(M) = MH - + logZ(H). 

In the high-temperature phase, F can be ex- 
panded in powers of M2 around M = 0. By 
choosing appropriately the nor.malizations of the 
renormalized quantities, and using the “second 
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moment” mass m as mass scale, we can write 

AJ== 7(M) - 7(O) = $4(z), 

A(z) = ;z2 + -$z4 + 

where z is the (resealed) zero-momentum vac- 
uum expectation value of the renormalized field, 

r2j = S2j/gjq-l, and gzj is the renormalized 

zero-momentum 2j-point coupling constant. The 
(universal) critical limit of g4 and rzj can be 
computed from the HT expansion of the zero- 
momentum 2j-point Green’s function; for the 
Ising model, we obtain [2] 

g4 = 23.49(4), rs = 2.048(5), 

rs = 2.28(8), ric = -13(4). 

The equation of state can now be written as 

H(M 
1 
t) = !E 0: tfl@ = PF(z) 

i3M dz 
! (1) 

z cc Mt+; 

The analyticity properties of F(z) are constrained 
by Griffiths’ analyticity conditions on H(M, t). 

It is possible to implement all analyticity and 
scaling properties of the critical equation of state 
introducing a parametric representation [ 1 l] 

M = moRPB, 

t = R(l - P), 

H = hoR”%(e) 1 h(B) = L9 + O(@). 

The following correspondences should be noticed: 

19=0 + t>O,M=O; 

l9=1+ t=o; 

e=eo + t<O,M=Mo, 

where 190 is the first positive zero of h(0). The 
analytic properties of the equation of state are re- 
produced if h(8) is analytic in the interval [0,&J. 

Combining the parametric representation with 
Eq. (1)) we obtain 

z= pe2(i - e2)-0, 

h(e) =p-l(i -e2)oa~(z(e)). 

Table 3 

Comparison of determinations of universal ra- 
tios of amplitudes of the three-dimensional Ising 
model. 

UO QC UC 
IHT 0.530(3) 0.3330(10) 1.961(7) 
HT+LT 0.523(9) 0.324(6) 1.96(l) 

MC 0.560(10) 0.328(5) 1.95(2) 

MC 0.550(12) 
FT 0.540(11) 0.331(9) 2.013(28) 

BM 0.56(2) 0.33(5) 1.93(7) 

MS 0.51(3) 1.92(15) 
LV 0.538(17) 0.35(4) 

In the Ising case, corresponding to the break- 
ing of a discrete symmetry, 0s is a simple zero of 
h(B). We approximate h(B) with an odd polyno- 
mial in 8, fixing its coefficients from the small-z 
expansion of F(z). p is a free parameter; as long 
as we keep the parametric representation exact 
its value is immaterial, but it becomes significant 
once we make approximations. p can be used to 
optimize the approximation, and it can be deter- 
mined from a global stationarity condition [2]. 

We use the values of p, 6, rg, rs, ric obtained 
by IHT to compute successive approximations to 
h(B); we check the stability of the values of several 
universal amplitude ratios in order to select the 
best approximation. Among the many amplitude 
ratios which can be computed from h(0), we re- 
port in Table 3 Us = A+/A-, Qc = 132(f+)3/C+, 
UC = f +/ f -; many more ratios can be found in 
Ref. [2]. HT+LT is a combination of HT and low- 
temperature expansion [12,13]; the other theoreti- 
cal determinations are the same discussed for the 
critical exponents, and are taken from Refs. [2] 
(IHT), [14,15] (MC), and [16-181 (FT). For exper- 
imental data, see Refs. [2] and [6]. The agreement 
between the different determinations is again sat- 
isfactory. 

In the XY case, corresponding to the breaking 
of a continuous symmetry, 00 is a double zero of 
h(B). We therefore set 

h(e) = e(i -t1~/e,2)~(i +c2e2 +c4e4...). 

We fix eo, c2, . . . from the small-z expansion of 
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Table 4 
Comparison of determinations of the universal ra- 
tio Uc = A+/A- of the three-dimensional XY 
model. 

A+/A- 
4He 1.0442 

IHT+4He 1.055(3) 
IHT* 1.062(4) 
FT 1.056(4) 

&-exp 1.029(13) 

F(z), and p from the requirement h(0) M (es-0)” 
for 0 -+ Bs. 

Only the ratio A-+/A- is measured experimen- 
tally to high precision [7]. We report a selection 
of theoretical determinations: IHT+4He is our 
IHT computation, using as input for cy the ex- 
perimental value Q = -0.01285(38) [19]; IHT* 
is a complete IHT computation, without exper- 
imental input [8]; FT is a g expansion in fixed 
dimension [16]; s-exp is obtained by E expansion 
[17]. The value of A+/A- is strongly correlated 
with the value of o, and all disagreement between 
IHT* and experiment can be reconduced to the 

discrepancy in (Y. 

4. CONCLUSIONS 

The study of HT series of “improved” models, 

with parameters determined by MC simulations, 

allowed us to compute with high precision the 
universal quantities (critical exponents and effec- 
tive potential) characterizing the critical behavior 

of the symmetric phase. 
Suitable approximation schemes allow the re- 

construction of the critical equation of state start- 
ing from the symmetric phase; many universal 
amplitude ratios can be computed. 

For the Ising universality class, theoretical 
computations are much more precise than exper- 
iments. On the other hand, for the XY class, 
some very precise experimental results for o and 
A+/A- have been obtained [7]. There is disagree- 
ment with the most precise theoretical results [8]. 
A new-generation experiment is in preparation 
[20]; it would be interesting to improve further 
the theoretical computations as well. 
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