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Abstract 

The possibility of removing the one-loop perturbative effects of lattice artifacts by a proper choice of the lattice action is 
explored, and found to depend crucially on the properties of the physical quantity considered. In this respect the finite-space- 
volume mass gap m(L) is an improved observable. We find an explicit momentum space representation of the one-loop 
contribution to m(L) for arbitrary lattice actions in the case of two-dimensional O(N) u models. We define a “tree perfect” 
Symanzik action and find that it formally removes all one-loop lattice artifacts in m(L). On-shell improved actions do not 
share this property. 

PACS: 11.10.-z; 11.15.Ha; 75.1O.Hk 

Improvement of the lattice action has been often ad- 
vocated as a possible way out of the problem of finite 
lattice spacing effects that obscure the scaling prop- 
erties in numerical simulations on small lattices. The 
original idea can be traced back to Wilson [ 11, who 
introduced the notion of renormalization group trajec- 
tory. Lattice actions determined by the trajectory of a 
renormalization group transformation are free of Iat- 
tice artifacts. Due to the difficulty of effectively find- 
ing a renormalized trajectory, two major strategies of 
improvement were suggested by Symanzik [ 21 and by 
Hasenfratz and Niedermayer [ 31. They differ both in 
purpose and in many technical details, but they share 
the possibility of defining a “classically perfect action” 
whose properties may then be compared. 

By “classically perfect action” we mean a lattice 
action which does not present any power-like depen- 
dence on the lattice spacing in the tree evaluation of 

spectral properties, and of properly chosen correlation 
functions. In Symanzik’s case, this action is of no prac- 
tical relevance, since it involves infinitely long-range 
interactions. However its properties are theoretically 
interesting in view of a deeper understanding of the 
whole improvement program. 

By renormalization group arguments, one can infer 
that quantum effects are more important than higher 
order classical finite lattice spacing contributions. It is 
therefore worth exploring the mechanism that might 
lead to important cancellations of these quantum ef- 
fects. Symanzik’s “tree perfect” action constitutes a 
reasonably simple laboratory in order to check some 
ideas that have been put forward. 

Hasenfratz and collaborators [4] stressed that in 
two-dimensional O(N) c models their version of 
“classically perfect” action showed no power-like de- 
pendence on the lattice artifacts in the one-loop con- 
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tribution to the finite-space-volume mass gap. Such 
lattice artifacts are instead found when calculating 
the same quantity with the standard nearest-neighbor 
action. The same authors already observed that the 
above effects were consistently reduced in the sim- 
plest (second-nearest-neighbor) version of Symanzik 
improvement. Their approach was however intrinsi- 
cally numerical, and therefore not easily adapted to 
exploring the different possibilities in full generality. 
We therefore decided to move a step forward, and 
to look for an analytic expression of the one-loop 
contribution to the finite-space-volume mass gap in 
two-dimensional O(N) (T models, that could hold 
for an arbitrary form of the lattice action, allowing a 
systematic study of finite-lattice effects. 

We were greatly helped in our effort by the friendly 
collaboration of M. Ltischer and I? Weisz, who gen- 
erously made their private notes available to us. 

For definiteness, let us recall that any reasonable 
definition of finite-space-volume mass gap m(L) (L 
is the size of the space volume) in 2-d O(N) (T models 
admits a loop expansion in the form [ 5,6] : 

m(L)L= 
N-l O” 
Tg2 c AdL)g*’ 9 

l=o 

where 1 is the number of loops. The coefficients Al(L) , 
in turn, have an asymptotic expansion in powers of 
a*/L*: 

(2) 

We are neglecting possible exponentially depressed 
finite-lattice spacing corrections. The coefficients a::’ 
are in general dependent on N. Recursive relations 
between the coefficients ai:) (n fixed and different 
from zero) are dictated by the renormalization group 
properties of the higher dimensional operators, whose 
effective presence in the lattice action generates the 
scaling violations to 0 [(a2/L2)“] [7]. Terms with 
n = 0, i.e. the limit a*/L* + 0 of m(L) L, define a 
running coupling constant g [ 63, 

(3) 

obeying a homogeneous renormalization group equa- 
tion. 

It is convenient to reexpress the general result into 
the form 

m(L)L= 

(4) 

where 

b,‘“)(u) = fJa$$i, 

9 

u=g*lni. 

bj”) (u) are completely determined by ai:) and the 
RG recursion equations. 

Symanzik’s improvement program may act sepa- 
rately on the indices i and n, which are respectively 
related to higher-loop contributions and to insertions 
of higher-dimensional operators. In the usual lan- 
guage, tree-improvement would consist in removing 
the coefficients a$’ for n # 0, which automatically 
would also imply removing all coefficients a;:‘, i.e. 
setting bp’ = 0. In tv, one-loop improvement would 
amount to setting aI1 = 0, that is bi”) = 0. How- 
ever, this point of view would be misleading for the 
problem at hand. The basic reason for this statement 
stays in fact that the condition ai:’ = 0 for n # 0 
(i.e. Ao(L) = 1) is obtained automatically, for any 
action, by a proper choice of the definition of m(L), 
making no reference whatsoever to any improvement 
program 

The finite-space-volume mass gap m(L) can be de- 
fined as the coefficient of the exponential decay of the 
wall-wall correlation function in the time direction, 
i.e. for 1x1~ - ya] 4 00 

$ Cbx .SY) N exp [-m(L) 1x0 - yol] . (6) 
Xl.Yl 

Exponential decay in perturbation theory is insured 
by taking free boundary conditions in time and peri- 
odic boundary conditions in space (L points in a cir- 
cle) [ 561. 

As we shall see, m ( L) enjoys the property Ao ( L) = 
1 in the expansion ( 1) independently of the choice of 
lattice action. The renormalization group then predicts 
the one-loop result alo (“) = 0 for n # 0, i.e. absence 
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of terms proportional to ln( L/a) in the finite lattice The resulting coordinate-space two-point function 
one-loop corrections to the mass gap. is 

What would be in this case the effect of a tree- 
improvement, if any? As one might have conjectured 
Symanzik tree-improvement will now act on the coef- 
ficients ai;I’, setting them to zero. As a consequence 

we would have bi”’ = 0 as a tree-improvement effect, 
without the need to appeal to any notion of one-loop 
quantum improvement. 

(sx . sy) = 1+&N- l)G, 

+g4w - 1) ; [G:, + c (~n,nzG,a - 4un2) 

mn2 

In order to produce evidence for these statements, 
let us consider the explicit expression of the one-loop 
contributions to m( L)L. At the one-loop level, full 
generality is achieved starting from a lattice action 
whose parametrization is the following [ 31: 

+ g4(N - 1) 4 c Cn,nzn3w (WY,“, - A&y,,,) 

m2nm 
d = -4 CPnm (1 - s,, *s,,) 

mn2 

fC Cn,n2nm (1 - sn, * Sn2) (1 - S”, . s,,) . 

ni are lattice sites, and the functions pnln2 and cnlnznjnq 
enjoy the following exchange symmetries: 

ha = Pn2n, 9 (8) 

GI,n2n,n4 = cn2n,n3n4 = Cn,n2n4n3 = Cn3nsn,n2. (9) 

Possible higher order interactions in the lattice action 
do not contribute at one-loop. We shall not assume 
translation invariance, at least in the time direction, 
since it is in general violated by arbitrary boundary 
conditions. 

We must now compute the two-point spin-spin cor- 
relation function up to 0(g4) without relying on any 
specific feature of the action and for arbitrary bound- 
ary conditions. We follow the coordinate space ap- 
proach [ 51 in the version suggested by Cline [ 81. We 
introduce the massless propagator PXy which is a so- 
lution of the difference equations 

(10) 

where V is the total lattice volume. We have removed 
the zero-mode by appropriate gauge-fixing [ 91. Pxy 
will not in general be translation-invariant, as a con- 
sequence of the non-invariance of pxr. 

X (Gr.ns - AG,,) G,,, 

- g”( N - 1>* 

X 
c 

C n,n2njnq (Gym - AGy.n2)* G,, 

n1nzmw 

+ 0 (g6> 9 (11) 

where we have introduced the notations 

AGx,, = G,, - G,. (12) 

It is worth noticing that in the case of open boundary 
conditions GXY is time-translation invariant up to terms 
that are exponentially depressed in the time distance 

IX0 - Yol. 

When considering space translation invariance, say 
by taking periodic boundary conditions in space, one 
can actually perform a Fourier transform of the space 
coordinate and reduce the problem to an effective one- 
dimensional equation in time. In the case of open 
boundary conditions, only the zero-space-momentum 
component of the propagator will be seriously affected 
by the lack of translation invariance. All other com- 
ponents will have violations of invariance that are ex- 
ponentially depressed with the time distance [ 61. 

In view of the above considerations, one may avoid 
solving the one-dimensional problem with free bound- 
ary conditions for an arbitrary form of the action. In- 
deed the solution for the most general action (7) dif- 
fers from that of the standard (nearest-neighbor) ac- 
tion only by terms that are exponentially depressed 
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in time, and therefore not sensitive to the boundaries. 
As a consequence we may express the general result 

for m(L) L in terms of the standard action result plus 

terms that can be computed with periodic boundary 

conditions, hence directly in momentum space. 

Without belaboring on the details of the derivations, 

we may express our final result for m(L) in terms of 

the following Fourier transforms: 

p(P) = f CPn,,,e-iP.(nl-nz), (13) 
n1n2 

where complete symmetrization of the dummy in- 

dices, space periodicity and the limit T -+ cm are as- 

sumed. Notice that Z((p, q, r) enjoys also the follow- 

ing symmetry E(p, q, r) = C(q, p, t-1. We introduce 
the parametrization 

AI CL) = t-1 CL) + (N - 2)r2(L> 

+s1(L) +(N- l)s2(L), (15) 

where si are vanishing when c,,,,,,,, = 0. We obtained 

q(L) =-h 

L 

cl 

dkrj 1 

I=1 
~p(ko,h) 

(16) 

l 
I’ dko 11 

%F(ko,kd 

where the different 
time component ko 
nents 

2rl 
kl=-, 

L 
I= 1,. 

dependence on the (continuous) 
and the (discrete) space compo- 

..,L (18) 

is made explicit, and 

i2 z 4 sin2 (k/2) (19) 

is the standard action momentum space representation 
of the inverse propagator. Moreover we obtained 

Sl(L) = -$p&k; k,) 

1=1 7 

x ~2c(qo,0;q&O;ko,h) 

1 Jqo%; 1 qo=q;=kl/2 ’ 
(20) 

X 
J2c(qo, 0; 0; 0) J2c(qo, 0; ko, kl; 0) 

- +I; aq: 1 . qu=o (21) 
Since the low-momentum behavior of p is dictated 

by the continuum limit to be 

p(ko,k,) -+k;+k:+O(k4) (22) 

and the low-momentum behavior of C is assumed to 
be a regular function of k, in the large L limit the only 
singular dependence on L is expected to be originated 
from Q(L). This singularity is simply parametrized 

by 

1 L 
12(L) = - In - + regular terms, 

21r a 
(23) 

as predicted by our renormalization group considera- 

tions. 

We tested our expressions of Ti ( L) , sj ( L) against 
explicit (finite L, finite T >> L) evaluation of the one- 
loop contribution to m(L) L (i.e. using Eq. ( 11) ). The 

propagator Pxr was calculated by numerically solving 
Eq. ( 10). We found full agreement for various forms 

of the action, including Symanzik off-shell [lo] and 
on-shell [ 111 improved versions and mixed O(N) - 
RPN-’ models. The correct large-N limit is also re- 

produced. Furthermore the L + 00 limits of ri, si may 
be shown to agree in general with the computation of 
Ref. [ 31 of the A-parameter ratios. 

Our expressions allow a rather direct testing of 

the effects that an arbitrary choice of the action may 
have on the finite-space-volume, finite-size-scaling- 
violation effects at the one-loop level. They are espe- 
cially useful in order to test the effects of a systematic 
tree-level Symanzik improvement. To this purpose 
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we note that within Symanzik’s program the quadri- 
linear couplings cnlnZngnr are absent, and a systematic 
tree-level improvement can be achieved by choosing 

F(kO,kl) =a,(ko) +g”(kl), (24) 

where the index n is related to the tree-level 
Symanzik’s improvement degree. The family of in- 
verse one-dimensional propagators a,(k) is defined 

by 

u,(k) = c - r, ;g (i’y, 

enjoying the basic property 

(25) 

(26) 

For n = 1 we recover the standard action. 
By substituting the above relationships into the ex- 

pressions of rt (L) and r~( L) (cf. Eqs. ( 16) and 
( 17)) one finds that, for L/u sufficiently larger than 
n, 

r\*‘(L) = pi”) + 0 [ (a*/LZ)n] , (27) 

r!“‘(L) = &In i + $“’ + 0 [(a2/L2)“] , (28) 

where fi”‘) are constants that can be computed in the 
infinite space-volume limit. Corrections are expand- 
able in powers of a2/L2. The numerically evaluated 
coefficients of the leading-order power correction turn 
out to grow rapidly with increasing n, suggesting some 
non-uniformity in the large-n limit. 

The above results exhibit explicitly the correct con- 
tinuum RG one-loop coefficient, the cancellation of 
all dependence on ln( L/a) in finite lattice effects and 
the cancellation of all (u2/L2)’ dependence for i < n 
in the n-th order tree-improved action. This is exactly 
the pattern described in our general analysis. The ac- 
tion defined by the (formal) limit n 4 00 is what we 
call the “Symanzik tree perfect” action. It essentially 
amounts to a “SLAC derivative” lattice version of the 
continuum action, and shows no power-like correc- 
tions to scaling when the limit L -+ 00 is taken be- 
fore the limit n -+ 00. One must not however forget 
that, since this action involves infinite-range correla- 
tions, at finite L there are finite-volume effects related 

to the unavoidable truncation. These effects appear as 
0(a2/L2) corrections when n > L/u. We insist that 
the relevance of the result is purely conceptual, in that 
it shows that tree-improvement may lead to cancella- 
tion of one-loop finite-volume effects in the mass gap. 

The “Symanzik tree-perfect” action allows exact 
evaluation of some n + 00 limits, that are obtained by 
setting fl’m (k) = k2 and integrating between -r and 
v in the ko, kl variables. We obtained the following 
analytical results: 

(29) 

where G is Catalan’s constant. The n --+ 00 limit is 
reached with 0(n-‘j2) corrections in the case of ?I, 
and 0( n-t > corrections in the case of P2. For compar- 
ison we recall that for the standard nearest-neighbour 
action [ 5 ] : 

41) = 1 
r1 4’ 

-Cl) _ l 
r2 -G(YE+$ln2-ln?r). (30) 

Because of the recent upsurge of interest in the 
so-called “on-shell improved” lattice actions, we also 
considered the simplest representative of this class of 
actions in the context of two-dimensional O(N) u 
models. Limiting ourselves to 0( u2) on-shell tree im- 
provement we choose c,,,,,~,,~,,~ = 0 and the inverse 
propagator 

p( ko, kl) = i(; + %; - ii;& 

= $ + kf - h (k; + k:)* + 0( k6). (31) 

Performing the integrations in the variable ko we found 

(32) 
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= &In ; - 0.0028979... + 0 $ ( 1 . (33) 

Hence only for large N on-shell improvement is ef- 
fective in reducing the scaling violations in the finite- 
space-volume mass-gap, even if this is an asymptotic 
(spectral) property of the model. rl (L) does not be- 
have better than the corresponding quantity calculated 
with the standard action. 

A similar pattern we found when considering the 
action involving only the quadratic terms of the 
“Hasenfratz-Niedermayer” perfect action. This is not 
unexpected when we consider the low-momentum 
expansion of the corresponding function p [ 121 and 
realize that it is consistent with O(a2) on-shell im- 
provement. In Ref. [4] it was verified that the inclu- 
sion of the “perfect” quartic couplings in the action 
has the effect of removing all power-law dependence 
on lattice artifacts. Our results for ri( L) and si( L) 
should allow to establish the more general conditions 
under which, starting from a given form of the bilinear 
interaction pXr (dictated by the specific RG trans- 
formations considered), one may choose functions C 
such that all non-scaling one-loop finite lattice effects 
are removed in the finite-space-volume mass gap. 

We conclude with a few remarks about four- 
dimensional lattice QCD. Similarly to the finite- 
volume mass gap in 2-d O(N) (T models, one may 
define observables which do not exhibit O(aklna) 
terms in their one-loop perturbative evaluation even 
when using the standard Wilson action. In the fol- 
lowing we give an example of such a quantity. On an 
infinite lattice we consider the correlation C(t) of 
twc Polyakov lines P(r) 

C(r) = k(TrP(r)P(O)). (34) 

which we define as Wilson loops T x R with T >> R 
such that the limit T --) CQ can eventually be taken. 
The perturbative expansion of C(t) has been consid- 
ered in Ref. [ 71 within a study of Symanzik’s program 
in lattice gauge theories. Using the Wilson action and 
in the large T limit one gets 

C(r) = 1 + TcFg2 J d3k &k.r _ 1 

- 
(W3 P + a$ + a: 

+ O(g4). 
1 

(35) 

As shown in Ref. [ 71, the one-loop contribution to 

A(r) = :$ni lnC(r) (36) 

contains 0(g4azk In a) terms. This is not unexpected 
because at tree level 0(g2a2k) finite lattice spacing 
corrections are present. Let us now introduce the wall- 
wall correlation defined as the infinite volume limit of 

W(z) 3 &CC(r). 
x Y 

*Y 

(37) 

It is easy to prove that 

D(z) = $ll - ifFIn W(z + 1) 

W(z) 
= g2 + 0(g4) 

(38) 

similarly to m(L) L in two-dimensional O(N) u mod- 
els. Then, unlike A(r) , the 0( g”) corrections in D ( 2 ) 
will not contain O(g4a2klna) terms, and its pertur- 
bative expansion looks like that of m(L)L with the 
substitution L + z. Notice that the continuum limit 
of D (z ) defines a running coupling constant obeying 
a homogeneous renormalization group equation with 
a corresponding beta-function. 

It is a pleasure to thank Andrea Pelissetto for useful 
and stimulating discussions. 

References 

[ 11 K. Wilson and I. Kogut, Phys. Rep. 12 (1974) 75; 
K. Wilson, Rev. Mod. Phys. 47 ( 1975) 773; 55 ( 1983) 583. 

[2] K. Symanzik, in: Mathematical problems in theoretical 

131 

[41 

[51 

I61 

[71 

181 
[91 

IlO1 

[Ill 

1121 

physics, eds. R. Schrader et al. (Springer, Berlin, 1982). 
Lecture Notes in Physics, Vol. 153; Nucl. Phys. B 226 
(1983) 187, 205. 
I? Hasenfratz and F. Niedermayer, Nucl. Phys. B 414 ( 1994) 
785. 
E Farchioni, P. Hasenfratz, E Niedermayer and A. Papa, 
Nucl. Phys. B 454 (1995) 638. 
M. Liischer, Phys. Lett. B 118 (1982) 391; unpublished 
notes. 
M. Liischer, P Weisz and U. Wolff, Nucl. Phys. B 359 
(1991) 221. 
G. Curci, P Menotti and G. Paffuti, Phys. Lett. B 130 ( 1983) 
205. 
J.M. Cline, Phys. Lett. B 173 (1986) 173. 
P. Hasenfratz, Phys. Lett. B 141 (1984) 385. 
G. Martinelli, G. Parisi and R. Petronzio, Phys. Lett. B 114 
(1982) 251. 
M. Liischer and P Weisz, Comm. Math. Phys. 97 ( 1985) 
159. 
T. DeGrand, A. Hasenfratz, P. Hasenfratz and 
E Niedermayer, Nucl. Phys. B 454 ( 1994) 587. 


