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Abstract 

We investigate the relation between on-shell and zero-momentum non-perturbative quantities entering the parametrization 
of the two-point Green function of two-dimensional non-linear O(N) u models. We present accurate estimates of ratios 
of mass scales and renormalization constants, obtained by an analysis of the strong-coupling expansion of the two-point 
Green function. These ratios allow to connect the exact on-shell results of Hasenfratz et al. [Phys. L&t. B 245 (1990) 
5221, Hasenfratz and Niedermayer [Phys. L&t. B 245 ( 1990) 5291 and Balog and Niedermaier [hep-th/9612039] with 
typical zero-momentum lattice evaluations. Our results are supported by the l/N-expansion. @ 1997 Published by Elsevier 
Science B.V. 

PACS: 11.10.-z; 11.15.Me; 11.15.Pg; 75.1O.Hk 

1. Introduction 

Physical quantities which are independent of coor- 
dinates and carry no physical dimensions, like mass or 
amplitude ratios, are the best candidates for scheme- 
independent and/or numerical determinations in quan- 
tum and statistical field theories. 

In two-dimensional non-linear O(N) u models 
some exact results concerning the on-shell (large- 
distance in the Euclidean space) behavior of the 
two-point spin-spin Green function are known. Exact 
formulas have been presented for the on-shell mass- 
A-parameter ratio [ 11, and for the constant AI of the 
U( 3) u model [ 21, which is defined starting from a 
parametrization of the large-momentum asymptotic 
behaviour of the on-shell renormalized two-point 
correlation function. No exact off-shell results are 

known. In this letter we study the relation between 
on-shell and zero-momentum quantities related to the 
two-point Green function. This will allow, by using 
the above-mentioned exact on-shell results, to deter- 
mine very accurately (the error being of order 10m4) 
the non-perturbative quantities which parametrize the 
asymptotic behavior (i.e. for p -+ co) of the two- 
point Green function at small momentum, such as the 
second-moment mass and the magnetic susceptibility. 

For the sake of generality, let us discuss the general 
O(N) model on a square lattice with nearest-neighbor 
action 

s=-NPCs(x) -s(x+pu), (1) 
X.P 

where s(x) -s(x) = 1. We have introduced arescaled 
inverse-temperature p, and we shall use the short-hand 
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N-2 
ff=zlrNp* (2) 

We consider the Fourier transform of the bare spin- 
spin two-point function 

G(p;P) = Ce’P’(s(x) ‘S(0)). (3) 
X 

In the continuum limit and in the large (euclidean) 
momentum regime a standard one-loop calculation 
gives 

N--L 

G(p;/3) - 27r$+5++-r, (4) 
P--rW 

here Z(p) denotes the (one-loop) running coupling 
constant 

Z(p) = * 
1 + culnap’ 

(5) 

where a is the lattice spacing. The corresponding 
renormalized Green function GR(~, M) defined by 
an on-shell renormalization condition is obtained by 
requiring 

1 
GR(~;W -+ - 

p2+MZ+0 p2 + M2' (6) 

where M is the physical mass-gap. The renormalized 
correlation function can then be parametrized in the 
large-momentum regime as 

GR(P; W 
h (NJ _ ---t --a(p)-& 

P--r00 P2 

Notice that Eq. (7) is the definition of At (N). This 
constant depends crucially on the renormalization con- 
dition one adopts. In turn the bare two-point function 
(3) depends explicitly on the coupling. In the low- 
momentum (large-distance) regime and in the scaling 
region it can be parametrized by 

G(p; P) pz+;_o p2 +z~($z * (8) 

Renormalization-group arguments lead to the follow- 
ing expression for the (universal) asymptotic behav- 
ior of the mass-gap: 

M(P) = -$N)&e-t [l+o(~)l, (9) 

and of the on-shell renormalization constant 

Z(p) = C(N)a= [ 1+ O(a)], (10) 

The constant R(N) is not universal and it can be eas- 
ily computed from the exact result of Ref. [ 1 ] by cal- 
culating the appropriate A-parameter ratio, which can 
be obtained by a simple one-loop calculation. For the 
standard nearest-neighbor action on the square lattice 
one finds 

The constant C(N) is universal, that is independent 
of the lattice regularization. By using Eqs. (4), (7), 
(8) and (9)) it can be put in relation with /\I (N) : 

N-l 1 
Al(N) = 27r-- 

N - 2 C(N) ’ 
(12) 

For N = 3, using the exact result of Ref. [ 21, i.e. 

Al(3) = $9 (13) 

we get 

C(3) = 3n3. (14) 

The main purpose of the present letter is to com- 
pute the relation between R(N) and C(N) and the 
corresponding zero-momentum quantities, which are 
much easier to compute in Monte Carlo lattice simula- 
tions. We will obtain results which are quite accurate, 
although not exact. 

Typical lattice calculations lead to estimates of mo- 
ments of the two-point function: 

m2j SE -p)‘(s(O) . s(x)). (15) 

In particular x s Q. If we now parametrize the func- 
tion G(p; j3) around p = 0 by 

G(p;P) = 
zG(p) 

p2 + M:(P) 
(16) 

(Mo is by definition the inverse of the so-called 
second-moment correlation length), we obtain the 
relationships 

ML=?, 

4rni 
ZG=xM$=K. 

(17) 

(18) 
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Standard renormalization-group arguments lead again 
to 

Ma(P) = &(N)a+& [ 1 +0(a)], (19) 
N-1 

Z,(p) = CG(N)a= [ 1 +0((Y)]. (20) 

cG(N) and &(N) differ from the corresponding 
quantities C(N) and R(N) (except at N = 00 where 
the theory is Gaussian). In order to calculate these two 
quantities, we will thus investigate the dimensionless 
ratios 

(21) 

These quantities are not exactly known and we will 
provide here rather accurate strong-coupling esti- 
mates, supported by a l/N analysis. 

2. Strong-coupling estimates of dimensionless RG 
invariant quantities 

As shown in Ref. [ 31, strong-coupling anal- 
ysis may provide quite accurate continuum-limit 
estimates when applied directly to dimensionless 
renormalization-group invariant ratios of physical 
quantities. The basic idea is that any dimension- 
less renormalization-group invariant quantity R( /3) 
behaves, for sufficiently large p, as 

R(P) - R* N M(P)*, (22) 

where R* is its fixed point (continuum) value and 
M(p) goes to zero for /3 --+ 00. Hence a reasonable 
estimate of R* may be obtained at the values of j3 
corresponding to large but finite correlation lengths, 
where the function R(P) flattens. This is essentially 
the same idea underlying Monte Carlo studies of 
asymptotically free theories, based on the identifica- 
tion of the so-called scaling region. Strong-coupling 
estimates of physical quantities may be obtained 
by evaluating approximants of their strong-coupling 
series at values of /3 corresponding to reasonably 
large correlation lengths, e.g. 5 2 10. Scaling is 
then checked by observing the stability of the results 
varying p. 

In a strong-coupling analysis it is crucial to search 
for improved estimators of the quantities at hand, be- 

cause better estimators can greatly improve the stabil- 
ity of the extrapolation to the critical point. Our search 
for optimal estimators was guided by the large-N limit 
of lattice O(N) v models which is a Gaussian theory. 
We chose estimators which are perfect for N = co, i.e. 
do not present off-critical corrections to their critical 
value. 

On the lattice, in the absence of a strict rotation in- 
variance, one may define different estimators of the 
mass-gap M having the same critical limit. On the 
square lattice one may consider ~1 obtained by the 
long-distance behavior of the side wall-wall correla- 
tion constructed with G(x) , or equivalently the solu- 
tion of the equation G-‘(&,O; p) = 0. At a finite 
order q of the strong-coupling expansion, the wall- 
wall spin-spin correlation function G,( z ) at a dis- 
tance larger than q/3 exponentiates exactly, i.e. for 
]z 1 > q/3 it can be written as 

G,(z;P) = A(&?(P)IZI. (23) 

In the context of a strong-coupling analysis, it is con- 
venient to use another estimator of the mass-gap de- 
rived from p(p) [3]: 

M;(P) = 2 (cash,@) - 1). (24) 

Moreover, by comparison with Gaussian model, we 
consider the following estimator of Z 

Z,(P) =24(P) sinhru(P). (25) 

In practice, when the strong-coupling expansion of 
G( x; p> is known to order q, Mz( /!I) can be deter- 
mined up to about 2q/3 orders [ 41, and the same pre- 
cision is therefore achieved in the determination of 
Z,( p> . Estimators of the zero-momentum mass MG 
and renormalization constant Zo can be easily ex- 
tracted from Eqs. ( 17) and ( 18). So in order to esti- 
mate SM and Sz one should study the continuum limit 
of the ratios 

(26) 

In the large-N limit s,+,(p) = sz (p) = 1 indepen- 
dently of p. Quantities having the same properties of 
i# and Z, can be conceived also on the honeycomb 
and triangular lattices [ 31, thus leading to analogous 
definitions of 3, ( p) and sz ( p) . 
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Table I 
Estimates of s,+,, 3~ and i3 obtained from DPA’s of the strong-coupling series on the square lattice evaluated at various values of p 

where the correlation length 5 is reasonably large. For example at N = 3: t(p = 0.45) N 8, ,$(p = 0.50) 2: Il. [(p = 0.55) N 25, and 

&(/3 = 0.60) N 65; at N = 8: &p = 0.50) 2: 5, t(B = 0.55) N 8, and f(/? = 0.60) 2: 12 

N p = 0.45 p = 0.50 p = 0.55 p = 0.60 

3 (& - I) x 103 -1.01(3) -1.2( 1) -l.](2) -0.9(3) 

(3, - 1) x 103 2.04(6) 2.4(2) 2.2(4) 1.4(7) 

;r2 x 103 -1.16(4) -1.3(2) -1.4(3) -1.3(4) 

8 (& - 1) x 103 -0.54( 1) -0.59(2) -0.57( 5) -0.5( 1) 

(Sz - 1) x 103 1.11(3) l.2( 1) l.2( I) 1.1(2) 

72 x 103 -0.58(2) -0.63(5) -0.6( I ) -0.6( 2) 

16 (& - 1) x 10” -0.32(4) -0.35(6) -0.4( 1) -0.4(2) 

(S, - 1) x 103 0.7( 1) 0.7( 1) 0.8(2) 0.9(4) 

72 x 103 -0.31(l) -0.34( 3) -0.35(6) -0.35( 10) 

3. Analysis of the strong-coupling series 

We have analyzed the strong-coupling series of 3~ 

and sz on the square lattice, where the available se- 
ries [ 31 are of the form 1 +p6 Cfi a# in both cases. 
An analogous analysis has been performed on the hon- 
eycomb and triangular lattices within their nearest- 
neighbor formulations using the available series of 
the two-point function [ 31. The analysis of strong- 
coupling series calculated on different lattices offers 
a possibility of testing universality. On the other side, 
once universality is assumed, it represents a further 
check for possible systematic errors, whose estimate 
is usually a difficult task in strong-coupling extrapo- 
lation methods such as those based on PadC approxi- 
mants and their generalizations. 

In Table 1 we present some details of the results ob- 
tained on the square lattice. There we report estimates 
of SM and 3~ at various values of p, where the corre- 
lation length is reasonably large. Such estimates of 3, 
and & have been obtained by resumming the strong- 
coupling series of (3~ - 1) /p6 and (3~ - 1) /@ by 
Dlog-Padt approximants (DPA’s), in which the stan- 
dard PadC resummation is applied to the series of the 
logarithmic derivative, and then the original quantity 
is reconstructed. This method of resummation turned 
out to give the most stable results (we also tried sim- 
ple Pade approximants and first order integral approx- 
imants). For a nth order series, we considered [l/m] 
DPA’s having 

l+m+l>n-2, l,m>5-2. (27) 

As estimate at a given p we took the average of the 
values of the non-defective approximants constructed 
using all available terms of the series. As an indica- 
tive error we considered the square root of the vari- 
ance around the estimate of the results from all non- 
defective approximants specified above. This quan- 
tity should give an idea of the spread of the results 
from different approximants. Approximants are con- 
sidered defective when they present spurious singular- 
ities close to the real axis for Rep 5 B. 

The precision of the results is satisfactory even for 
values of p where the correlation length is quite large. 
Furthermore scaling is well verified. Then, assuming 
scaling, we extracted estimates of the corresponding 
continuum limit, which are reported in Table 2. There 
we report results obtained on the square, honeycomb 
and triangular lattices, and for several values of N 
(N = 3,8,16, where the last two large values of N 
have been considered in order to make a comparison 
with the large-N analysis, see later). Errors represent a 
rough estimate of the uncertainty, which is quite small. 
Universality among different lattice formulations is 
well verified. Our final estimates for N = 3 are 

S,,, = 0.9987(2), Sz = 1.0025(4). (28) 

There are some estimates of S, and S.Z obtained by 
high-statistics Monte Carlo simulations that are worth 
being mentioned for comparison. Monte Carlo simu- 
lations at N = 3 [5] gave SM = 0.9988( 16) at /?J = 
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Table 2 
We report estimates of SM. Sz and c2 from the strong-coupling 
expansion on the square, honeycomb and triangular lattice, aad 
l/N expansion of the continuum formulation of the non-linear 
O(N) u model. FInal strong-coupling estimates are taken at @ 
values corresponding to 8 N 10 

N Xu SZ c2 

3 square 
honeycomb 
triangular 

0(1/N) 

8 square 
honeycomb 

0(1/N) 

16 square 
honeycomb 

O( l/N) 

0.9988(2) 
0.9986(3) 
0.9985(5) 
0.9978 

0.99943( 5) 
0.9994( 1) 
0.99919 

0.9996( 1) 
0.9997( 1) 
0.99960 

1.0024(4) 
1.0027(4) 
1.003(l) 
1.0044 

1.0012( 1) 
l.OOll(2) 
1.00164 

1.0008(2) 
1.0006(1) 
1 BOO82 

-1.3(2) x 1O-3 
-1.2(2)X 10-3 
-1.2(3)x10-3 
-2.07x 1O-3 

-0.6( 1) x 1O-3 
-0.7(1)x10-3 
-0.77 x 10-3 

-0.35(5) x 10-3 
-0.36(3)x lO-3 
-0.39x 10-j 

1.7/3 = 0.5666... (5 11 35), and SM = 0.9982(18) 
at p = 0.6 (5 N 65)) leading to the estimate S,U = 
0.9985 ( 12). From the data of Ref. [ 61, one derives 
SM = 0.996(2) and SZ = 1.0035( 18) for N = 3, and 
SM = 0.9978(8) for N = 8, These numbers compare 
well with our strong-coupling calculations, which ap- 
pear to be much more precise. 

4. The two-point Green function at small 
momentum 

The fact that both SM x 1 and SZ x 1 should not 
come as a surprise. Indeed it was shown in Ref. [3] 
that in the region p 2 < Mi the spin-spin two-point N 

function is essentially Gaussian with very small cor- 
rections. The inverse two-point function can be stud- 
ied around p2 = 0 by expanding it in powers of p2: 

G-‘(p) = 2;‘M; [l+$+$Ici($,3. 

(29) 

Analysis based on various approaches have shown that 
in two- and three-dimensional O(N) models the fol- 
lowing relations hold [ 3,7,8] 

c2 < 1, Ci << C2 for i > 2. (30) 

Then neglecting all ci, i 2 3 and terms of order cs 
one may write the following expression for the inverse 

two-point function 

G-‘(p)=:&@ [1+c2+-$] 

[ 

2 
x 1 -c2+&- 1 M$ ’ (31) 

which should give a good approximation of the two- 
point Green function in the region Ip21 5 M& As a 
consequence one obtains the following approximate 
relations 

S.&j = 1 fC2. (32) 

sz 21 1 - 2c2. (33) 

In order to have a check of Eqs. (32) and (33), 
we have estimated c2 by a strong-coupling analysis. 
Again guided by the large-N limit, we considered the 
following estimator of c2 

Q(P) = 1 - J%44, -t +4;. 
64mo 

(34) 

In the continuum limit &2(p) + Q. In the large-N 
limit Z2 ( p) = cp = 0 independently of p for all square, 
honeycomb and triangular lattices. We mention that 
on the square lattice, where G(X) has been calculated 
up to 21st order [ 31, the available series of Z2 is of the 
form p” C,& ai@. Details of the analysis of i?2 on the 
square lattice can be found in Table 1. Final estimates 
are reported in Table 2, where also results obtained 
on the honeycomb and triangular lattices are reported. 
Numerically in the case of O(3) we obtained c2 N 
-0.0012, which nicely confirms Eqs. (32) and (33). 

5. l/N expansion 

We have also evaluated SM and SZ in the context 
of the l/N expansion, which was found to be a fairly 
accurate approach to the evaluation of amplitude ra- 
tios in two-dimensional O(N) models for N > 2. An 
analytic computation of the two-point function in the 
region p2 + M2 x 0 leads to the following result: 

G-‘(p;p) x’s 

x [lf~(log~-yE-3)+0(S)], 

(35) 
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RG(3) = y = 80.139(8), (42) 
M 

cG(3) = c(3) x & = 93.25(3). (43) 

(36) For comparison we mention the existing Monte 

By evaluating the O( l/N) contribution to the on- 
Carlo results concerning the ratio CG(3)/RG( 3)2. 

shell-renormalized self-energy in the region around 
Ref. [9] quotesC~(3)/R~(3)~=0.0146(1I),which 

p = 0, one finds 
has been obtained by employing finite-size-scaling 
based techniques allowing to reach correlation lengths 
up to O(105). Ref. [6] quotes CG(~)/RG(~)~ = 

&=I- 
0.00645 105 

N 
+o $ , 

( 1 
(37) 0.0138(2), which has been obtained by standard 

Monte Carlo simulations up to 5 N 130, and where 
the error is just statistical. An attempt to estimate the 
systematic error due to violations of asymptotic scal- 
ing would give the number 0.0138(2)(7) ’ , where 

(39) the second number within parenthesis is the system- 
atic error estimated by us. These numbers compare 

0.00023845 
c3 = 

N 
(40) 

very well with our corresponding estimate derived 
from @s. (42) and (43), i.e. Cc(3)/R~(3)~ = 

0.00001344 
0.01452( 5). 

c4 = - 
N 

+o $ , 
( > 

(41) 

etc. The coefficients of the 0( l/N) terms show con- 
sistency with Eqs. (32) and (33) within errors of 
order 10e4. Inclusion of cg z 2.4 . 10e4/N would 
squeeze the error to 0( lo-‘). Strong-coupling esti- 
mates reported in Table 2 clearly approach the large-N 
asymptotic regime predicted by the above equations. 
In particular quantitative agreement (within the uncer- 
tainty of our strong-coupling calculations) is found at 
N = 16. This represents a further check of the analysis 
employed in order to get strong-coupling estimates in 
the continuum limit. 

It is worth mentioning that ~2, SM and Sz have been 
also calculated to 0(e3) within the +4 formulation 
of O(N) models in 4 - E dimensions [ 81. The ap- 
proximate relations (32) and (33) are confirmed even 
in the e-expansion, whose validity should not be re- 
lated to the specific value of N. Furthermore a semi- 
quantitative comparison, inserting the value E = 2 in 
the E-expansion formulae, provides the correct order 
of magnititude. 

6. Conclusions 

Putting together the exact formulae ( 11) and ( 14) 
and our strong-coupling estimates of the ratios SM and 
SZ, we arrive at the following results 
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