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Abstract

Ž .Within the 1rN expansion of O N nonlinear s models for dF4 it is possible to separate consistently the spin-wave
Ž .and the massive-mode contributions to the scaling part of the free energy near criticality, and to evaluate them to O 1rN .

For critical dimensions ds2q2rn the Abe-Hikami anomaly is recovered, while for ds2 the removal of the spin-wave
term is justified. q 1998 Elsevier Science B.V.

Scaling is a fundamental property of physical
systems in the neighborhood of a second order phase
transition. In the field theory approach to the study
of critical phenomena it is easy to identify the scal-
ing properties of correlation functions. However it
may be difficult to study scaling of bulk thermody-
namical properties, and in particular the free energy.
The reason behind this is the phenomenon of mixing:
in a renormalizable field theory the vacuum expecta-
tion values of composite operators require in general
not only a multiplicative renormalization, but also
the subtraction of the contributions coming from
lower-dimensionality operators carrying the same
quantum numbers. These contributions, when pre-
sent, are numerically dominant with respect to the
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scaling part of the expectation value, for the very
simple reason that they are associated with lower

Ž .powers of the vanishing mass scale, or inverse
correlation length. Therefore one must in principle

Žcompute these terms with infinite accuracy sum-
.ming infinite orders of perturbation theory in order

for the evaluation of scaling contributions to become
possible. In practice this ’’subtraction of perturbative
tails’’ has been attempted with some success even in
purely numerical computations of topological sus-

w xceptibilities 1 . The reason behind this possibility
stays in the fact that the physical degrees of fredom
generating these contributions, the ’’spin waves’’,

Žare quite different in nature from the massive, topo-
.logical degrees of freedom associated with the scal-

ing terms. Therefore, in a numerical simulation based
on heating, the spin waves can be excited quite
independently and earlier than the massive fields.
When a plateau is temporarily reached, the value of
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the plateau can be nonperturbatively identified with
the spin wave contribution, to be subtracted from the

Ž .final fully thermalized vacuum expectation value.
There are obvious conceptual and technical limits

in the accuracy of this determination, and it would be
nice to possess some analytical nonperturbative
scheme in order to deal with this problem.

Ž .In the context of two-dimensional O N lattice
spin models, and of their regularized continuum
counterparts, it was noticed some time ago that the
1rN expansion offered the possibility of consistently
defining the ’’perturbative tails’’ of the free and
internal energies, at least up to second nontrivial

w xorder 2 . The procedure adopted might however
appear to be tailored upon the two-dimensional case,
where criticality occurs in the zero-coupling limit,
the models are perturbatively renormalizable and
asymptotically free, and the whole procedure essen-

Žtially amounted to a prescription principal value
.integration for the evaluation of the integral repre-

senting the resummation of an infinite series of
perturbative Feynman diagrams. We therefore de-
cided to consider the problem of evaluating the

Ž .scaling part of the free energy in O N nonlinear
sigma models around criticality in dimensions 2-d
-4, where criticality occurs at a finite value of the

Žlattice coupling, and the critical exponents hence the
.scaling properties are nontrivial.

Finding a subtraction procedure allowing for a
nonambiguous identification of the scaling contribu-
tions cannot in this case be considered simply as the
problem of making sense out of the formal sum of a
known perturbative series, since we must first face
the problem of correctly identifying which contribu-
tions come from spin wave degrees of freedom.

For definiteness, let’s consider the continuum ver-
sion of nonlinear sigma models:

1 dSSs Nb d xE SPE S 1Ž .H m m2

We label the coefficents of the 1rN expansion for
any physical quantity Q according to the notation:

Qs Q Nyi 2Ž .Ý i
i

Ž .The unsubtracted free energy of the above model
can be computed in the 1rN expansion and its
formal expression is:

N ddp N
2 2 2Fs lnb p qm y b mŽ .H 0 0d2 22pŽ .

dd p
1 y1q ln D p ,m qO 1rNŽ . Ž .H 02 d2pŽ .

3Ž .

where m is defined by the gap equation:0

ddp 1
bs 4Ž .H d 2 2p qm2pŽ . 0

w xsee ref 3 for explenations and notation.
We introduced the inverse propagator of the effec-

tive field:

Dy1 p ,mŽ .0

ddp 1 1
1s H2 d 2 2 2 2q qm2p pqq qmŽ . Ž .0 0

dr2y22G 2ydr2 pŽ .
2s qm0dr2 ž /42 4pŽ .

d 3 p2
1= F 2y , ; ; 5Ž .2 1 2 2 2ž /2 2 p qm0

d 1 3 p 2Ž .where F 2y , ; ; is hypergeometric func-2 22 1 2 2 2 p q m0

w xtion 4 .
It will be essential to our analysis that the inverse

propagator admits an asymptotic expansion for small
w xm 5,6 , which is easily extracted from the represen-0

tation:

Dy1 p ,mŽ .0

dy32
G 2ydr2 G dr2y1Ž . Ž . 22 2s p q4mŽ .0dr2 G dy2 pŽ .2 4pŽ .

byb dy1 d 1Ž .c
q F ,1; ;2 12 2 22 2p q4m p0 � 01q 24m0

6Ž .
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Ž .where b is the scheme-dependent critical value ofc

the coupling and one can show that, for small m :0

G 1ydr2Ž . dr2y12byb s m 7Ž . Ž .Ž .c 0dr24pŽ .
Such an asymptotic expansion can in turn be reinter-
preted as the effect of an operator expansion.

In order to identify the spin-wave contribution to
the free energy we must evaluate the small-mass

Ž .limit of Eq. 3 :

N ddp
sw 2F s ln b pŽ .H d2 2pŽ .

ddp
1 y1q ln D p ,m qO 1rNŽ . Ž .H 0 02 d2pŽ .

8Ž .
Ž .where from Eq. 6 we extracted the definition:

2
G 2ydr2 G dr2y1Ž . Ž .

y1 dy4D p ,m s pŽ .0 0 dr22 4p G dy2Ž . Ž .
G 1ydr2 mdy2Ž . 0

q 9Ž .dr2 2p4pŽ .
Ž . Ž .The definitions Eq. 8 and Eq. 9 were given

with the aim of isolating those contributions to the
free energy that are originated from a mixing with
the identity operator. In order to justify our choice
we must however prove that the subtracted free
energy possesses the correct scaling properties.

This is achieved by proving finiteness and
scheme-independence of the dimensionless ratio:

1
Žsw . ydfs FyF m 10Ž . Ž .

N
2 Žwhere we have introduced the mass gap m inverse

. 2correlation length , whose large N limit is m . It is0
Ž .easy to obtain the O 1rN correction in the form:

ddp D p ,mŽ .02m sH1 d 2 22p pq im qmŽ . Ž .0 0

ddp
1q D 0 D p ,mŽ . Ž .H 02 d2pŽ .

=
d

y1D p ,m 11Ž . Ž .02dm0

The ratio f can also be expanded in powers of
1rN. The calculation of f is straight-forward. The0

result is scheme-independent, and it is most easily
derived by the use of dimensional regularization:

d 2d p m01 2 ydf s ln 1q yb m mH0 0 02 d 2ž /p2pŽ .
2

y1 4yds D 0,m m 12Ž . Ž .0 0d
The value of f can be obtained from:1

dd p
1 y1 ydwf s ln D p ,m D p ,m mŽ . Ž .H1 0 0 0 02 d2pŽ .

d m2
1

y f 13Ž .0 22 m0

In order to find a convenient representation for f ,1

we make the observation that the total derivative
with respect to m2 can be represented in terms of the0

partial derivatives according to:
d E db E E E

y1s q s y2 D 0,mŽ .02 2 2 2Eb Ebdm E m dm E m0 0 0 0

14Ž .
Moreover the following identity holds under sym-

metric integration:
1 E

y1™ D p ,mŽ .02 2 Ebpq im qmŽ .0 0

1 dy1 d 1
s F ,1; ; 15Ž .12 2 22 2p q4m p0 � 02 1q 24m0

implying that:

ddp E
12m s D 0,m D p ,mŽ . Ž .H1 0 02 d 2E m2pŽ . 0

=Dy1 p ,m 16Ž . Ž .0

and as a consequence:
dd p

1 yd y1f s m ln D p ,mŽ .H1 0 02 d½ 2pŽ .
E

y1 2 y1yln D p ,m ym ln D p ,mŽ . Ž .0 0 0 02 5E m0

17Ž .
We recognize that the expression appearing in the

Ž . Ž 4 .integrand of Eq. 17 must be O m , hence by naive0
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power counting, confirmed by detailed analysis, the
large-momentum behavior of the integrand turns out

Ž 4.to be O 1rp . This confirms our statement that f1

is finite for all d-4, independent of the regulariza-
tion scheme adopted.

Let’s notice that f was evaluated for ds2 in ref
1w x2 ; and the result was: f s , f sy2 f .0 1 08p

1Ž .For ds3 we obtained f s :0 24p

`f 6 2 x 41 2 < <s x dx ln arctan y ln 1yH ž /f p p 2 p x00

1 2 x
1y arctan y2x 2ž /x 4qxarctan

2

(1.97863 18Ž .
Since for all d)1 Dy1 vanishes for some real0

positive value of p2, we stress that our integration
procedure must always be specified by the request
that no imaginary part should appear in the final

Ž . w xresult principal value prescription 6 . Our results
for the range 1FdF4 are given by Fig. 1.

In order for our analysis to be complete, we must
remember that in the critical regime even the high-

Ž .frequency modes spin waves can bring a scaling
w xcontribution to the free energy 7 . While logically

distinct from the quantity we have just computed in
the context of quantum field theories where a nor-

Fig. 1. f r f versus d.1 0

mal-ordering procedure can be defined in order to
remove such a contribution, the scaling free energy
originated from spin waves cannot be isolated in
statistical systems and numerical simulations. Hence
it is important to be able to compute the term

d Ž .proportional to m in Eq. 8 . This is actually a
reasonably simple task, since we can now exploit the
properties of dimensional regularization and evaluate

Ž .analytically Eq. 8 for arbitrary d-1
y1Ž .From the explicit representation of D p,m ,0 0

Ž .Eq. 9 , we obtain in dimensional regularization:

dd p
1Žsw . dy2F s ln pH2 d2pŽ .

4 G dy2Ž .
dy2q m022yd G dr2y2Ž .

1
dsa f m1 0 0 2 dy1Ž .

=

2
4 G dy2Ž . dy2

22yd G dr2y1Ž .

=
2 2

G 1y G 19Ž .ž / ž /2yd 2yd

Ž .where we have introduced the O 1rN coefficient
a in the expansion of the critical exponent of the1

specific heat:

dy4 2 G dŽ .
a s , a s 20Ž .0 1 3dy2 G 2ydr2 G dr2Ž . Ž .

It is important to notice that the imaginary part of
Ž .the r.h.s. of Eq. 19 is exactly needed in order to

cancel the imaginary part originated by the naive
Ž .integration of Eq. 17 , which further justifies the

procedure of removing all imaginary contributions.
Here we face the phenomenon known as Abe-

w x Ž .Hikami anomaly 8 ; whenever 2r dy2 becomes a
Ž .positive integer n, the expression in Eq. 19 is

Ž .singular. However because of Eq. 7 , in that same
circumstance the expression we obtained is propor-
tional to the positive integer power nq1 of byb .c
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We can therefore subtract a term analytic in b from
Ž .Eq. 19 and obtain the scaling contribution of spin

waves to the free energy in the form:
2

dNf m 4 G dy2Ž . dy20 0Žsw .F ssub 22 dy1 dy2Ž . G dr2y1Ž .
qO 1 21Ž . Ž .

The most interesting feature of this result is the
dependence on N, implying that for the special
values ds2q2rn even the large N limit of the
free energy is affected by the spin-wave contribution.

When d™2, corresponding to n™`, singulari-
Ž .ties of the r.h.s. of Eq. 20 accumulate on both sides

of the real axis in the complex d plane. However it
is easy to check that the limit exists when a small
imaginary part is added to d, and its value is consis-

tently 0, which further justifies the procedure of
removing all spin-wave contributions in the two-di-
mensional case.
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