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The critical behavior of two-dimensional~2D! O(N) s models withN<2 on square, triangular, and hon-
eycomb lattices is investigated by an analysis of the strong-coupling expansion of the two-point fundamental
Green’s functionG(x), calculated up to 21st order on the square lattice, 15th order on the triangular lattice, and
30th order on the honeycomb lattice. ForN,2 the critical behavior is of power-law type, and the exponents
g andn extracted from our strong-coupling analysis confirm exact results derived assuming universality with
solvable solid-on-solid models. AtN52, i.e., for the 2DXYmodel, the results from all lattices considered are
consistent with the Kosterlitz-Thouless exponential approach to criticality, characterized by an exponent
s5

1
2, and with universality. The values5

1
2 is confirmed within an uncertainty of few percent. The prediction

h5
1
4 is also roughly verified. For various values ofN<2, we determine some ratios of amplitudes concerning

the two-point functionG(x) in the critical limit of the symmetric phase. This analysis shows that the low-
momentum behavior ofG(x) in the critical region is essentially Gaussian at all values ofN<2. Exact results
for the long-distance behavior ofG(x) whenN51 ~Ising model in the strong-coupling phase! confirm this
statement.@S0163-1829~96!08233-1#

I. INTRODUCTION

The strong-coupling expansion is one of the most success-
ful approaches to the study of critical phenomena. Many im-
portant results concerning physical models at criticality have
been obtained by deducing the asymptotic critical behavior
of physical quantities from their strong-coupling series.

We have calculated the two-point Green’s function

G~x!5^sWx•sW0& ~1!

of two-dimensional~2D! O(N) s models on square, triangu-
lar, and honeycomb lattices, respectively, up to 21st, 15th,
and 30th order in the strong-coupling expansion. Such cal-
culations were performed within the nearest-neighbor lattice
formulation, described by the action

S52Nb(
links

sWxl•s
W
xr
, ~2!

wheresWx is anN-component vector, the sum runs over all the
links, andxl andxr indicate the sites at the ends of each link.
The comparison of results from strong-coupling series calcu-
lated on different lattices offers the possibility of important
tests of universality, which, if positive, strongly confirm the
reliability of the final results.

A complete presentation of our strong-coupling computa-
tions for O(N) s models in two and three dimensions will be
presented in a forthcoming paper. A preliminary report on
our calculations can be found in Ref. 1. On the square lattice
our strong-coupling series represent a considerable extension
of the 14th-order calculations of Ref. 2, performed by means
of a linked cluster expansion, which have been reelaborated
and analyzed in Ref. 3. We also mention recent works where
the linked cluster expansion technique has been further de-

veloped and calculations of series up to 18th order4 and 19th
order5 for bulk quantities ind52,3,4 have been announced.

In this paper we focus on 2D O(N) s models with
N<2. The analysis of our strong-coupling series for models
with N>3, i.e., those enjoying asymptotic freedom, is pre-
sented in Ref. 6.

Two-dimensional O(N) s models with N,2 should
present a standard power-law critical behavior, and should be
described at criticality by conformal field theories with cen-
tral chargec,1. The most physically relevant models in this
range of values ofN are self-avoiding random walk models
and Ising models, corresponding, respectively, toN50 and
N51. At N522 the critical theory has been proved to be
Gaussian,7 i.e., g51, n5 1

2, andh50. Assuming universal-
ity with solvable solid-on-solid models, exact formulas for
the critical exponents in the range22,N,2 have been
proposed,8–10 interpolating the critical behaviors at
N522,0,1,2. The critical exponents of the magnetic suscep-
tibility g and correlation lengthn would then turn out to be

g5
31a2

4a~22a!
,

n5
1

422a
, ~3!

where the parametera is determined by the equation

N522cosS 2p

a D , ~4!

with the constraint 1<a<2. The exponenth can be ob-
tained by the hyperscaling relationg5(22h)n.

In the limit N→2 formulas~3! yield g→` and n→`,
suggesting that atN52 the critical pattern should not follow
a power-law behavior. TheXY spin model in two dimen-
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sions, i.e., theN52 model, is conjectured to experience a
Kosterlitz-Thouless phase transition11 of infinite order, char-
acterized by a very weak singularity in the free energy and
an exponential divergence of the correlation length at a finite
b. This model should describe the critical properties of a
number of two-dimensional systems, such as thin films of
superfluid helium.

According to the Kosterlitz-Thouless~KT! scenario, the
correlation length is expected to behave like

j;expS btsD ~5!

for 0,t[12b/bc!1. The value of the exponent iss5 1
2

andb is a nonuniversal positive constant. At the critical tem-
perature, the asymptotic behavior forr→` of the two-point
correlation function should be~cf., e.g., Ref. 12!

G~r !crit;
~ lnr !2u

r h F11OS lnlnrlnr D G , ~6!

with h5 1
4 andu5 1

16. Near criticality, i.e., for 0,t!1, the
behavior of the magnetic susceptibility can be deduced from
Eq. ~6!:

x;E
0

j

drG~r !crit;j22h~ lnj!2uF11OS lnlnj

lnj D G
;j22ht22su@11O~tslnt!#. ~7!

In addition, the 2DXY model is characterized by a line of
critical points, starting fromb5bc and extending tob5`,
with h going to zero as 1/b for b→`. At criticality the 2D
XY model should give rise to a conformal field theory with
c51.

Numerical studies based on Monte Carlo simulation tech-
niques and high-temperature expansions seem to support the
KT behavior, but a direct accurate verification of all the KT
predictions is still missing. As pointed out in Ref. 13, for
b,bc the corrections to the asymptotic behavior~5! should
become really negligible only at very large correlation
lengths, out of the reach of standard Monte Carlo simulations
on today’s computers, which allowj&100 ~cf. Ref. 14,
where simulations for correlation lengths up toj.70 were
performed on lattices up to 5122). Monte Carlo simulations
supplemented with finite-size scaling techniques allow one to
obtain data for largerj. Reference 15 shows data up to
j.850, which, although consistent with the KT prediction,
do not really exclude a standard power-law behavior.~Actu-
ally the author of Ref. 15 claims to favor a conventional
power behavior to explain some discrepancies in the deter-
mination of the critical exponenth.!

Finite-size scaling investigations at criticality are required
to be very precise in order to pinpoint the logarithm in the
two-point Green’s function. On the other hand, if this loga-
rithmic correction is neglected, the precise check of the pre-
dictionh5 1

4 atbc may be quite hard. The relevance of such
logarithmic corrections and some of the consequences of ne-
glecting them have been examined in Ref. 17. Numerical
studies by Monte Carlo renormalization-group and finite-size
scaling techniques16,14 seem to favor a lower value ofh,
which might be caused by the neglected logarithm. The most

accurate verification of the KT critical pattern has been
shown in Ref. 13 by numerically matching the
renormalization-group trajectory of the dual of theXYmodel
with that of a body-centered solid-on-solid model, which has
been proved to exhibit a KT transition. The advantage of this
strategy is that such a matching occurs much earlier than the
onset of the asymptotic regime, where numerical simulations
can provide quite accurate results.

The analysis of the strong-coupling series~cf., e.g., Refs.
18 and 19, where a few moments of the two-point Green’s
function were calculated on the square and triangular lattices,
respectively, up to 20th and 14th order for the special value
N52) substantially supports the KT mechanism, but it does
not provide precise estimates for the exponentss, h, and
u, probably for two reasons:~i! The asymptotic regime in the
terms of the series may be set at very large orders;~ii ! the
logarithmic correction may cause systematic errors in most
of the analysis employed.

The computation of strong-coupling series on the honey-
comb lattice and the extension of series on the square and
triangular lattices motivate our strong-coupling analysis of
the 2DXY model. We focus on the KT mechanism, search-
ing for evidence of this phenomenon.

As already shown in Refs. 6 and 20, the strong-coupling
analysis provides quite accurate continuum-limit estimates
when applied to dimensionless ratios of universal quantities,
even in the case of asymptotically free models, i.e., when the
critical point isbc5`. We define some dimensionless ratios
of scaling quantities~ratios of amplitudes! which character-
ize the low-momentum behavior of the two-point function
G(x), and estimate their values in the critical regime by
directly analyzing their strong-coupling series. This will al-
low us to check how close the low-momentum critical be-
havior ofG(x) is to Gaussian behavior.

The paper is organized as follows.
In Sec. II we investigate the critical behavior of 2D

O(N) s models withN<2 on square, triangular, and hon-
eycomb lattices, extracting the relevant critical parameters by
the analysis of the available strong-coupling series. For
N,2 we compare the strong-coupling estimates of the criti-
cal exponents with Eqs.~3!. For N52, i.e., the 2DXY
model, we verify the predictions of the KT critical theory. In
particular Sec. II A presents the general features of our
strong-coupling analysis. Sections II B, IIC, IID, and IIE
contain detailed reports of the derivations of the various re-
sults; they are rather technical and can be skipped by readers
not interested in the details of the analysis. In Sec. II F the
principal results are summarized and some conclusions are
drawn.

In Sec. III we evaluate, at criticality, the values of some
amplitude ratios concerning the low-momentum behavior of
G(x). We will present results for the most physically rel-
evant models withN<2, i.e., those withN50,1,2. We also
discuss their implications on the low-momentum behavior of
G(x) in the critical region of the symmetric phase.

In Sec. IV some exact results concerning the asymptotic
large-distance behavior ofG(x) for the Ising models on
square, triangular, and honeycomb lattices are presented.

In Appendixes A, B, and C we present, forN50,1,2, the
strong-coupling series of some relevant quantities used in
this study, respectively, for square, triangular, and honey-
comb lattices.
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II. STRONG-COUPLING ANALYSIS
OF THE CRITICAL BEHAVIOR

A. Analysis of the series

From the Green’s functionG(x) one can derive many
interesting quantities. Defining the moments ofG(x),

m2 j5(
x

~x2! jG~x!, ~8!

we computed on each lattice the magnetic susceptibilityx
and the second-moment correlation lengthjG

2

x[m0 ,

jG
2[

m2

4x
. ~9!

Models withN,2 should have a power-law critical be-
havior, which may be appropriately investigated by analyz-
ing the strong-coupling series ofx andjG

2 in order to extract
the critical exponentsg andn. ForN52, in order to check
the exponential approach to criticality predicted by the KT
mechanism and extract the relevant exponents, as in Ref.
18, we consider the strong-coupling series of the logarithm
of x and jG . More precisely, sincex511O(b) and jG

2 5
1
4cb1O(b2), wherec is the coordination number of the lat-
tice (c54,6,3, respectively, for square, triangular, and hon-
eycomb lattices!, we consider the series

l x[b21lnx5(
i50

`

cib
i ,

l j[b21lnS 4jG
2

cb D 5(
i50

`

dib
i . ~10!

According to Eqs.~5! and ~7! l x and l j should behave as

l x; l j;t2s, ~11!

and are therefore suitable for a standard analysis by Pade´ or
integral approximants. A vanishing exponents would indi-
cate a standard power-law critical behavior. Conversely a
stable nonzero value ofs would exclude a power-law behav-
ior.

Estimates of the critical exponents can be obtained by
employing the so-called critical point renormalization
method~CPRM!.21 The idea is that, when

A~x!5(
i
aix

i;~x02x!2a,

B~x!5(
i
bix

i;~x02x!2b, ~12!

we have

C~x!5(
i

bi
ai
xi;~12x!2~11b2a!, ~13!

where now the position of the singularity is known. There-
fore the analysis of the seriesC may provide an unbiased

estimate for the difference between the critical exponents of
the two functionsA and B. In particular this idea can be
applied to the caseB5A2, allowing one to get a direct esti-
mate of the critical exponent ofA, provided a sufficiently
large number of terms is known. The reliability of the deter-
mination of the critical exponent by this method may be
checked by comparing the results for the critical point of an
unbiased analysis with the exact resultxc51.

A general technique to extract physical information from
annth-order strong-coupling seriesS(x)5( i50

ncix
i is con-

structing approximantsA(x) such that

A~x!2S~x!5O~xn11!, ~14!

and studying their singularities. For a review on the resum-
mation techniques, cf. Ref. 22.@ l /m# Padéapproximants
~PA’s! are ratios of two polynomials of degreel and m,
respectively, such that their Taylor expansion is equal to
S(x) up toO(xl1m). PA’s are expected to converge well to
meromorphic analytic functions. More flexibility is achieved
by constructing PA’s of the logarithmic derivative ofS(x)
(D log-PA analysis!, and therefore enlarging the class of
functions which can be reproduced to those having singulari-
ties of the form (z2z0)

g. @ l /m# D log PA’s are obtained by
integrating the@ l /m# PA’s of the logarithmic derivative of
S(x). Then a@ l /m# PA usesn5 l1m terms of the series,
while a @ l /m# D log PA requiresn5 l1m11 terms.

Other kind of approximants can be constructed as solu-
tions of differential equations.23 We consider integral ap-
proximants~IA’s ! obtained from a first-order linear differen-
tial equation

Qm~x! f 8~x!1Pl~x! f ~x!1Rk~x!5O~xk1 l1m12!, ~15!

whereQm(x), Pl(x), andRk(x) are polynomials of order
m, l , andk, respectively, and we fixQm(0)51. These ap-
proximants are singular at the zerosx0 of Qm(x), and behave
as

A~x!ux2x0u2g1B~x!, ~16!

whereA(x) and B(x) are regular in the neighborhood of
x0, and

g52
Pl~x0!

Qm8 ~x0!
. ~17!

When we analyze annth-order series,m, l , andk must sat-
isfy the conditionk1 l1m12<n. If the position of the sin-
gularity x0 is known, such an analysis can be easily modi-
fied, forcing the approximant to have a singularity atx0 by
substitutingQm(x)→(12x/x0)Q̄m(x), whereQ̄m(x) is still
a polynomial of orderm with Q̄m(0)51.

Unlike D log PA’s, IA’s are suited to take into account
subdominant terms in the vicinity of singularities, thus re-
ducing possible systematic errors in the resummation of the
series. On the other hand, in order to get stable and therefore
acceptable results, IA’s require in general more terms in the
series to be resummed than PA’s orD log PA’s.

As a final estimate from each analysis we took the aver-
age of the results from quasidiagonal~nondefective! approxi-
mants~PA’s or IA’s! using all available terms of the series.
The errors we display are just indicative, and should give an
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idea of the spread of the results coming from the various
approximants which can be constructed from the series at
hand. They are the square root of the variance around the
estimate of the results coming also from quasidiagonal ap-
proximants constructed from shorter series by one and two
terms. In the following we will specify the approximants
considered in each analysis. This procedure does not always
provide a reliable estimate of the systematic error, which
may be underestimated especially when the structure of the
function cannot be well reproduced by the class of approxi-
mants used. A more reliable estimate of the true uncertainty
should come from the comparison of results of different

analyses of the same series, and from the analyses of series
of different estimators of the same quantity, which in general
are not expected to have the same analytic structure.

B. Critical behavior of models with 22<N<2

In order to determine the critical exponentsg andn of 2D
O(N) s models withN,2, we analyze the strong-coupling
series ofx and jG

2 on square~21st order!, triangular~15th
order!, and honeycomb~30th order! lattices. For such mod-
els, an analysis of the 14th-order strong-coupling series on
the square lattice, calculated in Ref. 2, has been done in Ref.
3.

TABLE I. For various values ofN,2 and for all lattices considered we reportbc
(x) andg as obtained

from a D log-PA analysis of the strong-coupling series ofx, andbc
(j) and n from that of jG

2 Defective
D log PA’s, i.e., those with spurious singularities close to the real axis for Reb&bc ~e.g., Reb,1.1bc), are
discarded. An asterisk indicates that most of theD log PA’s considered are defective and the estimate comes
just from a few of them, or in the cases where numbers are not shown that allD log PA’s are defective, so that
no estimate can be extracted.

N Lattice bc
(x) g bc

(j) n

2
7
4 triangular 0.1728~4! 1.04~2! * *

Eq. ~3! 1.05371 . . . 0.547925 . . .
2

3
2 square 0.258~1! 0.80~3! 0.252~1! 0.65~5!

triangular 0.1875~2! 1.09~1! 0.1888~4! 0.64~1!

honeycomb *0.339~1! *0.80~5! 0.3319~1! 0.52~1!

Eq. ~3! 1.08759 . . . 0.574690 . . .
21 square 0.3144~1! 1.13~1! *0.3141 *0.60

triangular 0.2082~1! 1.14~1! 0.2086~1! 0.642~3!

honeycomb 0.42332~5! 1.11~1! 0.4240~6! 0.64~4!

Eq. ~3! 1.15625 0.625
2

1
2 square 0.34919~6! 1.233~5! 0.34922~2! 0.681~1!

triangular 0.2252~2! 1.23~2! 0.22528~2! 0.687~1!

honeycomb 0.48504~3! 1.233~3! 0.48498~2! 0.672~1!

Eq. ~3! 1.23758 . . . 0.680715 . . .
0 square 0.37900~4! 1.334~2! 0.37905~2! 0.750~1!

triangular 0.24087~4! 1.332~5! 0.24092~3! 0.750~2!

honeycomb 0.54117~3! 1.341~3! 0.54116~1! 0.748~1!

Eq. ~3! 1.34375 0.75
1
2 square 0.40854~1! 1.494~1! 0.408530~3! 0.8453~2!

triangular 0.25686~5! 1.484~4! 0.25692~1! 0.8450~1!

honeycomb 0.59730~2! 1.492~1! 0.59731~1! 0.8446~1!

Eq. ~3! 1.49641 . . . 0.845852 . . .
1 square 0.440684~1! 1.7496~1! 0.440690~5! 1.0002~2!

triangular 0.27466~1! 1.750~2! 0.27466~1! 1.0005~5!

honeycomb 0.65849~2! 1.750~1! 0.65846~2! 1.000~1!

Eq. ~3! 1.75 1
3
2 square 0.4804~2! 2.30~1! 0.4802~2! 1.31~2!

triangular 0.2967~1! 2.30~2! 0.2965~1! 1.31~1!

honeycomb 0.73371~8! 2.313~5! 0.7337~3! 1.33~1!

Eq. ~3! 2.31987 . . . 1.33672 . . .
7
4 square 0.5072~4! 2.97~5! 0.5066~4! 1.66~4!

triangular 0.3114~2! 2.91~4! 0.3111~5! 1.65~9!

honeycomb 0.7844~5! 3.01~5! 0.7845~10! 1.74~9!

Eq. ~3! 3.12490 . . . 1.80413 . . .
19
10 square 0.529~1! 4.0~2! * *

triangular 0.3230~4! 3.7~1! 0.323~2! 2.2~3!

honeycomb 0.826~2! 4.0~2! 0.827~4! 2.4~3!

Eq. ~3! 4.72210 . . . 2.72322 . . .
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For N50 ~the self-avoiding walk!, longer series are
available.24,25 To compare with the literature, observe that
we have26

G~x!5(
l

b lcl~x!, ~18!

wherecl(x) is the number of self-avoiding walks of length
l going from 0 tox. Thereforex5( lb

lcl , and

xjG
2 5 1

4(
l

b lcl^Re
2& l , ~19!

wherecl5(xcl(x) is the total number of self-avoiding walks
of length l starting from the origin, and

^Re
2& l5

1

cl
(
x
x2cl~x! ~20!

is called the ‘‘mean end-to-end distance’’ in the literature of
self-avoiding walks.

Table I shows the results of aD log-PA analysis, report-
ing, for various values ofN and for each lattice,bc

(x) and
g as obtained from the strong-coupling series ofx, and
bc
(j) and n from that of jG

2 . Differences betweenbc
(x) and

bc
(j) should give an idea of the real uncertainty onbc . In the

analysis ofx we consideredD log PA’s with l1m>18 and
m> l>8 on the square lattice,l1m>12 andm> l>5 on the
triangular lattice,l1m>27 andm> l>12 on the honey-
comb lattice. In the analysis ofb21jG

2 we consideredD log
PA’s with l1m>17 andm> l>8 on the square lattice, and
l1m>11 and m> l>5 on the triangular lattice, and
l1m>26 andm> l>12 on the honeycomb lattice. We tried
also IA’s, obtaining consistent results, which, however, only
in few cases turned out to be more precise than those of the
D log PA’s, and so we do not report them. For the sake of
completeness and also to give an idea of the precision we can
achieve with such an analysis, in Table I we report also
results forN50,1 as obtained from our series, although ex-
act results independent of the conjecture~3! exist for such
values ofN. We warn that the errors displayed in Table I are
related to the spread of the results from theD log PA’s con-
sidered, according to the procedure described in the Sec.
II A, and therefore they are not always reliable estimates of
the uncertainty.

In the range21&N& 3
2, formulas~3! for the exponents

g and n are well reproduced, and universality is verified.
Less precise determinations are obtained when approaching
the endpointsN562, presumably due to a rather slow con-
vergence of the corresponding series to their asymptotic re-
gime.

We note that for models withN*1 on the honeycomb
lattice the physical critical point is not the singularity closest
to the origin, but there is a pair of closer singularities on the
imaginary axis. For instance, in the Ising model the physical

singularity is placed atbc5
1
2 (21A3)50.658478 . . . and

there is a pair of singularities atb̄56 ip/6.27 Nevertheless,
D log PA’s of the magnetic susceptibility reproduce the
physical singularity very precisely: The@15/15# D log PA
givesbc50.658480 andg51.74993, to be compared with
the exact resultg5 7

4. The unphysical singularities can be

mapped away from the origin by performing the change of
variableb→z5tanhb, wherez is the character coefficient of
the fundamental representation. With decreasingN, bc de-
creases while the above-mentioned imaginary singularities
move away, so that atN&0, the singularity closest to the
origin is on the real axis; i.e., it is the physical critical point.

For later comparison with the strong-coupling analysis of
the 2DXY model, we have also analyzed the series ofl x ,
defined in Eq.~10!, for the Ising model on the square lattice.
Since the critical behavior is of power-law type,l x should
have a logarithmic singularity atbc , and therefore an analy-
sis like IA should gives.0.23 Indeed most of the IA’s of
the 20th-order series ofl x give usu&0.02. We mention that a
D log-PA analysis leads to misleading results in this case,
since in order to reproduce the logarithmic behavior it gives
rise to spurious singularities, which make the estimate ofs
at bc unreliable.

C. 2D XY model on the square lattice

On the square lattice a strong-coupling analysis of the
lowest moments ofG(x) evaluated up to 20th order can be
found in Ref. 18. Having achieved further extension by one
term of such a series, we update here the situation on the
square lattice. We note that the series obtained from our
calculations~some of them are reported in Appendix A!
present small discrepancies with those reported in Ref. 18:
They are in agreement up to 16th order, but slightly different
at higher order.~The difference is, however, small, at most
1026, and it does not change the conclusion of Ref. 18.! We
are confident that our series are exact, since they were gen-
erated for arbitraryN and we have checked theirN→` limit
against the exact solution, and compared them with the ex-
isting series forN50,1.

We analyzed the 20th-order series ofl x[b21lnx by both
D log PA’s and IA’s. We found bc50.560(2) and
s50.53(4) from D log PA’s ~with l1m>18 and
m> l>7). The integral approximant analysis, whose details
are given in Table II, leads tobc50.558(2) and
s50.49(8) ~considering IA’s with m1 l1k>19 and
m> l ,k>5).

From the strong-coupling series ofl x and l x
2 we have

constructed a serieslx according to the CPRM, and ana-
lyzed it by standard methods:D log PA’s and IA’s. We ob-
tained s50.51(4) by D log PA’s ~with l1m>18 and
m> l>8) biased by imposing the presence of a singularity at
xc51, ands50.50(2) by biased IA’s~with m1 l1k>16

TABLE II. First-order integral-approximant analysis of the
20th-order strong-coupling series ofl x[b21lnx on the square lat-
tice. Asterisks mark defective approximants, i.e., those having spu-
rious singularities close to the real axis for Reb&bc .

N m l k bc s

19 6 6 5 0.5598 0.55
6 5 6 *
7 5 5 0.5563 0.42

20 6 6 6 0.5598 0.59
7 6 5 0.5585 0.51
7 5 6 0.5565 0.37
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and m> l ,k>5). Table III shows some details of the IA
analysis of the series oflx . From unbiasedD log PA’s and
IA’s, xc is found to be equal to 1 within a few per mil,
assuring us of the reliability of the estimates of the exponent
s by this method.

The above unbiased analyses strongly support the KT pre-
diction ~7!. Although the estimate ofs does not yet reach the
high level of precision which is usually found in the analysis
of strong-coupling series of considerable length, we can
safely conclude that the values5 1

2 is well verified with an
uncertainty of less than 10% on the square lattice.

Unbiased approximants ofl j give less stable but definitely
consistent results: We founds50.59(6) from the CPRM,
i.e., from an IA analysis biased atxc51 ~with
m1 l1k>15 andm,l ,k>5) of the serieslj constructed
from l j andl j

2 according to the CPRM. On the other hand, by
applying the CPRM to the two seriesl x and l j one may
verify thatsx5sj . From an IA analysis biasingxc51 ~with
m1 l1k>15 andm,l ,k>5) we foundsx2sj50.010(6),
which represents a good check of Eq.~11!.

Onces5 1
2 was reasonably verified, we performed a set of

biased analysis fixings5 1
2 in order to determine the critical

point. A way to bias the value of the exponent ats5 1
2 is to

analyze the series of the square ofl x and l j by PA’s. By
doing so we obtainedbc50.5579(3) from l x

2 and
bc50.558(1) from l j

2 ~we used PA’s withl1m>17 and
m> l>8). Still biasing s5 1

2, IA’s yield bc50.5583(2)
from l x andbc50.559(1) froml j ~here we determine, in a
IA analysis biasing the position of the singularity, the value
of bc which produces the exponents5 1

2!.
No complex singularities closer to the origin thanbc are

detected in the various strong-coupling analyses, thus indi-
cating thatbc is also the convergence radius of the strong-
coupling expansion.

For b,bc we have comparedx andjG as obtained from
our strong-coupling analysis with numerical data, available
in the literature up tob51/1.9650.5102 . . . ~corresponding
to a correlation lengthj.70) by using standard Monte Carlo
simulations,14 and up tob51/1.8750.5347 . . . byemploy-
ing also finite-size scaling techniques.15 Actually most of the
Monte Carlo data ofj reported in Ref. 14 concernjexpt, i.e.,
the correlation length extracted from the long-distance expo-
nential behavior ofG(x), but as we shall see in the next
sectionjG /jexpt.0.999 at criticality. In order to get strong-

coupling curves ofx and jG as functions ofb, we used
approximants constructed biasings5 1

2, i.e., PA’s of l x
2 and

l j
2 and IA’s of l x , and l j biasings5 1

2. Figure 1 compares
strong-coupling curves of lnx with the available Monte Carlo
data. Table IV reports estimates ofjG by strong-coupling
expansion and Monte Carlo simulations for various values of
b. The agreement among the different calculations is satis-
factory.

TABLE V. On the triangular lattice, analysis of the serieslx

constructed from the series ofl x and l x
2 according to the CPRM.

sbiasedis obtained by biasingxc51. We noted here that sometime
biasing the singularity atxc51 gives rise to spurious singularities
in the real axis forxc&1. We considered approximants with singu-
larities in the region@0.8,1.2# defective, and they are marked by an
asterisk. In these cases the estimate of the exponent from nonbiased
approximants should be more reliable.

N m l k xc s sbiased

11 3 3 3 0.9723 0.192 0.501
12 3 3 4 0.9808 0.258 0.504

3 4 3 0.9881 0.335 0.503
4 3 3 0.9992 0.490 0.502

13 3 4 4 0.9954 0.446 0.510
4 3 4 1.0017 0.534 0.518
4 4 3 1.0027 0.549 *
5 3 3 1.0026 0.541 0.493

14 4 4 4 1.0016 0.532 0.550
4 5 3 1.0003 0.484 0.477
4 3 5 1.0015 0.533 0.485
5 3 4 1.0015 0.533 *
5 4 3 1.0021 0.520 0.520
6 3 3 1.0016 0.523 0.481

TABLE IV. The strong-coupling estimates ofjG are compared
with some available Monte Carlo results on the square lattice, taken
from Ref. 14 and obtained by standard Monte Carlo and from Ref.
15 by finite-size scaling~FSS! techniques. The strong-coupling es-
timates ofjG , jG

(1) , andjG
(2) are obtained, respectively, from@9/9#,

@10/9#, @9,10#, and@8/11# PA’s of l j
2 and from@5/6/6#, @6/6/5#, @6/5/

6#, @5/6/5#, @5/5/6#, and@6/5/5# IA’s of l j biased atbc50.559. We
again caution that the errors displayed in the strong-coupling esti-
mates are related to the spread of the different approximants con-
sidered. The asterisk indicates that the number concernsjexpt, and
not jG .

b jG
(1) jG

(2) jG
(MC)14 jG

(FSS)15

1/2.2 9.320~3! 9.318~1! 9.32~2!*
1/2.08 18.76~3! 18.74~1! 18.75~6!

1/2.04 26.3~1! 26.21~2! 26.4~2!*
0.5 40.3~3! 40.08~6! 40.4~4!*
1/1.98 52.2~3! 52.0~1! 51.3~9!*
1/1.96 70.8~7! 70.3~2! 69.9~8! 70.4~4!

1/1.94 102~2! 100.7~5! 100.3~7!

1/1.92 158~3! 156~1! 156~2!

1/1.90 276~11! 269~3! 263~3!

1/1.88 570~30! 549~10! 539~5!

1/1.87 910~60! 860~20! 847~7!

TABLE III. On the square lattice, IA analysis of the serieslx

constructed from the series ofl x and l x
2 according to the CPRM.

sbiasedis obtained by biasingxc51.

N m l k xc s sbiased

18 6 5 5 * 0.522
19 5 6 6 1.0082 0.64 0.509

6 6 5 1.0026 0.55 0.485
6 5 6 * 0.536

20 6 6 6 1.0042 0.57 *
6 7 5 1.0043 0.59 0.506
6 5 7 1.0198 1.05 0.501
7 6 5 1.0039 0.58 0.523
7 5 6 1.0035 0.59 0.467
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In order to determine the exponenth without biasings,
we considered various quantities which can be constructed
using the lowest moments of the two-point Green’s function:

Ah[
l x
l j

5
1

2
~12h!1O~tslnt!, ~21!

Bh[~b l x!21lnS 11
m2

x2 D5
h

22h
1O~tslnt!, ~22!

Ch[~b l j!
21lnS m2

4bx2D5
h

2
1O~tslnt!. ~23!

An estimate ofh may then be obtained by resumming the
corresponding strong-coupling series by PA’s andD log PA’s
and evaluating them atbc . Since all of the above quantities
are equally good estimators of the exponenth, differences in
the results of their analysis should give an idea of the sys-
tematic error in the procedure.

PA’s and D log PA’s of Ah ~with l1m>16 and
m> l>7) lead to quite stable results:h50.228(2) ~where
the error displayed, beside the spread of different approxi-
mants, takes into account the uncertainty onbc). Similarly
we foundh50.270(5) andh50.226(5), respectively, from
PA’s andD log PA’s of Bh ~with l1m>17 andm> l>8)
and of b21Ch ~with l1m>15 andm> l>7). The differ-
ences in such determinations indicate a systematic error of
about 10%, and within 10% all results are consistent with the
KT prediction h5 1

4. Furthermore, when analyzing the en-
ergy series ofAh @by performing the change of variable
b→E and evaluating the corresponding approximants at
Ec.0.722, i.e., the energy value atbc.0.559~Ref. 14!#, we
obtained again a rather stable result buth50.207(5), con-
firming the presence of a systematic error of about 10%.

A source of systematic error in this analysis is the
O(tslnt) correction expected in Eqs.~21!, ~22!, and ~23!
which cannot be reproduced by PA’s andD log PA’s. In
particular Eq.~21! implies a behavior

D logAh;ts21 ~24!

in the proximity of tobc . In theD log PA’s the above sin-
gularities should be mimicked by a pole shifted at ab larger
thanbc . Indeed in the analysis of the series ofAh we have
found a singularity typically atb.1.1–1.2bc . This fact will
eventually affect the determination ofAh close tobc by a
systematic error. However, since the singularity is integrable,
the error must be finite, and the analysis shows that such
errors are actually reasonably small. The behavior~21!, ne-
glecting the logarithm, could be reproduced by IA’s , but we
did not obtain sufficiently stable and therefore acceptable
results by them. As a further check we also performed a
biased D log-PA analysis of the series of the quantity

Ah2 1
2 (12h);ts ~neglecting logarithmic corrections!. By

fixing h5 1
4 and bc50.559 we found an exponents.0.6,

which is satisfactorily close to the expected values5 1
2.

The exponentu defined in Eqs.~6! and ~7! may be ex-
tracted by the analysis of the series of the ratiosx/jG

22h and
m4 /jG

62h indeed,

x

jG
22h ;

m4

jG
62h ;t22su@11O~tslnt!#. ~25!

Fixing h5 1
4, we performed biased analyses of the 20th-order

strong-coupling series of the above ratios imposing
bc50.559.D log PA’s ~with l1m>17 andm,l>8) provide
the following estimates foru ~obtained takings5 1

2!:
u520.042(5) from x/jG

22h and u520.05(2) from
m4 /jG

62h where errors take into account, beside the spread
of the D log-PA results, also the uncertainty onbc . These
numbers, although they confirm the fact thatuuu is small, are
rather different from the KT predictionu5 1

16. As already
mentioned above, a source of systematic error for a
D log-PA analysis is the correctionO(t1/2lnt) to the leading
t2u behavior in formula~25!. Sinceu is very small, this
could cause a relevant departure from its true value. The
analysis by IA’s biased atbc.0.559 of the strong-coupling
series of the ratiox/jG

22h does not provide sufficiently stable
results foru.

D. 2D XY model on the triangular lattice

On the triangular lattice strong-coupling series of some
lowest moments ofG(x) have been calculated in Ref. 19 up
to 14th order. We calculatedG(x) up to 15th order, thus
extending by one order earlier calculations. We must again
mention the existence of discrepancies between our calcula-
tions ~cf. Appendix B! and those of Ref. 19 in the 14th-order
terms~again of the order of 1026).

We performed on the triangular lattice the kind of analy-
sis presented in the previous subsection for the square lattice.
We analyzed the 14th-order series ofl x[b21lnx by both
D log PA’s and IA’s. We found bc50.3413(3),
s50.52(2) from D log PA’s ~with l1m>11 and
m> l>5), and bc50.33986(4), s50.473(3) from IA’s
with m1 l1k>12 andm> l ,k>3 ~the apparent stability of
these IA determinations should not be taken seriously; we
recall again that what it is really important for estimating the
uncertainty is the comparison of results from different analy-
sis!.

FIG. 1. lnx vsb. Beside Monte Carlo data from Refs. 14 15, we
show curves constructed from the plain series of lnx, from the
@10/10# PA of l x

2 and from the @6/6/6# IA of l x biased at
bc50.5583, such thats.0.50.
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The CPRM applied to the strong-coupling series ofl x and
l x
2 givess50.53(1) by biasedD log PA’s having a singular-
ity fixed at xc51 ~with l1m>12 and m> l>5) and
s50.50(2) by biased IA’s ~with m1 l1k>11 and
m> l ,k>3). Table V shows some details of the IA analysis.
From unbiasedD log PA’s and IA’s,xc is found to be equal
to 1 within a few per mil, assuring us of the reliability of the
estimates of the exponents by this method.

The critical point renormalization method gives good re-
sults also when applied to the series ofl j , leading to
s50.52(4). By applying the CPRM to the two seriesl x and
l j one findssx2sj50.001(2) from an IA analysis biased at
xc51 ~with m1 l1k>12 andm> l ,k>3).

We can conclude that the KT predictions5 1
2 is strongly

supported by the above results.
We also performed a set of biased analysis fixings5 1

2 in
order to determine the critical point. By analyzingl x

2 and l j
2

by PA’s, we obtainedbc50.3400(2) andbc50.3393(1),
respectively~from PA’s with l1m>12 andm> l>5). IA’s
of l j biased ats5 1

2 yield bc50.3410(5), while when ap-
plied to l x such an analysis does not lead to relevant results,
since it gives rise to spurious singularities in the real axis. A
s5 1

2 biased estimate of the critical point is then
bc50.340(1).

We obtained estimates ofh by resumming the series of
Ah andBh @cf. Eqs.~21! and ~22!# by PA’s andD log PA’s
and evaluating them atbc.0.340. PA’s andD log PA’s of
Ah ~with l1m>10 and m> l>5) and of Bh ~with
l1m>11 and m> l>5) lead again to quite stable but
slightly discrepant results, respectively,h50.221(2) and
h50.270(4). Thecauses of possible systematic errors in the
determination ofh are the same as for the square lattice, and
we refer to Sec. IIC for a discussion.

The analysis of the 14th-order strong coupling series of
x/jG

22h;t2u biased bybc.0.340 ~usingD log PA’s with
l1m>11 and l ,m>5) yields the estimateu520.045(3),
which is consistent with the square lattice result, but not with
the KT prediction. IA’s do not provide sufficiently stable
results also in this case.

E. 2D XY model on the honeycomb lattice

On the honeycomb lattice we calculated series longer than
on the square lattice, up to 30th order. Here the possibility of
reaching larger orders is related to the smaller coordination
number. However, longer series do not necessarily mean that
more precise results can be obtained from their analysis. This
possibility is related to the approach to the asymptotic re-
gime of the series, which is expected to be set later on a
lattice with a smaller coordination number. Actually, as we
shall see, the 30th-order series on the honeycomb lattice pro-
vide results consistent with the KT theory and universality,
but less precise that those obtained from the series on the
square and triangular lattices.

Unbiased analyses of the series forl x lead to
bc50.884(1) and s50.55(1) from D log PA’s ~with
l1m>27 and m> l>12), and bc50.877(6), s50.4(2)
from IA’s ~with m1 l1k>27 andm> l ,k>8). The stability
of D log PA’s is suspect in this case; indeed we found that,
just by adding to the series a simple constant of the order of
unity, the change in the estimate ofs turns out to be much

larger than the error evaluated from the spread of the esti-
mates of different approximants of the same series. Unlike
PA’s and IA’s, the critical parameters provided byD log
PA’s do not remain strictly invariant by adding a simple
constant; this is only an asymptotic property of the
D log-PA analysis. An analysis based on the CPRM fails to
give stable results in this case, probably because the avail-
able series are not sufficiently long to have their asymptotic
regime set.

More stable results are obtained when biasing the expo-
nent ats5 1

2. A check of consistency would require that the
critical points as extracted froml x and l j be the same. We
obtained bc50.879(1) from PA’s ~with l1m>26 and
m> l>13) of l x

2 andbc50.878(2) from PA’s ofl j
2 , which

is satisfactory.
It is worth noticing that, unlike what happens on the

square and triangular lattices, on the honeycomb lattice the
real singularity corresponding to the critical behavior of the
theory is not the singularity closest to the origin in the com-
plex b plane. A pair of imaginary singularities at
b.6 i0.482 is detected in the analysis of the strong-
coupling series ofx.

Taking as an estimate of the critical pointbc.0.880, we
evaluatedh from the series ofAh andBh defined in Eqs.
~21! and ~22!. Again the value obtained fromAh is about
10% lower than14, h50.231(3) ~from PA’s andD log PA’s
with l1m>26 andm> l>11), and that fromBh is about
10% higher,h50.28(1) ~from PA’s andD log PA’s with
l1m>27 andm> l>12). The behavior of the estimates
from Ah and Bh observed in the various lattice seems to
indicate that the source of systematic error is in a sense uni-
versal; i.e., it essentially depends on the quantity considered
and is approximately independent of the lattice.

We again estimated the exponentu from the 29th-order-
strong coupling series of thex/jG

22h D log PA’s ~with
l1m>26 and l ,m>13) biased at bc.0.880 give
u520.042(6), which is consistent with the estimates from
the other lattices.

F. Conclusions

We have studied the critical properties of 2D O(N) s
models withN<2 on square, triangular, and honeycomb lat-
tices, by analyzing the strong-coupling expansion of the low-
est moments of the two-point fundamental Green’s function.

The analysis of the strong-coupling series ofx andjG
2 on

square, triangular, and honeycomb lattices has substantially
confirmed that models withN,2 present a standard power-
law critical behavior with critical exponents given by Eqs.
~3!. We obtained rather precise determinations of the critical
exponents in the region21&N& 3

2 ~cf. Table I!, where for-
mulas~3! are verified within 1%. The strong-coupling analy-
sis becomes less precise approaching the end points
N562, presumably due to a rather slow convergence of the
corresponding series to their asymptotic regime. Universality
among models on the square, triangular, and honeycomb lat-
tices has been verified.

The determinations ofbc ands for the 2DXY model on
the three different lattices are summarized in Table VI. These
results are consistent with the KT exponential approach to
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criticality and with universality. The best estimates ofs
come from the analysis of the series of the magnetic suscep-
tibility, leading to a confirmation of the values5 1

2 within an
uncertainty of few percent. The analysis of the series of the
correlation lengthjG

2 yields consistent results. The critical
point renormalization method21 provides the most precise
unbiased estimates ofs on the square and triangular lattices.
These results rule out the possibility of a standard power-law
critical behavior.

On the square lattice most estimates ofbc yielded by our
analyses lie in the range 0.558<bc<0.560, although the
lowest valuebc50.558 seems to be favored. This value is
consistent with the results of an exponential fit to data ofj
up to j.850,15 which yielded bc50.5593(13) and
s50.46(3), andwith a biased exponential fit fixings5 1

2 to
data up to j.70 produced by a standard Monte Carlo
simulations,14 which gavebc50.559(3). But it is slightly
smaller than the quite precise Monte Carlo renormalization-
group determination of Ref. 13:bc50.55985(25). The com-
parison of~suitable! resummations of the strong-coupling se-
ries of x and jG

2 with Monte Carlo data~available up to
j.850) turns out to be quite satisfactory~cf. Table IV!,
giving further support to our conclusions.

The predictionh5 1
4 is also substantially verified. By us-

ing different estimators ofh we control the systematic error
of our analysis, which turns out to be about 10%, and within
about 10% our estimates ofh are always consistent with the
valueh5 1

4.
Substantial discrepancies from the Kosterlitz-Thouless

theory are found in the estimates ofu we obtained on all
lattices considered and using also different estimators. Our
strong-coupling analysis based onD log PA’s leads, similarly
to the KT prediction, to a small absolute value ofu, but it
would favor the valueu.20.04, against the K-T value
u5 1

16. Our strong-coupling estimate seems to pass the uni-
versality check by changing the lattice and estimator. On the
other hand, we suggest some caution in considering our
strong-coupling estimate ofu. Given the smallness of its
value, we cannot exclude that the observed discrepancy is
due to systematic errors caused by the fact thatD log PA’s
cannot reproduce the correctionO(t1/2lnt) to the leading
t2u behavior in formula~25!. Since this correction is ex-
pected to be present in all quantities we considered to esti-
mateu ~even when defined on different lattices!, if its coef-
ficients in the various cases are quantitatively similar, the
error might be about the same and explain the apparent uni-
versality of our results. Moreover, the more general analysis
based on IA’s does not provide sufficiently stable results
when applied to estimateu, likely because the available se-
ries are not sufficiently long for this purpose. We mention
that in Ref. 17 an analysis based on Monte Carlo simulations
led to the estimateu.0.02, which is not consistent with both
the KT prediction and our strong-coupling estimate.

III. LOW-MOMENTUM BEHAVIOR OF G„x…
IN THE CRITICAL REGION

In this section we study the low-momentum behavior of
the two-point fundamental Green’s function in the critical
limit of the symmetric phase. To this purpose, we consider
the dimensionless renormalization-group-invariant function

L~p;b![
G̃~0;b!

G̃~p;b!
. ~26!

In the critical region of the symmetric phaseL(p,b) is a
function of the ratioy[p2/MG

2 only, whereMG[1/jG and
jG[m2/4x is the second-moment correlation length, already
introduced in the previous section.L(y) can be expanded in
powers ofy aroundy50:

L~y!511y1 l ~y!,

l ~y!5(
i52

`

ciy
i . ~27!

l (y) parametrizes the difference from a generalized Gaussian
propagator. The coefficientsci of the low-momentum expan-
sion of l (y) can be related to appropriate dimensionless
renormalization-group-invariant ratios of moments
m2 j5(x(x

2) jG(x). Let us introduce the quantities

v2 j5
1

22 j~ j ! !2
MG

2 j m2 j

m0
, ~28!

whose continuum limit is

v2 j* 5
~21! j

j !

d

dyj
L~y!21uy50 . ~29!

TABLE VI. Summary of the determinations ofbc and s on
square, triangular, and honeycomb lattices by different analysis. A
bias in the analysis is indicated by a subscript in the corresponding
abbreviation.

Lattice Series Analysis bc s

square l x D log PA 0.560~2! 0.53~4!

IA 0.558~2! 0.49~8!

lx CPRM-D log PAxc51 0.51~4!

CPRM-IAxc51 0.50~2!

lj CPRM-IAxc51 0.59~6!

l x
2 PA 0.5579~3!

l x IA s51/2 0.5583~2!

l j
2 PA 0.558~1!

l j IA s51/2 0.559~1!

triangular l x D log PA 0.3413~3! 0.52~2!

IA 0.33986~4! 0.473~3!

lx CPRM-D log PAxc51 0.53~1!

CPRM-IAxc51 0.50~2!

lj CPRM-IAxc51 0.52~4!

l x
2 PA 0.3400~2!

l j
2 PA 0.3393~1!

l j IA s51/2 0.3410~5!

honeycomb l x D log PA 0.884~1! 0.54~1!

IA 0.877~6! 0.4~2!

l x
2 PA 0.879~1!

l x IA s51/2 0.880~1!

l j
2 PA 0.878~2!

l j IA s51/2 0.883~1!
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v2 j* 51 for a Gaussian critical propagator. One can easily
write the coefficientsci in terms ofv2 j*

c2512v4* ,

c35122v4*1v6* ,

c4511v4* ~v4*23!12v6*2v8* , ~30!

etc. The strong-coupling expansion ofG(x) allows one to
calculate strong-coupling series ofv2 j . Estimates of the co-
efficientsci can then be obtained, as we shall see, from the
analysis of the combinations ofv2 j corresponding to the
right-hand side~rhs! of Eqs.~30!.

Another quantity which characterizes the low-momentum
behavior ofL(y) is the ratios5M2/MG

2 whereM is the
mass gap of the theory, i.e., the mass determining the long-
distance exponential behavior ofG(x). The valuess* of s in
the critical limit are related to the zeroy0 of L(y) closest to
the origin: Indeed,y052s* . s* is in general different from
1; it is 1 in Gaussian-like models@i.e., whenl (y)50#, such
as the large-N limit of O(N) s models, while no exact re-
sults are known at finiteN.

In the absence of a strict rotation invariance, one may
actually define different estimators of the mass gap having
the same continuum limit. On the square lattice one may
considerm obtained by the long-distance behavior of the side
wall-wall correlation constructed withG(x), or equivalently
the solution of the equationG̃21(p15 im,p250)50. In
view of a strong-coupling analysis, it is convenient to use
another estimator of the mass gap derived fromm:

Ms
252~coshm21!, ~31!

which has an ordinary strong-coupling expansion

Ms
25

1

b S 11(
i51

`

aib
i D ~32!

(m has a singular strong-coupling expansion, starting with
2 lnb). One can easily check thatMs /m→1 in the critical
limit. Similar quantitiesMt

2 andMh
2 can be defined, respec-

tively, on the triangular and honeycomb lattices, as shown in
Appendixes B and C. One may then consider the dimension-
less ratiosMs

2/MG
2 Mt

2/MG
2 andMh

2/MG
2 respectively, on

the square, triangular, and honeycomb lattices, and evaluate
their fixed point limits* , which by universality must be the
same for all of them. From the available strong-coupling
series ofMs

2 andMG
2 on the square lattice,Mt

2 andMG
2 on

the triangular lattice, andMh
2 andMG

2 on the honeycomb
lattice, which are reported, forN50,1,2, in Appendixes A,
B, and C, respectively, we computed the ratioMs

2/MG
2 up to

16th order,Mt
2/MG

2 up to 11th order, andMh
2/MG

2 up to 25th
order. For the Ising models, using the known exact results
for Ms

2 , Mt
2 , andMh

2, ~see next section!, we obtained longer
series, i.e.,Ms

2/MG
2 up to 20th order,Mt

2/MG
2 up to 14th

order, andMh
2/MG

2 up to 29th order.
In order to determines* and the coefficientsci of the

low-momentum expansion ofL(y), we analyzed the strong-
coupling series of the ratiosMs

2/MG
2 Mt

2/MG
2 andMh

2/MG
2

and of the combinations ofv2 j given in Eq.~30!. Beside the

ordinary series inb, we also considered and analyzed the
corresponding series in the energy. The change of variable
from b to the energyE is easily performed by inverting the
strong-coupling series of the energyE5b1O(b3) and sub-
stituting into the original series in powers ofb. We con-
structed PA’s andD log PA’s ~and sometimes as further
check also IA’s! of both the series inb and inE. While PA’s
provide directly the quantity at hand, in aD log-PA analysis
one gets corresponding approximants by reconstructing the
original quantity from the PA of its logarithmic derivative.
Estimates at criticality are then obtained by evaluating the
approximants of theb series atbc , and those of theE series
at Ec , i.e., the value of the energy atbc . In the cases in
whichEc is not known from independent studies, its estimate
may be derived from the first real positive singularity de-
tected in the analysis of the strong-coupling series ofx, or
l x for N52, expressed in powers ofE.

In our analysis we considered quasidiagonal@ l /m# PA’s
andD log PA’s of the available series; more precisely, for an
nth-order series we considered those with

l ,m>
n

2
22, l1m>n22. ~33!

As a final estimate from each analysis we take the average of
the results from the quasidiagonal PA’s andD log PA’s using
all available terms of the series. The errors we display are the
square root of the variance around the estimate of the results
from all nondefective PA’s indicated by Eq.~33!.

By analyzing the above-mentioned series atN50,1,2 we
obtained estimates ofs* and of some of the coefficients
ci . The results forN52, i.e., for theXYmodel, are reported
in Table VII, and those forN51,0 in Table VIII. Universal-
ity among the square, triangular, and honeycomb lattices is
in all cases well verified and gives further support to our final
estimates.

For theXY model, the analysis of theE series provides
the most precise results on all lattices considered, leading to
the estimates

TABLE VII. We report s* , c2, and c3 as obtained from the
analysis of the strong-coupling series inb ~first line! and in E
~second line! on square, triangular, and honeycomb lattices. Beside
the spread of estimates from different PA’s andD log PA’s, the
errors displayed take also into account the uncertainty onbc and
Ec . We do not report the estimates ofc3 by the analysis of theb
series because their uncertainty is much larger than those from the
E series.

Lattice bc ,Ec s* c2 c3

square bc.0.559 0.9985~12! 0.000~2!

Ec.0.722 0.9984~7! -0.0014~3! 0.00001~2!

triangular bc.0.340 0.9979~11! -0.002~2!

Ec.0.68 0.9985~11! -0.0010~3! 0.00001~5!

honeycomb bc.0.880 0.9988~10! -0.001~3!

Ec.0.77 0.9987~5! -0.0021~4! 0.00003~2!
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s*50.9985~5!,

c2521.5~5!31023,

c352~2!31025. ~34!

The errors displayed are a rough estimate of the uncertainty.
For the Ising model, the two-point function in the scaling

region is known analytically.28We obtained a benchmark for
our strong-coupling computation by computing numerically
the two-point function, following Ref. 28, and performing a
numerical integration of the results:

s*>0.99919633,

c2>20.793679631023,

c3>1.09599131025,

c4>23.1274731027. ~35!

The analysis of the available strong-coupling series on the
square, triangular, and honeycomb lattices lead to the final
estimates

s*50.99908~3!,

c2520.94~4!31023,

c351.1~3!31025. ~36!

The agreement with the exact results~35! is satisfactory. But
the comparison shows also that the errors on the strong-
coupling estimates ofs* andc2, essentially calculated using
the variance of results from different PA’s, are underesti-
mated. We mention an earlier attempt to estimates* for the
Ising model by using shorter strong-coupling series on the
square and triangular lattices.29

For the self-avoiding random walk model we find

s*51.0000~2!,

c250.13~6!31023,

uc3u&231025. ~37!

The analysis of the coefficientsci with i.3 becomes less
and less precise with increasingi , but it is consistent with
very small values. For instance, we found in all cases
uc4u&uc3u.

So, for all N considered, our strong-coupling analysis
leads to the following pattern of the coefficientsci :

ci!c2!1 for i>3. ~38!

This was also observed in models withN>3 by a study
based on large-N and strong-coupling calculations.6 As a
consequence of Eq.~38!, the value ofs* should be essen-
tially fixed by the term proportional to (p2)2 in the inverse
propagator, through the approximate relation

s*21.c2 . ~39!

This equation is satisfied within the precision of our analysis
for N50,2, and well verified by the exact results of the Ising
model, wheres*212c2.1025.

We can conclude that, like models withN>3, in the criti-
cal region the two-point Green’s function forN<2 is almost
Gaussian in a large region aroundp250, i.e., up2/MG

2 u&1,
and the small corrections to Gaussian behavior are essen-
tially determined by the (p2)2 term in the expansion of the
inverse propagator.

Differences from Gaussian behavior will become impor-
tant at sufficiently large momenta, whereG(p) should be-
have as

G~p!;
1

p22h , ~40!

wherehÞ0: h5 5
24 for N50 andh5 1

4 for N51,2.

IV. LOW-MOMENTUM BEHAVIOR
OF THE ISING MODEL

So far we considered only the critical limit of the two-
point Green’s function. It has, however, been known for a
long time that the correlation functions of the two-
dimensional Ising model can be computed exactly for arbi-
trary values ofb. As a consequence we may in principle
check directly our computations for every individual
coordinate-space Green’s function. In practice we may per-
form our checks by exploiting a peculiar feature of the
square lattice solution: For sufficiently large values of

TABLE VIII. For N51 andN50 we reports* , c2, andc3 as obtained from the analysis of the available
strong-coupling series inb on square, triangular, and honeycomb lattices. The analyses of the corresponding
energy series provide consistent but less precise results, and so we do not report their results.

Lattice bc s* c2 c3

N51 square 1
2 ln(A211)50.440687 . . . 0.99909~2! -0.00094~3! 0.000008~5!

triangular 1
4 ln350.274653 . . . 0.99912~5! -0.00098~4! 0.00001~1!

honeycomb 1
2 ln(21A3)50.658478 . . . 0.99907~2! -0.00093~3! 0.000012~2!

N50 square 0.3790527~2! a 1.0001~2! 0.00016~8! 0.00000~1!

triangular 0.240920~1! a 1.0002~4! 0.0003~5! 0.00000~3!

honeycomb (21A2)21/250.541196 . . . b 0.9998~2! 0.00010~7! -0.00002~1!

aReference 24.
bReference 9.
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Ax21y2 ~in units of the lattice spacing! the asymptotic be-
havior is described by30

G~x,y!.@~12z2!224z2#1/4~11z2!1/2~12z2!E df1

2p

df2

2p

3
eif1x1 if2y

~11z2!222z~12z2!~cosf11cosf2!
, ~41!

where we have introduced the auxiliary variable

z~b!5tanhb. ~42!

We recognize that the above result~41! corresponds to the
behavior of a nearest-neighbor quasi-Gaussian model whose
momentum-space propagator has the form

G̃~p!5
Z~b!

p̂21M2~b!
@11g~p,b!#, ~43!

whereg(p,b) vanishes at the polep̂252M2(b),

Z~b!5@~12z2!224z2#1/4
~11z2!1/2

z
~44!

and

M2~b!5
~11z2!2

z~12z2!
24. ~45!

A straightforward but yet unobserved consequence of this
observation is the algebraic relationship

2~coshms21!54~cosh12md21!5M2~b!, ~46!

wherems and md are the coefficients of the long-distance
exponential decay~‘‘true mass gap’’! on the side and along
the principal diagonal of the square lattice. We verified that
Eq. ~46! is satisfied by our determinations of masses from
wall-wall correlations and is consistent with the known
relationship29

ms5 lncothb22b. ~47!

We also checked that the residue at the polep̂252M2 sat-
isfies Eq.~44!.

Motivated by this piece of evidence we investigated the
possibility that the asymptotic behavior of the two-point
Green’s function of the Ising model on regular two-
dimensional lattices will be always dictated by the structure
of the propagator

G̃~p!5
Z~b!

p̄21M2~b!
@11g~p,b!#, ~48!

wherep̄2 is the massless~nearest-neighbor! Gaussian inverse
propagator appropriate to the lattice at hand, andg(p,b)
vanishes at the polep̄252M2(b). This conjecture can be
checked by considering the large-distance behavior of the
correlations for the triangular and honeycomb lattices, as a
function of the direction, and comparing the different avail-
able mass definitions with each other and with exact results.

On the triangular lattice we can define a ‘‘true mass gap’’
m l from the asymptotic behavior of correlations taken along
a straight line of links and a wall-wall inverse correlation

lengthm t evaluated in a direction orthogonal to the above
defined line ~see Appendix B!. In a Gaussian model one
would obtain

Mt
2[

8

3S coshA32 m t21D 5
8

3
~cosh12m l21!~cosh12m l12!.

~49!

Starting from the known solution31

m l52ln~A12z1z22Az!22ln~12z!2 lnz, ~50!

we checked that the relationship~49! is satisfied, since our
series form t reproduces the expansion of

Mt
25

2

3F S 11z2

12z D 2 1z28G . ~51!

Finally on the honeycomb lattice two mutually orthogonal
inverse correlation lengths can be defined by the relation-
ships

M v
25

8

9
~cosh32mv21!,

Mh
25

8

3S coshA32 mh21D , ~52!

wheremv andmh are defined from the large-distance expo-
nential behavior, respectively, of wall-wall correlation func-
tions Gv

(w)(x) and Gh
(w)(x) defined in Appendix C. The

Gaussian relationship is

M v
2125

1

8
~Mh

214!2. ~53!

Moreover, from duality with the weak-coupling phase of the
triangular lattice model we obtained

mh5
1

A3 F lnA2cosh2b2121

A2cosh2b2111
12bG ~54!

and we checked that the expansion of theMh
2 is consistent

with

Mh
25

4

3
~2cosh2b21!1/2cothb24, ~55!

while Eq. ~53! is satisfied to all known orders of the strong-
coupling expansion.

In conclusion we may say that the quasi-Gaussian struc-
ture of the propagator, described by Eq.~48!, is confirmed
for all regular lattices and is a remarkable piece of evidence
in favor of adopting the quantitiesM2, Mt

2 , andMh
2 respec-

tively, as strong-coupling estimators of the mass gap, sharing
the property of a well-behavedb dependence and of a faster
approach to universality in models with quasi-Gaussian be-
havior. It is probably worth observing that, sinceg(0,b)
Þ0, Eq. ~48! does not allow an immediate identification of
the momentsm2 j , and in particularMG

2ÞM2, andZ(b) is
not the standard zero-momentum wave function renormaliza-
tion but corresponds to the on-shell definition.
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APPENDIX A: STRONG-COUPLING SERIES ON THE SQUARE LATTICE

In order to enable the interested readers to perform their own analysis, we present most of the series used to derive the
results presented in this paper forN50,1,2. This appendix is devoted to the square lattice, the following ones to the triangular
and honeycomb lattices.

1. N50

For the self-avoiding random walk on the square lattice, longer series ofMG
2 can be obtained from the strong-coupling

series ofx andm2 presented in Ref. 24. We report our series ofMG
2 for the sake of completeness:

MG
2 5b212413b12b314b4210b5148b62128b71368b82822b912008b1014320b11110336b12222800b13

156312b142129922b151327080b162768414b1711938440b1824604254b191O~b20!, ~A1a!

Ms
25b212413b12b314b428b5130b6252b71140b82234b91596b1021010b1112638b1224644b13112634b14

223208b151O~b16!, ~A1b!

v45
1
16b211 3

41 3
16b1 1

8b31 3
8b52b61 15

2 b7219b81 409
8 b92103b101 511

2 b112539b1211468b1323649b141 83211
8 b15

225668b161 534225
8 b172154972b181 3095629

8 b191O~b20!. ~A1c!

2. N51

For the Ising model we give strong-coupling series which cannot be reproduced using known exact results, which are
reported in Sec. V:

MG
2 5b21241 10

3 b1 134
45 b31 76

189b
51 19394

4725 b7232b81 2070328
18711 b92 704

3 b101 233105490328
638512875 b112 20656

45 b121 440148292
729729 b13

2 256064
189 b141 670306901872438

162820783125 b152 52233344
4725 b161 192016952587260544

7795859096025 b172 4476104704
93555 b181 133522860364557505628

1531329465290625 b191O~b20!,

~A2a!

v45
1
16b211 3

41 5
24b1 67

360b
31 19

756b
51 9697

37800b
712b82 339961

37422 b91 44
3 b101 8705774291

1277025750b
112 4514

45 b121 3986722469
14594580 b132 68668

189 b14

2 115832206185781
1302566265000b

151 6752894
4725 b162 21607992820912952

7795859096025 b171 34100716
93555 b181 71772260149691061407

6125317861162500 b191O~b20!. ~A2b!

3. N52

E5b1 3
2b31 1

3b52 31
48b72 731

120b
92 29239

1440 b112 265427
5040 b132 75180487

645120 b152 6506950039
26127360 b172 1102473407093

2612736000 b192 6986191770643
14370048000b21

1O~b23!, ~A3a!

x5114b112b2134b3188b41 658
3 b51529b61 14933

12 b71 5737
2 b81 389393

60 b91 2608499
180 b101 3834323

120 b111 1254799
18 b12

1 84375807
560 b131 6511729891

20160 b141 66498259799
96768 b151 1054178743699

725760 b161 39863505993331
13063680 b171 19830277603399

3110400 b181 8656980509809027
653184000 b19

1 2985467351081077
108864000 b201 811927408684296587

14370048000 b211O~b22!, ~A3b!

MG
2 5b21241 7

2b1 41
12b32b41 15

16b52 25
3 b61 9491

720 b72 431
9 b81 206411

2880 b92 17803
360 b102 41122019

241920 b111 876403
1728 b122 1413373319

1935360 b13

2 15006841
181440 b141 337093786457

130636800 b152 4777620367
1036800 b161 17847363647

1741824000b
171 68513340691

3732480 b182 16133717627082721
344881152000 b191O~b20!, ~A3c!

Ms
25b21241 7

2b1 41
12b32b41 7

16b52 29
6 b61 281

720b
72 193

18 b82 149
2880b

92 5141
720 b102 6120227

241920b111 24907
540 b122 788579333

5806080 b13

1 95728039
362880 b142 63069969313

130636800 b151O~b16!, ~A3d!

v45
1
16b211 3

4 1 7
32b1 41

192b
32 49

256b
51 1

4b62 8749
11520b

71 67
48b82 122549

46080 b92 2153
144 b101 249335197

3870720 b112 40951
320 b121 1389732217

30965760 b13

1 55582271
103680 b142 3706449404743

2090188800 b151 6252985429
2903040 b161 75252500337407

27869184000 b172 202521546511
12441600 b181 163636654204247999

5518098432000 b191O~b20!.

~A3e!
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APPENDIX B: STRONG-COUPLING SERIES ON THE TRIANGULAR LATTICE

The sitesxW of a finite periodic triangular lattice can be represented in Cartesian coordinates by

xW~ l 1 ,l 2!5 l 1hW 11 l 2hW 2 , l 151, . . . ,L1 , l 251, . . . ,L2 , hW 15~1,0!, hW 25S 12 ,A32 D . ~B1!

In order to define a mass-gap estimator, one may consider the wall-wall correlation function

Gt
~w!SA32 l 2D 5(

l1
G~ l 1hW 11 l 2hW 2!. ~B2!

An estimatorm t of the mass gap can be extracted from the long-distance behavior ofGt
(w)(x); indeed forx@1

Gt
~w!~x!}e2m tx. ~B3!

In view of a strong-coupling analysis, it is convenient to use another estimator of the mass gap derived fromm t :

Mt
2[

8

3S coshA32 m t21D . ~B4!

More details can be found in Ref. 6.
In the following we show, forN50,1,2, some of the strong-coupling series used in the analysis of the O(N) s models on

the triangular lattice presented in this paper.

1. N50

For the self-avoiding random walk on the triangular lattice, longer series ofMG
2 can be obtained from the strong-coupling

series ofx andm2 presented in Ref. 25:

MG
2 5 2

3b21241 10
3 b14b21 16

3 b31 40
3 b41 88

3 b51 88
3 b61228b71 1808

3 b81 4352
3 b91 18356

3 b101 52792
3 b11160540b12

1 631184
3 b131O~b14!, ~B5a!

Mt
25 2

3b21241 10
3 b14b21 17

3 b31 35
3 b41 47

2 b51 205
3 b61188b71 2213

4 b81 41909
24 b91 33181

6 b101O~b11!, ~B5b!

v45
1
24b211 3

41 5
24b1 1

4b21 1
3b31 1

3b41 4
3b51 59

6 b61 55
4 b71 98

3 b81 1135
6 b91 4529

12 b101 4783
3 b111 21295

4 b121 100165
6 b13

1O~b14!. ~B5c!

2. N51

For the Ising model we give strong-coupling series which cannot be reproduced using known exact results:

MG
2 5 2

3b21241 32
9 b1 16

3 b21 928
135b

31 64
9 b41 23944

2835 b52 1648
135 b61 5008

14175b
71 106864

945 b81 6459424
280665b92 18680128

42525 b102 200433692584
1915538625 b11

1 2151999728
1403325 b121 35136345008

54729675 b131O~b14!, ~B6a!

v45
1
24b211 3

41 2
9b1 1

3b21 58
135b

31 4
9b41 2993

5670b
51 437

135b
61 313

14175b
72 19781

945 b81 403714
280665b

91 3986522
42525 b102 354526855073

3831077250 b11

2 960767707
1403325 b122 18090444637

54729675 b131O~b14!. ~B6b!

3. N52

E5b12b21 7
2b315b41 35

6 b51 14
3 b62 81

16b72 3769
72 b82 165161

720 b92 7821
10 b102 20160371

8640 b112 27984359
4320 b122 87289819

5040 b13

2 10256893919
226800 b142 3357272555039

29030400 b151O~b16!, ~B7a!

x5116b130b21135b31570b412306b51 18083
2 b61 276657

8 b71 777805
6 b81 14339641

30 b91 208590287
120 b101 8995595389

1440 b11

1 3199713875
144 b121 65793037351

840 b131 165647319078571
604800 b141 4600845479023849

4838400 b151O~b16!, ~B7b!

MG
2 5 2

3b21241 11
3 b16b21 143

18 b31 46
9 b42 391

72 b52 5219
108 b62 5296

45 b72 33287
180 b82 679729

1296 b92 2052143
1080 b102 1436935039

362880 b11

2 4952351659
1360800 b122 87992319949

43545600 b131O~b14! ~B7c!
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Mt
25 2

3b21241 11
3 b16b21 283

36 b31 49
9 b42 53

8 b52 8425
216 b62 990757

8640 b72 45549
160 b82 16833083

25920 b92 35865709
25920 b101O~b11!,

~B7d!

v45
1
24b211 3

41 11
48b1 3

8b21 143
288b

31 4
9b42 103

1152b
52 827

1728b
62 6271

720 b72 39709
960 b82 1243813

20736 b91 85031
3456 b102 741356239

5806080 b11

2 7581779911
5443200 b122 1477616543629

696729600 b131O~b14!. ~B7e!

APPENDIX C: STRONG-COUPLING SERIES ON THE HONEYCOMB LATTICE

The sitesxW of a finite periodic honeycomb lattice can be represented in Cartesian coordinates by

xW5xW81phW p,xW85 l 1hW 11 l 2hW 2 , l 151, . . . ,L1 , l 251, . . .L2 , p50,1, hW 15S 32 ,A32 D , hW 25~0,A3!, hW p5~1,0!.

~C1!

In order to define a mass-gap estimator, one may consider the wall-wall correlation functions

Gv
~w!~ 3

2 l 1!5(
l2

G~ l 1hW 11 l 2hW 2!, ~C2!

with the sum running over sites of positive parity forming a vertical line,

Gh
~w!~ 1

2A3l !5(
l2 ,p

G@~ l22l 2!hW 11 l 2hW 21phW p#, ~C3!

where the sum is performed over all sites having the same coordinatex2.
Estimatorsmv andmh of the mass gap can be extracted from the long-distance behavior, respectively, ofGv

(w)(x) and
Gh
(w)(x); indeed forx@1

Gh
~w!~x!}e2mvx, Gh

~w!~x!}e2mhx. ~C4!

In view of a strong-coupling analysis, it is convenient to use the following estimators of the mass gap derived frommv and
mh :

M v
2[ 8

9 ~cosh32mh21!, Mh
2[ 8

3 S coshA32 mh21D . ~C5!

More details can be found in Ref. 6.
In the following we show, forN50,1,2, some of the strong-coupling series used in the analysis of O(N) s models on the

honeycomb lattice presented in this paper.

1. N50

For the self-avoiding random walk on the honeycomb lattice, longer series ofMG
2 can be obtained from the strong-coupling

series ofx andm2 presented in Ref. 24:

MG
2 5 4

3b21241 8
3b18b62 56

3 b7124b8232b9196b102 656
3 b111320b122296b131416b1421192b1512848b16

2 13304
3 b1715768b182 27664

3 b19120024b20238520b21163368b222100104b231183352b242 1039744
3 b251621096b26

2 3093176
3 b2711791168b281O~b29!, ~C6a!

Mh
25 4

3b21241 8
3b1 4

3b51 8
3b91 8

3b1024b1118b121 16
3 b1318b141 8

3b15116b161 148
3 b17136b181 176

3 b191 100
3 b20

1 1532
3 b212248b221 4348

3 b232 3184
3 b241O~b25!, ~C6b!

v45
1
12b211 3

41 1
6b2 1

2b61 11
6 b72 3

2b81b926b101 70
3 b11235b121 11

2 b13149b141 75
2 b152397b161 4631

6 b172 1051
2 b18

2 349
3 b192 1087

2 b201 8001
2 b212 15883

2 b221 17989
2 b232 19691

2 b241 72668
3 b252 112563

2 b261 536981
6 b272110355b281O~b29!.

~C6c!
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2. N51

MG
2 5 4

3b21241 28
9 b2 124

135b
31 8576

2835b
52 14692

2025 b71 5338616
280665b92 90947891648

1915538625b
11232b121 1583805616

7818525 b13196b14

2 406965884456828
488462349375 b152 608

15 b161 360870502928894432
116937886440375 b172 1219136

945 b182 6493740451647884584
656284056553125 b191 624064

75 b20

1 1179228814388026215376
40343570821929375 b212 5843265248

155925 b222 48910471162936574893856768
605758715891269565625 b231 405278723648

2837835 b241 1024764052182397586576416
4754777989727390625 b25

2 1697456183968
3378375 b262 950155935558179228231150591072

1693960980510228821015625 b271 54851554589151328
32564156625 b281O~b29!, ~C7a!

v45
1
12b211 3

41 7
36b2 31

540b
31 536

2835b
52 3673

8100b
71 667327

561330b
92 5684243228

1915538625b
1112b121 5165551

7818525b
1326b141 93643468635793

1953849397500b
15

2 1042
15 b162 27120807726815398

116937886440375b
171 643196

945 b181 86312750362752061
187509730443750b

192 258424
75 b201 33629885325845121661

40343570821929375b211 1973399678
155925 b22

2 6840786318771414403278548
605758715891269565625 b232 106606055168

2837835 b241 282271419983204843625526
4754777989727390625 b251 44788447114

482625 b262 402797762032926523234583974442
1693960980510228821015625 b27

2 5992229992104838
32564156625 b281O~b29!. ~C7b!

3. N52

E5b2 1
2b31 7

3b52 395
48 b71 1173

40 b92 473243
4320 b111 6293627

15120 b132 346093553
215040 b151 23497364693

3732480 b172 64962730739719
2612736000 b19

1 474090720713083
4790016000 b212 1641257090013388013

4138573824000 b231 42984420336380838389
26900729856000 b252 11369733294965786406529

1757514350592000 b271 1733398746685522588378351
65906788147200000 b29

1O~b30!, ~C8a!

x5113b16b21 21
2 b3118b4131b51 95

2 b61 1045
16 b71 403

4 b81 6919
40 b91 14149

60 b101 68273
288 b111 138307

360 b121 9157051
10080 b13

1 42124273
40320 b142 13183321

645120 b151 130286011
161280 b161 58701184637

8709120 b171 246444397309
43545600 b182 12790078293739

870912000 b192 79551567889
13608000 b20

1 154021837152677
1916006400 b211 1452164594591761

28740096000 b222 393634368786168197
1379524608000 b232 4660955848386121

31352832000 b241 10915691174925870017
8966909952000 b25

1 41989331871750076949
62768369664000 b262 8481318776641386327367

1757514350592000 b272 828979117543657737823
329533940736000 b281 5226218120804763962092657

263627152588800000 b29

1 21701722199756349611186159
2109017220710400000 b301O~b31!, ~C8b!

MG
2 5 4

3b21241 10
3 b2 13

9 b31 59
12b522b62 3347

270 b71 35
6 b81 238009

6480 b92 493
18 b102 19392227

181440 b111 4388
45 b121 1467214247

4354560 b13

2 3846767
12960 b142 245879581721

195955200 b151 362651221
362880 b161 6669774367471

1306368000 b172 45385487873
10886400 b182 5401824824719549

258660864000 b191 68257961593
3483648 b20

1 258003704533726433
3103930368000 b212 362403210060397

3919104000 b222 5054778739819764833
15692092416000 b231 72793501494263779

172440576000 b241 290687412809274634879279
237264437329920000 b25

2 202156253372553206149
108637562880000 b262 43738864245549216552954097

9490577493196800000 b271 45054828678355702664561
5649153269760000 b281O~b29!, ~C8c!

Mh
25 4

3b21241 10
3 b2 13

9 b31 55
12b52 1

3b62 7429
540 b72 2

9b81 282139
6480 b92 43

216b
102 26145491

181440 b111 613
540b

121 2158358071
4354560 b132 224587

77760 b14

2 344839817111
195955200 b151 1698299

272160b161 8350838655511
1306368000 b171 63590671

130636800b
182 3061458683224637

129330432000 b192 1894590323
52254720 b201 39427276163585267

443418624000 b21

1 5154851721889
23514624000b222 5303030533425785401

15692092416000 b232 174214610003233
147806208000 b241O~b25!, ~C8d!

v45
1
12b211 3

41 5
24b2 13

144b
31 59

192b
51 1

8b62 5507
4320b

72 71
96b81 495049

103680b
91 961

288b
102 47837987

2903040b112 43397
2880 b121 4159541927

69672960 b13

1 11139143
207360 b142 643769125241

3135283200 b152 1093077841
5806080 b161 13258559750671

20901888000 b171 148926884453
174182400 b182 1148899892904427

591224832000 b192 6289014713053
1393459200 b20

1 353359211049440273
49662885888000 b211 202048769925301

8957952000 b222 2704447377391331531
83691159552000 b232 278880464307951691

2759049216000 b241 54781761414365119518029
345111908843520000 b25

1 715504863884795060149
1738201006080000 b262 10548822433407426077233907

13804476353740800000 b272 140706622546312581163859
90386452316160000 b281O~b29!. ~C8e!
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