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The critical behavior of two-dimension&D) O(N) o models withN<2 on square, triangular, and hon-
eycomb lattices is investigated by an analysis of the strong-coupling expansion of the two-point fundamental
Green’s functiorG(x), calculated up to 21st order on the square lattice, 15th order on the triangular lattice, and
30th order on the honeycomb lattice. Rér<2 the critical behavior is of power-law type, and the exponents
y andv extracted from our strong-coupling analysis confirm exact results derived assuming universality with
solvable solid-on-solid models. At=2, i.e., for the 2DXY model, the results from all lattices considered are
consistent with the Kosterlitz-Thouless exponential approach to criticality, characterized by an exponent
o= % and with universality. The value=% is confirmed within an uncertainty of few percent. The prediction
n= %1 is also roughly verified. For various valuesf 2, we determine some ratios of amplitudes concerning
the two-point functionG(x) in the critical limit of the symmetric phase. This analysis shows that the low-
momentum behavior oB(x) in the critical region is essentially Gaussian at all valueblef2. Exact results
for the long-distance behavior &(x) whenN=1 (Ising model in the strong-coupling phassnfirm this
statement[S0163-18206)08233-1

I. INTRODUCTION veloped and calculations of series up to 18th dtdad 19th
order for bulk quantities ind=2,3,4 have been announced.
The strong-coupling expansion is one of the most success- In this paper we focus on 2D ® o models with
ful approaches to the study of critical phenomena. Many imN=<2. The analysis of our strong-coupling series for models
portant results concerning physical models at criticality havevith N=3, i.e., those enjoying asymptotic freedom, is pre-
been obtained by deducing the asymptotic critical behaviosented in Ref. 6.

of physical quantities from their strong-coupling series. Two-dimensional Of) o models with N<2 should
We have calculated the two-point Green’s function present a standard power-law critical behavior, and should be
described at criticality by conformal field theories with cen-
G(x)= <§x, 50) (1) tral chargec<<1. The most physically relevant models in this

range of values oN are self-avoiding random walk models

of two-dimensional2D) O(N) o models on square, triangu- and Ising models, corresponding, respectivelyNte 0 and

lar, and honeycomb lattices, respectively, up to 21st, 15thN=1. At N=—2 the critical theory has been proved to be

and 30th order in the strong-coupling expansion. Such calGaussiar,i.e., y=1, v=3, and =0. Assuming universal-

culations were performed within the nearest-neighbor latticdty with solvable solid-on-solid models, exact formulas for

formulation, described by the action the critical exponents in the range2<N<2 have been
proposed1° interpolating the critical behaviors at
N=-2,0,1,2. The critical exponents of the magnetic suscep-

S= —N,B% Sy, Sx,» (2)  tibility y and correlation length would then turn out to be
INKS
) 3+a?

wheres, is anN-component vector, the sum runs over all the Y= Za(2-a)’
links, andx; andx, indicate the sites at the ends of each link.
The comparison of results from strong-coupling series calcu- 1
lated on different lattices offers the possibility of important y= , 3
tests of universality, which, if positive, strongly confirm the 4-2a
reliability of the final results. where the parameter is determined by the equation

A complete presentation of our strong-coupling computa-
tions for ON) o models in two and three dimensions will be 21
presented in a forthcoming paper. A preliminary report on N= _200<? 4

our calculations can be found in Ref. 1. On the square lattice

our strong-coupling series represent a considerable extensiavith the constraint a<2. The exponent; can be ob-
of the 14th-order calculations of Ref. 2, performed by meangained by the hyperscaling relatiop= (2— 7) v.

of a linked cluster expansion, which have been reelaborated In the limit N—2 formulas(3) yield y—«~ and v—oo,
and analyzed in Ref. 3. We also mention recent works whersuggesting that &t =2 the critical pattern should not follow
the linked cluster expansion technique has been further de& power-law behavior. ThXY spin model in two dimen-
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sions, i.e., theN=2 model, is conjectured to experience aaccurate verification of the KT critical pattern has been
Kosterlitz-Thouless phase transitfdrof infinite order, char- shown in Ref. 13 by numerically matching the
acterized by a very weak singularity in the free energy andenormalization-group trajectory of the dual of & model

an exponential divergence of the correlation length at a finitavith that of a body-centered solid-on-solid model, which has
B. This model should describe the critical properties of abeen proved to exhibit a KT transition. The advantage of this
number of two-dimensional systems, such as thin films oftrategy is that such a matching occurs much earlier than the
superfluid helium. onset of the asymptotic regime, where numerical simulations

According to the Kosterlitz-Thoulesé&T) scenario, the Can provide quite accurate results.
correlation length is expected to behave like The analysis of the strong-coupling series, eg., Refs.
18 and 19, where a few moments of the two-point Green’s

b function were calculated on the square and triangular lattices,
&~ exp( ) (5) respectively, up to 20th and 14th order for the special value
N=2) substantially supports the KT mechanism, but it does
for 0<7=1—/B.<1. The value of the exponent is=1 not provide precise estima_tes for the exponentsy, gnd
andb is a nonuniversal positive constant. At the critical tem- ¢ Probably for two reasonst) The asymptotic regime in the

perature, the asymptotic behavior for-o of the two-point  €MS Of the series may be set at very large ordéisthe
correlation function should bef., e.q.. Ref. 12 logarithmic correction may cause systematic errors in most

of the analysis employed.
(Inr)2° Inlnr The computation of strong-coupling series on the honey-
G(r)erit~ r—”[ 1+ O(w)

-

, (6) comb lattice and the extension of series on the square and

triangular lattices motivate our strong-coupling analysis of
with »=1 and = L. Near criticality, i.e., for & r<1, the f[he 2DXY model. We_ focus on the KT mechanism, search-
behavior of the magnetic susceptibility can be deduced fronf?d for evidence of this phenomenon. _
Eq. (6): As qlready_shown in Refs. 6 and ZQ, the st_rong—co_upllng
analysis provides quite accurate continuum-limit estimates
Inlng when applied to dimensionless ratios of universal quantities,
W) even in the case of asymptotically free models, i.e., when the

critical point isB.=c. We define some dimensionless ratios

~ 2717720014 O(77%In7)]. (7)  of scaling quantitiegratios of amplitudeswhich character-
ize the low-momentum behavior of the two-point function

In addition, the 2DXY model is characterized by a line of G(x), and estimate their values in the critical regime by
critical points, starting fronB= B. and extending tg8=o°, directly analyzing their strong-coupling series. This will al-
with # going to zero as 3 for B—oe. At criticality the 2D low us to check how close the low-momentum critical be-
XY model should give rise to a conformal field theory with havior of G(x) is to Gaussian behavior.
c=1. The paper is organized as follows.

Numerical studies based on Monte Carlo simulation tech- In Sec. Il we investigate the critical behavior of 2D
niques and high-temperature expansions seem to support tll¥N) o models withN<2 on square, triangular, and hon-
KT behavior, but a direct accurate verification of all the KT eycomb lattices, extracting the relevant critical parameters by
predictions is still missing. As pointed out in Ref. 13, for the analysis of the available strong-coupling series. For
B< B, the corrections to the asymptotic behaviby should N<2 we compare the strong-coupling estimates of the criti-
become really negligible only at very large correlationcal exponents with Eqs(3). For N=2, i.e., the 2DXY
lengths, out of the reach of standard Monte Carlo simulationgnodel, we verify the predictions of the KT critical theory. In
on today’s computers, which alloW=<100 (cf. Ref. 14, particular Sec. IIA presents the general features of our
where simulations for correlation lengths up4e-70 were  strong-coupling analysis. Sections IIB, IIC, IID, and Il E
performed on lattices up to 592 Monte Carlo simulations contain detailed reports of the derivations of the various re-
supplemented with finite-size scaling techniques allow one tgults; they are rather technical and can be skipped by readers
obtain data for largeg. Reference 15 shows data up to not interested in the details of the analysis. In Sec. IIF the
£=850, which, although consistent with the KT prediction, principal results are summarized and some conclusions are
do not really exclude a standard power-law behaJiactu-  drawn.
ally the author of Ref. 15 claims to favor a conventional In Sec. Ill we evaluate, at criticality, the values of some
power behavior to explain some discrepancies in the detemmplitude ratios concerning the low-momentum behavior of
mination of the critical exponeny.) G(x). We will present results for the most physically rel-

Finite-size scaling investigations at criticality are requiredevant models witiN<2, i.e., those wittN=0,1,2. We also
to be very precise in order to pinpoint the logarithm in thediscuss their implications on the low-momentum behavior of
two-point Green’s function. On the other hand, if this loga-G(x) in the critical region of the symmetric phase.
rithmic correction is neglected, the precise check of the pre- In Sec. IV some exact results concerning the asymptotic
diction =7 at 8. may be quite hard. The relevance of suchlarge-distance behavior doB&(x) for the Ising models on
logarithmic corrections and some of the consequences of naquare, triangular, and honeycomb lattices are presented.
glecting them have been examined in Ref. 17. Numerical In Appendixes A, B, and C we present, fdr=0,1,2, the
studies by Monte Carlo renormalization-group and finite-sizestrong-coupling series of some relevant quantities used in
scaling techniqué&'* seem to favor a lower value of, this study, respectively, for square, triangular, and honey-
which might be caused by the neglected logarithm. The mostomb lattices.

X~ jjer(r)critN 527 ”(Inf)w 1+0
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Il. STRONG-COUPLING ANALYSIS estimate for the difference between the critical exponents of
OF THE CRITICAL BEHAVIOR the two functionsA and B. In particular this idea can be
applied to the casB=A?, allowing one to get a direct esti-
mate of the critical exponent o4, provided a sufficiently
From the Green’s functioi(x) one can derive many |arge number of terms is known. The reliability of the deter-

A. Analysis of the series

interesting quantities. Defining the momentsGx), mination of the critical exponent by this method may be
checked by comparing the results for the critical point of an

My = 2 (x2)IG(x), (8) unbiased analysis Wlth the exact requt': 1. ' .
X A general technique to extract physical information from

an nth-order strong-coupling seri€¥x) ==;_,"c;x' is con-

we computed on each lattice the magnetic susceptibglity structing approximanté(x) such that

and the second-moment correlation lenggh

A(X)—S(x)=0(x"*1), (14)
XEmO’ . . . .y .
and studying their singularities. For a review on the resum-
, My mation techniques, cf. Ref. 2Z1/m] Padeapproximants
562@- ©) (PA’s) are ratios of two polynomials of degrdeand m,

respectively, such that their Taylor expansion is equal to

Models withN<2 should have a power-law critical be- S(x) up to O(x'™™). PA’s are expected to converge well to
havior, which may be appropriately investigated by analyz-meromorphic analytic functions. More flexibility is achieved
ing the strong-coupling series gfand£ in order to extract by constructing PA’s of the logarithmic derivative &{x)
the critical exponenty and ». For N=2, in order to check (Dlog-PA analysig and therefore enlarging the class of
the exponential approach to criticality predicted by the KTfunctions which can be reproduced to those having singulari-
mechanism and extract the relevant exponenas in Ref.  ties of the form ¢—z,)”. [I/m] Dlog PA’s are obtained by
18, we consider the strong-coupling series of the logarithmintegrating the{I/m] PA’s of the logarithmic derivative of
of x and&g. More precisely, sincgg=1+0O(B8) and 5(23: S(x). Then a[l/m] PA usesn=|+m terms of the series,
icB+0(B?), wherec is the coordination number of the lat- While a[l/m] Dlog PA requiresn=1+m+1 terms.
tice (c=4,6,3, respectively, for square, triangular, and hon- Other kind of approximants can be constructed as solu-

eycomb lattices we consider the series tions of differential equation® We consider integral ap-
proximants(IA’s) obtained from a first-order linear differen-
* tial equation
L, =B"tnx=2> ¢,
=0 QOO () + PO T (X) +R(x) = O (X' *™*2), (15)
(23 * _ where Q(X), P,(x),_ and R, (x) are polynomials of order
I§E,8*1In i d;g'. (100  m, I, andk, respectively, and we fiQ,(0)=1. These ap-
Bl = proximants are singular at the zepgsof Q,(x), and behave
According to Eqs(5) and(7) |, andl, should behave as as
| ~le~777, (11) A(X)[x=xo| "7+ B(x), (16)

and are therefore suitable for a standard analysis by Bade Where A(x) and B(x) are regular in the neighborhood of
integral approximants. A vanishing exponentwould indi- X0, and

cate a standard power-law critical behavior. Conversely a P

stable nonzero value of would exclude a power-law behav- - 1(Xo) 1

. 4 o 17
ior. Qm(Xo)

Estimates of the critical exponents can be obtained b)(Nhen we analvze anth-order seriesm. | andk must sat-
employing the so-called critical point renormalization . y o

method(CPRM).2 The idea is that, when isfy the conditionk+| +m+2=<n. If thg position of th_e sin- .
gularity Xy is known, such an analysis can be easily modi-
_ fied, forcing the approximant to have a singularityxgtby
A(X)=Z ax'~(Xg=Xx) "4 substitutingQ m(X) — (1= X/X) Qm(X), WhereQp(x) is still
a polynomial of ordem with Q,,(0)=1.
_ Unlike Dlog PA’s, IA’s are suited to take into account
B(x)zz bix' ~ (xg—x) " #, (12 subdominant terms in the vicinity of singularities, thus re-
: ducing possible systematic errors in the resummation of the
we have series. On the other hand, in order to get stable and therefore
acceptable results, IA’s require in general more terms in the
i (14 p-a) series to be resummed than PA’'sDlog PA’s.
C(X):Ei 2 X~ (1= ; (13 As a final estimate from each analysis we took the aver-
' age of the results from quasidiagoriabndefectivé approxi-
where now the position of the singularity is known. There-mants(PA'’s or IA’s) using all available terms of the series.
fore the analysis of the serig® may provide an unbiased The errors we display are just indicative, and should give an
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idea of the spread of the results coming from the variousnalyses of the same series, and from the analyses of series
approximants which can be constructed from the series aif different estimators of the same quantity, which in general
hand. They are the square root of the variance around thare not expected to have the same analytic structure.
estimate of the results coming also from quasidiagonal ap- » . .

proximants constructed from shorter series by one and two B. Critical behavior of models with —2<N<2

terms. In the following we will specify the approximants |n order to determine the critical exponentgndv of 2D
considered in each analysis. This procedure does not alway3(N) o models withN<2, we analyze the strong-coupling
provide a reliable estimate of the systematic error, whictseries ofy and gé on square(21st orde), triangular(15th
may be underestimated especially when the structure of therder, and honeycomi§30th ordey lattices. For such mod-
function cannot be well reproduced by the class of approxiels, an analysis of the 14th-order strong-coupling series on
mants used. A more reliable estimate of the true uncertaintthe square lattice, calculated in Ref. 2, has been done in Ref.
should come from the comparison of results of different3.

TABLE I. For various values oN<2 and for all lattices considered we repm‘g” and y as obtained
from a Dlog-PA analysis of the strong-coupling series yaf and ﬁ(f) and v from that of 5(23 Defective
Dlog PA's, i.e., those with spurious singularities close to the real axis f@#<Re, (e.g., Rg<1.18.), are
discarded. An asterisk indicates that most of EHeg PA'’s considered are defective and the estimate comes
just from a few of them, or in the cases where numbers are not shown tBdbglPA’s are defective, so that
no estimate can be extracted.

N Lattice BY y ® v
-1 triangular 0.1728Y 1.042) * *
Eq. (3) 1.0537 ... 0.54795% . ..
-3 square 0.25@) 0.803) 0.2541) 0.65(5)
triangular 0.1878) 1.091) 0.18884) 0.64(1)
honeycomb *0.334) *0.80(5) 0.33191) 0.521)
Eq. (3) 1.087® ... 0.57469 . ..
-1 square 0.3144) 1.131) *0.3141 *0.60
triangular 0.208@1) 1.141) 0.208641) 0.6423)
honeycomb 0.42333) 1.11(2) 0.424@6) 0.64(4)
Eq. (3) 1.15625 0.625
- % square 0.34918) 1.2335) 0.349272) 0.681(1)
triangular 0.225) 1.232) 0.225282) 0.68711)
honeycomb 0.485@3) 1.2333) 0.484982) 0.6721)
Eq. (3) 1.2378. .. 0.68075. ..
0 square 0.379@0) 1.3342) 0.3790%2) 0.75Q1)
triangular 0.2408@) 1.3325) 0.240923) 0.75Q2)
honeycomb 0.54113) 1.3413) 0.541161) 0.7481)
Eqg. (3) 1.34375 0.75
% square 0.40854) 1.4941) 0.4085303) 0.84532)
triangular 0.25686) 1.4844) 0.256921) 0.845@1)
honeycomb 0.5973Q) 1.4921) 0.597311) 0.84441)
Eq. (3) 1.4964 . .. 0.8458%2 . ..
1 square 0.440684) 1.74941) 0.4406905) 1.00022)
triangular 0.2746@.) 1.7502) 0.274661) 1.00055)
honeycomb 0.65849) 1.75Q1) 0.658462) 1.0041)
Eq. (3) 1.75 1
g square 0.4802) 2.301) 0.48022) 1.31(2)
triangular 0.296{) 2.302) 0.296%1) 1.31(2)
honeycomb 0.733718) 2.3135) 0.733713) 1.331)
Eq. (3) 2.319¢9 . .. 1.3362...
: square 0.5072) 2.975) 0.50664) 1.664)
triangular 0.311®) 2.91(4) 0.31115) 1.659)
honeycomb 0.7845) 3.01(5) 0.784510) 1.7409)
Eq. (3) 3.1249D . .. 1.8048...
2 square 0.524) 4.02) * *
triangular 0.323(%) 3.7(1) 0.3232) 2.2(3)
honeycomb 0.82@) 4.002) 0.8274) 2.4(3)

Eqg. (3 4.722D . .. 27232 . ..
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For N=0 (the self-avoiding walk longer series are TABLE 1l. First-order integral-approximant analysis of the
available?®?® To compare with the literature, observe that 20th-order strong-coupling series lgf= 3~ 'Iny on the square lat-

we havé® tice. Asterisks mark defective approximants, i.e., those having spu-
rious singularities close to the real axis forfReg. .
G0 =20 Blei(x), (18 N m | k Be o
wherec(x) is the number of self-avoiding walks of length 19 6 6 5 0'2598 0.55
| going from O tox. Thereforey==3,8'c,, and 6 o 6
7 5 5 0.5563 0.42
. | 5 20 6 6 6 0.5598 0.59
x&i= ZEI B'c(RY),, 19 7 6 5 0.5585 0.51
7 5 6 0.5565 0.37

wherec, = X, c,(x) is the total number of self-avoiding walks
of lengthl starting from the origin, and

mapped away from the origin by performing the change of
N ) variableB— z=tanhB, wherez is the character coefficient of
<Re>l_c_|§X: x“c;(x) (200 the fundamental representation. With decreadihgs, de-
creases while the above-mentioned imaginary singularities
is called the “mean end-to-end distance” in the literature ofmove away, so that efl<0, the singularity closest to the
self-avoiding walks. origin is on the real axis; i.e., it is the physical critical point.
Table | shows the results of Rlog-PA analysis, report- For later comparison with the strong-coupling analysis of
ing, for various values oN and for each lattice¥) and  the 2D XY model, we have also analyzed the series of
v as obtained from the strong-coupling series xof and  defined in Eq(10), for the Ising model on the square lattice.
B and v from that of ¢4 . Differences betwee'¥ and  Since the critical behavior is of power-law typl, should
B9 should give an idea of the real uncertainty@n Inthe ~ have a logarithmic singularity &, and therefore an analy-

m=1=8 on the square latticé m=12 andm=1=5 onthe the 20th-order series f give|o|=0.02. We mention that a

triangular lattice,| +m=27 andm=1=12 on the honey- DI0g-PA analysis leads to misleading results in this case,

comb lattice. In the analysis (ﬂ’lgé we consideredlog since in ord_er to r_eprodu_ge the quarlthmlc behav!or it gives

PA’s with | + m=17 andm=1=8 on the square lattice, and rise to spurious singularities, which make the estimate of

l+m=11 and m=1=5 on the triangular lattice, and &t B¢ unreliable.

I +m=26 andm=|=12 on the honeycomb lattice. We tried

also IA’s, obtaining consistent results, which, however, only C. 2D XY model on the square lattice

in few cases turned out to be more precise than those of the on the square lattice a strong-coupling analysis of the

Dlog PA's, and so we do not report them. For the sake ofgwest moments o6(x) evaluated up to 20th order can be

completeness and also to give an idea of the precision we caBund in Ref. 18. Having achieved further extension by one

achieve with such an analysis, in Table | we report alsqerm of such a series, we update here the situation on the

results forN=0,1 as obtained from our series, although ex-square lattice. We note that the series obtained from our

act results independent of the conjectB exist for such calculations(some of them are reported in Appendix A

values ofN. We warn that the errors displayed in Table | arepresent small discrepancies with those reported in Ref. 18:

related to the spread of the results from tieg PA’s con-  They are in agreement up to 16th order, but slightly different

sidered, according to the procedure described in the Segt higher order(The difference is, however, small, at most

IIA, and therefore they are not always reliable estimates ofig=6, and it does not change the conclusion of Ref) ¥8e

the uncertainty. are confident that our series are exact, since they were gen-
In the range— 1=<N=<$, formulas(3) for the exponents erated for arbitrarj\ and we have checked thelir— limit

y and v are well reproduced, and universality is verified. against the exact solution, and compared them with the ex-

Less precise determinations are obtained when approachifging series foN=0,1.

the endpointdN=*2, presumably due to a rather slow con- e analyzed the 20th-order seriesIng,B*lInX by both

vergence of the corresponding series to their asymptotic 'Plog PA's and IA’'s. We found B,=0.560(2) and

gime. _ 0=0.53(4) from Dlog PA’s (with |+m=18 and
We note that for models wittN=1 on the honeycomb m=|=7). The integral approximant analysis, whose details
lattice the physical critical point is not the singularity closestgyg given in Table I, leads toB8,=0.558(2) and

to the origin, but there is a pair of closer singularities on the;=0.49(8) (considering IA’s with m+1+k=19 and
imaginary axis. For instance, in the Ising model the physicah1>|,k>5)_

singularity is placed aB.= 3 (2+3)=0.6584B. .. and From the strong-coupling series bf and 1% we have
there is a pair of singularities #= =i /6.2’ Nevertheless, constructed a series, according to the CPRM, and ana-
Dlog PA’'s of the magnetic susceptibility reproduce thelyzed it by standard method®log PA’s and IA’s. We ob-
physical singularity very precisely: Thgl5/15] Dlog PA  tained ¢=0.51(4) by Dlog PA’s (with |+m=18 and
gives B.=0.658480 andy=1.74993, to be compared with m=1=8) biased by imposing the presence of a singularity at
the exact resulty=Z. The unphysical singularities can be x.=1, ando=0.50(2) by biased IA’Swith m+1+k=16
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TABLE lIl. On the square lattice, IA analysis of the serieg TABLE IV. The strong-coupling estimates @f are compared
constructed from the series 6f and If( according to the CPRM.  with some available Monte Carlo results on the square lattice, taken
OpiaseqiS Obtained by biasing.=1. from Ref. 14 and obtained by standard Monte Carlo and from Ref.

15 by finite-size scalingFS9 techniques. The strong-coupling es-
N m I K X o Cbiased timates of¢g, £, andé?) are obtained, respectively, frof8/9)],
18 5 5 5 N 0.522 [10/9], [9,10], and[8/11] PA’s oflg and from[5/6/6], [6/6/5], [6/5/
’ 6], [5/6/9], [5/5/6], and[6/5/5] IA’s of |, biased ai3.=0.559. We
19 S 6 6 1.0082 0.64 0.509 again caution that the errors displayed in the strong-coupling esti-
6 6 5 1.0026 0.55 0.485 mates are related to the spread of the different approximants con-
6 5 6 * 0.536 sidered. The asterisk indicates that the number conagrgs and
20 6 6 6 1.0042 0.57 * not &g .
6 7 5 1.0043 0.59 0.506
6 5 7 10198  1.05 0501 A £ 3 gt Egsots
7 6 5 1.0039 0.58 0.523 1/2.2 9.3209) 9.3181) 9.322)*
/5 6 10035059 0467 4408 18.763)  18.741)  18.756)
1/2.04 26.81) 26.212) 26.42)*
*
and m=|,k=5). Table Ill shows some details of the IA (1)2 98 ig:g 4502'0516;) g(l)';(g;*
analysis of the series of, . From unbiasedlog PA's and 1/1.96 70.87) 70.32) 69.98) 70.44)

IA’s, Xx. is found to be equal to 1 within a few per mil,
assuring us of the reliability of the estimates of the exponen

i/1.94 1022) 100.75) 100.37)
o by this method.

/1.92 1583) 156(1) 156(2)

The above unbiased analyses strongly support the KT prel—/ 1.90 27611 2693) 2633)
diction (7). Although the estimate af does not yet reach the 1/1.88 57030) 54910) 5395)
1/1.87 91060) 860(20) 847(7)

high level of precision which is usually found in the analysis
of strong-coupling series of considerable length, we can
safely conclude that the value=3 is well verified with an _ )
uncertainty of less than 10% on the square lattice. coupling curves ofy and &g as funlct!ons Of[f’ we used
Unbiased approximants of give less stable but definitely azpproxmants constructed biasiog-= 2 1€ PA's ofl} and
consistent results: We founad=0.59(6) from the CPRM, |z and IA’s ofl,, andl; biasingo=3. Figure 1 compares
ie., from an IA analysis biased atx,=1 (with  strong-coupling curves of jawith the available Monte Carlo
m+1+k=15 andm,|,k=5) of the series\, constructed data. Table IV reports estimates 6§ by strong-coupling
from |, andI§ according to the CPRM. On the other hand, by €xPansion and Monte Carlo simulations for various values of
applying the CPRM to the two seridg and |, one may B. The agreement among the different calculations is satis-

verify thato, = 0. From an IA analysis biasing,= 1 (with factory.
m+I+k=15 andm,|,k=5) we foundo,—o,=0.01Q6), _ ) _
which represents a good check of Eijl). TABLE V. On the triangular lattice, analysis of the serieg
Onceo= 1 was reasonably verified, we performed a set ofconstructed from the series bf and 17 according to the CPRM.
biased analysis fixing= 2 in order to determine the critical biasealS Obtained by biasing,=1. We noted here that sometime

point. A way to bias the value of the exponentsat  is to biasing the singularity at.=1 gives rise to spurious singularities
analylze the series of the squareIQfandI by PA’ZS By in the real axis fox;<1. We considered approximants with singu-
g .

. . larities in the regiori0.8,1.9 defective, and they are marked by an

— 2
doing so we Obtza'ned 30_0'557,9(3)_ from Ix and asterisk. In these cases the estimate of the exponent from nonbiased
B.=0.558(1) froml; (we used PA’'s withl +m=17 and  zpproximants should be more reliable.

m=|=8). Still biasing =3, IA’s yield B8.=0.5583(2)

from |, and 8.=0.559(1) froml, (here we determine, ina N

IA analysis biasing the position of the singularity, the value

of 8. which produces the exponeat=%). 11
No complex singularities closer to the origin thgg are 12

detected in the various strong-coupling analyses, thus indi-

cating thatg. is also the convergence radius of the strong-

coupling expansion. 13
For B< B. we have compareg and ¢ as obtained from

our strong-coupling analysis with numerical data, available

in the literature up tgB=1/1.96=0.5102. . . (corresponding

to a correlation lengtlg=70) by using standard Monte Carlo 14

simulationst* and up toB=1/1.87=0.534 ... byemploy-

ing also finite-size scaling techniquEsActually most of the

Monte Carlo data of reported in Ref. 14 conceyyy, i.e.,

the correlation length extracted from the long-distance expo-

nential behavior ofG(x), but as we shall see in the next

sectionég / €eyp=0.999 at criticality. In order to get strong-

X o Ohiased

0.9723 0.192 0.501
0.9808 0.258 0.504
0.9881 0.335 0.503
0.9992 0.490 0.502
0.9954 0.446 0.510
1.0017 0.534 0.518
1.0027 0.549 *

1.0026 0.541 0.493
1.0016 0.532 0.550
1.0003 0.484 0.477
1.0015 0.533 0.485
1.0015 0.533 *

1.0021 0.520 0.520
1.0016 0.523 0.481
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120 D|09An~ ! (24)
wol Plain Series of | in the proximity of to 3. . In the Dlog PA’s the above sin-
_____ [10/10] PA of L gularities should be mimicked by a pole shifted g &arger
100 ——— [6/6/6]1A of |xx thanB.. Indeed in the analysis of the seriesAf we have
x M.C. Ref[14] found a singularity typically a8=1.1-1.28.. This fact will
o © MC. Ret{13] eventually affect the determination &f, close tog3.; by a
X g0l systematic error. However, since the singularity is integrable,
= the error must be finite, and the analysis shows that such
70 errors are actually reasonably small. The behay2dy, ne-
rs glecting the logarithm, could be reproduced by I1A’s , but we
sor P 1 did not obtain sufficiently stable and therefore acceptable
s0 L P ] results by them. As a further check we also performed a
/_,// biased Dlog-PA analysis of the series of the quantity
e om oes  oas 050 0s2 osd oss A,— 3 (1— )~ (neglecting logarithmic correctionsBy

B fixing =3 and 8,=0.559 we found an exponewnt=0.6,

. which is satisfactorily close to the expected vatue 3.
FIG. 1. Iny vs B. Beside Monte Carlo data from Refs. 14 15, we The exponent defined in Egs(6) and (7) may be ex-
show curves constructed from the plain series of, Ifrom the

. . g S
[10/10] PA of 12 and from the[6/6/6] IA of |, biased at ”ajteﬁ‘i,?y_ tge a:jnalys's of the series of the rajiéss " and
B.=0.5583, such thatr=0.50. my/¢e 7 Indeed,
. . . m
In order to determine the exponentwithout biasingo, z)iWN ﬁ~7*209[1+o(rv|n7)]_ (25)
we considered various quantities which can be constructed &G ¢

using the lowest moments of the two-point Green’s funcnon:FiXing n=1, we performed biased analyses of the 20th-order

1 strong-coupling series of the above ratios imposing
_T(1_ o B:=0.559.Dlog PA’s (with |+ m=17 andm,| =8) provide
2(1 m)+0(In), @1 the following estimates foré (obtained takingo=3):
6=—0.042(5) from x/&2 7 and 6=-0.05(2) from

1 m; n m, /€& where errors take into account, beside the spread
B,=(8l)) In( 1+ 7) = ﬂJFO(TUI”T)v (22 of the Dlog-PA results, also the uncertainty ¢h. These
numbers, although they confirm the fact th@ltis small, are
rather different from the KT predictio®= ;. As already

): z+0(r“|nr). (23) mentioned above, a source of systematic error for a
2 Dlog-PA analysis is the correctio@(74n7) to the leading

) ) . 7% behavior in formula(25). Since 6 is very small, this
An estimate ofy may then be obtained by resumming the oo |4 cause a relevant departure from its true value. The

corresponding strong-coupling series by PA's &ldg PA'S  oh5vsis by 1A's biased g8,=0.559 of the strong-coupling

and evaluating them. ;. Since all of the ab(_)ve quantlyes series of the rati()(lgéf’7 does not provide sufficiently stable
are equally good estimators of the expongntlifferences in results ford

the results of their analysis should give an idea of the sys-
tematic error in the procedure. ) .

PA's and Dlog PA's of A, (with |+m=16 and D. 2D XY model on the triangular lattice
m=|=7) lead to quite stable resultsi=0.228(2) (where On the triangular lattice strong-coupling series of some
the error displayed, beside the spread of different approxilowest moments o6 (x) have been calculated in Ref. 19 up
mants, takes into account the uncertainty 8. Similarly ~ to 14th order. We calculate@(x) up to 15th order, thus
we found=0.270(5) andyp=0.22§5), respectively, from extending by one order earlier calculations. We must again
PA’s andDlog PA’s of B, (with |+m=17 andm=1=8) mention the existence of discrepancies between our calcula-
and of,8‘1C,7 (with 1+m=15 andm=1=7). The differ- tions(cf. Appendix B and those of Ref. 19 in the 14th-order
ences in such determinations indicate a systematic error aérms(again of the order of 1CF).
about 10%, and within 10% all results are consistent with the We performed on the triangular lattice the kind of analy-
KT prediction = 3. Furthermore, when analyzing the en- sis presented in the previous subsection for the square lattice.
ergy series ofA, [by performing the change of variable We analyzed the 14th-order seriesIQE,BfllnX by both
B—E and evaluating the corresponding approximants aDlog PA’'s and IA’s. We found B.=0.34133),
E.=0.722, i.e., the energy value 4t=0.559(Ref. 149], we = ¢=0.52(2) from Dlog PA's (with I+m=11 and
obtained again a rather stable result Bt 0.2015), con- m=1=5), and 8.=0.339864), ¢=0.473(3) from IA’s
firming the presence of a systematic error of about 10%. with m+I1+k=12 andm=1,k=3 (the apparent stability of

A source of systematic error in this analysis is thethese |A determinations should not be taken seriously; we
O(7%In7) correction expected in Egq$21), (22), and (23)  recall again that what it is really important for estimating the
which cannot be reproduced by PA’s afidog PA’s. In  uncertainty is the comparison of results from different analy-
particular Eq.(21) implies a behavior sis).

A==
7 |§

m;

CﬂE(ﬁl g)‘lln(4,8X2
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The CPRM applied to the strong-coupling serie$ ohnd  larger than the error evaluated from the spread of the esti-
Ii giveso=0.53(1) by biasedlog PA’s having a singular- mates of different approximants of the same series. Unlike
ity fixed at x;=1 (with [+m=12 and m=1=5) and PA’s and IA’s, the critical parameters provided IBlog
0=0.50(2) by biased IA’'s (with m+I+k=11 and PA’s do not remain strictly invariant by adding a simple
m=|,k=3). Table V shows some details of the IA analysis.constant; this is only an asymptotic property of the

From unbiasedlog PA’s and IA’s,x. is found to be equal Dlog-PA analysis. An analysis based on the CPRM fails to
to 1 within a few per mil, assuring us of the reliability of the give stable results in this case, probably because the avail-

estimates of the exponent by this method. able series are not sufficiently long to have their asymptotic
The critical point renormalization method gives good re-regime set. _ o
sults also when applied to the series lgf, leading to More stable results are obtained when biasing the expo-

o=0.524). By applying the CPRM to the two seri¢s and nent ato= 3. A check of consistency would require that the
| one findso, — o= 0.001(2) from an IA analysis biased at critical points as extracted froihy, andl, be the same. We

Xc=1 (with m+I+k=12 andm=1,k=3). obtained 8.=0.879(1) from PA's (with |+m=26 and
We can conclude that the KT prediction= 3 is strongly =~ m=1=13) of |§ and 8,=0.878(2) from PA’s ofl2, which
supported by the above results. is satisfactory.
We also performed a set of biased analysis fixing 3 in It is worth noticing that, unlike what happens on the

order to determine the critical point. By analyzi andlé square and triangular lattices, on the honeycomb lattice the
by PA’s, we obtainedd.=0.3400(2) andB.=0.33931), real singularity corresponding to the critical behavior of the
respectively(from PA’s with | +m=12 andm=1=5). [A's theory is not the singularity closest to the origin in the com-
of I, biased ato=1} yield 8,=0.341@5), while when ap- Plex B plane. A pair of imaginary singularities at
plied tol , such an analysis does not lead to relevant resultg3=*10.482 is detected in the analysis of the strong-
since it gives rise to spurious singularities in the real axis. Acoupling series of.
o=1 biased estimate of the critical point is then Taking as an estimate of the critical pojfi{=0.880, we
B.=0.34q1). evaluatedn from the series ofA, and B, defined in Eqgs.
We obtained estimates of by resumming the series of (21) and(22). Again the value obtained from,, is about
A, andB, [cf. Egs.(21) and(22)] by PA’s andDlog PA's ~ 10% lower thang, »=0.231(3)(from PA’s andDlog PA’s
and evaluating them g8,=0.340. PA’s anDlog PA’'s of = With |+m=26 andm=I=11), and that fromB,, is about
A, (with 1+m=10 and m=I=5) and of B, (with  10% higher,»=0.28(1) (from PA's andDlog PA’s with
|+m=11 and m;|;5) lead again to quite stable but |+m=27 and m>|212) The behavior of the estimates
slightly discrepant results, respectively,=0.221(2) and from A, and B, observed in the various lattice seems to
7=0.27q4). Thecauses of possible systematic errors in theindicate that the source of systematic error is in a sense uni-
determination ofy are the same as for the square lattice, and/€rsal; i.e., it essentially depends on the quantity considered
we refer to Sec. IIC for a discussion. and is approximately independent of the lattice.
The analysis of the 14th-order strong coupling series of We again estimated the exponzezwfrom the 29th-order-
x! €% "~ 7 biased byB.=0.340 (using Dlog PA’'s with  Strong coupling series of the/¢g 7 Dlog PA's (with
|+m=11 andl,m=5) yields the estimat&/=—0.04§3), |+m=26 and |,m=13) biased at 3.~0.880 give
which is consistent with the square lattice result, but not with?=—0.0446), which is consistent with the estimates from
the KT prediction. IA’s do not provide sufficiently stable the other lattices.
results also in this case.

E. 2D XY model on the honeycomb lattice F. Conclusions

On the honeycomb lattice we calculated series longer than We have studied the critical properties of 2D N)( o
on the square lattice, up to 30th order. Here the possibility ofnodels withN<2 on square, triangular, and honeycomb lat-
reaching larger orders is related to the smaller coordinatiotices, by analyzing the strong-coupling expansion of the low-
number. However, longer series do not necessarily mean th&st moments of the two-point fundamental Green’s function.
more precise results can be obtained from their analysis. This The analysis of the strong-coupling seriesyoand gé on
possibility is related to the approach to the asymptotic resquare, triangular, and honeycomb lattices has substantially
gime of the series, which is expected to be set later on aonfirmed that models with<2 present a standard power-
lattice with a smaller coordination number. Actually, as welaw critical behavior with critical exponents given by Eqgs.
shall see, the 30th-order series on the honeycomb lattice pr@3). We obtained rather precise determinations of the critical
vide results consistent with the KT theory and universality,exponents in the regior 1<N=3 (cf. Table ), where for-
but less precise that those obtained from the series on thaulas(3) are verified within 1%. The strong-coupling analy-
square and triangular lattices. sis becomes less precise approaching the end points
Unbiased analyses of the series fdr, lead to N==*2, presumably due to a rather slow convergence of the
c=0.884(1) and 0=0.55(1) from Dlog PA's (with  corresponding series to their asymptotic regime. Universality
[+m=27 and m=1=12), and 8,=0.8716), 0=0.4(2) among models on the square, triangular, and honeycomb lat-
from IA’s (with m+1+k=27 andm=1,k=8). The stability tices has been verified.
of Dlog PA's is suspect in this case; indeed we found that, The determinations g8, and o for the 2D XY model on
just by adding to the series a simple constant of the order dhe three different lattices are summarized in Table VI. These
unity, the change in the estimate @fturns out to be much results are consistent with the KT exponential approach to
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TABLE VI. Summary of the determinations ¢8. and o on  theory are found in the estimates 6fwe obtained on all
square, triangular, and honeycomb lattices by different analysis. Aattices considered and using also different estimators. Our
bias in the analysis is indicated by a subscript in the correspondingtrong-coupling analysis based Biog PA’s leads, similarly

abbreviation. to the KT prediction, to a small absolute value &fbut it
would favor the valuefd=—0.04, against the K-T value

Lattice Series Analysis Be v 6= <. Our strong-coupling estimate seems to pass the uni-
square l Dlog PA 0.5602) 0.534) versality check by changing the lattice and estimator. On the
A 0.5582) 0.498) other hand, we suggest some caution in considering our
\, CPRMDlog PA, _; 0.51(4) strong-coupling estimate of. Given the smallngss of its .
CPRM-IA. . 0.502) value, we cannot exclude that the observed discrepancy is
X=1 . . y
N CPRM-IA 0.596) due to systematic errors caused by the fact iatg PA’s
I3 X.=1 . . 1/ .
12 PA 0.55793) cannot reproduce the correctidd(7-4In7) to the leading
|X A 0.55832) 7~ % behavior in formula(25). Since this correction is ex-
|§ ;;1’2 65581) pected to be present in all quantities we considered to esti-
I§ A 0'55 an mate 6 (even when defined on different lattige# its coef-
i | |§ oI ":;’ZA 0'341 0522 ficients in the various cases are quantitatively similar, the
triangular X °9 34183)  0522) oo might be about the same and explain the apparent uni-
IA 0.339884) 0.4733) versality of our results. Moreover, the more general analysis
Ay  CPRMDlog PA _, 0.531) based on IA’'s does not provide sufficiently stable results
CPRM-1A, 0.502) when applied to estimate, likely because the available se-
’\25 CPRM-1A, -1 0.524)  ries are not sufficiently long for this purpose. We mention
'5 PA 0.34002) that in Ref. 17 an analysis based on Monte Carlo simulations
It PA 0.33931) led to the estimat@==0.02, which is not consistent with both
¢ 1A 512 0.341@5) the KT prediction and our strong-coupling estimate.
honeycomb 1|, Dlog PA 0.8841) 0.541)
, IA 0.8776)  0.42) lIl. LOW-MOMENTUM BEHAVIOR OF  G(x)
% PA 0.8791) IN THE CRITICAL REGION
I A ;1 0.8801) _ _ .
12 PA 0.8782) In this section we study the low-momentum behavior of
| 1A 0.8831) the two-point fundamental Green’s function in the critical
£ o=1/2 .

limit of the symmetric phase. To this purpose, we consider
the dimensionless renormalization-group-invariant function

criticality and with universality. The best estimates of

come from the analysis of the series of the magnetic suscep- 6(0;,8)
tibility, leading to a confirmation of the value= 3 within an LipB==—01H-. (26)
uncertainty of few percent. The analysis of the series of the G(p:p)

correlation Iengthgé yields consistent results. The critical |4 the critical region of the symmetric phat€p,3) is a
point renormalization methdd provides the most precise f,nction of the ratioy=p2/M2 only WhereMGEilgs and

#]blased elst|ma|tes of%n the sth)J_?re afnd trlandguljlr Iattlcels. vfGEmzmx is the second-moment correlation length, already
ese results rule out the possibility of a standard power-lav o4 ced in the previous section(y) can be expanded in

critical behavior.
: . . owers ofy aroundy=0:
On the square lattice most estimatesBafyielded by our P fy y

analyses lie in the range 0.558.<0.560, although the
lowest valueB.=0.558 seems to be favored. This value is
consistent with 1t5he results of an exponential fit to data& of oo
up_ to £=850; ' wh|ch yielded ,BC—'O.5.59.3.(13)_ land I(y)=2 iy (27)
o=0.463), andwith a biased exponential fit fixing= 35 to i=2
data up toé=70 produced by a standard Monte Carlo ) ) _ )
simulationst* which gave8.=0.5593). But it is slightly I(y) parametrizes the.d!fference from a generalized Gaussian
smaller than the quite precise Monte Carlo renormalizationPropagator. The coefficients of the low-momentum expan-
group determination of Ref. 18,=0.55985(25). The com- Sion of I(y) can be related to appropriate dimensionless
parison of(suitablé resummations of the strong-coupling se- renormallzzat_lon-group-|nvgnant ratios  of  moments
ries of x and £2 with Monte Carlo data(available up to  Mzj==x(x")’G(X). Let us introduce the quantities
¢£=850) turns out to be quite satisfacto(gf. Table V),
giving further support to our conclusions. - 1 2j M2j
The predictiony=; is also substantially verified. By us- 2 22(j1
ing different estimators of; we control the systematic error ] o
of our analysis, which turns out to be about 10%, and withinVhose continuum limit is
about 10% our estimates af are always consistent with the .
value =3, U iL( )Y (29
Substantial discrepancies from the Kosterlitz-Thouless V2] jitody Y) Tly=o-

L(y)=1+y+I(y),

: (28)
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v3=1 for a Gaussian critical propagator. One can easily TABLE VIl We reports*, ¢, andcs as obtained from the
write the coefficients: in terms ofv*. analysis of the strong-coupling series h (first line) and in E
! 2 (second ling on square, triangular, and honeycomb lattices. Beside

the spread of estimates from different PA’s abdbg PA's, the
errors displayed take also into account the uncertainty3gmand
E.. We do not report the estimates ©f by the analysis of thg
series because their uncertainty is much larger than those from the

C2::I._l);’1r ’

C3:1_21)z 'f’l).éc y

E series.
cs=1+vj(v;—3)+2v; —vj, (30
etc. The strong-coupling expansion G{(x) allows one to Lattice Be.Ec s* C2 C3
ca[cglate strong-coupling ser?es of; . Estimates of the co- square B,~0559 0.998612  0.0002)
efficientsc; can then be obtained, as we shall see, from the E.~0722 0099847 -0.00143) 0.000012)

analysis of the combinations af,; corresponding to the
right-hand sidgrhs) of Egs.(30).

Another quantity which characterizes the low-momentum
behavior ofL(y) is the ratios=M2/Mé where M is the
mass gap of the theory, i.e., the mass determining the long-
distance exponential behavior G{x). The values* of sin

the critical limit are related to the zegg of L(y) closest to ) o )
the origin: Indeedy,= —s*. s* is in general different from ordinary series in3, we also considered and analyzed the

1; it is 1 in Gaussian-like mode[é.e., whenl(y)=0], such ~ corresponding series in the energy. The change of variable
as the largeN limit of O(N) ¢ models, while no exact re- from g to the energyE is easily performed by inverting the
sults are known at finité\. strong-coupling series of the enerfy= 8+ O(8°) and sub-

In the absence of a strict rotation invariance, one mayptituting into the original series in powers @. We con-
actually define different estimators of the mass gap havingtructed PA’s andDlog PA’s (and sometimes as further
the same continuum limit. On the square lattice one mayheck also IA’$ of both the series i and inE. While PA’s
consideru obtained by the long-distance behavior of the sideprovide directly the quantity at hand, inilog-PA analysis
wall-wall correlation constructed wits(x), or equivalently  one gets corresponding approximants by reconstructing the
the solution of the equatiol *(p;=iu,p,=0)=0. In  original quantity from the PA of its logarithmic derivative.
view of a strong-coupling analysis, it is convenient to useEstimates at criticality are then obtained by evaluating the
another estimator of the mass gap derived fram approximants of the8 series aj8., and those of th& series
5 at E., i.e., the value of the energy #.. In the cases in

Mg =2(costu—1), 3D which E. is not known from independent studies, its estimate
which has an Ordinary Strong-coup”ng expansion may be derived from the first real pOSitive Singularity de-
tected in the analysis of the strong-coupling serieg 0br
1 - i |, for N=2, expressed in powers &.
E 1+i§1 aif (32 In our analysis we considered quasidiagodam] PA’s
andDlog PA’s of the available series; more precisely, for an

(n has a singular strong-coupling expansion, starting withth-order series we considered those with
—InB). One can easily check thdd /n—1 in the critical

limit. Similar quantitiesM? andM? can be defined, respec-

tively, on the triangular and honeycomb lattices, as shown in n

Appendixes B and C. One may then consider the dimension- [,m= > =2, l+m=n-2. (33

less ratiosM2/M2 M?/MZ and M¥MZ respectively, on

the square, triangular, and honeycomb lattices, and evaluate

their fixed point limits*, which by universality must be the ag 5 final estimate from each analysis we take the average of
same for all of them. From the available strong-couplingine results from the quasidiagonal PA’s abtbg PA’s using
series ofMZ andM§ on the square latticeVl{ andMg on 4 available terms of the series. The errors we display are the
the triangular lattice, and§ and Mg on the honeycomb  square root of the variance around the estimate of the results
lattice, which are reported, fad=0,1,2, in Appendixes A, from all nondefective PA’s indicated by EB3).

B, and C, respectively, we computed the rddg/Mg up to By analyzing the above-mentioned seriedNat0,1,2 we
16th orderM?/MZ up to 11th order, an¥ /M up to 25th  gptained estimates of* and of some of the coefficients
order. For the Ising models, using the known exact result§z:i . The results foN=2, i.e., for theXY model, are reported

for M2, M7, andM#, (see next sectionwe obtained longer iy Table VII, and those foN=1,0 in Table VIIl. Universal-
series, i.e.,M2/Mg up to 20th orderM{/M§ up to 14th ity among the square, triangular, and honeycomb lattices is

triangular B:.~0.340 0.997@1) -0.0022)

E.~0.68 0.9986l1) -0.001G3) 0.000015)
honeycomb B.,~0.880 0.998810) -0.0013)
E.=0.77 0.9987%5) -0.00214) 0.000032)

M2=

order, andM /M up to 29th order. in all cases well verified and gives further support to our final
In order to determines* and the coefficientg; of the  estimates.
low-momentum expansion a&f(y), we analyzed the strong- For the XY model, the analysis of thE series provides

coupling series of the ratio®l2/MZ M?/M2 andM?2/M2  the most precise results on all lattices considered, leading to
and of the combinations afy; given in Eq.(30). Beside the the estimates
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TABLE VIIl. For N=1 andN=0 we reports*, c,, andc; as obtained from the analysis of the available
strong-coupling series iB on square, triangular, and honeycomb lattices. The analyses of the corresponding
energy series provide consistent but less precise results, and so we do not report their results.

Lattice Be s* Cy C3
N=1 square 3In(y2+1)=0.44069 . .. 0.999092)  -0.000943)  0.0000085)
triangular 7In3=0.27463 . . . 0.999125)  -0.000984) 0.000011)
honeycomb 3 In(2+3)=0.6584B. .. 0.999072)  -0.000933)  0.0000122)
N=0 square 0.3790522) 2 1.00012) 0.000168) 0.000001)
triangular 0.24092Q) @ 1.00024) 0.00035) 0.000003)

honeycomb  (2+2) Y?=0.5411%...°  0.99982) 0.0001@7) -0.000021)

8Reference 24.
bReference 9.

s*=0.99855), The analysis of the coefficients with i >3 becomes less
and less precise with increasimgbut it is consistent with

c,= —1.55)x 1073, very small values. For instance, we found in all cases
[cal=<]c- | | |

Ca=2(2)x 1075, (34) So, for all N considered, our strong-coupling analysis

leads to the following pattern of the coefficierts
The errors displayed are a rough estimate of the uncertainty. ]

For the Ising model, the two-point function in the scaling ci<cp<l for i=3. (38)
region is known analytically® We obtained a benchmark for This was also observed in models wie=3 by a study
our strong-coupling computation by computing numericallybased on largé¥ and strong-coupling calculatiofisAs a
the two-point function, following Ref. 28, and performing a consequence of Eq38), the value ofs* should be essen-

numerical integration of the results: tially fixed by the term proportional top)? in the inverse

§*=0.099196 33, propagator, through the approximate relation

. s*—1=c,. (39
c,=-0.793679& 10 °,
2 This equation is satisfied within the precision of our analysis

C4=1.095991 1075, for N=0,2, and well verified_bsy the exact results of the Ising
model, wheres* —1—c,=10"".
We can conclude that, like models wite 3, in the criti-
cal region the two-point Green'’s function fbr<2 is almost
The analysis of the available strong-coupling series on th&aussian in a large region aroupd=0, i.e.,|p”’Mg|=1,
square, triangular, and honeycomb lattices lead to the finand the small corrections to Gaussian behavior are essen-

c,=—3.12747% 10 7. (35

estimates tially determined by the [f?)? term in the expansion of the
inverse propagator.
s*=0.999083), Differences from Gaussian behavior will become impor-
tant at sufficiently large momenta, whe@(p) should be-
C,=—0.944)x 102, have as
B 1
c3=1.1(3)X 10 °. (36) G(p)~m, (40)

The agreement with the exact resul®$) is satisfactory. But . s _ 1 _
the cc?mparison shows also that the errors on thye strongvyheremﬁo' 7=z for N=0 and»=3 for N=1,2.
coupling estimates of* andc,, essentially calculated using
the variance of results from different PA’s, are underesti- IV. LOW-MOMENTUM BEHAVIOR
mated. We mention an earlier attempt to estinsitdor the OF THE ISING MODEL
Ising model by using shorter strong-coupling series on the
square and triangular latticé.

For the self-avoiding random walk model we find

So far we considered only the critical limit of the two-
point Green’s function. It has, however, been known for a

long time that the correlation functions of the two-
dimensional Ising model can be computed exactly for arbi-
trary values ofB. As a consequence we may in principle

check directly our computations for every individual
c,=0.136)x 1073, coordinate-space Green’s function. In practice we may per-
form our checks by exploiting a peculiar feature of the

|cs|=2x10°. (370  square lattice solution: For sufficiently large values of

s*=1.000Q2),
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\/x2+y2 (in units of the lattice spacinghe asymptotic be- length u; evaluated in a direction orthogonal to the above
havior is described 5§ defined line(see Appendix B In a Gaussian model one
would obtain
G(X,y)z[(l—22)2—422]1/4(1+22)1/2(1—22)f %%
27 27
3
(41) (49

Starting from the known solutich

w=2In(y1-z+22—\z)-2In(1-2)—Inz,  (50)

z(B)=tanhg. (42
. we checked that the relationsh{g9) is satisfied, since our
We recognize that the above res(tl) corresponds to the series foru, reproduces the expansion of

behavior of a nearest-neighbor quasi-Gaussian model whose

8 3 8
o Mtzz—(cosh\/——,ut—l)=—(cosh}-,u|—1)(cosré,u,+2).
e|¢1x+|</>2y 2 3

X
(1+2%)?—22(1—7%)(cosp, + cosp,) ’
where we have introduced the auxiliary variable

momentum-space propagator has the form 20 (1+72\21
=3 7 (51)
~ Z(B) 3\1-2z) z
G(p)zm[lJrg(p,ﬂ)], (43 _ .
P Finally on the honeycomb lattice two mutually orthogonal
whereg(p,8) vanishes at the polp?=—M?(B), inverse correlation lengths can be defined by the relation-
o1 ships
1+z
2(p)=[(1-2p—az e gy 8
z M2=(costE u,— 1),
9
and
(1+7%)2 2_8( J3 )
20 o\ — _ M;==| cosh=—un—1/, (52
MZ(B)= S~ (45) h=3] coshgan
A straightforward but yet unobserved consequence of thigvhereu, and u,, are defined from the large-distance expo-
observation is the algebraic relationship nential behavior, respectively, of wall-wall correlation func-

tions G (x) and GM")(x) defined in Appendix C. The
2(coshus—1)=4(costt ug—1)=M2(B), (46) Gaussian relationship is

where ug and wy are the coefficients of the long-distance 1
exponential decay true mass gap’J on the side and along Mf+2= §(Mﬁ+ 4)2, (53
the principal diagonal of the square lattice. We verified that

Eq. (46) is satisfied by our determinations of masses frommoreover, from duality with the weak-coupling phase of the
wall-wall correlations and is consistent with the known triangular lattice model we obtained

relationshig®
1 v2coshpz—1—-1

=Incoth3— 2. 4 =—1|In

Ms hB B ) (47) m=73 Irmﬂﬂﬂ (54)
We also checked that the residue at the gile —M? sat-
isfies Eq.(44). and we checked that the expansion of Mﬁ is consistent

Motivated by this piece of evidence we investigated thewith

possibility that the asymptotic behavior of the two-point
Green’s function of the Ising model on regular two- , 4 u
dimensional lattices will be always dictated by the structure Mp=7(2cosh3—1) “coths -4, (59

of the propagator
while Eq. (53) is satisfied to all known orders of the strong-

- Z(B) coupling expansion.
G(p)z—T[lJfg(p,ﬁ)], (48) In conclusion we may say that the quasi-Gaussian struc-
pT+MA(B) ture of the propagator, described by E48), is confirmed

wherep? is the massles@earest-neighbdGaussian inverse for all regular lattices and is a remarkable piece of evidence

propagator appropriate to the lattice at hand, a@,8)  in favor of adopting the quantitied?, M{, andMj, respec-

vanishes at the poip?=—M?2(B). This conjecture can be tively, as strong-coupling estimators of the mass gap, sharing

checked by considering the large-distance behavior of théhe property of a well-behavesl dependence and of a faster

correlations for the triangular and honeycomb lattices, as @approach to universality in models with quasi-Gaussian be-

function of the direction, and comparing the different avail- havior. It is probably worth observing that, singg0,3)

able mass definitions with each other and with exact resultsz0, Eq. (48) does not allow an immediate identification of
On the triangular lattice we can define a “true mass gap”the momentsm,;, and in particulaﬂ\/léqE M2, andZ(p) is

u; from the asymptotic behavior of correlations taken alongnot the standard zero-momentum wave function renormaliza-

a straight line of links and a wall-wall inverse correlation tion but corresponds to the on-shell definition.
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APPENDIX A: STRONG-COUPLING SERIES ON THE SQUARE LATTICE

In order to enable the interested readers to perform their own analysis, we present most of the series used to derive the
results presented in this paper fé=0,1,2. This appendix is devoted to the square lattice, the following ones to the triangular
and honeycomb lattices.

1.N=0

For the self-avoiding random walk on the square lattice, longer seridéZotan be obtained from the strong-coupling
series ofy andm, presented in Ref. 24. We report our seriesMﬁ for the sake of completeness:

M&=pB"1-4+3B+25°+4p"—108°+485°— 12887+ 3683° — 8225°+ 20083+ 432051+ 1033632 2280033

+ 5631284 1299281+ 32708(B1°— 76841431+ 193844(B8— 46042548°+ O(8%9), (Ala)

Mi=p"1—4+38+2p%+4p5%—8B°+308°— 528"+ 1408% - 2345°+ 5968°— 10105 1+ 2638512~ 464453+ 126343
— 23208+ 0(B9), (Alb)

va= BB+ BB EBO 3B B0+ BT 1987+ 4 59— 103610+ % 11 539572+ 1468515 364981+ B 1S
_ 2566%16"‘ 534;225ﬂ17_ 15497$18+ 309{35629319+ O(ﬁZO) . (A]_C)

2.N=1

For the Ising model we give strong-coupling series which cannot be reproduced using known exact results, which are
reported in Sec. V:

2 _ n-1 10 134 53, 76 55, 19394 7 8, 207032859 704 510, 233105490328,11 20656 512 | 440148292,13
MG_B _4+?ﬂ+ﬁﬁ +mﬁ + 47253 _32.3 + 187113 _TIB + “638512875 745 B + 739720

_ 256064 H14_, 670306901872438,15_ 5223334416 19201695258726054417_ 4476104704518 ; 13352286036455750562%19 2
189 + 162820783125 4725 B + 7795859096025 93555 B + 1531329465290625 B +O(ﬁ 0)!

(A2a)

_1p-1,3,5 67 3 19 5 9697 7 8_ 3399619 , 44 10 8705774291511 4514 12 3986722469,13_ 68668 14
V4= 168 "t 3t 2Bt 358"t 7568°+ 378008 T 28 342 B T3 + To7702575 a5 B~ 14594580 189 B

_115832206185781,515 752894 »16__ 21607992820912952517_, 3410071618, 7177226014969106140419 2
l302566265000% + 4725 7795859096025 % + 93555 + 6125317861162500 ﬁ +O(ﬁ O) (AZb)
3.N=2

_ 3np3, 1 p5_ 31 ,7_ 731,59 29239 11 265427 H13_ 7518048715 6506950039517  1102473407093,19_ 6986191770643,21
E= 18+ Zﬁ + 3 :8 48:3 12018 1440 IB 5040 B 645120 26127360 2612736000 14370048000

+0(B%), (A3a)

X=1+ 4+ 1287+ 3457+ B8E*+ 530 65+ 52980 + 1287 + 7 O+ 853830 1 20gs0g0y aepszaapy 1asaze0iz

8437580713, 6511729891714 , 66498259799,15 , 1054178743699,16_, 39863505993331517 , 19830277603399,18 , 8656980509809027,19
+ 560 IB + 20160 B + 96768 18 + 725760 IB + 13063680 i; + 3110400 % + 653184000

2985467351081077,20_, 81192740868429658%21 2
+ 108864000 B + 14370048000 ﬁ +O(IB 2)1 (A3b)

2_np-1 7 41 n3 4, 15 p5_ 25 p6, 9491 7 _ 431 8 2064119 _ 17803 p10_ 4112201911, 876403 512 1413373319,13
ME=B""—a+1p+ B0~ pir B B°— 50+ 5 7 1380+ 5as 7 1510 + -

720 2880 360 241920 1728 1935360
_ 1500684114, 337093786457,15_ 4777620367,,16_; 17847363647,17_ 68513340691,18_ 1613371762708272}19 2
181440 + 130636800 1036800 + 1741824000 + 3732480 344881152000 B + O(ﬁ 0)1 (ASC)

2_ p—-1 7 41 H3 4 7 5 29 n6 281 7 193 »8 149 9 5141 10 6120227 11, 24907 p12 78857933313
M=B "—4+38+ 5B~ B+ 6B~ 5B + 78 — 18 B — 328808 — 720 B — 3418208 T+ 540 B 5806080

95728039 ,14_ 6306996931315 16
+ 362880 — “T30636800 BT O(B7), (A3d)

_1p-1, 3, 7 41 3 49 5 1 p6_ 8749 57, 67 p8_ 12254959 2153 510, 24933519711 40951 12, 138973221713
Va=16B T 1 t3:61 1 2568°+ 28" — 115208 T 26 46080 B 144 B+ 3570720 320 BT 30965760

55582271514 _ 3706449404743,15, 625298542916, 75252500337407,17__ 202521546511,18 ;, 16363665420424799%19 2
+ 103680 2090188800:2-3 + 2903040 B + 27869184000 12441600 ]ﬁ + 5518098432000 E +O(B O)

(A3e)
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APPENDIX B: STRONG-COUPLING SERIES ON THE TRIANGULAR LATTICE

The sitesx of a finite periodic triangular lattice can be represented in Cartesian coordinates by

R . R . . (143
X(|1!|2):|1771+|27’2! Ilzl,...,l_l, |2:1,...,L2, 771:(1,0), nNr= 5,7 . (Bl)
In order to define a mass-gap estimator, one may consider the wall-wall correlation function
V3 .
GEW)<7|2 :|2 G(l1m1+1272). (B2
1
An estimatorw, of the mass gap can be extracted from the long-distance behav@ﬁ’”&(fx); indeed forx>1
G (x)xe™ X, (B3)
In view of a strong-coupling analysis, it is convenient to use another estimator of the mass gap deriveg:from
8 3
M2= §( costh——,Lt—1>. (B4)

More details can be found in Ref. 6.
In the following we show, foN=0,1,2, some of the strong-coupling series used in the analysis of th¢ @models on
the triangular lattice presented in this paper.

1.N=0

For the self-avoiding random walk on the triangular lattice, longer serieﬂ;éfzan be obtained from the strong-coupling
series ofy andm, presented in Ref. 25:

G=3B AT RAT AR REH DB T B T B0+ 22857 + 190 0+ 45250+ 15510+ S22 1146054057
+ 6313184B13+ O(B]A)’ (BSa)
M2=28"1—4+ LB +4p82+ 1 g3+ 38 g%+ 41 g5+ 20586 1 18887+ 2213 g8 1. 4130989 1 331818104 O(glY)  (B5D)
v4=2aB THEH R I I I I T T BT+ T B+ PO g B gy oG
+ O(B14) (B5C)

2.N=1
For the Ising model we give strong-coupling series which cannot be reproduced using known exact results:

1 32 2 928 3, 64 p4_ 23944 H5_ 1648 H6 5008 7, 106864 H8 , 6459424 5,9  18680128,10__ 200433692584,11
3:8 —4+3 ﬁ“r :8 1353 + 9 B + 2835 :8 135 :8 + 141753 + 945 ﬁ + 280665 42525 1915538625
215199972812, 35136345008,13 14
+ 1403325 B + 54729675 +O(ﬂ )1 (Bea)

_ 1 p-1,3_2 124 34 4 2993 954 437 96 313 7 19781 o8 403714 59 4 3986522310_ 354526855073311
Ug= ﬂﬂ +Z+§ﬁ+518 135,8 gﬁ 5e7oﬁ +F5,3 +14175ﬂ 945 ,3 +280665,8 + “4z525 3831077250

960767707,,12_ 1809044463713 14
T 71403325 T 754729675 +O(ﬁ ) (BGb)

3.N=2

3 54 6_ 81 57 3769 8 165161 9 7821 10_ 2016037111 27984359512 8728981913
E= B+2B+zﬁ +5/8+ B B 16 ﬁ ,3 ﬁ 8640 T T 4320 ~ T 5040

- USSR SRS, O(51), 7

X= 1+ 6,8+ 30182+ 13&33_‘_ 570B4+ 230w5+ 18383[36+ 27%657[374_ 7776805BS+ 143;(5)3641 9+ 208]?29(())287B10+ 8995;205389B11

3199713875,12 , 65793037351,13, 165647319078571,14_, 460084547902384%15 16
+ 144 B + 840 B + 604800 B + 4838400 % +O(ﬁ )1 (B7b)

2 _2p-1 11 2 143 34 4_ 391 5_ 5219 n6__ 5296 7 _ 33287 p8_ 6797299 2052143 ,710_ 1436935039511
MG_E,B _4"'?,3"'6,3 +1g ﬂ ﬁ ,3 108,8 ,3 180 ﬁ ~ 71296 ﬂ ~ 71080 7362880

4952351659512 8799231994913 14
~ 1360800 a3saseo0 B+ O(B™) (B70)
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2_2p-1 11 2, 283 53, 49 p4_ 53 o5 8425 H6_ 990757 7 _ 45549 p8  16833083,9 35865709510 11
Mt_ﬁﬁ _4+?ﬂ+6,3 +EB +?B _§,3 - 216,3 78640 B ~ 7160 ,8 ~ 725920 ,3 ~ 725920 B +O(ﬂ ),
(B7d)
_ 1 p—1,3,11 302, 143 3 4 p4_ 103 p5_ 827 H6_ 6271 7 _ 39709 o8 _ 12438139 , 85031 p10_ 741356239511
U4—2_4,8 +Z+RB+§ﬂ +m,3 +§ﬂ _11523 _1728ﬂ - 7203 ~ 7960 ,8 720736 + 3456,8 ~ 75806080

— 500 B~ Megerssass B+ O(BY). (B7¢)

APPENDIX C: STRONG-COUPLING SERIES ON THE HONEYCOMB LATTICE

The sitesx of a finite periodic honeycomb lattice can be represented in Cartesian coordinates by

33

;=;,+p7;p1;,=|1;71+|2;]21 |1=1! et !LZI.! |2=1! . 'L21 p=011! ;712 5!7)! ;72:(0a\/§)1 7;p=(1!0)-

(CY
In order to define a mass-gap estimator, one may consider the wall-wall correlation functions
Gy"(31)= 2 Gllim+1272), (€2)
2
with the sum running over sites of positive parity forming a vertical line,
GH"(331)= 2 GL(1 =215 my+Izmot Py (C3
2

where the sum is performed over all sites having the same coordinate
Estimatorsu, and u,, of the mass gap can be extracted from the long-distance behavior, respectiv@W@f) and
G\ (x); indeed forx>1
G (x)e X, G (x) e #nX, (C4

In view of a strong-coupling analysis, it is convenient to use the following estimators of the mass gap derived, faoih
M-

3
2= S(costtin 1), M= 8| cost 1. cs

More details can be found in Ref. 6.
In the following we show, foN=0,1,2, some of the strong-coupling series used in the analysisf @(models on the
honeycomb lattice presented in this paper.
1.N=0

For the self-avoiding random walk on the honeycomb lattice, longer serié€.afan be obtained from the strong-coupling
series ofy andm, presented in Ref. 24:

M&=48"1—4+5B+8p°— 3 B7+245%— 328°+ 96310 52 g1+ 320812 206513+ 4166 119255+ 28483%°
— 13304 8171 5768318 27284 8194 20024320 3852(8%1+ 633683%2— 100104823+ 18335324 — 1032744325+ 6210968%°
— 309:?176B27+ 179116$28+ O(ﬂZQ), (C6a)

MZZ%B*1_4+%IB_’_%BS+%B9+%ﬁlO_4Bll+BBlz+%GE13+8314+%B].5+161816+%Sﬁl7+36ﬂls+%3ﬁ19+%3320
152 2aggy S0 2G4 O(g7), (con
vam BB B3 BT B B0 6510+ B 3561 B 5104 4951 B 51530710 440 T 195110

349 »19_ 1087 520, 8001 p21_ 15883 p22_, 17989 n23_ 19691 24, 72668 p25_ 112563 26 536981 527 28 29
_T,B_T,B"'Tﬁ_zlg"'zﬂ_zﬁ"'sﬁ_ 2B+ 63_11035$+O(ﬁ)-

(C69
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2.N=1

2 _4p,p-1 28 124 3, 8576 p5_ 14692 7 | 53386169  90947891648,11 12, 1583805616513 14
MG_§:8 _4+? _Fsﬂ +2835:3 - 2025,3 + Zgoees B — 1915538625:8 _32,3 + 818525 +96,3

_406965884456828,15_ 608 16+ 360870502928894432,17__ 1219136518 __ 649374045164788458B19+ 624064 20
488462349375 15 B 116937886440375 945 ﬁ 656284056553125 75 B

+ 117922881438802621537p21_ 584326524822 489104711629365748938567%234_ 40527872364?824‘{‘ 102476405218239758657641625

40343570821929375 155925 605758715891269565625 2837835 4754777989727390625
_1697456183968,26_ 9501559355581792282311505910427 | 54851554589151328,28 2
3378375 1693960980510228821015625 B’Q + 32564156625 % + O(B 9)1 (C7a)

_ 11,3, 7 n_ 31 3, 536 p5_ 367357 667327 ,9_ 568424322811 12 5165551 513_  pld 93643468635793,15
V4= 138 "t it 368 5408 T 28358 — 51008 T 561330 10155386250 T 28T 75185258 687"+ Tos384939750

_ 1042 16_ 27120807726815398,17_, 643196 518, 8631275036275206])p19__ 258424 520, 3362988532584512166hH21 | 197339967822
15 B % + + 75 ﬂ + 3 +

116937886440375 945 187509730443750 40343570821929375 155925

_684078631877141440327854823__ 106606055168, 24+ 2822714199832048436255%25_‘_ 44788447114,26__ 4027977620329265232345839744427
605758715891269565625 2837835 :8 4754777989727390625 482625 1693960980510228821015625

- SRR+ O(8%), (7
3.N=2

—nR_ 123 75 3957, 1173 p9_ 473243 511, 6293627 ,13_ 346093553515 23497364693,17__ 64962730739719,19
E_B ZB +3ﬂ 48B + 40 B 4320 B + 15120 215040 B + 3732480 2612736000

+ 474090720713083,21 1641257090013388012323_,’_ 4298442033638083838%25_ 113697332949657864065%274_ 173339874668552258837835329
4790016000 4138573824000 26900729856000 1757514350592000 65906788147200000

+0(8%), (C8a

_ 2, 213 4 5, 95 56, 1045 57 |, 403 8, 6919 H9 , 14149 510, 68273 11, 138307 p12 , 9157051 513
X_1+3,3+6,3 +7,3 +18,3 +31ﬁ +7/8 +1_6ﬂ +T,B +4_0,3 + %0 /3 + 88 ,3 + 380 B + “Tooso

4 42124273514 13183321 l5+ 130286011 16+ 58701184637, l7+ 246444397309,18__ 12790078293739,19_ 79551567889,20
40320 645120 B 161280 :8 8709120 B 43545600 870912000 13608000

+ 154021837152677 21+ 1452164594591761,22_ 39363436878616819723__ 466095584838612}324+ 1091569117492587001A25
1916006400 B 28740096000 1379524608000 31352832000 8966909952000

+ 4198933187175007694%26_ 848131877664138632736/H27 828979117543657737823284_ 522621812080476396209265329
62768369664000 1757514350592000 329533940736000 263627152588800000

2170172219975634961118615930 31
+ B R s basss00 B0+ O( 8%, (C8b

2 _4p-1 10 13 3, 59 5 6_ 3347 7 35 8 238009,9_ 493 p10_ 1939222711, 4388 p12, 1467214247513
MG—E,B _4"‘?,3_?,8 +1_2,8 _2,3 - 270,3 +F,3 + 5as0 _ﬁﬁ T 7181440 + 55 ,3 + “4384560

_ 384676714 __ 24587958172%15_,{_ 362651221 16+ 6669774367471,17_ 4538548787318 540182482471954%19_{_ 68257961593,20
12960 195955200 362880 1306368000 10886400 258660864000 3483648

+ 25800370453372643%21 362403210060397322_ 505477873981976483&23_’_ 7279350149426377%244_ 29068741280927463487927825

3103930368000 3919104000 15692092416000 172440576000 237264437329920000
_20215625337255320614526__ 4373886424554921655295409327_, 4505482867835570266456428 2
108637562880000 9490577493196800000 ?g + 5649153269760000 B + O(B 9)1 (C8C)

2_4p-1 10 13 p3 55 p5_ 1 p6_ 7429 7 _ 2 p8_ 2821399 43 n10__ 2614549111, 613 p12, 2158358071513 224587 514
Mi=$87"—4+ 88— ¥ %+ B0 15— R8T § 50+ BRI £ i+ 881+ B

3 540 6480 216 181440 540 4354560 77760

_ 34483981711%154_ 1698299 16+ 83508386555111817_,’_ 63590671 »18_ 3061458683224637,19_ 1894590323 20+ 3942727616358526 721

195955200 272160 1306368000 13063680 129330432000 52254720 443418624000
5154851721889,22_ 530303053342578540523_ 174214610003233,24 25
+ 23514624000 15692092416000 147806208000 ig + O(B )1 (Csd)

_ 1 p-1,3. 57 13 p3, 59 p5, 1 p6_ 5507 p7_ 71 8 495049 59 |, 961 10_ 4783798711 43397 12, 4159541927513
V4= 128 " T3t 2B~ 12aB 19387+ 58"~ 13208  — 968" 1 1036808 T+ 2888 2903040 2880 B+ 69672960

+ 11139143 14_ 643769125241,15_ 1093077841 16+ 1325855975067%17_’_ 148926884453,18_ 1148899892904427,19_ 6289014713053,20
207360 3135283200 5806080 20901888000 174182400 591224832000 1393459200

+ 353359211049440272}214_ 202048769925301p22_  2704447377391331535H23_ 27888046430795169ﬁ24+ 5478176141436511951802925
49662885888000 8957952000 83691159552000 2759049216000 345111908843520000

71550486388479506014526__ 105488224334074260772339Q0327__ 14070662254631258116385828 29
+ 1738201006080000 13804476353740800000 90386452316160000 7% +O(B ) (Cse



54 STRONG-COUPLING ANALYSIS OF TWO-DIMENSIONA . .. 7317
IM. Campostrini, A. Pelissetto, P. Rossi, and E. VicariAro-  1%J. Kim (unpublishedl
ceedings of the conference Lattice, 98elbourne, 1995Nucl. 16|, Biferale and R. Petronzio, Nucl. PhyB328, 677 (1989.
Phys. B (Proc. Supp). 47, 755 (1996]; M. Campostrini, A.  ’R. Kenna and A. C. Irving, Phys. Lett. B51, 273(1995; and
Cucchieri, T. Mendes, A. Pelissetto, P. Rossi, A. D. Sokal, and (unpublisheg

E. Vicari, ibid. [47, 759 (1996)]. 18p Butera and M. Comi, Phys. Rev.&, 11 969(1993.

2M. Liischer and P. Weisz, Nucl. PhyB300, 325(1988. 19p Butera and M. Comi, Phys. Rev.3®, 3052(1994.

3p. Butera, M. Comi, and G. Marchesini, Phys. Re¥B 11494  2°M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Nucl.
(1990. Phys.B459, 207 (1996.

4T. Reisz, Nucl. PhysB450, 569 (1995. 21D, L. Hunter and G. A. Baker, Jr., Phys. Rev.7B3346(1972

5p. Butera and M. Comiunpublishedl and references therein.

5M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. RevZ2A. J. Guttmann, inPhase Transitions and Critical Phenomena
D 54, 1782(1996. edited by C. Domb and J. Lebowit#Academic Press, New

"R. Balian and G. Toulouse, Phys. Rev. L&®, 544 (1973. York, in press, Vol. 13.

8J. Cardy and H. Hamber, Phys. Rev. Let, 499 (1980. 23, J. Guttmann and G. S. Joyce, J. Phys5,A 81 (1972; D. L.

9B. Nienhuis, Phys. Rev. Letl9, 1062(1982; J. Stat. Phys34, Hunter and G. A. Baker, Jr., Phys. Rev.4B, 3808(1979.
731(1984. 2.0, Guttmann, J. Phys. 20, 1839(1987).

0y, s. Dotsenko and V. A. Fateev, Nucl. Phg240, 312(1984.  2°A. J. Guttmann, J. Phys. &2, 1989(1989.
113, M. Kosterlitz and D. J. Thouless, J. Phys6C1181(1973; J.  ?°P. G. de Gennes, Phys. LeB8A, 339(1972.

M. Kosterlitz, ibid. 7, 1046(1974). 27V. Matveev and R. Shrock, J. Phys. 29, 803 (1996.

12C. Itzykson and J. M. DrouffeStatistical Field TheoryCam-  28T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Baruch, Phys. Rev.
bridge University Press, Cambridge, England, 1989 B 13, 316(1976.

13M. Hasenbush, M. Marcu, and K. Pinn, Physica2@8 124  2°M. E. Fisher and R. J. Burford, Phys. Re466, 583 (1967).
(1994. 30H. Cheng and T. T. Wu, Phys. Rel64, 719 (1967).

Y¥R. Gupta and C. F. Baillie, Phys. Rev. 4%, 2883(1992. 313, Stephenson, J. Math. Phys.1009 (1964).



