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Critical behavior of frustrated spin models with noncollinear order
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We study the critical behavior of frustrated spin models with noncollinear order, including stacked triangular
antiferromagnets and helimagnets. For this purpose we compute the field-theoretic expansions at a fixed
dimension to six loops and determine their large-order behavior. For the physically relevant cases of two and
three components, we show the existence of a stable fixed point that corresponds to the conjectured chiral
universality class. This contradicts previous three-loop field-theoretical results but is in agreement with experi-
ments.
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The critical behavior of frustrated spin systems with no
collinear or canted order has been the object of intens
theoretical and experimental studies~see, e.g., Refs. 1 and 2!.
In spite of these efforts, the critical behavior of these syste
is still unclear, with field-theoretic~FT! renormalization-
group ~RG! methods, Monte Carlo simulations, and expe
ments obtaining different results.

In physical magnets noncollinear order is due to frust
tion that may arise either because of the special geometr
the lattice, or from the competition of different kinds of in
teractions. Typical examples of systems of the first type
three-dimensional stacked triangular antiferromagn
~STA!, where magnetic ions are located at each site o
three-dimensional stacked triangular lattice. Examples
ABX3-type compounds, whereA denotes elements such a
Cs and Rb,B stands for magnetic ions such as Mn, Cu, N
and Co, andX for halogens as Cl, Br, and I. At the chira
transition, they may be modeled by using short-rang
Hamiltonians forN-component spin variables defined on
stacked triangular lattice as

HSTA52J (
^ i j &xy

sW i•sW j2J8 (
^ i j &z

sW i•sW j , ~1!

where J,0, the first sum is over nearest-neighbor pa
within triangular layers (xy planes!, and the second one i
over orthogonal interlayer nearest neighbors. The condi
N>2 is essential to have noncollinear ordering. In these s
systems the Hamiltonian is minimized by noncollinear co
figurations, showing a 120° spin structure. Frustration is p
tially released by mutual spin canting, and the degenerac
the ground-state is limited to global O(N) spin rotations and
reflections. As a consequence, at criticality there is a bre
down of the symmetry from O(N) in the high-temperature
phase to O(N22) in the low-temperature phase, implying
matrixlike order parameter. Frustration due to the comp
tion of interactions may be realized in helimagnets wher
magnetic spiral is formed along a certain direction of t
lattice ~see, e.g., Ref. 1!. The rare-earth metals Ho, Dy, an
Tb provide examples of such systems.

The critical behavior of two- and three-component fru
trated spin models with noncollinear order is controvers
Many experiments~see, e.g., Refs. 1 and 2! are consistent
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with a second-order phase transition which should belong
a new~chiral! universality class. As shown experimentally
Ref. 3 for anXY STA, chiral and spin order occurs simulta
neously. On the other hand, the most recent FT calculat
suggest that these systems undergo~weak! first-order transi-
tions that effectively appear as second-order ones in exp
mental work. Three-loop perturbative calculations at fix
dimensiond53 ~Ref. 4! and within the framework of thee
expansion5 indicate a first-order transition, since no stab
chiral fixed points are found forN52 and N53. These
three-loop analyses show the presence of a stable chiral fi
point only for N.Nc with Nc.3: Nc53.91 ~Ref. 4! and
Nc53.39 ~Ref. 5!. However, one may think that the ob
served disagreement is due to the shortness of the avai
series.

Similar conclusions are reached in studies based on
continuous RG approach.6 Note, however, that the practica
implementation of this method requires an approximat
and/or truncations of the effective action, such as the lo
potential approximation or the first few terms of the deriv
tive expansion, which are expected to be effective when
critical exponenth!1.

Monte Carlo simulations apparently give contradicti
results.1,7,8 Simulations ofHSTA ~see, e.g., Ref. 1, and refe
ences therein! support a second-order phase transition w
different critical exponents, although the numerical resu
are not in quantitative agreement among the different
thors. Simulations of modified lattice spin systems7 which,
according to general universality ideas, should belong to
same universality class of the Hamiltonian~1!, show instead
a first-order transition.

For sufficiently large values ofN, all theoretical ap-
proaches predict a second-order phase transition, but t
are still substantial discrepancies between Monte Carlo
three-loop FT calculations~see the discussion of Ref. 9 fo
N56).

All these considerations show that a satisfactory theor
cal understanding has not yet been reached. It is not c
whether experiments are observing first-order transitions
disguise or field theory is unable to describe these ra
complex systems.

FT studies of systems with noncollinear order are ba
on the O(N)3O(M ) symmetric Hamiltonian10,1
©2001 The American Physical Society14-1
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H5E ddxH 1

2(a
@~]mfa!21rfa

2#1
1

4!
u0S (

a
fa

2D 2

1
1

4!
v0(

a,b
@~fa•fb!22fa

2fb
2#J , ~2!

wherefa (1<a<M ) are M sets ofN-component vectors
We will consider the caseM52, that, forv0.0, describes
frustrated systems with noncollinear ordering such as STA
Negative values ofv0 correspond to simple ferromagnetic
antiferromagnetic ordering, and to magnets with sinuso
spin structures.10

For N52, which is the case relevant for frustrated tw
component spin models, ane-expansion analysis indicate
the presence of four fixed points: the Gaussian one, anXY
fixed point, an O~4!-symmetric, and a mixed fixed poin
Using nonperturbative arguments,11 one can show that the
XY fixed point is the only stable one12 among them. How-
ever, the region relevant for frustrated models,v0.0, is out-
side the domain of attraction of theXY fixed point, which
would imply a first-order transition. Nevertheless, it is s
possible that other fixed points are present in the regionv0
.0, although they are not predicted by thee expansion. For
N53, one may easily show the existence of an O~6! fixed
point for v050, which is expected to be unstable.1 Accord-
ing to the three-loop analyses of Refs. 4 and 5 no other fi
points are found forN53, which would imply that the tran-
sition is of first order as well.

In order to investigate the existence of new fixed poin
we have considered the fixed-dimension perturbative
proach, extending the three-loop series of Ref. 4 to six loo
As we shall see, the results of our six-loop analysis are so
how surprising, contradicting most of the earlier FT work
Indeed, the analysis of the longer series provides a ra
robust evidence for the existence of a different stable fi
point in the XY and Heisenberg cases, with critical exp
nents that are in agreement with the experimental result

In the fixed-dimension FT approach one expands in po
ers of the quartic couplings and renormalizes the theory
introducing a set of zero-momentum conditions for the tw
point and four-point correlation functions. All perturbativ
series are finally expressed in terms of the zero-momen
four-point renormalized couplingsu and v normalized so
that, at tree level,u'u0 andv'v0. The fixed points of the
theory are given by the common zeros of theb functions
bu(u,v) andbv(u,v). In the case of a continuous transitio
when j→`, the couplings u,v are driven toward an
infrared-stable zerou* ,v* of the b functions. On the other
hand, the absence of stable fixed points is usually consid
as an indication of a~weak! first-order transition.

Since FT perturbative expansions are asymptotic, the
summation of the series is essential to obtain accurate
mates of the physical quantities. For this purpose we stud
the large-order behavior of the expansion inū
53u/(16pR2N), where RK[9/(81K), and v̄53v/(16p)
at fixedz[ v̄/ū. For z[ v̄/ū fixed andM52, the singularity
of the Borel transform closest to the origin,ūb , is given by
14041
s.

al

d

,
p-
s.
e-
.
er
d

-
y
-

m

ed

e-
ti-
d

1

ūb

52aR2N for 4R2N.z.0, ~3!

1

ūb

52aS R2N2
1

2
zD for z,0, z.4R2N ,

where a50.14777422 . . . and RK59/(81K). Moreover,
we find that forz.2R2N the Borel transform has a singula
ity on the positive real axis, which, however, is not the clo
est one forz,4R2N . Thus, for z.2R2N the series is not
Borel summable.

In order to determine the fixed points we use the sa
method applied in Ref. 13 to the analysis of the RG functio
of the cubic model. We resume the perturbative series
means of an appropriate conformal mapping14 that takes into
account the large-order behavior of the perturbative serie
fixed z and turns the original series into a convergent
quence of approximations. To understand the systematic
rors we vary two different parameters,b anda, in the analy-
sis. We apply this method also for those values ofz for
which the series is not Borel summable. Although in th
case the sequence of approximations is only asymptoti
should provide reasonable estimates as long asz,4R2N ,
since we are taking into account the leading large-order
havior.

In Figs. 1 and 2 we report our results for the zeros of
b functions, obtained from the analysis of thel-loop series,
l 53,4,5,6. For eachb function we consider 18 different ap
proximants withb53,6, . . . ,18 anda50,2,4 and we deter-
mine the lines in the (ū,v̄) plane on which they vanish
Then, we divide the domain 0<ū<4 and 0< v̄<5 into
40340 rectangles, marking those in which at leasttwo ap-
proximants of eachb function vanish. No fixed point is ob
served at three loops, consistently with Ref. 4. As the nu
ber l of loops increases, a fixed point—quite stable w
respect tol—clearly appears. This is related to the appe
ance of a second upper branch of zeros ofb ū(ū,v̄). For N

FIG. 1. Zeroes of theb functions forN52 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb ū(ū,v̄) and

b v̄(ū,v̄), respectively.
4-2
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52 ~resp.,N53) such zeroes appear in 15, 45, 80, and 95
~resp. 45, 70, 95, and 100 %! of the approximants we con
sider for l 53,4,5,6. Clearly, the set of zeros is increasing
stable asl increases. We obtain a fixed point for

ū* 51.9~1!, v̄* 54.10~15!, for N52, ~4!

ū* 51.8~1!, v̄* 53.00~15!, for N53, ~5!

where the error bars have been set quite conservatively
zeros of the approximants with 3<b<18 and 0<a<4 lie
within the reported confidence interval. We stress again
for l 56 essentially all approximants show the presence
such fixed point. Its position is also stable with respect to
number of loops: an equivalent estimate is obtained fol
55. Notice that the fixed points belong to the region
which the series are not Borel summable, but still sati

FIG. 2. Zeroes of theb functions forN53 in the (ū,v̄) plane.

Pluses (1) and crosses (3) correspond to zeros ofb ū(ū,v̄) and

b v̄(ū,v̄), respectively.
14041
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v̄* /ū* ,4R2N . Thus, we expect our resummations to be
liable, and the stability of the results with respect tol con-
firms it.

We then compute the eigenvalues of the stability mat
They vary significantly with the two parametersa andb and
turn out to be complex in most of the cases. Nonetheless
sign of the real part of the eigenvalues is always positi
implying the stability of the fixed points. A reasonable es
mate of the exponentv is, however, impossible.

Figures 1 and 2 suggest also the presence of a se
fixed point for smaller values ofū, sayū'1, and thus, a RG
flow diagram of the form reported in Fig. 3. Beside the sta
chiral fixed pointC, an additional unstable~antichiral! oneA
should be present. In our graphs, its position is rather imp
cise, likely due to the fact that the relevantū andv̄ belong to
the regionv̄/ū.4R2N , where resummation methods shou
be less effective.

Having established the existence of a stable fixed po
we compute the critical exponents from the correspond
six-loops series, following Ref. 13. The results are in su
stantial agreement with the experimental estimates, see T
I.

FIG. 3. RG flow in the (u,v) plane forN52,3.
1.
TABLE I. Critical exponents forN52 andN53. Our results are labeled by FT. Experimental results are reviewed, e.g., in Ref.

N g n b a

2 CsMnBr3 1.10~5! ~Ref. 15! 0.57~3! ~Ref. 15! 0.25~1! ~Ref. 15! 0.39~9! ~Ref. 16!
1.01~8! ~Ref. 17! 0.54~3! ~Ref. 17! 0.22~2! ~Ref. 17! 0.40~5! ~Ref. 18!

0.24~2! ~Ref. 19!
CsNiCl3 0.243~5! ~Ref. 20! 0.37~8! ~Ref. 21!

0.342~5! ~Ref. 22!
CsMnI3 0.34~6! ~Ref. 21!
FT 1.10~4! 0.57~3! 0.31~2! 0.29~9!

3 VCl2 1.05~3! ~Ref. 23! 0.62~5! ~Ref. 23! 0.20~2! ~Ref. 23!
VBr2 0.30~5! ~Ref. 24!
RbNiCl3 0.28~1! ~Ref. 25!
CsNiCl3 0.28~3! ~Ref. 20! 0.25~8! ~Ref. 21!

0.23~4! ~Ref. 22!
0.28~6! ~Ref. 26!

FT 1.06~5! 0.55~3! 0.30~2! 0.35~9!
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We also compare the six-loop results with the critical e
ponents that we computed toO(1/N2) in the framework of
the large-N expansion. For example,

n512
16

p2

1

N
2S 56

p2 2
640

3p4D 1

N21OS 1

N3D . ~6!

We find n50.858(4) for N516 and n50.936(2) for N
532, which compare reasonably with the estimates that
obtains from Eq. ~6!, i.e., n50.885 for N516 and n
50.946 forN532.

For 5&N&7 the picture obtained from the analysis of t
6-loop series is less clear. We do not find fixed points t
are sufficiently stable with respect to the number of loo
These results may be explained by the traditional picture
which there is a particular value ofN, Nc'6, such that for
N.Nc there is a stable fixed point smoothly related to t
large-N and small-e chiral fixed point. ForN,Nc a first-
s

w
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order transition is usually expected. However, our results
N52,3 indicate that the situation is more complicated a
that a second value 3,Nc2,Nc may exist such that forN
,Nc2 the system shows again a chiral critical behavior w
a fixed point unrelated to the small-e chiral fixed point.

In conclusion, the extension to six loops of the FT expa
sions solves the apparent contradictions between field th
and experiments. We find that different stable chiral fix
points exist for two- and three-component systems. The
timated exponents are in substantial agreement with exp
ments, whose conclusions on the nature of the phase tra
tions are thus confirmed. However, we note that first-or
transitions are still possible for systems that are outside
attraction domain of the chiral fixed point. In this case, t
RG flow runs away to a first-order transition. This may e
plain the Monte Carlo results of Ref. 7 where a first-ord
transition was clearly found for modified lattice systems.
.
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