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Critical behavior of the three-dimensional XY universality class
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We improve the theoretical estimates of the critical exponents for the three-dimensionalXY universality
class. We finda520.0146(8), g51.3177(5), n50.671 55(27), h50.0380(4), b50.3485(2), and d
54.780(2). Weobserve a discrepancy with the most recent experimental estimate ofa; this discrepancy calls
for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo
simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models
~with suppressed leading scaling corrections! are selected by Monte Carlo computation. The critical exponents
are computed from high-temperature expansions specialized to these improved models. By the same technique
we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is
extended analytically by means of approximate parametric representations, obtaining the equation of state in
the whole critical region. We also determine the specific-heat amplitude ratio.
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I. INTRODUCTION

In the theory of critical phenomena continuous phase tr
sitions can be classified into universality classes determ
only by a few properties characterizing the system, such
the space dimensionality, the range of interaction, the n
ber of components of the order parameter, and the symm
Renormalization-group~RG! theory predicts that, within a
given universality class, critical exponents and scaling fu
tions are identical for all systems. Here we consider
three-dimensionalXY universality class, which is characte
ized by a two-component order parameter,O(2) symmetry,
and short-range interactions.

The superfluid transition of4He, whose order paramete
is related to the complex quantum amplitude of the heli
atoms, belongs to the three-dimensionalXY universality
class. It provides an exceptional opportunity for an expe
mental test of the RG predictions, essentially because of
weakness of the singularity in the compressibility of t
fluid, of the purity of the samples, and of the possibility
performing the experiments, such as the Space Shuttle
periment reported in Ref. 1, in a microgravity environme
thereby reducing the gravity-induced broadening of the tr
sition. Because of these favorable conditions, the spe
heat of liquid helium was accurately measured to within
few nanoKelvin from thel transition, i.e., very deep in th
critical region, where the scaling corrections to the expec
power-law behavior are small. The experimental lo
temperature data for the specific heat were analyzed as
ing the behavior fort[(T2Tc)/Tc→0 to be

CH~ t !5Autu2a~11CutuD1Dt !1B ~1!

with D51/2.2 This provided the estimate1,3,4

a520.010 56~38!. ~2!

This result represents a challenge for theorists becaus
uncertainty is substantially smaller than those of the theo
0163-1829/2001/63~21!/214503~28!/$20.00 63 2145
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ical calculations. We mention the best available theoret
estimates ofa: a520.0150(17) obtained using high
temperature~HT! expansion techniques,5 a520.0169(33)
from Monte Carlo~MC! simulations using finite-size scalin
~FSS! techniques,6 anda520.011(4) from field theory.7

The aim of this paper is to substantially improve the p
cision of the theoretical estimates of the critical exponen
reaching an accuracy comparable with the experimental o
For this purpose, we will consider what we call ‘‘improved
models. They are characterized by the fact that the lead
correction to scaling is absent in the expansion of any
servable near the critical point. Moreover, we will combi
MC simulations and analyses of HT series. We exploit
effectiveness of MC simulations to determine, by using F
techniques, the critical temperature and the parameters o
improved Hamiltonians, and the effectiveness of HT me
ods to determine the critical exponents for improved mod
especially when a precise estimate ofbc is available. Such a
combination of lattice techniques allows us to substantia
improve earlier theoretical estimates. We indeed obtain

a520.0146~8!, ~3!

where, as we will show, the error estimate should be rat
conservative. The theoretical uncertainty has been subs
tially reduced. We observe a disagreement with the exp
mental value~2!. The point to be clarified is whether thi
disagreement is significant, or it is due to an underestimat
the errors reported by us and/or in the experimental pap
We think that this discrepancy calls for further theoretic
and experimental investigations. A new-generation exp
ment in microgravity environment is currently in progress8

it should clarify the issue from the experimental side.
In numerical~HT or MC! determinations of critical quan

tities, nonanalytic corrections to the leading scaling behav
represent one of the major sources of systematic errors. C
sidering, for instance, the magnetic susceptibility, we hav
©2001 The American Physical Society03-1
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x5Ct2g~11a0,1t1a0,2t
21•••1a1,1t

D1a1,2t
2D1•••

1a2,1t
D21••• !. ~4!

The leading exponentg and the correction-to-scaling expo
nentsD,D2 , . . . , areuniversal, while the amplitudesC and
ai , j are nonuniversal. For three-dimensionalXY systems, the
value of the leading correction-to-scaling exponent isD
'0.53,6,7 and the value of the subleading exponent isD2
'2D.9

The leading nonanalytic correctiontD is the dominant
source of systematic errors in MC and HT studies. Indeed
MC simulations the presence of this slowly-decreasing te
requires careful extrapolations, increasing the errors in
final estimates. In HT studies, nonanalytic corrections int
duce large and dangerously undetectable systematic d
tions in the results of the analyses. Integral approximan10

~see, e.g., Ref. 11 for a review! can in principle cope with an
asymptotic behavior of the form~4!; however, in practice,
they are not very effective when applied to the series
moderate length available today. Analyses meant to ef
tively allow for the leading confluent corrections are bas
on biased approximants, where the value ofbc and the first
nonanalytic exponentD are introduced as external inpu
~see, e.g., Refs. 12–17!. Nonetheless, their precision is st
not comparable to that of the experimental result~2!, see,
e.g., Ref. 14. The use of improved Hamiltonians, i.e., mod
for which the leading correction to scaling vanishes@a1,1
50 in Eq. ~4!#,18 can lead to an additional improvement
the precision, even without a substantial extension of the
series.

The use of improved Hamiltonians was first suggested
the early 1980s by Chen, Fisher, and Nickel19 who deter-
mined improved Hamiltonians in the Ising universality cla
The crux of the method is a precise determination of
optimal value of the parameter appearing in the Hamiltoni
One can determine it from the analysis of HT series, bu
this case it is obtained with a relatively large error17,19–22and
the final results do not significantly improve the estima
obtained from standard analyses using biased approxim

Recently6,17,23–26it has been realized that FSS MC sim
lations are very effective in determining the optimal value
the parameter, obtaining precise estimates for several mo
in the Ising andXY universality classes. The same holds tr
of models in theO(3) andO(4) universality classes.27 Cor-
respondingly, the analysis of FSS results obtained in th
simulations has provided significantly more precise estima
of critical exponents. An additional improvement of the pr
cision of the results has been obtained by combining
proved Hamiltonians and HT methods. Indeed, we alre
showed that the analysis of HT series for improv
models5,17,28 provides estimates that are substantially m
precise than those obtained from the extrapolation of the
data alone.

In this paper we consider again theXY case. The progres
with respect to the studies of Refs. 5,28 is essentially du
the improved knowledge ofbc and of the parameters of th
improved Hamiltonians obtained by means of a large-sc
MC simulation. The use of this information in the analysis
21450
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the improved HT~IHT! series allows us to substantially in
crease the precision and the reliability of the results, es
cially of the critical exponents. As we shall see, in order
determine the critical exponents, the extrapolation tobc of
the IHT series, using biased integral approximants, is m
effective than the extrapolationL→` of the FSS MC data.
Moreover, we consider two improved Hamiltonians. T
comparison of the results from these two models provide
check of the errors we quote. The estimates obtained for
two models are in very good agreement, providing supp
for our error estimates and thus confirming our claim that
systematic error due to confluent singularities is largely
duced when analyzing IHT expansions.

We consider a simple cubic~sc! lattice, two-component
vector fieldsfW x5(fx

(1) ,fx
(2)), and two classes of model

depending on an irrelevant parameter: thef4 lattice model
and the dynamically dilutedXY ~dd-XY) model.

The Hamiltonian of thef4 lattice model is given by

H f452b(̂
xy&

fW x•fW y1 (
x

@fW x
21l~fW x

221!2#. ~5!

The dd-XY model is defined by the Hamiltonian

Hdd52b(̂
xy&

fW x•fW y2D(
x

fW x
2 , ~6!

by the local measure

dm~fx!5dfx
(1) dfx

(2) Fd~fx
(1)! d~fx

(2)!1
1

2p
d~12ufW xu!G ,

~7!

and the partition function

E )
x

dm~fx! e2Hdd. ~8!

In the limit D→` the standardXY lattice model is recov-
ered. We expect the phase transition to become of first o
for D,D tri . D tri vanishes in the mean-field approximatio
while an improved mean-field calculation based on the ‘‘s
approximation’’ of Ref. 29 givesD tri,0, so that we expec
D tri,0.

The parametersl in H f4 andD in Hdd can be tuned to
obtain improved Hamiltonians. We performed an accur
numerical study, which provided estimates ofl* , D* , of the
inverse critical temperaturebc for several values ofl andD,
as well as estimates of the critical exponents. Using
linked-cluster expansion technique, we computed HT exp
sions of several quantities for the two theories. We analy
them using the MC results forl* , D* and bc , obtaining
very accurate results, e.g., Eq.~3!.

We mention that thef4 lattice modelH f4 has already
been considered in MC and HT studies.5,6,28 With respect to
those works, we have performed additional MC simulatio
to improve the estimate ofl* and determine the values o
bc . Moreover, we present a new analysis of the IHT ser
that uses the MC estimates ofbc to bias the approximants
leading to a substantial improvement of the results.
3-2
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TABLE I. Estimates of the critical exponents. See text for the explanation of the symbols in the second column. We indicate
asterisk (* ) the estimates that have been obtained using the hyperscaling relation 22a53n or the scaling relationg5(22h)n.

Reference Method g n h a

This work MC1IHT 1.3177~5! 0.67155~27! 0.0380~4! 20.0146(8)*
This work MC 1.3177~10!* 0.6716~5! 0.0380~5! 20.0148(15)*
Reference 5~2000! IHT 1.3179~11! 0.67166~55! 0.0381~3! 20.0150(17)*
Reference 31~1999! HT 20.014(9), 20.022(6)
Reference 14~1997! HT, sc 1.325~3! 0.675~2! 0.037~7!* 20.025(6)*

HT, bcc 1.322~3! 0.674~2! 0.039~7!* 20.022(6)*
Reference 6~1999! MC 1.3190~24!* 0.6723~11! 0.0381~4! 20.0169(33)*
Reference 32~1999! MC 1.315~12!* 0.6693~58! 0.035~5! 20.008(17)*
Reference 33~1996! MC 1.316~3!* 0.6721~13! 0.0424~25! 20.0163(39)*
Reference 34~1995! MC 0.6724~17! 20.017(5)*
Reference 35~1993! MC 1.307~14!* 0.662~7! 0.026~6! 20.014(21)*
Reference 36~1990! MC 1.316~5! 0.670~2! 0.036~14!* 20.010(6)*
Reference 30~2001! FT d53 exp 1.3164~8! 0.6704~7! 0.0349~8! 20.0112(21)
Reference 7~1998! FT d53 exp 1.3169~20! 0.6703~15! 0.0354~25! 20.011(4)
Reference 7~1998! FT e-exp 1.3110~70! 0.6680~35! 0.0380~50! 20.004~11!

Reference 1,3~1996! 4He 0.67019~13!* 20.01056(38)
Reference 37~1993! 4He 0.6705~6! 20.0115(18)*
Reference 38~1992! 4He 0.6708~4! 20.0124(12)*
Reference 39~1984! 4He 0.6717~4! 20.0151(12)*
Reference 40~1983! 4He 0.6709~9!* 20.0127(26)
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In Table I we report our results for the critical exponen
i.e., our best estimates obtained by combining MC and I
techniques—they are denoted by MC1IHT—together with
the results obtained from the analysis of the MC data alo
There, we also compare them with the most precise exp
mental and theoretical estimates that have been obtaine
the latest years. When onlyn or a is reported, we used th
hyperscaling relation 22a53n to obtain the missing expo
nent. Analogously, if onlyh or g is quoted, the second ex
ponent was obtained using the scaling relationg5(22h)n;
in this case the uncertainty was obtained using
independent-error formula. The results we quote have b
obtained from the analysis of the HT series of theXY model
~HT!, by Monte Carlo simulations or by field-theory~FT!
methods. The HT results of Ref. 14 have been obtained
lyzing the 21st-order HT expansions for the standardXY
model on the sc and the bcc lattice, using biased appr
mants and takingbc andD from other approaches, such a
MC and FT. The FT results of Refs. 7,30 have been deri
by resumming the known terms of the fixed-dimensiong
expansion: theb function is known to six-loop order,41 while
the critical-exponent series are known to seven loops.42 The
estimates from thee expansion have been obtained resu
ming the availableO(e5) series.43,44

We also present a detailed study of the equation of st
We first consider its expansion in terms of the magnetiza
in the high-temperature phase. The coefficients of this exp
sion are directly related to the zero-momentumn-point
renormalized couplings, which were determined by anal
ing their IHT expansion. These results are used to const
parametric representations of the critical equation of s
that are valid in the whole critical region, satisfy the corre
21450
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analytic properties~Griffiths’ analyticity!, and take into ac-
count the Goldstone singularities at the coexistence cu
From our approximate representations of the equation
state we derive estimates of several universal amplitude
tios. The specific-heat amplitude ratio is particularly intere
ing since it can be compared with experimental results.
obtain A1/A251.062(4), which is not in agreement with
the experimental resultA1/A251.0442 of Refs. 1 and 3. I
is easy to trace the origin of the discrepancy. In our meth
as well as in the analysis of the experimental data, the e
mate ofA1/A2 is strongly correlated with the estimate ofa.
Therefore, the discrepancy we observe for this ratio is a
rect consequence of the difference in the estimates ofa.

Finally, we also discuss the two-point function of the o
der parameter, i.e., the structure factor, which is relevan
scattering experiments with magnetic materials.

The paper is organized as follows. In Sec. II we pres
our Monte Carlo results. After reviewing the basic RG ide
behind our methods, we present a determination of the
proved Hamiltonians and of the critical exponents. We d
cuss the several possible sources of systematic errors,
show that the approximate improved models we use h
significantly smaller corrections than the standardXY model.
A careful analysis shows that the leading scaling correcti
are reduced at least by a factor of 20. We also computebc to
high precision for several values ofl andD; this is an im-
portant ingredient in our IHT analyses. Details on the alg
rithm appear in Appendix A.

In Sec. III we present our results for the critical expone
obtained from the analysis of the IHT series. The equation
state is discussed in Sec. IV. After reviewing the basic d
nitions and properties, we present the coefficients of
3-3
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small-magnetization expansion, again computed from I
series. We discuss parametric representations that pro
approximations of the equation of state in the whole criti
region and compute several universal amplitude ratios
Sec. V we analyze the two-point function of the order p
rameter. Details of the IHT analyses are reported in App
dix B. The definitions of the amplitude ratios we compu
can be found in Appendix C.

II. MONTE CARLO SIMULATIONS

A. The lattice and the quantities that were measured

We simulated sc lattices of sizeV5L3, with periodic
boundary conditions in all three directions. In addition
elementary quantities such as the energy, the magnetiza
the specific heat or the magnetic susceptibility, we compu
so-called phenomenological couplings, i.e., quantities tha
the critical limit, are invariant under RG transformation
They are well suited to locate the inverse critical temperat
bc . They also play a crucial role in the determination of t
improved Hamiltonians.

In the present study we consider four phenomenolog
couplings. We use the Binder cumulantU4 and the similar
quantityU6, defined by

U2 j[
^~mW 2! j&

^mW 2& j
, ~9!

wheremW 51/V (xfW x is the magnetization of the system. W
also consider the second-moment correlation length divi
by the linear extension of the latticej2nd/L. The second-
moment correlation length is defined by

j2nd[A x/F21

4 sin~p/L !2
, ~10!

where

x[
1

V K S (
x

fW xD 2L ~11!

is the magnetic susceptibility and

F[
1

V K U(
x

expS i
2px1

L DfW xU2L ~12!

is the Fourier transform of the correlation function at t
lowest nonzero momentum.

The list is completed by the ratioZa /Zp of the partition
function Za of a system with antiperiodic boundary cond
tions in one of the three directions and the partition funct
Zp of a system with periodic boundary conditions in all d
rections. Antiperiodic boundary conditions in the first dire
tion are obtained by changing sign to the termfW xfW y of the
Hamiltonian for links^xy& that connect the boundaries, i.e
for x5(L,x2 ,x3) andy5(1,x2 ,x3). The ratioZa /Zp can be
measured by using the boundary-flip algorithm, which w
applied to the three-dimensional Ising model in Ref. 45 a
generalized to theXY model in Ref. 46. As in Ref. 26, in the
21450
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present work we used a version of the algorithm that avo
the flip to antiperiodic boundary conditions. For a detail
discussion see Appendix A 2.

B. Summary of finite-size methods

In this subsection we discuss the FSS methods we use
compute the inverse critical temperature, the couplingsl*
and D* at which leading corrections to scaling vanish, a
the critical exponentsn andh.

1. Summary of basic RG results

The following discussion of FSS is based on the R
theory of critical phenomena. We first summarize some ba
results. In the three-dimensionalXY universality class there
exist two relevant scaling fieldsut and uh , associated with
the temperature and the applied field, respectively, with
exponentsyt andyh . Moreover, there are several irreleva
scaling fields that we denote byui , i>3, with RG exponents
0.y3.y4.y5.•••.

The RG exponenty3[2v of the leading irrelevant scal
ing field u3 has been computed by various methods. T
analysis of field-theoretical perturbative expansions7 gives
v50.802(18) (e expansion! and v50.789(11) (d53 ex-
pansion!. In the present work we find a result forv that is
consistent with, although less accurate than, the fie
theoretical predictions. We also mention the estimatev
50.85(7) that was obtained9 by the ‘‘scaling-field’’ method,
a particular implementation of Wilson’s ‘‘exact’’ renorma
ization group. Although it provides an estimate forv that is
less precise than those obtained from perturbative fie
theoretic methods, it has the advantage of giving predicti
for the irrelevant RG exponents beyondy3. Ref. 9 predicts
y4521.77(7) andy5521.79(7) (y421 andy422 in their no-
tation! for the XY universality class. Note that, at presen
there is no independent check for these results. Certain
would be worthwhile to perform a Monte Carlo renormaliz
tion group study. With the computational power availab
today, it might be feasible to resolve subleading correct
exponents with a high-statistics simulation.

In the case ofU4 , U6, andj2nd/L we expect a correction
caused by the analytic background of the magnetic susce
bility. This should lead to corrections withy652(22h)'
21.962. We also expect corrections due to the violation
rotational invariance by the lattice. For theXY universality
class, Ref. 47 predictsy7522.02(1). Note that the numeri-
cal values ofy6 and y7 are virtually identical and should
hence be indistinguishable in the analysis of our numer
data.

We wish now to discuss the FSS behavior of a pheno
enological couplingR; in the standard RG framework, w
can write it as a function of the thermal scaling fieldut and
of the irrelevant scaling fieldsui . For L→` and b
→bc(l), we have

R~L,b,l!5r 0~utL
yt!1(

i>3
r i~utL

yt! uiL
yi1•••, ~13!
3-4
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where we have neglected terms that are quadratic in the
ing fields of the irrelevant operators, i.e., corrections of or
L2y3'L21.6. Note that we include here the corrections due
the analytic background~with exponentL2y6'Lh22). In the
case ofU4 , U6, andj2nd/L ~but notZa /Zp), in Eq. ~13! we
have also discarded terms of orderLyt22yh'L23.5.

The functionsr 0(z) and r i(z) are smooth and finite fo
z→0, whileut(b,l) andui(b,l) are smooth functions ofb
andl. Note that, by definition,ut(b,l);b2bc(l). In the
limit t→0 andutL

yt;(b2bc)L
1/n→0, we can further ex-

pand Eq.~13!, obtaining

R~L,b,l!5R* 1ct~b,l! Lyt1(
i

ci~b,l! Lyi

1O@~b2bc!
2L2yt,L2y3,tLyt1y3#, ~14!

where R* 5r 0(0) is the value at the critical point of th
phenomenological coupling.

2. Locating bc

We locate the inverse critical temperaturebc by using
Binder’s cumulant crossing method. This method can be
plied in conjunction with any of the four phenomenologic
couplings that we computed.

In its simplest version, one considers a phenomenolog
coupling R(b,L) for two lattice sizesL and L85bL. The
intersectionbcross of the two curvesR(b,L) and R(b,L8)
provides an estimate ofbc . The convergence rate of thi
estimatebcrosstoward the true value can be computed in t
RG framework.

By definition, bcross at fixed b, L, andl is given by the
solution of the equation

R~L,b,l!5R~bL,b,l!. ~15!

Using Eq. ~13!, one immediately verifies thatbcross con-
verges tobc faster thanL2yt. Thus, forL→`, we can use
Eq. ~14! and rewrite Eq.~15! as

ct~b,l! Lyt1c3~b,l! Ly3'ct~b,l! ~bL!yt

1c3~b,l! ~bL!y3. ~16!

Then, we approximatect(b,l)'ct8 (b2bc) and ci(b,l)
'ci(bc ,l)5ci . Remember thatct(bc ,l)50 by definition.
Using these approximations we can explicitly solve Eq.~16!
with respect tob, obtaining

bcross5bc1
c3 ~12by3! Ly3

ct8 ~byt21! Lyt
1•••. ~17!

The leading corrections vanish likeL2yt1y3'L22.3. Insert-
ing bcross into Eq. ~15!, we obtain

Rcross5R* 1
byt2by3

byt21
Ly31•••, ~18!

which shows that the leading corrections vanish likeLy3.
Given a precise estimate ofR* , one can locatebc from

simulations of a single lattice size, solving
21450
al-
r

o

p-
l

al

R~L,b!5R* , ~19!

where the corrections vanish likeL2yt1y3.

3. Locating l* and D*

In order to compute the valuel* for which the leading
corrections to scaling vanish, we use two phenomenolog
couplingsR1 andR2. First, we defineb f(L,l) by

R1~L,b f ,l!5R1,f , ~20!

where R1,f is a fixed value, which we can choose free
within the appropriate range. It is easy to see thatb f(L,l)
→bc(l) asL→`. Indeed, using Eq.~13!, we have

b f~L,l!2bc~l!5zfL
2yt2

r 1,3~zf !

r 1,08 ~zf !
u3~bc!L

y32yt1•••,

~21!

where we have usedyt.uy3u andzf is defined as the solution
of r 1,0(zf)5R1,f . We have added a subscript 1 to make e
plicit that all scaling functions refer toR1. If R1,f'R* , we
can expand the previous formula, obtaining

b f~L,l!'bc~l!1
R1,f2R1*

c1,t8
L2yt2

c1,i

c1,t8
L2yt1y3. ~22!

Notice that forR1,f5R1* the convergence is faster, and th
we will always takeR1,f'R1* . Next we define

R̄~L,l![R2~L,b f ,l!. ~23!

For L→` andR1,f'R1* , we have

R̄~L,l!5R2* 1
c2,t8

c1,t8
~R1,f2R1* !1(

i
S c2,i2

c2,t8

c1,t8
c1,i D Lyi

5R̄* 1(
i

c̄i~l! Lyi, ~24!

which shows that the rate of convergence is determined
Ly3.

In order to findl* , we need to compute the value ofl for
which c̄i(l)50. We can obtain approximate estimates ofl*
by solving the equation

R̄~L,l!5R̄~bL,l!. ~25!

Using the approximation~24! one finds

lcross5l* 2
c̄4

c̄38

12b4
y

12b3
y

Ly42y31•••, ~26!

wherec̄38 is the derivative ofc̄3 with respect tol, and

R̄cross5R̄* 2 c̄4

b3
y2b4

y

12b3
y

Ly4. ~27!

In principle, any pairR1 , R2 of phenomenological cou
plings can be used in this analysis. However, in practice
3-5
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wish to see a good signal for the corrections. This means
particular, that inc1,t8 c2,32c2,t8 c1,3 the two terms should add
up rather than cancel. Of course, also the corrections du
the subleading scaling fields should be small.

4. The critical exponents

Typically, the thermal RG exponentyt51/n is computed
from the FSS of the derivative of a phenomenological c
pling R with respect tob at bc . Using Eq.~13! one obtains

]R

]b U
bc

5r 08~0! Lyt1(
i 53

r i8~0! ui~bc! Lyi1yt

1(
i 53

r i~0! ui8~bc! Lyi1•••. ~28!

Hence, the leading corrections scale withLy3. However, in
improved models in whichu3(bc)50, the leading correction
is of orderLy4. Note that corrections proportional toLy32yt

'L22.3 are still present even if the model is improved.
Ref. 23, for the spin-1 Ising model, an effort was made
eliminate also this correction by taking the derivative w
respect to an optimal linear combination ofb andD instead
of b. Here we make no attempt in this direction, since c
rections of orderL22.3 are subleading with respect to tho
of orderLy4'L21.8.

In practice it is difficult to compute the derivative atbc ,
sincebc is only known numerically, and therefore, it is mo
convenient to evaluate]R/]b at b f @see Eq.~20!#. This pro-
cedure has been used before, e.g., in Ref. 33. In this case
~28! still holds, although with different amplitudes that d
pend on the particular choice of the value ofRf .

The exponenth is computed from the finite-size behavio
of the magnetic susceptibility, i.e.,

xub f
}L22h. ~29!

Also, here the corrections are of orderLy3 for generic mod-
els, and of orderLy4 for improved ones.

5. Estimating errors caused by residual leading
scaling corrections

In Ref. 25, the authors pointed out that with the meth
discussed in Sec. II B 3, the leading corrections are only
proximately eliminated, so that there is still a small leadi
scaling correction that causes a systematic error in the
mates of, e.g., the critical exponents. The most naive solu
to this problem consists in adding a termL2v to the fit
ansatz, i.e., in considering

]R

]b U
b f

5A L1/n~11B L2v!. ~30!

However, by adding such a correction term, the precision
the result decreases, so that there is little advantage in u
~approximately! improved models. A more sophisticated a
proach is based on the fact that ratios of leading correc
amplitudes are universal.48
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Let us consider a second phenomenological couplingR̄
5R(L,b f ,l), which, for L→`, behaves as

R̄5R̄* 1 c̄3 L2v. ~31!

The universality of the correction amplitudes implies that t
ratio B/ c̄3 is the same for thef4 model and the dd-XY
model and is independent ofl and D. Therefore, this ratio
can be computed in models that have large correction
scaling, e.g., in the standardXY model. Then, we can com
pute a bound onB for the ~approximately! improved model
from the known ratioB/ c̄3 and a bound forc̄3. This proce-
dure was proposed in Ref. 23.

C. The simulations

We simulated thef4 and the dd-XY model using the
wall-cluster update algorithm of Ref. 23 combined with
local update scheme. The update algorithm is discusse
Appendix A.

Most of the analyses need the quantities as functions ob.
Given the large statistics, we could not store all individu
measurements of the observables. Therefore, we did not
the reweighting method. Instead, we determined the Ta
coefficients of all quantities of interest up to the third ord
in (b2bs), wherebs is the value ofb at which the simula-
tion was performed. We checked carefully that this is su
cient for our purpose.

Most of our simulations were performed atl52.1 in the
case of thef4 model and atD51.03 in the case of the dd
XY model. l52.1 is the estimate ofl* of Ref. 6, andD
51.03 is the result forD* of a preliminary analysis of MC
data obtained on small lattices. In addition, we perform
simulations atl52.0 and 2.2 for thef4 model andD
50.9 and 1.2 for the dd-XY model in order to obtain an
estimate of the derivative of the amplitude of the leadi
corrections to scaling with respect tol andD, respectively.
We also performed simulations of the standardXY model in
order to estimate the effect of the leading corrections to s
ing on the estimates of the critical exponents obtained fr
the FSS analysis.

D. bc and the critical value of phenomenological couplings

In a first step of the analysis we computedR* and the
inverse critical temperaturebc at l52.1 andD51.03, re-
spectively.

For l52.1 andD51.03 we simulated sc lattices of linea
sizeL from 4 to 16 andL518, 20, 22, 24, 26, 28, 32, 36
40, 48, 56, 64, and 80. For all lattice sizes smaller thanL
524 we performed 108 measurements. For larger lattices, w
collected approximately 107 measurements forL'40, and
approximately 106 for the largest lattices withL'80. A
measurement was performed after an update cycle as
cussed in Appendix A 1.

Instead of computingR* andbc from two lattice sizes as
discussed in Sec. II B 2, we perform a fit with the ansatz

R* 5R~L,bc!, ~32!
3-6
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TABLE II. Joint fits of theZa /Zp data of thef4 model and the dd-XY model with the ansatz~33!. All
lattice sizesLmin<L<Lmax are used in the fit. In column four we give the results of the fits forbc of thef4

model atl52.1 and in column five the results forbc of the dd-XY model atD51.03. Finally, in column six
we give the results for the fixed-point value (Za /Zp)* . The final results and an estimate of the systema
errors are given in the text.

Lmin Lmax x2/DOF bc , l52.1 bc , D51.03 (Za /Zp)*

11 80 3.25 0.50915354~33! 0.56280014~35! 0.319794~25!

13 80 2.48 0.50915287~35! 0.56279938~38! 0.319883~29!

15 80 1.06 0.50915192~38! 0.56279834~41! 0.320019~35!

20 80 0.91 0.50915142~46! 0.56279784~49! 0.320093~52!

24 80 0.89 0.50915109~53! 0.56279740~56! 0.320162~72!

28 80 0.73 0.50915074~63! 0.56279747~66! 0.320195~102!
32 80 0.85 0.50915065~75! 0.56279746~82! 0.320208~149!
10 28 3.47 0.50915783~53! 0.56280463~59! 0.319524~32!

14 40 1.78 0.50915337~48! 0.56279981~53! 0.319877~39!
,
.
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whereR* andbc are free parameters. We computeR(L,b)
using its third-order Taylor expansion

R* 5R~L,bs!1d1~L,bs!~bc2bs!1 1
2 d2~L,bs!~bc2bs!

2

1 1
6 d3~L,bs!~bc2bs!

3, ~33!

wherebs is the b at which the simulation was performed
andR, d1 , d2, andd3 are determined in the MC simulation

First, we perform fits for the two models separately. W
obtain consistent results forR* for all four choices of phe-
nomenological couplings. In order to obtain more prec
results forbc andR* , we perform joint fits of both models
Here, we exploit universality by requiring thatR* takes the
same value in both models. Hence, such fits have three
parameters:R* and the two values ofbc . In the following
we shall only report the results of such joint fits.

Let us discuss in some detail the results forR5Za /Zp
that are summarized in Table II. In each fit, we take all d
with Lmin<L<Lmax into account. For Lmax580, the
x2/degree of freedom~DOF! becomes approximately on
starting from Lmin515. However, we should note that
x2/DOF close to one does not imply that the systematic
rors due to corrections that are not taken into account in
ansatz are negligible.

TABLE III. Summary of the final results forbc and R* . In
column one the choice of the phenomenological couplingR is
listed. In columns two and three we report our estimates ofbc for
the f4 model atl52.1 and the dd-XY model atD51.03, and
finally in column four the result for the fixed-point value of th
phenomenological coupling. Note that the estimates ofbc , based
on the four different choices ofR, are consistent within error bars

R bc , l52.1 bc , D51.03 R*

Za /Zp 0.5091507~6!@7# 0.5627975~7!@7# 0.3202~1!@5#

j2nd/L 0.5091507~7!@3# 0.5627971~7!@2# 0.5925~1!@2#

U4 0.5091495~9!@10# 0.5627972~10!@11# 1.2430~1!@5#

U6 0.5091498~9!@15# 0.5627976~10!@15# 1.7505~3!@25#
21450
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Our final result is obtained from the fit withLmin528 and
Lmax580. The systematic error is estimated by compar
this result with that obtained usingLmin510 andLmax528.
The systematic error onbc is estimated by the difference o
the results from the two fits divided by 2.82.321, where 2.8
is the scale factor between the two intervals andyt2y3
'2.3. Estimating the systematic error by comparison w
the intervalLmin514 andLmax540 leads to a similar result
We obtain bc50.509 1507(6)@7# for the f4 model at l
52.1 andbc50.562 7975(7)@7# for the dd-XY model at
D51.03. In parentheses we give the statistical error and
the brackets the systematic one. Our final result for the c
cal ratio of partition functions is (Za /Zp)* 50.3202(1)@5#.
Here the systematic error is computed by dividing the diff
ence of the results of the two fits by 2.80.821.

We repeat this analysis forj2nd, U4 and U6. The final
results are summarized in Table III.

Next we computebc at additional values ofl andD. For
this purpose we simulated lattices of sizeL596 and compute
bc using Eq.~19!. We use onlyR5Za /Zp with the above-
reported estimate (Za /Zp)* 50.3202(6). The results are
summarized in Table IV.

E. Eliminating leading corrections to scaling

In this subsection we determinel* andD* . For this pur-
pose, we compute the correction amplitudec̄3 for various

TABLE IV. Estimates ofbc from simulations of 963 lattices.bc

is obtained from Eq.~19! using Za /Zp as phenomenological cou
pling. In parentheses we give the statistical error and in brackets
error due to the error on (Za /Zp)* . ‘‘stat’’ gives ~the number of
measurements!/1000.

Model l; D stat bc

f4 2.07 545 0.5093853~16!@8#

f4 2.2 510 0.5083366~16!@8#

dd-XY 0.9 720 0.5764582~15!@9#

dd-XY 1.02 1,215 0.5637972~12!@9#

dd-XY 1.2 665 0.5470377~17!@9#
3-7
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TABLE V. The quantity (R̄uD50.92R̄uD51.2)L
0.8 for the dd-XY model. In the top row we give the choic

of R1 andR2. For instance,U4 at (Za /Zp) f means thatR15Za /Zp andR25U4.

L U4 at (Za /Zp) f U6 at (Za /Zp) f U4 at (j2nd/L) f U6 at (j2nd/L) f Za /Zp at (j2nd/L) f U6 at U4,f

6 0.0365~2! 0.1297~8! 0.0409~3! 0.1442~9! 0.0069~2! 0.0042~1!

8 0.0369~3! 0.1312~10! 0.0421~3! 0.1489~11! 0.0081~3! 0.0046~2!

10 0.0368~4! 0.1311~13! 0.0419~4! 0.1483~14! 0.0078~4! 0.0045~2!

12 0.0372~4! 0.1324~15! 0.0427~5! 0.1511~17! 0.0084~4! 0.0045~3!

16 0.0360~6! 0.1286~20! 0.0411~7! 0.1460~22! 0.0078~5! 0.0046~4!
to
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choices ofR1 andR2 for thef4 model atl52.1 and the dd-
XY model atD51.03. In order to convert these results in
estimates ofl* andD* , we determine the derivative of th
correction amplitudec̄3 with respect tol ~resp. D) at l
52.1 ~resp.D51.03). We also simulated theXY model in
order to obtain estimates of the residual systematic error
to the leading corrections to scaling. Note that, in the follo
ing, we always use as the value ofR1,f in Eq. ~20! the esti-
mates ofR* given in Table III.

1. Derivative of the correction amplitude with respect tol or D

For this purpose we simulated the dd-XY model at D
50.9 andD51.2 on lattices of sizeL55, 6, 7, 8, 9, 10,
12, and 16. Thef4 model was simulated atl52.0 andl
52.2 on lattices of sizeL53, 4, 5, 6, 7, 8, and 9. In the
case of the dd-XY model we performed 1003106 measure-
ments for each parameter set. In the case of thef4 model
2503106 measurements were performed.

In the following we discuss only the dd-XY model, since
the analysis of thef4 data is performed analogously.

In Refs. 6,26 it was observed that subleading correcti
to scaling cancel to a large extent when one considers
difference ofR̄ at close-by values ofl. In order to get an
idea of the size of the corrections, we report in Table V

DR̄ L0.85~R̄uD50.92R̄uD51.2! L0.8 ~34!

for various choices ofR1 andR2. We see that this quantity
varies little withL in all cases. In the case ofR15Za /Zp and
R25U4 , DR̄ L0.8 is already constant within error bars sta
ing from L55.

In order to computec̄3, see Eq.~24!, we needDR̄ L0.8 to
be as flat as possible and especiallyDR̄ large compared to
the statistical errors. Looking at Table V, we see that the
combinations R15j2nd/L, R25Za /Zp and R15U4 , R2
5U6 are unfavorable compared with the other four com
nations.
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In order to see whether we can predict the exponentv, we
perform a fit with the ansatz

DR̄5k L2v, ~35!

with k and v as free parameters. FromU4 at Za /Zp
50.3202 we getv50.795(9) withx2/DOF50.66, using all
available data. This value is certainly consistent with fie
theoretical results. Note, however, that we would like to va
the range of the fit in order to estimate systematic errors.
this purpose more data at larger values ofL are needed.

In the following we need estimates ofdc̄3 /dDuD51.03 and
of the corresponding quantity for thef4 model, in order to
determineD* andl* . We approximated this derivative by
finite difference betweenD50.9 andD51.2. The coefficient
c̄3 is determined by fixingv50.8. Our final result is the
average of the estimates forL510,12 and 16 in Table V. In
a similar way we proceed in the case of thef4 model, aver-
aging the L58,9 results. The results are summarized
Table VI. We make no attempt to estimate error ba
Sources of error are the finite difference inD, subleading
corrections, the error onv, and the statistical errors. Note
however, that these errors are small enough to be negle
in the following.

2. Finding R̄* , l* and D*

For this purpose we fit our results atD51.03 andl
52.1 with the ansatz

R̄5R̄* 1 c̄3 L2v, ~36!

where we fixv50.8. We convinced ourselves that settingv
5 0.75 or 0.85 changes the final results very little compa
with statistical errors and errors caused by subleading
rections. We perform joint fits, by requiringR̄* to be equal
in both models.
TABLE VI. Estimates fordc̄3 /dD at D51.03 ~dd-XY) anddc̄3 /dl at l52.1 (f4). In the first row we
give the combination ofR1 andR2.

Model U4 at (Za /Zp) f U6 at (Za /Zp) f U4 at (j2nd/L) f U6 at (j2nd/L) f

dd-XY 20.122 20.435 20.140 20.495
f4 20.0490 20.175 20.0546 20.194
3-8



CRITICAL BEHAVIOR OF THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 63 214503
TABLE VII. Results of fits with the ansatz~36!. The coefficientsc̄3 are converted intoD* andl* using
Eq. ~37!. All data with Lmin<L<Lmax are fitted.

Lmin Lmax x2/DOF R̄* l* D*

R1,f5(Za /Zp) f50.3202 andR25U4.
8 80 1.55 1.24303~2! 2.077~4! 1.020~2!

12 80 1.01 1.24304~4! 2.071~8! 1.022~3!

16 80 1.07 1.24308~6! 2.057~14! 1.019~5!

20 80 1.12 1.24301~8! 2.073~22! 1.028~9!

8 40 1.62 1.24304~3! 2.077~4! 1.020~2!

10 40 1.02 1.24305~3! 2.070~6! 1.020~2!

R1,f5(Za /Zp) f50.3202 andR25U6.
8 80 2.15 1.75156~8! 2.006~4! 0.990~2!

12 80 1.15 1.75126~13! 2.018~7! 1.000~3!

16 80 1.22 1.75120~19! 2.017~13! 1.003~5!

20 80 1.19 1.75085~27! 2.043~21! 1.015~8!

8 40 2.21 1.75160~9! 2.004~4! 0.989~2!

10 40 1.24 1.75143~11! 2.010~6! 0.994~2!

R1,f5(j2nd/L) f50.5925 andR25U4.
8 80 4.01 1.24352~3! 1.977~4! 0.987~2!

12 80 1.19 1.24322~4! 2.031~8! 1.010~3!

16 80 1.29 1.24314~6! 2.049~14! 1.019~5!

20 80 1.13 1.24299~9! 2.083~23! 1.035~9!

8 40 4.19 1.24355~3! 1.973~4! 0.985~2!

10 40 1.49 1.24335~4! 2.006~6! 1.000~2!

R1,f5(j2nd/L) f50.5925 andR25U6.
8 80 6.62 1.75323~10! 1.915~4! 0.961~2!

12 80 1.55 1.75189~14! 1.985~7! 0.991~3!

16 80 1.51 1.75142~22! 2.013~13! 1.004~5!

20 80 1.24 1.75078~32! 2.055~22! 1.024~8!

8 40 7.02 1.75336~10! 1.911~4! 0.959~2!

10 40 2.21 1.75248~12! 1.953~6! 0.978~2!
of
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The results of the fits for four different combinations
R1 and R2 are given in Table VII, where we have alread
translated the results forc̄3 into an estimate ofl* andD* ,
by using

l* 52.12 c̄3S dc̄3

dl
D 21

~37!

for the f4 model and the analogous formula for the dd-XY
model, and the results of Table VI.

A x2/DOF close to 1 is reached forLmin510 andLmax
580 in the case ofU4 at (Za /Zp) f50.3202. This has to be
compared withLmin511, 11, and 14 in the case ofU6 at
(Za /Zp) f50.3202, U4 at (j2nd/L) f50.5925, andU6 at
(j2nd/L) f50.5925.

This indicates thatU4 at (Za /Zp) f50.3202 has the leas
bias due to subleading corrections to scaling. Therefore
take as our final resultl* 52.07 andD* 51.02 that is the
result ofLmin512 andLmax580 in Table VII. Starting from
Lmin520 all results forl* andD* are within 2s of our final
result quoted above.

Our final results arel* 52.07(5) andD* 51.02(3). The
error bars are such to include all results in Table VII w
21450
e

Lmin520 andLmax580, including the statistical error, an
therefore should take into proper account all systematic
rors.

From these results, it is also possible to obtain a con
vative upper bound on the coefficientc̄3 for l52.1 andD
51.03. Indeed, using the estimates ofl* andD* and their
errors, we can obtain the upper boundsu2.12l* u,Dl
50.08 andu1.032D* u,DD50.04. Then, we can estimat
uc̄3(l52.1)u,Dl(dc̄3 /dl), and analogously uc̄3(D
51.03)u,DD(dc̄3 /dD). For U4 at (Za /Zp) f50.3202, us-
ing the results of Table VI, we have

uc̄3~l52.1!u,0.004, uc̄3~D51.03!u,0.005. ~38!

3. Corrections to scaling in the standard XY model

We simulated the standardXY model on lattices with lin-
ear sizesL56, 8, 10, 12, 16, 18, 20, 22, 24, 28, 32, 48, 5
and 64 atbs50.454 165, which is the estimate ofbc of Ref.
33. Here, we used only the wall-cluster algorithm for t
update. In one cycle we performed 12 wall-cluster upda
For L<16 we performed 108 cycles. For lattice sizes 16
3-9
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<L<64, we spent roughly the same amount of CPU time
each lattice size. ForL564 the statistics is 2.733106 mea-
surements.

We determine the amplitude of the corrections to scal
for R̄ with R1,f5(Za /Zp) f50.3202 andR25U4. Other
choices lead to similar results. We fit our numerical resu
with the ansatz~36!, where we fixv50.8. The results are
given in Table VIII.

Note that the results forR̄* are consistent with the resu
obtained from the joint fit of the two improved models.
Table VII we obtained, e.g.,R̄* 51.243 01(8) withLmin
520 andLmax580.

Corrections to scaling are clearly visible, see Fig. 1. Fr
the fit with Lmin520 and Lmax564 we obtain c̄3
520.1048(22). For the following discussion no estimate
the possible systematic errors ofc̄3 is needed. Comparing
with Eq. ~38!, we see that in the~approximately! improved
models the amplitude of the leading correction to scaling
reduced by a factor of at least 20. Note, that even if t
result was obtained by considering a specific observableU4
at fixedZa /Zp , the universality of the ratios of the sublea
ing corrections implies the same reduction for any quant
In the following section we will use this result to estimate t
systematic error on our results for the critical exponents.

TABLE VIII. Corrections to scaling in the standardXY model

for R̄ with R25U4 andR1,f5(Za /Zp) f50.3202. We use the ansa
~36! with v50.8 fixed.

Lmin Lmax x2/DOF R̄* c̄3

12 64 1.78 1.2432~1! 20.1120(7)
16 64 0.73 1.2430~1! 20.1087(13)
20 64 0.38 1.2427~2! 20.1048(22)
24 64 0.24 1.2429~2! 20.1083(34)
12 32 2.32 1.2433~1! 20.1124(8)

FIG. 1. Corrections to scaling for the dd-XY model atD50.9,

1.03, and 1.2, and for the standardXY model. We plotR̄ with
R1,f5(Za /Zp) f50.3202 andR25U4 as a function of the lattice
size. The dotted lines should only guide the eye.
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F. Critical exponents from finite-size scaling

As discussed in Sec. II B, we may use the derivative
phenomenological couplings taken atb f in order to deter-
mineyt . Given the four phenomenological couplings that w
have implemented, this amounts to 16 possible comb
tions. In the following we will restrict the discussion to tw
choices: in both cases we fixb f by (Za /Zp) f50.3202. Atb f
we consider the derivative of the Binder cumulant and
derivative ofZa /Zp . In Table IX we summarize the result
of the fits with the ansatz

]R

]b
ub f

5cL1/n ~39!

for the f4 model atl52.1, the dd-XY model atD51.03,
and the standardXY model.

We see that for the sameLmin andLmax the statistical error
on the estimate ofn obtained from the derivative ofZa /Zp is
smaller than that obtained from the derivative ofU4. On the

TABLE IX. Fit results for the critical exponentn obtained from
the ansatz~39!. In all casesb f is fixed by (Za /Zp) f50.3202. We
analyze thef4 model atl52.1, the dd-XY model atD51.03, and
the standardXY model. We consider the slope of the Binder cum
lant U4 and of the ratio of partition functionsZa /Zp . We included
all data withLmin<L<Lmax into the fit.

Lmin Lmax x2/DOF n

f4 model: derivative ofU4

7 80 1.17 0.67168~12!

9 80 0.79 0.67188~15!

11 80 0.85 0.67181~19!

16 80 0.98 0.67192~34!

f4 model: derivative ofZa /Zp

12 80 3.01 0.67042~9!

16 80 1.61 0.67104~15!

20 80 1.04 0.67139~22!

24 80 0.54 0.67194~32!

dd-XY model: derivative ofU4

7 80 2.06 0.67258~12!

9 80 1.13 0.67216~15!

11 80 1.19 0.67209~19!

16 80 0.97 0.67154~31!

dd-XY model: derivative ofZa /Zp

12 80 1.89 0.67017~9!

16 80 1.60 0.67046~14!

20 80 0.79 0.67099~21!

24 80 0.80 0.67113~30!

XY model: derivative ofU4

12 64 4.48 0.66450~28!

16 64 1.30 0.66618~42!

20 64 0.54 0.66740~63!

XY model: derivative ofZa /Zp

12 64 1.33 0.67263~13!

16 64 0.69 0.67300~19!

20 64 0.30 0.67325~30!

24 64 0.25 0.67327~41!
3-10
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other hand, for the two improved models, scaling correcti
seem to be larger forZa /Zp than forU4.

In the case ofZa /Zp , for both improved models, the re
sult of the fit forn is increasing with increasingLmin . In the
case of the Binder cumulant, it is increasing withLmin for the
f4 model and decreasing for the dd-XY model. The fact that
scaling corrections affect the two quantities and the two
proved models in a quite different way suggests that syst
atic errors in the estimate ofn can be estimated from th
variation of the fits presented in Table IX.

As our final result we quoten50.6716(5) that is consis
tent with the two results fromZa /Zp at Lmin524 and with
the results fromU4 at Lmin516.

In the case of the standardXY model, the derivative ofU4
requires a much largerLmin to reach a smallx2/DOF than for
the improved models. For the derivative ofZa /Zp instead a
x2/DOF'1 is obtained for anLmin similar to that of the
improved models. Note that the result forn from the deriva-
tive of U4 for Lmin516 is by several standard deviation
smaller than our final result from the improved mode
while the result from the derivative ofZa /Zp is by several
standard deviations larger. Again we have a nice exam
that ax2/DOF'1 does not imply that systematic errors d
to corrections that have not been taken into account in th
are small.

Remember that in improved models the leading corr
tions to scaling are suppressed at least by a factor of 20
respect to the standardXY model. Since the range of lattic
sizes is roughly the same for theXY model and for the im-
proved models, we can just divide the deviation of theXY
results fromn50.6716(5) by 20 to obtain an estimate of th
possible systematic error due to the residual leading cor
tions to scaling. For the derivative ofZa /Zp we end up with
0.0001 and for the derivative ofU4 with 0.0003.

We think that these errors are already taken into acco
by the spread of the results forn from the derivatives ofU4
and Za /Zp and the two improved models. Therefore, w
keep our estimaten50.6716(5) with its previous error bar

Next we compute the exponenth. For this purpose we
study the finite-size behavior of the magnetic susceptibi
at b f . In the following we fix b f by R1,f5(Za /Zp) f
50.3202. Other choices forR1,f give similar results.

In a first attempt we fit the data of the two improve
models and the standardXY model to the simple ansatz

xub f
5c L22h. ~40!

The results are summarized in Table X.
For all three models rather large values ofLmin are needed

in order to reach ax2/DOF close to one. In all cases th
estimate ofh is increasing with increasingLmin . For Lmin
524 the result forh from the standardXY model is lower
than that of the improved models by an amount of appro
mately 0.0030. Therefore, the systematic error due to lead
corrections on the results obtained in the improved mod
should be smaller than 0.0030/2050.000 15. Given this tiny
effect, it seems plausible that, for the improved models,
increase of the estimate ofh with increasingLmin is caused
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by subleading corrections. Therefore, we consider 0.03
which is the result of the fit withLmin524 in thef4 model,
as a lower bound ofh.

Finally, we perform a fit that takes into account the an
lytic background of the magnetic susceptibility. In Ref. 6,
was shown that the addition of a constant term to Eq.~40!
leads to a smallx2/DOF already for smallLmin,10. Similar
results have been found for the Ising universality class. T
ansatz is not completely correct, since it does not take
account corrections proportional toL21y with y'21.8,
which formally are more important than the analytic bac
ground. However, the difference between these exponen
small, and a four-parameter fit is problematic. Therefore,
decided to fit our data with the ansatz

xub f
5c L22h1b Lk, ~41!

with k fixed to 0.0 and to 0.2. The difference between t
results of the fits with the two values ofk will give an
estimate of the systematic error of the procedure. Results
all three models are summarized in Table XI.

The valuex2/DOF is close to one forLmin58 for thef4

model andLmin510 for the dd-XY model, and it does no
allow to discriminate between the two choices ofk. The
values ofh are rather stable asLmin is varied, although there
is a slight trend toward smaller results asLmin increases; the
trend seems to be stronger fork50.2. Moreover, the results
from the two models are in good agreement.

The fits for theXY model also give a goodx2/DOF for
Lmin>12; the value ofh is, however, much too small, an
shows an increasing trend. We can estimate from the dif
ence between theXY model and the improved models a
Lmin516 that the error on the value ofh obtained from im-
proved models, induced by residual leading scaling corr
tions, is smaller than 0.003/2050.00 015.

TABLE X. Results for the critical exponenth from the FSS of
the magnetic susceptibility. Fits with ansatz~40!. All data with
Lmin<L<Lmax are taken into account.

Lmin Lmax x2/DOF h

f4 model
20 80 2.44 0.0371~1!

24 80 0.73 0.0375~1!

28 80 0.94 0.0375~2!

32 80 0.41 0.0378~3!

dd-XY model
20 80 1.88 0.0371~1!

24 80 1.19 0.0373~1!

28 80 1.52 0.0374~2!

32 80 1.24 0.0376~2!

XY model
20 64 7.92 0.0325~2!

24 64 1.81 0.0344~2!

28 64 0.27 0.0340~3!

32 64 0.06 0.0342~4!
3-11
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From the results for the improved models reported
Table XI, one would be tempted to takeh50.0384 as the
final result. However, as we can see from the results for
XY model, we should not trust blindly the goodx2/DOF of
these fits. Taking into account the decreasing trend of
values ofh for the improved models, we assign the cons
vative upper boundh,0.0385. By combining it with the
lower bound obtained from ansatz~40!, we obtain our final
result 0.0375,h,0.0385, i.e.,h50.0380(5).

III. HIGH-TEMPERATURE DETERMINATION
OF CRITICAL EXPONENTS

In this section we report the results of our analyses of
HT series. The details are reported in Appendix B.

We computeg andn from the analysis of the HT expan
sion to O(b20) of the magnetic susceptibility and of th
second-moment correlation length. In Appendix B 2 we
port the details and many intermediate results so that
reader can judge the quality of our results without the n
of performing his own analysis. This should give an idea
the reliability of our estimates and of the meaning of t
errors we quote, which depend on many somewhat arbit
choices and are therefore partially subjective.

TABLE XI. Results for the critical exponenth from the FSS of
the magnetic susceptibility. Fits with ansatz~41!. All data with
Lmin<L<Lmax are taken into account.

Fit with k50.0 Fit with k50.2
Lmin Lmax x2/DOF h x2/DOF h

f4 model
8 80 0.72 0.0386~1! 1.16 0.0391~1!

10 80 0.68 0.0385~1! 1.27 0.0388~1!

12 80 0.75 0.0385~1! 0.81 0.0388~1!

14 80 0.84 0.0386~2! 0.92 0.0388~2!

16 80 0.72 0.0384~2! 0.73 0.0386~2!

20 80 0.88 0.0384~3! 0.88 0.0385~4!

dd-XY model
8 80 1.85 0.0387~1! 3.06 0.0391~1!

10 80 0.95 0.0384~1! 1.15 0.0388~1!

12 80 0.99 0.0384~1! 1.04 0.0386~1!

14 80 0.94 0.0384~2! 1.03 0.0386~2!

16 80 0.85 0.0383~2! 1.14 0.0384~2!

20 80 0.90 0.0381~4! 0.90 0.0382~4!

XY model
12 64 0.64 0.0350~2!

16 64 0.48 0.0353~3!

20 64 0.37 0.0358~5!
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We analyze the HT series by means of integral appro
mants~IA’s ! of first, second, and third order. The most pr
cise results are obtain biasing the value ofbc , using its MC
estimate. We consider several sets of biased IA’s, and
each of them we obtain estimates of the critical expone
These results are reported in Appendix B 2. All sets of IA
give substantially consistent results. Moreover, the res
are also stable with respect to the number of terms of
series, so that there is no need to perform problematic
trapolations in the number of terms in order to obtain t
final estimates. The error due to the uncertainty onl* and
D* is estimated by considering the variation of the resu
when changing the values ofl andD.

Using the intermediate results reported in Appendix B
we obtain the estimates ofg andn shown in Table XII. We
report ong andn three contributions to the error. The num
ber within parentheses is basically the spread of the appr
mants at the central estimate ofl* (D* ) using the central
value of bc . The number within brackets is related to th
uncertainty on the value ofbc and is estimated by varyingbc
within one error bar atl5l* or D5D* fixed. The number
within braces is related to the uncertainty onl* or D* , and
is obtained by computing the variation of the estimates wh
l* or D* vary within one error bar, changing correspon
ingly the values ofbc . The sum of these three numbe
should be a conservative estimate of the total error.

We determine our final estimates by combining the res
for the two improved Hamiltonians: we take the weight
average of the two results, with an uncertainty given by
smallest of the two errors. We obtain forg andn

g51.3177~5!, ~42!

n50.671 55~27!, ~43!

and by the hyperscaling relationa5223n

a520.0146~8!. ~44!

Consistent results, although significantly less precise~ap-
proximately by a factor of 2!, are obtained from the IHT
analysis without biasingbc ~see Appendix B 2!.

From the results forg and n, we can obtainh by the
scaling relationg5(22h)n. This gives h50.0379(10),
where the error is estimated by considering the errors og
and n as independent, which is of course not true. We c
obtain an estimate ofh with a smaller, yet reliable, error by
applying the so-called critical-point renormalization meth
~CPRM! ~see, e.g., Refs. 10 and references therein! to the
series ofx andj2. The results are reported in Table XII. W
f the
TABLE XII. Estimates of the critical exponents obtained from the analysis of the HT expansion o
improvedf4 lattice Hamiltonian and dd-XY model.

g n h a

f4 Hamiltonian 1.31780~10!@27#$15% 0.67161~5!@12#$10% 0.0380~3!$1% 20.0148(8)
dd-XY model 1.31748~20!@22#$18% 0.67145~10!@10#$15% 0.0380~6!$2% 20.0144(10)
3-12
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report two contributions to the error onh, as discussed forg
andn; the uncertainty onbc does not contribute in this case
Our final estimate is

h50.0380~4!. ~45!

Moreover, using the scaling relations we obtain

d5
52h

11h
54.780~2!, ~46!

b5
n

2
~11h!50.3485~2!, ~47!

where the error onb has been estimated by considering t
errors ofn andh as independent.

IV. THE CRITICAL EQUATION OF STATE

A. General properties of the critical equation of state
of XY models

We begin by introducing the Gibbs free-energy densit

G~H !5
1

V
logZ~H !, ~48!

and the related Helmholtz free-energy density

F~M !5MW •HW 2G~H !, ~49!

whereV is the volume,MW the magnetization density,HW the
magnetic field, and the dependence on the temperatu
understood in the notation. In the critical limit, the Helm
holtz free energy obeys a general scaling law. Indeed, ft
→0, uM u→0, andtuM u21/b fixed, it can be written as

DF5F~M !2Freg~M !;t22aF̂~ uM ut2b!, ~50!

where Freg(M ) is a regular background contribution. Th
function F̂ is universal apart from trivial rescalings.

The Helmholtz free energy is analytic outside the critic
point and the coexistence curve~Griffiths’ analyticity!.
Therefore, it has a regular expansion in powers ofuM u for
t.0 fixed, which we write in the form49

DF5
m3

g4
A~z!, ~51!

wherem51/j, j is the second-moment correlation lengt
andg4 is the zero-momentum four-point coupling. Note th
z}uM ut2b for t→0, thus the expansion ofF̂(uM ut2b) for
uM ut2b→0 is equivalent to the small-z expansion ofA(z):

A~z!5
1

2
z21

1

4!
z41(

j 53

1

~2 j !!
r 2 j z

2 j . ~52!

Correspondingly, we obtain for the equation of state

HW 5
]F~M !

]MW
}

MW

uM u
tbdF~z!, ~53!
21450
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with F(z)[]A/]z. Because of Griffiths’ analyticity,F(M )
has also a regular expansion in powers oft for uM u fixed.
Therefore,F(z) has the large-z expansion

F~z!5zd(
k50

Fk
`z2k/b. ~54!

The functionF(z) is defined only fort.0, and thus, in order
to describe the low-temperature regiont,0, one should per-
form an analytic continuation in the complext plane.49,50The
coexistence curve corresponds to a complexz05uz0ue2 ipb

such thatF(z0)50. Therefore, the behavior near the coe
istence curve is related to the behavior ofF(z) in the neigh-
borhood ofz0. The constantsF0

` anduz0u can be expressed in
terms of universal amplitude ratios, by using the asympto
behavior of the magnetization along the critical isotherm a
at the coexistence curve:

F0
`5

~C1!(3d21)/2

~dCc!d~2C4
1!(d21)/2

, ~55!

uz0u25R4
1[2C4

1B2/~C1!3, ~56!

where the critical amplitudes are defined in Appendix C.
The functionF(z) provides in principle the full equation

of state. However, it has the shortcoming that temperatu
t,0 correspond to imaginary values of the argument. It
thus more convenient to use a variable proportional
tuM u21/b, which is real for all values oft. Therefore, it is
convenient to rewrite the equation of state in a differe
form,

HW 5MW uM ud21f ~x!, x}tuM u21/b, ~57!

wheref (x) is a universal scaling function normalized in su
a way thatf (21)50 and f (0)51. The two functionsf (x)
andF(z) are clearly related:

z2dF~z!5F0
` f ~x!, z5uz0ux2b. ~58!

It is easy to reexpress the results we have obtained forF(z)
in terms of x. The regularity ofF(z) for z→0 implies a
large-x expansion of the form

f ~x!5xg (
n50

`

f n
`x22nb. ~59!

The coefficientsf n
` can be expressed in terms ofr 2n using

Eq. ~52!. In particular, using Eqs.~55! and ~56!,

f 0
`5Rx

21 , ~60!

where Rx is defined in Appendix C. Griffiths’ analyticity
implies thatf (x) is regular forx.21.

We want now to discuss the behavior off (x) for x→
21, i.e., at the coexistence curve. General arguments pre
that at the coexistence curve the transverse and longitud
magnetic susceptibilities behave respectively as

xT5
M

H
, xL5

]M

]H
}H21/2. ~61!
3-13
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TABLE XIII. Estimates ofg4 , r 6 , r 8, and r 10 obtained from the analysis of the HT series for the tw
improved Hamiltonians. Final results will be reported in Table XIV.

g4 r 6 r 8 r 10

f4 Hamiltonian 21.15~6! 1.955~20! 1.37~15! 213~7!

dd-XY model 21.13~7! 1.948~15! 1.47~10! 211~14!
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In particular the singularity ofxL for t,0 and H→0 is
governed by the zero-temperature infrared-stable Gaus
fixed point,51–53 leading to the prediction

f ~x!;cf ~11x!2 for x→21. ~62!

The nature of the corrections to the behavior~62! is less
clear. It has been conjectured,53–55 using essentially
e-expansion arguments, that, fory→0, i.e., near the coexist
ence curve,v[11x has a double expansion in powers
y[HM 2d and y(d22)/2. This implies that in three dimen
sionsf (x) can be expanded in powers ofv at the coexistence
curve. On the other hand, an explicit calculation56 to next-to-
leading order in the 1/N expansion shows the presence
logarithms in the asymptotic expansion off (x) for x→21.
However, they are suppressed by an additional factor ov2

compared to the leading behavior~62!.
It should be noted that for thel transition in 4He the

order parameter is related to the complex quantum amplit
of helium atoms. Therefore, the ‘‘magnetic’’ field is not e
perimentally accessible, and the function appearing in
~57! cannot be measured directly in experiments. The ph
cally interesting quantities are universal amplitude ratios
quantities formally defined at zero external field, such
U0[A1/A2, for which accurate experimental estimat
have been obtained. On the other hand, the scaling equ
of state~57! is physically relevant for planar ferromagnet
systems.

B. Small-M expansion of the equation of state in the high-
temperature phase

Using HT methods, it is possible to compute the first c
efficients g2 j and r 2 j appearing in the expansion of th
Helmholtz free energy and of the equation of state, see E
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~51! and ~52!. Indeed, these quantities can be expressed
terms of zero-momentum 2j -correlation functions and of the
correlation length.

Details of the analysis of the HT series ofg4 , r 6 , r 8, and
r 10 are reported in Appendix B 3. We obtained the resu
shown in Table XIII. In Table XIV we report our final esti
mates~denoted by IHT!, obtained by combining the result
of the two models; we also compare them with the estima
obtained using other approaches. Note that our final estim
of g4 is slightly larger than the result reported in Ref. 28~see
Table XIV!. The difference is essentially due to the differe
analysis employed here, which should be more reliable. T
point is further discussed in Appendix B 3.

C. Parametric representations of the equation of state

In order to obtain a representation of the equation of s
that is valid in the whole critical region, we need to exte
analytically the expansion~52! to the low-temperature region
t,0. For this purpose, we use parametric representat
that implement the expected scaling and analytic propert
They can be obtained by writing61–63

M5m0Rbm~u!,

t5R~12u2!,

H5h0Rbdh~u!, ~63!

whereh0 andm0 are normalization constants. The variableR
is nonnegative and measures the distance from the cri
point in the (t,H) plane, while the variableu parametrizes
the displacement along the lines of constantR. The functions
m(u) andh(u) are odd and regular atu50 and atu51. The
constantsm0 and h0 can be chosen so thatm(u)5u
1O(u3) andh(u)5u1O(u3). The smallest positive zero o
m-
TABLE XIV. Estimates ofg4 , r 6 , r 8, and r 10 obtained using the following methods: analyses of i
proved HT expansions~IHT!, of HT expansions for the standardXY model ~HT!, of fixed-dimension per-
turbative expansions (d53 g-exp.!, and ofe expansions (e-exp.!. A more precise determination ofr 10 will
be reported in Table XV.

IHT HT d53 g-exp. e-exp.

g4 21.14~6! 21.28~9! ~Ref. 16! 21.16~5! ~Ref. 7! 21.5~4! ~Refs. 15,57!
21.05~6! ~Ref. 28! 21.34~17! ~Ref. 15! 21.11~Ref. 42!

r 6 1.950~15! 2.2~6! ~Ref. 58! 1.967~Ref. 59! 1.969~12! ~Refs. 57,60!
1.951~14! ~Ref. 28!

r 8 1.44~10! 1.641~Ref. 59! 2.1~9! ~Refs. 57,60!
1.36~9! ~Ref. 28!

r 10 213(7)
3-14
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TABLE XV. Universal ratios of amplitudes computed usinga520.0146(8), h50.0380(4), r 6

51.950(15) andr 851.44(10),r 105213(7). The numbers of the first four lines correspond to central valu
of the input parameters. The errors reported are only related to the uncertainty on the input para
Numbers marked with an asterisk are inputs, not predictions.

@~A! n51; r 6 ,r 8] @~B! n51; r 6 ,r 8] @~A! n52; r 6 ,r 8 ,Rx] @~B! n52; r 6 ,r 8 ,r 10]

r 2.22974 2.06825 2.23092 2.04
u0

2 3.88383 2.93941 3.88686 2.70
c1 20.0260296 0.0758028 20.0265055 0.11
c2 0 0 0.0002163 0.01
A1/A2 1.062~4! 1.064~4! 1.062~3! 1.062~5!

Rj
1 0.355~3! 0.350~1! 0.355~2! 0.354~5!

Rc 0.127~6! 0.115~2! 0.126~2! 0.119~8!

Rx 1.35~7! 1.50~2! * 1.356 1.45~8!

R4 7.5~2! 7.92~8! 7.49~6! 7.8~3!

F0
` 0.0302~3! 0.0300~2! 0.0302~2! 0.0302~4!

r 10 210(1) 211.9(1.4) 210(1) * 213(7)
cf 4~2! 52~20! 4~2!
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h(u), which should satisfyu0.1, corresponds to the coex
istence curve, i.e., toT,Tc andH→0. The singular part of
the free energy is then given by

DF5h0m0R22ag~u!, ~64!

whereg(u) is the solution of the first-order differential equ
tion

~12u2!g8~u!12~22a!ug~u!5@~12u2!m8~u!

12bum~u!#h~u! ~65!

that is regular atu51. In particular, the ratioA1/A2 of the
specific-heat amplitudes in the two phases can be derive
using the relation

A1/A25~u0
221!22a

g~0!

g~u0!
. ~66!

The parametric representation satisfies the requiremen
regularity of the equation of state. Singularities can app
only at the coexistence curve~due, for example, to the loga
rithms discussed in Ref. 56!, i.e., for u5u0. Notice that the
mapping~63! is not invertible when its Jacobian vanishe
which occurs when

Y~u![~12u2!m8~u!12bum~u!50. ~67!

Thus, parametric representations based on the mapping~63!
are acceptable only ifu0,u l whereu l is the smallest posi-
tive zero of the functionY(u). One may easily verify that the
asymptotic behavior~62! is reproduced simply by requiring
that

h~u!;~u02u!2 for u→u0 . ~68!

The functionsm(u) andh(u) are related toF(z) by

z5r m~u!~12u2!2b, ~69!

F„z~u!…5r~12u2!2bdh~u!, ~70!
21450
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where r is a free parameter.17,49 In the exact parametric
equation the value ofr may be chosen arbitrarily but, as w
shall see, when adopting an approximation procedure the
pendence onr is not eliminated. In our approximation
scheme we will fixr to ensure the presence of the Goldsto
singularities at the coexistence curve, i.e., the asymptotic
havior ~68!. Since z5r u1O(u3), expandingm(u) and
h(u) in ~odd! powers ofu,

m~u!5u1 (
n51

m2n11u2n11,

h~u!5u1 (
n51

h2n11u2n11, ~71!

and using Eqs.~69! and ~70!, one can find the relations
amongr, m2n11 , h2n11 and the coefficientsr 2n of the ex-
pansion ofA(z).

Following Ref. 28, we construct approximate polynom
parametric representations that have the expected sing
behavior at the coexistence curve51–53,56~Goldstone singular-
ity! and match the known small-z expansion~52!. We will
not repeat here in full the discussion of Ref. 28, whi
should be consulted for more details. We consider two d
tinct schemes of approximation. In the first one, which
denote by~A!, h(u) is a polynomial of fifth order with a
double zero atu0, and m(u) a polynomial of order (1
12n):

scheme~A!: m~u!5uS 11(
i 51

n

ciu
2i D ,

h~u!5u~12u2/u0
2!2. ~72!

In the second scheme, denoted by~B!, we set

scheme~B!: m~u!5u,
3-15
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h~u!5u~12u2/u0
2!2S 11(

i 51

n

ciu
2i D . ~73!

Here h(u) is a polynomial of order 512n with a double
zero atu0. Note that for scheme~B!

Y~u!512u212bu2, ~74!

independently ofn, so that u l5(122b)21. Concerning
scheme~A!, we note that the analyticity of the thermod
namic quantities foruuu,u0 requires the polynomial func
tion Y(u) not to have complex zeroes closer to the orig
thanu0.

In both schemes the parameterr is fixed by the require-
ment~68!, while u0 and then coefficientsci are determined
by matching the small-z expansion ofF(z). This means that
for both schemes, in order to fix then coefficientsci we need
to know n11 values ofr 2 j , i.e., r 6 , . . . ,r 612n . As input
parameters for our analysis we consider the estimates
tained in this paper, i.e.,a520.0146(8), h50.0380(4),
r 651.950(15),r 851.44(10),r 105213(7).

Before presenting our results, we mention that the eq
tion of state has been recently studied by MC simulations
the standardXY model, obtaining a fairly accurate determ
nation of the scaling functionf (x).64 In particular we men-
tion the precise result obtained for the universal amplitu
ratio Rx ~see Appendix C for its definition!, i.e., Rx

51.356(4), and for theconstantcf , i.e.,cf52.85(7), where
cf is defined in Eq.~62!. In the following we will take into
account these results to find the best parametrization wi
our schemes~A! and ~B!.

By using the few known coefficientsr 2 j—essentiallyr 6
and r 8 because the estimate ofr 10 is not very precise—one
obtains reasonably precise approximations of the sca
function F(z) for all positive values ofz, i.e., for the whole
HT phase up tot50. In Fig. 2 we show the curves obtaine
in schemes~A! and~B! with n51 that use the coefficientsr 6
and r 8. The two approximations ofF(z) are practically in-
distinguishable. This fact is not trivial since the small-z ex-
pansion has a finite convergence radius that is expected
uz0u5(R4

1)1/2'2.7. Therefore, the determination ofF(z) on
the whole positive real axis from its small-z expansion re-

FIG. 2. The scaling functionF(z).
21450
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quires an analytic continuation, which turns out to be effe
tively performed by the approximate parametric represen
tions we have considered.

Larger differences between the approximations given
schemes~A! and~B! for n51 appear in the scaling functio
f (x), which is shown in Fig. 3, especially in the regionx
,0, which corresponds tot,0 andz imaginary. Note that
the sizeable differences forx.0 are essentially caused b
the normalization off (x), which is performed at the coexist
ence curvex521 and at the critical pointx50, by requir-
ing f (21)50 and f (0)51. Although the large-x region
corresponds to small values ofz, the difference between th
two approximate schemes does not decrease in the larx
limit due to their slightly different estimates ofRx ~see Table
XV !. Indeed,f (x);Rx

21xg for large values ofx. In Fig. 3 we
also plot the curve obtained in Ref. 64 by fitting the M
data.

In Table XV we report the results for some universal r
tios of amplitudes. The notations are explained in Appen
C. The reported errors refer only to the uncertainty of t
input parameters and do not include the systematic erro
the procedure, which may be determined by comparing
results of the various approximations. Comparing the res
for Rx andcf with the MC estimates of Ref. 64, we observ
that the parametrization~A! is in better agreement with th
numerical data. This is also evident from Fig. 3.

We also consider both schemes withn52. If we user 10
to determine the next coefficientc2, scheme~A! is not par-
ticularly useful because it is very sensitive tor 10, whose
estimate has a relatively large error.28 This fact was already
observed in Ref. 28, and explained by considerations on
more complicated analytic structure. One may instead de
minec2 by using the MC resultRx51.356(4). Theestimates
of the universal amplitude ratios obtained in this way a
presented in Table XV. They are very close to then51 case,
providing additional support to our estimates and error ba
Scheme~B! is less sensitive tor 10 and provides reasonabl
results if we user 10 to fix the coefficientc2 in h(u) and
impose the consistency conditionu0,u l . The results are

FIG. 3. The scaling functionf (x). The MC curve is taken from
Ref. 64.
3-16
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TABLE XVI. Estimates ofA1/A2 obtained in different approaches.

IHT–PR d53 exp. e-exp. Experiments

1.062~4! 1.056~4! ~Ref. 66! 1.029~13! ~Ref. 67! 1.0442~Refs. 1,3,4!
1.055~3! ~Ref. 28! 1.067~3! ~Ref. 39!

1.058~4! ~Ref. 40!
1.088~7! ~Ref. 68!
s

th
e
f
p

re

ua

in

bu

th

su

f.

-
e
f
th

ity

f

ica

ou

-

n
of

av-

,

f
of

ing

on

.

l

shown in Table XV, where one observes that they get clo
to the estimates obtained by using scheme~A!.

As already mentioned, the most interesting quantity is
specific-heat amplitude ratioA1/A2, because its estimat
can be compared with experimental results. Our results
A1/A2 are quite stable and insensitive to the different a
proximations of the equation of state we have conside
essentially because they are obtained from the functiong(u),
which is not very sensitive to the local behavior of the eq
tion of state, see Eq.~65!. From Table XV we obtain the
estimate

A1/A251.062~4!. ~75!

In Table XVI we compare our result~denoted by IHT-PR!
with other available estimates. Note that there is a marg
disagreement with the result of Ref. 28, i.e.,A1/A2

51.055(3), which was obtained using the same method
with different input parameters:a520.012 85(38)~the ex-
perimental estimate of Ref. 1!, h50.0381(3), r 651.96(2),
r 851.40(15) andr 105213(7). This discrepancy is mainly
due to the different value ofa, since the ratioA1/A2 is
particularly sensitive to it. This fact is also suggested by
phenomenological relation65 A1/A2'124a.

We observe a discrepancy with the experimental re
reported in Refs. 1 and 3,A1/A251.0442. However, we
note that in the analysis of the experimental data of Re
the estimate ofA1/A2 was strongly correlated to that ofa;
indeedA1/A2 was obtained by analyzing the high- and low
temperature data witha fixed to the value obtained from th
low-temperature data alone. Therefore the discrepancy
A1/A2 that we observe is again a direct consequence of
differences in the estimates ofa.

As suggested in Ref. 69, one may consider the quant

Ra5
12A1/A2

a
, ~76!

which is expected to be much less sensitive to the value oa.
Our analysis leads to the estimateRa54.3(2), which com-
pares very well with the experimental estimateRa'4.19 that
can be obtained from Refs. 1,3 and with the field-theoret
result reported in Ref. 70, i.e.,Ra54.39(26).

For the other universal amplitude ratios we quote as
final estimates the results obtained by using scheme~A! with
n51: Rj

150.355(3), Rc50.127(6), Rx51.35(7), R4

57.5(2), F0
`50.0302(3), cf54(2). These results are sub

stantially equivalent to those reported in Ref. 28.
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V. THE TWO-POINT FUNCTION OF THE ORDER
PARAMETER IN THE HIGH-TEMPERATURE

PHASE

The critical behavior of the two-point correlation functio
G(x) of the order parameter is relevant to the description
scattering phenomena with light and neutron sources.

In the HT critical region, the two-point functionG(x)
shows a universal scaling behavior. Fork,m→0 (m[1/j
and j is the second-moment correlation length! with y
[k2/m2 fixed, we can write71

g~y!5x/G̃~k!. ~77!

The functiong(y) has a regular expansion in powers ofy:

g~y!511y1(
i 52

`

ciy
i . ~78!

Two other quantities characterize the low-momentum beh
ior of g(y): they are given by the critical limit of the ratios

SM[mgap
2 /m2, SZ[xm2/Zgap, ~79!

wheremgap ~the mass gap of the theory! andZgap determine
the long-distance behavior of the two-point function:

G~x!'
Zgap

4puxu
e2mgapuxu. ~80!

If y0 is the negative zero ofg(y) that is closest to the origin
then, in the critical limit, SM52y0 and SZ
5]g(y)/]yuy5y0

.

The coefficientsci can be related to the critical limit o
appropriate dimensionless ratios of spherical moments
G(x) and can be computed by analyzing the correspond
HT series in thef4 and in the dd-XY models, which we have
calculated to 20th order.17,47 We report only our final esti-
mates of c2 and c3, i.e., c2523.99(4)31024, c3
50.09(1)31024, and the bounduc4u,1026. As already ob-
served in Ref. 47, the coefficients show the pattern

uci u!uci 21u!•••!uc2u!1 for i>3. ~81!

Therefore, a few terms of the expansion ofg(y) in powers of
y provide a good approximation in a relatively large regi
aroundy50, larger thanuyu&1. This is in agreement with
the theoretical expectation that the singularity ofg(y) closest
to the origin is the three-particle cut~see, e.g., Refs
47,72,73!. If this is the case, the convergence radiusr g of the
Taylor expansion ofg(y) is r g59SM . Since, as we shal
see,SM'1, at least asymptotically we should haveci 11'
3-17
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21
9ci . This behavior can be checked explicitly in the largeN

limit of the N-vector model.47

Assuming the pattern~81!, we may estimateSM and SZ
from c2 , c3, andc4. We obtain

SM511c22c31c412c2
21••• ~82!

SZ5122c213c324c422c2
21•••, ~83!

where the ellipses indicate contributions that are neglig
with respect toc4. In Ref. 47 the relation~82! has been
confirmed by a direct analysis of the HT series ofSM . From
Eqs. ~82! and ~83! we obtain SM50.999 592(6) andSZ
51.000 825(15). These results improve those obtained
Ref. 47 by using HT methods in the standardXY model and
field-theoretic methods, such as thee expansion and the
fixed-dimensiong expansion.

For large values ofy, the function g(y) follows the
Fisher-Langer law74

g~y!215
A1

y12h/2 S 11
A2

y(12a)/(2n)
1

A3

y1/(2n)D . ~84!

The coefficients have been computed in thee expansion to
three loops,73 obtaining A1'0.92, A2'1.8, A3'22.7. In
order to obtain an interpolation that is valid for all values
y, we will use a phenomenological function proposed
Bray.73 This approximation has the correct large- and sm
y behavior. It requires the values of the exponentsn, a, and
h, and the sum of the coefficientsA21A3. For the exponents
we use of course the estimates obtained in this paper, w
the coefficientA21A3 is fixed using thee-expansion predic-
tion A21A3520.9. Bray’s phenomenological function pre
dicts then the constantsAi and ci . We obtain:A1'0.915,
A2'224.7, A3'23.8, c2'24.431024, c3'1.131025,
c4'2531027. The results forA1 , c2 , c3, and c4 are in
good agreement with the above-reported estimates, whileA2
andA3 differ significantly from thee-expansion results. No
tice, however, that, sinceuau is very small, the relevant quan
tity in Eq. ~84! is the sumA21A3 which is, by construction,
equal in Bray’s approximation and in thee expansion.

APPENDIX A: THE MONTE CARLO SIMULATION

1. The Monte Carlo algorithm

At present the best algorithm to simulateN-vector sys-
tems is the cluster algorithm proposed by Wolff75 ~see Ref.
76 for a general discussion!. However, the cluster updat
changes only the angle of the field. Therefore, followi
Brower and Tamayo,77 we add a local update that chang
also the modulus of the field.

We use the embedding algorithm proposed by Wolf75

with two major differences. First, we do not choose an ar
trary direction, but we consider changes of the signs of
first and of the second component of the fields separat
Second, we do not use the single-cluster algorithm to upd
the embedded model, but the wall-cluster variant propose
Ref. 23. In the wall-cluster update, one flips at the same t
all clusters that intersect a plane of the lattice. In Ref. 2
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small gain in performance was found with respect to
single-cluster algorithm in simulations of the thre
dimensional Ising model.

Note that, since the cluster update does not change
modulus of the field, identical routines can be used for
f4 model and for the dd-XY model.

For the f4 model we sweep through the lattice with
local updating scheme. At each site we perform a Metrop
step, followed by an over-relaxation step and by a sec
Metropolis step. In particular, the over-relaxation step
given by

fW x85fW x22
~fW x•fW n! fW n

fW n
2

, ~A1!

where fW n5(yPnn(x)fW y and nn(x) is the set of the neares
neighbors ofx. Note that this step takes very little CPU tim
Therefore, it is likely that its benefit out-balances the CP
cost.

The local update of the dd-XY model is achieved by per
forming at each site one Metropolis update followed by t
over-relaxation update~A1!. In the Metropolis update, the
proposal for the fieldfW x at the sitex is given by

fW x85~0,0! for ufW xu51

fW x85@cos~a!,sin~a!# for ufW xu50, ~A2!

wherea is a random number with a uniform distribution i
@0,2p). One can prove that this Metropolis update leaves
Boltzmann distribution invariant.

We summarize the complete update cycle: local upd
sweep; global field rotation, in which the angle is taken fro
a uniform distribution in@0,2p); 6 wall-cluster updates. The
sequence of the 6 wall-cluster updates is given by the wa
1-2, 1-3 and 2-3 plane. In each of the three cases, we up
separately each component of the field.

We used ANSI C to implement our simulation program
We used our own implementation of theG05CAF random-
number generator from the NAG-library. TheG05CAF is a
linear congruential random-number generator with modu
m5259, multiplier a51313 and incrementc50. Most of our
simulations were performed on 450-MHz Pentium III PC
running the Linux operating system.

Concerning the efficiency of the Monte Carlo algorithm
we only mention that for thef4 model atl52.1 andb
50.509 15 and the dd-XY model at D51.03 and b
50.5628, the integrated autocorrelation times~in units of
update cycles! of the magnetic susceptibility slightly increas
with increasingL, and they aretx'4 for the largest lattices

2. Measuring Za ÕZp

One of the phenomenological couplings that we ha
studied is the ratioZa /Zp of the partition functionZa of a
system with antiperiodic boundary conditions~a.b.c.! in one
direction and the partitionZp with periodic boundary condi-
tions ~p.b.c.! in all three directions. The a.b.c. are obtain
by multiplying the termfW xfW y in the Hamiltonian by21 for
3-18
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all x5(L1 ,x2 ,x3) and y5(1,x2 ,x3). This ratio can be ob-
tained using the so-called boundary-flip algorithm, applied
Ref. 45 to the Ising model and generalized in Ref. 46
generalO(N)-invariant nonlinears models.

In the boundary-flip algorithm, one considers fluctuati
boundary conditions, i.e., a model with partition function

Zfluct5Zp1Za5 (
Jb561

E D@f# expFb(̂
xy&

J^xy&fW xfW y

1•••G , ~A3!

where J^xy&5Jb for x5(L1 ,x2 ,x3) and y5(1,x2 ,x3), and
J^xy&51 otherwise.Jb51 andJb521 correspond to p.b.c
and a.b.c., respectively.

In this notation, the ratio of partition functions is given b

Za

Zp
5

^dJb ,21&

^dJb,1&
, ~A4!

where the expectation value is taken with fluctuating bou
ary conditions.

In order to simulate these boundary conditions, we n
an algorithm that easily allows flips ofJb . This can be done
with a special version of the cluster algorithm. For both co
ponents of the field we perform the freeze~delete! operation
for the links with probability

pd5min@1,exp~22bJ^xy&fx
(p)fy

(p)!#, ~A5!

wherefx
(p) is the chosen component offx . The sign ofJb

can be flipped if there exists, for the first as well as t
second component of the field, no loop of frozen links w
odd winding number in the first direction. In Ref. 78 it
discussed how this can be implemented. For a more for
and general discussion, see Ref. 79. Note that forJb521
the flip can always be performed. Hence, as Gliozzi a
Sokal have remarked,80 the boundary flip needs not to b
performed in order to determineZa /Zp . It is sufficient to use
p.b.c. and check if the flip to a.b.c. is possible. Settingb
51 if the boundary can be flipped andb50 otherwise, we
have

Za

Zp
5^b&, ~A6!

where the expectation value is taken with p.b.c.

3. Checks of the program

The properties of the integration measure allow to der
an infinite set of nontrivial Schwinger-Dyson equatio
among observables of the model. We have used two s
equations to test the correctness of the programs and
reliability of the random-number generator. For a more g
eral discussion of such tests, see Ref. 81.

As a test of the MC program and of the analysis softwa
we simulated thef4 model forL54 andl52.1 at the fol-
lowing values ofb: b50.485, 0.490, 0.495, 0.500, 0.505
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0.510, 0.515, and 0.520. We computedR̄ with R1,f
5(Za /Zp) f50.3202 andR1,f5(j2nd/L) f50.5925 andR2
5U4 and R25U6 for all these simulations, using a third
order Taylor expansion. The results show that there is a la
interval in which the method works: indeed, the results forR̄
for bs50.505, 0.510 and 0.515 agree within two standa
deviations, although the variation ofU4 and U6 at bs is
several hundred standard deviations. In addition, we h
gained information about the range ofb where the extrapo-
lation works with the desired accuracy:

ubs2b f u,0.0053~L/4!1/n. ~A7!

The factor (L/4)1/n takes care of the fact that the slope of t
couplingsR scales likeL1/n. We carefully checked that this
requirement is always fulfilled in our simulations. Therefo
we are confident that the extrapolation inb, using the Taylor
expansion, was implemented correctly.

APPENDIX B: ANALYSIS OF THE HIGH-TEMPERATURE
EXPANSIONS

In this appendix we report a detailed discussion of our
analyses. This detailed description should allow the reade
understand how we determined our estimates and the
ability of the errors we report, which are to some exte
subjective.

1. Definitions and HT series

Using the linked-cluster expansion technique, we co
puted the 20th-order HT expansion of the magnetic susc
tibility and of the second moment of the two-point functio

x5(
x

^fa~0!fa~x!&, m25(
x

x2^fa~0!fa~x!&,

~B1!

and therefore of the second-moment correlation lengthj2

5m2 /(6x). Moreover, we calculated the HT expansion
the zero-momentum connected 2j -point Green’s functions
x2 j

x2 j5 (
x2 , . . . ,x2 j

^fa1
~0!fa1

~x2!•••fa j
~x2 j 21!fa j

~x2 j !&c

~B2!

(x5x2). More precisely, we computedx4 to 18th order,x6
to 17th order,x8 to 16th order, andx10 to 15th order. The
series for thef4 Hamiltonian withl52.07 and the dd-XY
model withD51.02 are reported in Tables XVII and XVIII
The HT series of the zero-momentum four-point couplingg4
and of the coefficientsr 2 j that parametrize the equation o
state can be computed using their definitions in terms ofx2 j
andj2, i.e.,

g452
3N

N12

x4

x2j3 , ~B3!

and
3-19
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TABLE XVII. Coefficients of the HT expansion ofm2 , x, x4 , x6 , x8, and x10. They have been
computed using thef4 Hamiltonian withl52.07.

i m2 x2 x4

0 0 0.82195468340525626553069 20.18234682673209145113698
1 1.01341425235775258955047 2.0268285047155051791009521.79856993883835218414950
2 4.99788354573054604609481 4.39836023278442865137831210.1455394390643744635266
3 17.0521428795050699809477 9.45608303384639636168661244.4379274874486579169902
4 50.2802232377961742954821 19.75094834218350611430032166.911247402827967481247
5 136.081955345771888598704 41.09532245176752109930582566.231817578861031037728
6 349.014986520228913452360 84.378468147401273173996521783.81074566131415934408
7 861.072204516234675501406 172.83141997433899092767825314.73425458572561425498
8 2065.11115559310738635122 351.412467687273478895617215153.8054671243945401658
9 4843.65801296852863958594 713.327141375620774069366241706.6393990107185189143
10 11163.1410843891753269547 1441.295375436780624982692111480.350225534613432415
11 25357.2828059634753398090 2908.621982852500421139612290779.553330813045449802
12 56914.8160479537305800002 5851.227008556421356048802742792.316757751368697227
13 126448.957588634753901037 11759.831397307816653550321863674.70918289087066236
14 278504.794338270260511244 23580.696925333241069656824603313.91229513488724197
15 608775.044038619834901124 47248.9211902315365277418211214943.2818348822933596
16 1321948.27688188944339553 94508.3475046413360663308226991439.1725436301683188
17 2853823.94933643220583008 188924.811397083165660961264258568.1525362515312215
18 6128960.82003386821732524 377150.8162254927599531042151492730.104215500664052
19 13101467.5362982920867821 752534.725866450821199491
20 27889129.6761627014637264 1499898.13514730628043402

i x6 x8 x10

0 0.4119781688967018885362822.04244608438484921752518 17.49661813733903991182
1 8.09031485009238719234751265.5324533503954629382215 827.9078462841228705545
2 80.55790334806879310787882993.099544110386544944672 17583.15584232944426663
3 569.040955700888943670354210125.9430216092445934264 242162.7376360250619580
4 3235.75380473965447264355279870.4410385967305759821 2508010.668649725457420
5 15823.87246363402838463592524859.679867495864300189 21148750.07331864539075
6 69189.824327062336549049423005237.58408599956662949 152451568.8557862525734
7 277430.904691458150896928215443601.8321215251366505 970471959.8241392223378
8 1038008.04844006612521747272717890.9115560213984880 5582186363.058787985716
9 3669720.024870681885136962318510657.462768013289640 29507970388.46316619942
10 12374182.760206355001950821312668767.17043587616989 145203489229.4613900060
11 40084338.438410230996512225135470803.97668705323439 671866031736.4910099273
12 125446404.887628912440242219206423870.3058981804587 2946715041148.833697116
13 381003987.146313729964559269057827061.9724837730205 12330196249913.83066904
14 1127156412.889521016818122239824993302.080594778804 49488831955055.08307389
15 3257906807.507924439879632807540440278.527392223891 191378645936343.5759725
16 9223412391.9719194138991222645013087720.90303565763
17 25631282620.7774958190658
-

i-
nts

the
r 65102
5~N12!

3~N14!

x6x2

x4
2 , ~B4!

r 852802
280~N12!

3~N14!

x6x2

x4
2 1

35~N12!2

9~N14!~N16!

x8x2
2

x4
3 ,

r 10515 4002
7700~N12!

~N14!

x6x2

x4
2 1

350~N12!2

~N14!2

x6
2x2

2

x4
4

1
1400~N12!2

3~N14!~N16!

x8x2
2

x4
3

2
35~N12!3

3~N14!~N16!~N18!

x10x2
3

x4
4

.

21450
The formulas relevant for theXY universality class are ob
tained by settingN52.

2. Critical exponents

In order to determine the critical exponentsg andn from
the HT series ofx andj2/b respectively, we used quasid
agonal first-, second-, and third-order integral approxima
~IA1’s, IA2’s, and IA3’s, respectively!. Since the most pre-
cise results are obtained by using the MC estimates ofbc to
bias the approximants, we shall report only the results of
biased analyses. We used the values ofbc obtained in Sec.
II D, i.e., those reported in Table IV,bc(l52.0)
50.509 904 9(15),bc(l52.1)50.509 150 7(13) for thef4

model, andbc(D51.03)50.562 797 5(14) for the dd-XY
model ~see also Ref. 6!.
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TABLE XVIII. Coefficients of the HT expansion ofm2 , x, x4 , x6 , x8, and x10. They have been
computed using the dd-XY Hamiltonian withD51.02.

i m2 x2 x4

0 0 0.73497259946651881066155 20.12952381667498436104661
1 0.81027708294985783008938 1.6205541658997156601787621.14235747481325709236407
2 3.57318872366283058263222 3.1924028987250782185108625.86566452750871250322137
3 11.0006482367650529136739 6.24412164584056694746990223.4964691362678107734860
4 29.3868020693268986850123 11.8078991080110710061038280.6562687454557047131467
5 72.0537292098720051000559 22.24521673970519977130272249.761461812242731292855
6 167.391323293772704647731 41.30831083378802770689332717.220908333053642342640
7 373.956365385479749391430 76.536005100156091644057721945.68221342894368675090
8 811.915341705911027278243 140.67966088511976369095825046.15791369304901147071
9 1723.52034635335232533650 258.178251744079668880881212622.3575801936426660898
10 3594.34333565606104441219 471.478755943757026593209230642.5601039304090869577
11 7386.64345245316356464020 860.010504587591344158158272548.9796473949259402584
12 14997.4679478666032080397 1563.487532621385582168052168135.618026803729643010
13 30136.9726456923668836816 2839.869878079931371431112382565.790192788611922604
14 60029.1887398932204011553 5145.845036388747036291942856629.943580595646246982
15 118656.316956262327168223 9317.6720659124083259612621891351.24076972180490224
16 232979.699867454031093529 16841.066007613018749456524124166.11180668899412336
17 454746.664171304150538747 30421.557316733846580582528893532.37374656560556900
18 882960.924794534410812953 54875.4729390613106530869218987953.9690154439591383
19 1706330.67007276458833100 98938.9870168970865371838
20 3283569.77023650242548276 178182.095750601905570976

i x6 x8 x10

0 0.1992380416618164396775720.67796674603175173967960 4.065234199177326156913
1 3.64240617023376584468207220.6297276122379010898516 182.8703402995063816709
2 33.78435524544180762100542295.585300853935935335485 3697.425818965109158334
3 221.91347715627749581445222838.14010017098792994188 48330.04394196081615267
4 1169.53606787476515583468220984.8625853355842977237 472993.8875939111463925
5 5284.117688192595305731262128723.340916169008103149 3752687.194626363074779
6 21286.10745436632824511072685456.078166050751079896 25350793.08823637047328
7 78446.366772843448078202923265581.01409539304748618 150699914.6090201690564
8 269224.069430361947223693214216412.9210915918573320 806981988.8234365457045
9 871590.289814654747926984257438991.7197952962871671 3960575199.723838854512
10 2687478.508940784111600552217927113.188388756606030 18052318528.05763444504
11 7951104.449624670481942092783550202.710253766125616 77211058033.50794299534
12 22703108.483817268226170722689172405.44915075129067 312454827813.1251737621
13 62855482.239616263289003528861507312.08886862026490 1204410146707.714233506
14 169374342.873715022154662228171979758.2629139055303 4446806950469.818584844
15 445613055.420361814905254286751935057.8910676591399 15798640107921.68479456
16 1147647339.611415219622122259625721060.742527022681
17 2899724764.50550187290555
-

e

Given annth-order seriesf (b)5( i 50
n cib

i , its kth-order
integral approximant@mk /mk21 /•••/m0 / l # IAk is a solu-
tion of the inhomogeneouskth-order linear differential equa
tion

Pk~b! f (k)~b!1Pk21~b! f (k21)~b!1•••1P1~b! f (1)~b!

1P0~b! f ~b!1R~b!50, ~B5!

where the functionsPi(b) andR(b) are polynomials of or-
der mi and l, respectively, which are determined by th
21450
known nth-order small-b expansion off (b) ~see, e.g., Ref.
11!.

We consider three types of biased IAk’s:
~i! The first kind of biased IAk’s, which will be denoted

by bIAk’s, is obtained by setting

Pk~b!5~12b/bc!pk~b!, ~B6!

wherepk(b) is a polynomial of ordermk21.
~ii ! Since on bipartite latticesb52bc is also a singular
3-21
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point associated to the antiferromagnetic critical behavio82

we consider IAk’s with

Pk~b!5~12b2/bc
2!pk~b!, ~B7!

wherepk(b) is a polynomial of ordermk22. We will denote
them by b6IAk’s.
~iii ! Following Fisher and Chen,21 we also consider IAk’s
where the polynomial associated with the highest deriva
of f (b) is even, i.e., it is a polynomial inb2. In this casemk
is the order of the polynomialPk as a function ofb2, i.e.,
Pk[( j 50

mk cjb
2 j . Thus, in order to bias the singularity atbc ,

we write

Pk~b!5~12b2/bc
2!pk~b2!, ~B8!

wherepk(b) is a polynomial inb2 of ordermk21. We will
denote them by bFCIAk’s.

In our analyses we consider diagonal or quasidiago
approximants, since they are expected to give the most
curate results. Below, we give the rules we used to selec
quasidiagonal approximants. We introduce a parameteq
that determines the degree of off-diagonality allowed~see
below!. In order to check the stability of the results wi
respect to the order of the series, we also perform analys
which we average over the results obtained with series
different length. For this purpose, we introduce a parametp
and perform analyses in which we use all approximants
tained from series ofn̄ terms withn>n̄>n2p.

We consider the following sets of IAk’s:
~a! @m1 /m0 /k# bIA1’s with

n>m11m01k11>n2p,

Max@ b~n21!/3c2q,3#<m1 ,m0 ,k< d~n21!/3e1q.
~B9!

~b! @m1 /m0 /k# b6IA1’s with

n>m11m01k>n2p,

Max@ b~n21!/3c2q,3#<m1 ,m0 ,k< d~n21!/3e1q.
~B10!

~c! @m1 /m0 /k# bFCIA1’s with

n>m11m01k11>n2p,

Max@ b~n21!/3c2q,3#<m1 ,m0 ,k< d~n21!/3e1q.
~B11!

~d! @m2 /m1 /m0 /k# bIA2’s with

n>m21m11m01k13>n2p,

Max@ b~n23!/4c2q,2#<m221,m1 ,m0 ,k< d~n23!/4e1q.
~B12!

~e! @m2 /m1 /m0 /k# b6IA2’s with

n>m21m11m01k12>n2p,

Max@ b~n23!/4c2q,2#<m222,m1 ,m0 ,k< d~n23!/4e1q.
~B13!
21450
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~f! @m2 /m1 /m0 /k# bFCIA2’s with

n>m21m11m01k13>n2p,

Max@ b~n23!/4c2q,2#<m221,m1 ,m0 ,k< d~n23!/4e1q.
~B14!

~g! @m3 /m2 /m1 /m0 /k# bIA3’s with

n>m31m21m11m01k15>n2p,

Max@ b~n25!/5c2q,2#<m321,m2 ,m1 ,m0 ,k< d~n25!/5e
1q. ~B15!

In the following we fixq53 for the IA1’s andq52 for
the IA2’s and IA3’s.

For each set of IAk’s we calculate the average of th
values corresponding to all nondefective IAk’s listed above.
Approximants are considered defective when they have
gularities close to the realb axis near the critical point. More
precisely, we consider those approximants defective
have singularities in the rectangle

xmin<Reb/bc<xmax, uIm b/bcu<ymax. ~B16!

The values ofxmin , xmax, andymax are fixed essentially by
stability criteria, and may differ in the various analyses. O
should always check that the results depend very little on
chosen values ofxmin , xmax, and ymax, by varying them
within a reasonable and rather wide range of values. T
domain ~B16! cannot be too large, otherwise only few a
proximants are left. In this case the analysis would be l
robust and therefore less reliable. We introduce a parames
such that

xmin512s, xmax511s, ymax5s. ~B17!

We obtain results for various values ofs, checking their de-
pendence ons. We also discard some nondefective IA’s—w
call them outliers—whose results are far from the average
the other approximants. Such approximants are elimina
algorithmically: first, we compute the averageA and the
standard deviations of the results using all nondefectiv
IA’s. Then, we discard those IA’s whose results differ b
more thannss from A with ns52. We repeat the procedur
on the remaining IA’s, by calculating the newA ands, but
now eliminating the IA’s whose results differ by more tha
nss with ns53. The procedure is again repeated, increas
ns by one at each step. This procedure converges rap
and, as we shall see, the outliers so determined are alwa
very small part of the selected nondefective IA’s.

In the Tables XIX and XX, we present the results for t
critical exponentsg and n respectively, obtained from the
HT analysis of thef4 and dd-XY models. There we also
quote the ‘‘approximant ratio’’r a[(g2 f )/t, wheret is the
total number of approximants in the given set,g is the num-
ber of nondefective approximants, andf is the number of
outliers that are discarded using the above-presented a
rithm; g2 f is the number of ‘‘good’’ approximants used i
the analysis; notice thatg@ f , andg2 f is never too small.
For each analysis, beside the corresponding estimate, w
3-22
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TABLE XIX. Results forg obtained from the analysis of the 20th-order HT series ofx for thef4 and dd-
XY models. The numbern of terms used in the analysis is indicated explicitly when it is smaller than
number of available terms (n520). p50 when its value is not explicitly given.

Approximants r a g

l52.00 bIA1s51/2 (2822)/48 1.31755~11!@19#

bIA2s51/2 (8225)/115 1.31749~9!@17#

l52.07 bIA1s51/2 (2822)/48 1.31785~10!@29#

bIA1p53,s51/2 (10321)/172 1.31766~21!@24#

b6IA1s51/2 (2121)/48 1.31789~22!@28#

bFCIA1s51/2 (3524)/48 1.31775~9!@28#

bIA2s51/8 (9927)/115 1.31780~9!@27#

bIA2s51/4 (9324)/115 1.31780~9!@27#

bIA2s51/2 (8724)/115 1.31780~8!@28#

bIA2s51 (6022)/115 1.31781~7!@27#

bIA2n519,s51/2 (4826)/70 1.31777~10!@28#

bIA2n518,s51/2 (5324)/62 1.31768~9!@28#

bIA2p53,s51/2 (277218)/345 1.31772~14!@25#

b6IA2s51/2 (4623)/100 1.31781~29!@23#

bFCIA2s51/2 (9122)/140 1.31780~11!@29#

bIA3s51/2 (5624)/61 1.31787~8!@31#

l52.10 bIA1s51/2 (2922)/48 1.31777~9!@16#

bIA2s51/2 (9222)/115 1.31773~6!@15#

bIA2p53,s51/2 (295217)/345 1.31769~10!@14#

b6IA2s51/2 (4925)/100 1.31774~20!@15#

bFCIA2s51/2 (9225)/140 1.31772~15!@17#

l52.20 bIA1s51/2 (3123)/48 1.31809~7!@30#

bIA2s51/2 (9426)/115 1.31807~3!@27#

D50.90 bIA1s51/2 (3521)/48 1.31685~29!@24#

bIA2s51/2 (6623)/115 1.31693~28!@27#

D51.02 bIA1s51/2 (4123)/48 1.31746~17!@22#

bIA1p53,s51/2 (16229)/172 1.31733~35!@20#

b6IA1s51/2 (3522)/48 1.31735~13!@22#

bFCIA1s51/2 (3124)/48 1.31745~21!@22#

bIA2s51/4 (10323)/115 1.31748~25!@23#

bIA2s51/2 (6821)/115 1.31748~16!@22#

bIA2s51 (2221)/115 1.31754~20!@20#

bIA2p53,s51/2 (25927)/345 1.31730~26!@19#

b6IA2s51/2 (7423)/100 1.31754~26!@22#

bFCIA2s51/2 (6924)/140 1.31738~38!@18#

bIA3s51/2 (4121)/61 1.31776~19!@24#

D51.03 bIA1s51/2 (4023)/48 1.31747~15!@14#

bIA2s51/2 (7121)/115 1.31751~13!@15#

bIA2p53,s51/2 (263211)/345 1.31733~22!@13#

b6IA2s51/2 (7322)/100 1.31756~24!@13#

bFCIA2s51/2 (7224)/140 1.31744~27!@11#

bIA3s51/2 (4122)/61 1.31776~16!@16#

D51.20 bIA1s51/2 (4321)/48 1.31867~20!@28#

bIA2s51/2 (9924)/115 1.31868~10!@25#
ne

-
th

he
e

A’s
the
port two numbers. The number in parentheses,e1, is basi-
cally the spread of the approximants forbc fixed at the MC
estimate. It is the standard deviation of the results obtai
from all ‘‘good’’ IA’s divided by the square root ofr a , i.e.,
e15s/Ar a. Such a definition ofe1 is useful to compare re
sults obtained from different subsets of approximants of
21450
d

e

same type, obtained imposing different constraints. T
number in brackets,e2, is related to the uncertainty on th
value of bc and it is estimated by varyingbc in the range
@bc2Dbc ,bc1Dbc#.

The results of the analyses are quite stable: all sets of I
give substantially consistent results. The comparison of
3-23
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TABLE XX. Results forn obtained from the analysis of the 19th-order HT series ofj2/b for thef4 and
the dd-XY models. The numbern of terms used in the analysis is indicated explicitly when it is smaller t
the number of available terms (n519). p50 when its value is not explicitly given.

Approximants r a n

l52.00 bIA1s51/2 36/37 0.67140~2!@9#

bIA2s51/2 (6326)/70 0.67141~4!@8#

l52.07 bIA1s51/2,1 36/37 0.67161~2!@13#

bIA1n518,s51/2 30/36 0.67160~4!@13#

bIA1n517,s51/2 (3021)/33 0.67163~11!@12#

bIA1p53,s51/2 (12425)/134 0.67162~5!@12#

bIA1p53,s51 (12026)/134 0.67162~5!@12#

b6IA1s51/2 (3321)/36 0.67161~2!@13#

bFCIA1s51/2 (2923)/37 0.67158~10!@12#

bIA2s51/2 (6625)/70 0.67161~4!@12#

bIA2s51 (5023)/70 0.67162~4!@12#

bIA2n518,s51/2 (4423)/62 0.67162~5!@12#

bIA2n517,s51/2 (3822)/49 0.67166~4!@11#

bIA2p53,s51/2 (18026)/215 0.67164~6!@12#

bIA2p53,s51 (14527)/215 0.67164~5!@12#

b6IA2s51/2 (5523)/55 0.67161~3!@13#

bFCIA2s51/2 (6024)/85 0.67161~11!@14#

bIA3s51/2 (1721)/34 0.67159~6!@14#

l52.10 bIA1s51/2 36/37 0.67160~2!@8#

bIA2s51/2 (6325)/70 0.67161~4!@8#

l52.20 bIA1s51/2 36/37 0.67182~3!@14#

bIA2s51/2 (6024)/70 0.67183~7!@14#

D50.90 bIA1s51/2 (3322)/37 0.67091~6!@12#

bIA2s51/2 (6223)/70 0.67092~10!@12#

D51.02 bIA1s51/2 (3523)/37 0.67146~7!@10#

bIA1s51 (3021)/37 0.67147~5!@10#

bIA1n518,s51/2 (3221)/36 0.67148~15!@10#

bIA1n517,s51/2 (3122)/33 0.67132~28!@9#

bIA1p53,s51/2 (124211)/134 0.67143~12!@10#

bIA1p53,s51 (10329)/134 0.67145~10!@10#

b6IA1s51/2 (3421)/36 0.67143~5!@11#

bFCIA1s51/2 (3323)/37 0.67136~12!@10#

bIA2s51/2 (6421)/70 0.67144~5!@10#

bIA2s51 (5523)/70 0.67145~4!@10#

bIA2n518,s51/2 (5422)/62 0.67145~11!@10#

bIA2n517,s51/2 (4825)/49 0.67137~3!@9#

bIA2p53,s51/2 (19829)/215 0.67141~8!@9#

b6IA2s51/2 (5329)/55 0.67144~2!@10#

bFCIA2s51/2 (7828)/85 0.67140~6!@11#

bIA3s51/2 (3424)/34 0.67149~5!@10#

D51.03 bIA1s51/2 (3422)/37 0.67149~7!@8#

bIA2s51/2 (6724)/70 0.67147~5!@7#

D51.20 bIA1s51/2 (3021)/37 0.67231~12!@13#

bIA1s51/2 (6424)/70 0.67236~7!@12#
it
is
of

H

atic
m-
ug-
a

nd
results obtained using all available terms of the series w
those using less terms~in the Tables the number of terms
indicated explicitly when it is smaller than the number
available terms! and those obtained forp53 ~i.e., using
n,n21,n22, andn23 terms in the series! shows that the
results are also stable with respect to the order of the
21450
h

T

series. Therefore, we do not need to perform problem
extrapolations in the number of terms, or rely on pheno
enological arguments, typically based on other models, s
gesting when the number of terms is sufficient to provide
reliable estimate.

From the intermediate results reported in Tables XIX, a
3-24
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XX ~which, we stress, are determined algorithmically on
chosen the set of IAk’s!, we obtain the estimates ofg andn.

From the analyses for thef4 Hamiltonian atl52.07, we
obtain

g51.317 80~10!@28#10.003~l22.07!, ~B18!

n50.671 61~5!@12#10.002~l22.07!. ~B19!

As before, the number between parentheses is basically
spread of the approximants atl52.07 using the centra
value of bc , while the number between brackets gives t
systematic error due to the uncertainty onbc . Eqs. ~B18!
and ~B19! show also the dependence of the results on
chosen value ofl. The coefficient is estimated from the re
sults forl52.2 andl52.0, i.e., from the ratio@Q(l52.2)
2Q(l52.0)#/0.2, whereQ represents the quantity at han
Using l* 52.07(5), we obtain finallyg51.317 80(10)@28#
$15% andn50.671 61(5)@12#$10%, where the error due to th
uncertainty onl* is reported between braces.

Since forl52.10 a more precise estimate ofbc is avail-
able, it is interesting to perform the same analysis, using
HT series of thef4 model atl52.10. We obtain

g51.317 73~10!@15#10.003~l22.10!, ~B20!

n50.671 60~5!@8#10.002~l22.10!, ~B21!

which, using l* 52.07(5), give g51.317 64(10)@15#$15%
and n50.671 54(5)@8#$10%, in perfect agreement with th
results obtained atl52.07. The slight difference of the cen
tral values is essentially due to the independent estimate
bc .

From the analyses for the dd-XY model atD51.02, we
have

g51.317 48~20!@22#10.006~D21.02!, ~B22!

n50.671 45~10!@10#10.005~D21.02!, ~B23!

where the coefficient determining the dependence of the
sults on D is estimated by computing@Q(D51.2)2Q(D
50.9)#/0.3. SinceD* 51.02(3), we obtain the final esti-
mates g51.317 48(20)@22#$18% and n50.671 45(10)@10#
$15%. Since forD51.03 a more precise estimate ofbc is
available, it is worthwhile to repeat the analysis using
series at this value ofD. We have

g51.317 51~20!@15#10.006~D21.03!, ~B24!

n50.671 48~10!@8#10.005~D21.03!, ~B25!

which, for D* 51.02(2), give g51.317 45(20)@15#$18%,
and n50.671 43(10)@8#$15%, in good agreement with the
results obtained from the analysis atD51.02.

Consistent, although significantly less precise, results
obtained from IHT analyses that do not make use of the
estimate ofbc . For example, by analyzing the HT series f
the f4 Hamiltonian atl52.07, we findbc50.509 385(8),
g51.3178(8)$3%, n50.6716(4)$1%, where the error in pa-
rentheses is the spread of the approximants and the
between braces corresponds to the uncertainty onl* . Here,
21450
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we determinebc andg from the analysis ofx, using IA2’s,
FCIA2’s, and IA3’s, andn from the analysis ofj2 using
bIA2’s biased with the estimate ofbc obtained in the HT
analysis ofx.

From the results forg and n, one can obtainh by the
scaling relationg5(22h)n. This gives h50.0379(10),
where the error is estimated by considering the errors og
and n as independent, which is of course not true. We c
obtain an estimate ofh with a smaller, yet reliable, erro
using the so-called critical-point renormalization meth
~CPRM! ~see Ref. 10 and references therein!. In the CPRM,
given two seriesD(x) andE(x) that are singular at the sam
point x0 , D(x)5( idix

i;(x02x)2d and E(x)5( ieix
i

;(x02x)2e, one constructs a new seriesF(x)
5( i(di /ei)x

i . The functionF(x) is singular atx51 and for
x→1 behaves asF(x);(12x)2f, where f511d2e.
Therefore, the differenced2e can be obtained by analyzin
the expansion ofF(x) by means of biased approximants wi
a singularity atxc51. In order to check for possible system
atic errors, we applied the CPRM to the series ofj2/b andx
~analyzing the corresponding 19th-order series! and to the
series ofj2 and x ~analyzing the corresponding 20th-ord
series!. We used IA’s biased atxc51. In Table XXI we
present the results of several sets of IA’s. For thef4 model
at l52.07 we obtain

hn50.025 50~20!10.0013~l22.07!. ~B26!

Thus, taking into account thatl* 52.07(5), we find hn
50.025 50(20)$7%, where the first error is related to th

TABLE XXI. Results for h obtained using the CPRM:~a! ap-
plied toj2/b andx ~19 orders!; ~b! applied toj2 andx ~20 orders!.

Approximants r a hn

l52.00 ~a! bIA1s51/2 33/37 0.02547~7!

~a! bIA2s51/2 (4721)/70 0.0256~2!

~b! bIA2s51/2 (9929)/115 0.0251~3!

l52.07 ~a! bIA1s51/2 37/37 0.02555~7!

~a! bIA2s51/2 47/70 0.0257~2!

~a! bIA3s51/2 (2021)/34 0.0255~2!

~b! bIA2s51/2 (9628)/115 0.0252~3!

~b! bIA3s51/2 (5122)/61 0.0253~5!

l52.20 ~a! bIA1s51/2 33/37 0.02573~7!

~a! bIA2s51/2 (4922)/70 0.0259~3!

~b! bIA2s51/2 (95211)/115 0.0252~3!

D50.90 ~a! bIA2s51/2 (4521)/70 0.0252~3!

~b! bIA2s51/2 (8423)/115 0.0248~9!

D51.02 ~a! bIA1s51/2 (2221)/37 0.0256~9!

~a! bIA2s51/2 (3721)/70 0.0257~3!

~a! bIA3s51/2 (2322)/34 0.0252~5!

~b! bIA2s51/2 (9323)/115 0.0252~8!

~b! bIA3s51/2 (5923)/61 0.0253~4!

D51.20 ~a! bIA2s51/2 (3322)/70 0.0263~3!

~b! bIA2s51/2 (9624)/115 0.0259~8!
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TABLE XXII. Results for g4, obtained from the analysis of the 17th-order series ofb23/2g4(b), for l
52.07 in thef4 model andD51.02 in the dd-XY model.

Approximants r a g4 z

l52.07 bIA1s51/10,1/4,z.0 (4122)/43 21.17~6! 1.2~5!

bIA1s51/4,z.0.5 (3822)/43 21.16~6! 1.2~5!

bIA1s51/4,1.3.z.0.7 23/43 21.19~5! 1.0~2!

bIA1p52,s51/4,z.0 (10524)/118 21.14~7! 1.7~8!

b6IA1s51/10,1/4,z.0 (4023)/44 21.14~5! 1.4~9!

b6IA1s51/4,z.0.5 (3922)/44 21.14~5! 1.4~9!

b6IA1s51/4,1.3.z.0.7 (2021)/44 21.16~3! 1.1~1!

b6IA1p52,s51/4,z.0 (8023)/97 21.13~7! 2~2!

D51.02 bIA1s51/10,z.0 (3122)/43 21.16~10! 1.5~1.4!
bIA1s51/4,z.0 (3022)/43 21.16~10! 1.5~1.4!
bIA1s51/4,z.0.5 (2421)/43 21.13~6! 1.7~1.4!

bIA1s51/4,1.3.z.0.7 9/43 21.16~7! 0.9~2!

bIA1p52,s51/4,z.0 (6928)/118 21.2~3! 1.6~1.3!
b6IA1s51/4,z.0 (3623)/44 21.13~7! 1.5~1.0!
b6IA1s51/4,z.0.5 (3224)/44 21.11~5! 1.5~8!

b6IA1s51/4,1.3.z.0.7 (1621)/44 21.13~3! 1.1~1!

b6IA1p52,s51/4,z.0 (6627)/97 21.13~12! 2~2!
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spread of the IA’s and the second one to the uncertainty
l* , evaluated as before. Analogously, for the dd-XY model
we find

hn50.025 50~40!10.004~D21.02!, ~B27!

and therefore, usingD* 51.02(3), hn50.025 50(40)$12%,
where again the first error is related to the spread of the IA
while the second one is related to the uncertainty onD* .

3. Amplitude ratios

In the following we describe the analysis method we e
ployed to evaluate zero-momentum renormalized couplin
such asg4 andr 2 j . In the case ofg4 we analyzed the serie
b3/2g45( i 50

17 aib
i .

Consider an amplitude ratioA which, for t[bc /b21
→0, behaves as

A~ t !5A* 1c1tD1c2tD21•••. ~B28!

In order to determineA* from the HT series ofA(t), we
consider biased IA1’s, whose behavior atbc is given by~see,
e.g., Ref. 10!

IA1' f ~b!~12b/bc!
z1g~b!, ~B29!

where f (b) andg(b) are regular atbc , except whenz is a
non-negative integer. In particular,

z5
P0~bc!

P18~bc!
, g~bc!52

R~bc!

P0~bc!
. ~B30!

In the case we are considering,z is positive and therefore
g(bc) provides an estimate ofA* . Moreover, for improved
Hamiltonians we expectz5D2'2D and D'0.5. In our
analyses we consider bIA1’s and b6IA18s @see Eqs.~B9! and
21450
n

s,

-
s,

~B10!# and impose various constraints on the value ofz by
selecting bIA1’s withz larger than a given non-negativ
value.

In Table XXII we report the results obtained forg4 using
different sets of approximants. In this case the variation d
to the uncertainty ofbc is negligible. Therefore, we repor
only the average of the results of the ‘‘good’’ IA1’s and the
standard deviation~divided by Ar a) calculated atbc . In
Table XXII we also report the value ofz obtained from the
selected IA1’s. The comparison of the results for differe
values ofl andD shows that the errors due to uncertainty
l* andD* are small and negligible.

From the results of Table XXII we derive the estimat
g4521.15(6) andg4521.13(7), respectively for thef4

Hamiltonian and the dd-XY model. We note that these re
sults are slightly larger than the estimates reported in R
28. The difference is essentially due to the different analy
employed. There, the analysis was based on Pade´ ~PA!,
Dlog-Pade´ ~DPA! and IA1’s, selecting those without singu
larities in a neighborhood ofbc and evaluating them atbc .
However, by analyzing the longer series that are now av
able for the Ising model,83 we have realized that such proc
dure is not very accurate and that the analyses using bIA
are more reliable when a sufficiently large number of ter
is available. Moreover, when the series is sufficiently lon
most ~and eventually all! PA’s, DPA’s and IA1’s become
defective. Indeed, the functions we are considering do h
singularities atbc , although with a positive exponent.

In the analysis ofr 2 j , we also consider PA’s and DPA’s
We indeed expect that, when the series is not sufficien
long to be asymptotic, the approximants obtained by bias
the singularity atbc may not provide a robust analysis. Fo
comparison, we also use quasi-diagonal Pade´ approximants
~PA’s! and Dlog-Pade´ approximants~DPA’s!, evaluating
them atbc . For r 6 and r 8 the above PA’s and DPA’s give
3-26
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results substantially consistent with those of bIA1’s. Our
nal estimates are reported in Table XIII. Forr 10 we obtain
only very rough estimates using essentially PA’s:r 105
213(7) from thef4 Hamiltonian andr 105211(14) from
the dd-XY model.

APPENDIX C: UNIVERSAL AMPLITUDE RATIOS

We give here the definitions of the amplitude ratios th
are used in the text. They are expressed in terms of the
plitudes derived from the singular behavior of the spec
heatCH5A6utu2a, the magnetic susceptibility in the high
temperature phasex52C1t2g, the zero-momentum four
point connected correlation function in the high temperat
21450
-

t
m-
c

e

phase x45 8
3 C4

1t2g22bd, the second-moment correlatio
length in the high-temperature phasej5 f 1t2n, the sponta-
neous magnetization on the coexistence curveM5Butub, and
of the susceptibility along the critical isothermxL
5CcuHu2g/bd. We consider the following universal ampl
tude ratios:

Rc[
aA1C1

B2 , R4[2
C4

1B2

~C1!3 ,

Rx[
C1Bd21

~dCc!d
, Rj

1[~A1!1/3f 1. ~C1!
v.

s.

,

l

,

.
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