
RAPID COMMUNICATIONS

PHYSICAL REVIEW B, VOLUME 65, 020403~R!
Chiral exponents in frustrated spin models with noncollinear order
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We compute the chiral critical exponents for the chiral transition in frustrated two- and three-component spin
systems with noncollinear order, such as stacked triangular antiferromagnets~STA!. For this purpose, we
calculate and analyze the six-loop field-theoretical expansion of the renormalization-group function associated
with the chiral operator. The results are in satisfactory agreement with those obtained in the recent experiment
on theXY STA CsMnBr3 reported by@V. P. Plakhtyet al.,Phys. Rev. Lett.85, 3942~2000!#, providing further
support for the continuous nature of the chiral transition.

DOI: 10.1103/PhysRevB.65.020403 PACS number~s!: 75.10.Hk, 05.10.Cc, 05.70.Fh, 64.60.Fr
n
ca
-
A

ha
ira
fo

ha
la

c-
o
u
d-

s

ir
go
om

ua
ite
y

la
re
o
ft-
oc

ive
-

der

l
en
ur-

sial.

A’s
al

ree-

er,
t
of

u-

no
is

cal
first-
as

ple-
/or
not

sed
The critical behavior of frustrated spin systems with no
collinear order is still a controversial issue, field-theoreti
~FT! methods, Monte Carlo~MC! simulations, and experi
ments providing contradictory results in many cases.
present there is no agreement on the nature of the p
transition, and in particular on the existence of a new ch
universality class.1 See, e.g., Refs. 2–4 and Refs. 5–7
reviews.

In magnets noncollinear order is due to frustration t
may arise either because of the special geometry of the
tice, or from the competition of different kinds of intera
tions. Typical examples of systems of the first type are tw
and three-component antiferromagnets on stacked triang
lattices.8 Their behavior at the chiral transition may be mo
eled by a short-ranged Hamiltonian forN-component spin
variablesSW 5$Si%, defined on a stacked triangular lattice a

HSTA52J (
^vw&xy

SW ~v !•SW ~w!2J8 (
^vw&z

SW ~v !•SW ~w!, ~1!

where J,0, the first sum is over nearest-neighbor pa
within triangular layers, and the second one is over ortho
nal interlayer nearest neighbors. Frustration due to the c
petition of interactions is realized in helimagnets.

In these models frustration is partially released by mut
spin canting and the degeneracy of the ground state is lim
to global O(N) spin rotations and reflections. At criticalit
one expects a breakdown of the symmetry from O(N) in the
high-temperature phase to O(N22) in the low-temperature
phase, implying a matrixlike order parameter. In particu
the ground state of theXY systems shows the 120° structu
of Fig. 1, and it is Z2 chirally degenerate according t
whether the noncollinear spin configuration is right- or le
handed. The chiral degrees of freedom are related to the l
quantity1

Ci j } (
^vw&Pn

Si~v !Sj~w!2Sj~w!Si~v !, ~2!

where the summation runs over the three bonds of the g
triangle. The definition ofCi j can be straightforwardly gen
eralized to the case ofN-component spins.
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Many experiments are consistent with a second-or
phase transition belonging to a new~chiral! universality class
~see, e.g., Refs. 5 and 6 for reviews!. Further experimenta
evidence in favor of a chiral continuous transition has be
recently reported in Ref. 2, showing the simultaneous occ
rence of spin and chiral order in theXY stacked triangular
antiferromagnet~STA! CsMnBr3.

On the theoretical side the issue has been controver
MC simulations9–15 ~see Refs. 6 and 7 for reviews! have not
been conclusive in setting the question. Simulations of ST
are consistent with continuous transitions, but with critic
exponents that are not in a satisfactory quantitative ag
ment. In Ref. 11 the results for theXY STA are interpreted as
an evidence for mean-field tricritical behavior. Moreov
MC investigations15 of special lattice spin systems, tha
should belong to the chiral universality class on the basis
their symmetry, show clearly a first-order transition.

In a recent paper3 the issue has been studied by a contin
ous renormalization-group~RG! approach~see also Refs. 16
and 17!. The results favor a first-order transition, since
evidence of stable fixed points is found. According to th
first-order transition picture, the apparent continuous criti
phenomena observed in experiments are interpreted as
order transitions, weak enough to effectively appear
second-order ones. Note, however, that the practical im
mentation of this method requires an approximation and
truncations of the effective action. So these studies may
be conclusive.

FT studies of systems with noncollinear order are ba
on the Landau-Ginzburg-Wilson O(N)3O(2)-symmetric
Hamiltonian1,6

FIG. 1. The ground-state configuration of threeXY spins on a
triangle coupled antiferromagnetically.
©2001 The American Physical Society03-1
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H5E d3xH 1

2(a
@~]mfW a!21rfW a

2#1
1

4!
u0S (

a
fW a

2D 2

1
1

4!
v0(

a,b
@~fW a•fW b!22fW a

2fW b
2#J , ~3!

where fW a5$fai%, 1<a<2 and 1< i<N, are two sets of
N-component vectors. FrustratedXY and Heisenberg spin
systems with noncollinear ordering, such as STA’s, are
scribed respectively by theN52 and N53 case withv0
.0. The presence of a stable chiral fixed point, conjectu
by Kawamura,1,6 has been recently confirmed by the analy
of the perturbative six-loop series in the framework of t
fixed-dimension expansion.4,18As sketched in Fig. 2, a stabl
chiral fixed pointC appears for bothXY and Heisenberg
cases. The critical exponents characterizing the stable c
fixed point turn out to be in satisfactory agreement with e
periments. Note that in this RG picture first-order transitio
are still possible for systems that are outside the attrac
domain of the chiral fixed point. In this case, the RG flo
runs away to a first-order transition. This may explain so
experiments~for example those for the CsCuCl3 compound,
see, e.g., Refs. 5 and 6! and MC studies for special lattic
systems,15 where first-order transitions are observed.

Beside the conventional critical exponentsb, g, n, etc.,
related to the standard spin order, one may consider a
tional critical exponents related to the behavior of the ch
degrees of freedom. If spin and chiral order occur simu
neously, one expectsnc5n wherenc is the exponent assoc
ated with the correlation length defined from the chiral c
relation function. Introducing a chiral external fieldhc
coupled with the chiralityCab , one may write the singula
part of the free energy as1

Fsing}t22a f ~h/tD,hc /tfc!, ~4!

FIG. 2. RG flow in the quartic couplings (u,v) plane for N
52,3. It shows the stable chiral fixed point denoted byC, and the
unstable antichiral (A), O(2N) Heisenberg~H! and Gaussian~G!
ones.
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wheret is the reduced temperature,D5b1g, andfc is the
chiral crossover exponent. Then, differentiating with resp
to hc , one may obtain the RG relations

bc53n2fc , gc52fc23n, ~5!

where the exponentsbc and gc describe respectively the
critical behavior of the average chirality and of the chir
susceptibility.

Experimental estimates of the chiral exponentsfc andbc
have been recently reported in Ref. 2 for the transition of
XY STA CsMnBr3:

fc51.28~7!, bc50.44~2!, ~6!

measured respectively in the high- and low-temperat
phase. On the theoretical side, there are a few MC results
the STA spin models~1!, and very little from field-theoretica
approaches. The chiral exponents have been only comp
to O(1/N) and O(e) in the corresponding expansio
frameworks.1 However, these results do not allow a quan
tative comparison, essentially for two reasons: because
series are too short and, most importantly, as discusse
Ref. 19, the chiral fixed point for theXY and Heisenberg
cases is not analytically connected with the one found in
large-N and small-e region. In order to obtain results that ca
be compared with experiments, one should compute th
directly for d53 and for the number of components of in
terest, i.e.,N52,3.

In this paper we compute the chiral exponents using
fixed-dimension FT approach, by computing and analyz
the six-loop perturbative expansion of the chiral RG fun
tions. In the fixed-dimension FT approach one performs
expansion in powers of appropriately defined ze
momentum quartic couplings~see, e.g., Ref. 7 and referenc
therein!. In order to obtain estimates of the universal critic
quantities, the perturbative series are resummed and
evaluated at the fixed-point values of the couplings. T
comparison with the experimental results~6! will represent a
highly nontrivial check of the FT description of the transitio
and of the Kawamura’s conjecture that these systems
dergo continuous transitions belonging to distinct chiral u
versality classes.

In order to compute the universal quantities characteriz
the critical behavior in the high-temperature phase, one
troduces a set of zero-momentum conditions for the~one-
particle irreducible! two-point and four-point correlation
functions~see, e.g., Ref. 7 for details!, which relate the zero-
momentum quartic couplingsu andv and the mass scalem
to the corresponding Hamiltonian parametersu0 , v0 and r.
In particular,

Gai,b j
(2) ~p!5dabd i j Zf

21@m21p21O~p4!#. ~7!

In addition, one defines the functionZt through the relation
Gai,b j

(1,2) (0)5dabd i j Zt
21 , whereG (1,2) is the ~one-particle irre-

ducible! two-point function with an insertion of12 f2. The
fixed points of the theory are given by the common zerosu* ,
v* of the b functions
3-2
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bu~u,v !5m
]u

]m
, bv~u,v !5m

]v
]m

, ~8!

calculated keepingu0 andv0 fixed. The critical behavior is
determined by the stable fixed point of the theory. The ana
sis of the six-loop expansion of theb-functions provides a
rather robust evidence of the existence of a stable fix
point4 as shown in Fig. 2. The critical exponentsh andn are
then derived by evaluating the RG functions

hf~u,v !5
] ln Zf

] ln m
, h t~u,v !5

] ln Zt

] ln m
~9!

at the chiral fixed pointu* , v* . The resulting exponents are
n50.57(3), h50.09(1), g51.13(5) for theXY case, and
n50.55(3), h50.10(1), g51.06(5) for the Heisenberg
case,20 which are in substantial agreement with the expe
mental results.

In order to evaluate the chiral exponents, we consider
operator

Ccd,kl~x!5fck~x!fdl~x!2fcl~x!fdk~x!, ~10!

and define a related renormalization functionZc from the
one-particle irreducible two-point functionG (C,2) with an in-
sertion of the operatorCcd,kl , i.e.,

G (C,2)~0!ai;b j ;cd,kl5Zc
21Tabcd,i jkl , ~11!

where

Tabcd,i jkl 5~dacdbd2daddbc!~d ikd j l 2d i l d jk!, ~12!

so thatZc(0,0)51. Then, we compute the RG function

hc~u,v !5
] ln Zc

] ln m
5bu

] ln Zc

]u
1bv

] ln Zc

]v
, ~13!

and its valuehc at u5u* , v5v* , where u* , v* is the
position of the stable chiral fixed point.4 Finally, the RG
scaling relation

fc5~21hc2h!n ~14!

allows us to determinefc .
We computedG (c,2)(0) to six loops. The calculation is

rather cumbersome, since it requires the evaluation of 5
Feynman diagrams. We handled it with a symbolic manip
lation program, which generates the diagrams and compu
the symmetry and group factors of each of them. We used
numerical results compiled in Ref. 21 for the integrals ass
ciated with each diagram. The resummation of the series w
performed using the method outlined in Refs. 22 and 4. T
a
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very lengthy expression of the six-loop expansion
hc(u,v), details of its calculation, and its analysis will b
reported elsewhere.

The results of our analysis are

fc51.43~4! for XY, ~15!

fc51.27~4! for Heisenberg. ~16!

The errors are indicative of the spread of the results yield
by the analysis when changing the resummation parame
and varying the location of the chiral fixed point within th
range reported in Ref. 4. Using the RG relations~5! and the
estimates ofn,4 one may also derive corresponding resu
for the other chiral exponents, obtaining for example

bc50.28~10! for XY, ~17!

bc50.38~10! for Heisenberg. ~18!

We may compare these results with the experimental o
~6!. Our estimate offc is somewhat higher than the estima
~6! while the estimate ofbc is correspondingly somewha
lower. In any case, the difference is of the order of one co
bined error bar. We may also compare our results to
available MC estimates23 for the XY STA spin model, that
are bc50.45(2), gc50.77(5), fc51.22(6) from Ref. 9,
andbc50.38(2), gc50.90(9), fc51.28(10) from Ref. 11
~in this work a mean-field tricritical behavior is conjecture
for the transition!. These results are close to the experimen
ones and thus show the same deviations with respect to
FT results.

For N53 we can compare our results with the MC on
for the three-component STA spin model,23 that are bc
50.55(4), gc50.72(8), fc51.27(9) from Ref. 9 andbc
50.50(2) gc50.82(4) andfc51.32(5) from Ref. 12. The
FT estimate offc is in perfect agreement with the MC re
sults, while the estimate ofbc is somewhat lower, although
compatible within error bars. Apparently, this is due to t
fact that our estimate ofn is somewhat lower—but nonethe
less in substantial agreement within error bars—than th
obtained in MC simulations.

In conclusion, the FT results are in satisfactory agreem
with the experimental and MC estimates. This is a nontriv
check of the FT approach, shows its predictive power in sp
of the fact that the perturbative series are not Bo
summable—still we take into account the leading divergi
behavior, see Ref. 4—and strengthens the evidence for
continuous nature of the chiral transition inXY and Heisen-
berg STA’s.
,
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