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Mirror symmetry and exact multimonopole solutions
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The newly found exact solutions for superimposed axially symmetric Yang-Mills-Higgs multimonopoles are shown

to possess mirror symmetry. As a consequence, a new class of solutions of the Ernst equation of general relativity is

also found. Moreover, the monopole solutions may be formulated in terms of a single real superpotential and their

unitary gauge form derived.

A major breakthrough in our understanding of
the monopole sector in classical Yang-Mills
theories has recently come from the explicit con-
struction of static multimonopole solutions. ' ' The
main purpose of this paper is to investigate the
symmetry properties of these solutions. The con-
struction described in Qefs. 2 and 3 leads naturally
to superimposed axially symmetric monopoles.
As we shall show, these configurations also. enjoy
mirror symmetry. Two relevant by-products of
this result are discussed: the natural emergence
of real gauge solutions that are also solutions of
the Ernst equation of general relativity, and the
possibility of completely reformulating the results
in terms of a single superpotential, explicitly de-
termined, and such that the unitary gauge form of
the solution is derived in a straightforward way.

and Yang's R gauge' is assumed. In the R gauge
the potentials A„= (o'/2i)A„' assume the form

T

2@

0
2Q

where I—=p, q and the subscript u denotes differ-
entiation with respect to the corresponding var-
iable.

It is found that the self-duality equations cor-
responding to n(~2) monopoles are solved by"""

d' -1 d'

where

I. REFORMULATION OF THE SOLUTIONS IN TERMS
OF REAL FIELDS

Let us define the SU(2) gauge potentials 4'„ in
four-dimensional Euclidean space and the gauge
field strength:

Z' =8 &'- e co+&'~&~ w'.
VV P Y V P P V

Solutions of the self-duality Bogomol'nyi equa-
tions4

(1.6)

aEel &~ &vna +m (1.2) n. 2

corresponding to multimonopoles with magnetic
charge n may be found within the framework de-
scribed in Hefs. 2 and 3. I et us outline the steps
and results that are relevant to our discussion.

Four complex variables are defined,

Xl +gX2 — Xl tX2p= ' ' p= '

X3 iX4 — X3+ZX4
(1.3) n „=(—1)"e'"4(~2p) "(1+s, )"A„,

a„=(-1)"e' 4(v 2 p)-"(1—s,)"W„,

(1.Va)

(1.Vb)

(1.Vc)
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where

and

(1.8)

gauge transformation must preserve the 8-gauge
form of the solution.

It is a property of triangular matrices that this
will happen if we choose the triangular square
root of LL~

@=1 K'

(1.9)

Solutions in this form are in general complex
valued. The reality of the gauge field in some
gauge is ensured if one can find matrices 7(P, q)
and V(P, q) such that, defining

0
(1.17)

0
1

(1.10)
(y If)1/2 e -isa~~ n

VAR V turns out to be a positive-definite Hermi-
tian matrix. When this happens we may define a
gauge-transformation matrix L such that

and the gauge transformation

A„-L 'A„L+L 8 J (1.12)

It requires long and tedious algebra to check that
the gauge fields are

will make the gauge fields real. L is defined only
up to a multiplication by an arbitrary unitary ma-
trix: this reflects the (unitary) gauge arbitrari-
ness of the real fields.

It is apparent from the analysis presented in
Hefs. 2 and 3 that the general form of the ma-
trices V, V for the superimposed monopole solu-
tion is

0 V=

~ n „Z, „q„
r+„Z „Q

2M

„Z. „Q,
„Z „Q

n „K„„Q„

(1.18)

where y is a real constant. One can then easily
find that (1.19)

ye- "'„q'

.ye'"'„q -y„Z . (1.14) We may now define

where we have defined

(vYP) =re", (~P) =~e ", r = (x,'+x,')'"

and

„Z= (&2p)" „pe ~4, „K=(Mp)" „p*e'"~,

ze i88
Z

tp

and check that, in agreement with Eq. (1.4),

(1.20)

(1.21)

where „K, „Z, and „Q are real functions of r and
z =x, . We may remove the arbitrariness in the
definition of I. by the choice that the resulting

Let us observe that the only dependence on the
azimuthal coordinate 8 is absorbed into the phase
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factor e '"~, as we expect to happen in the case of
axial symmetry. Moreover, the dependence on the
axial coordinates x, z happens to enter only through
real functions. As we shall see in the following
section, this phenomenon is strictly rel.ated to
the existence of a further, discrete symmetry
of the solution, usually referred to as "mirror
symmetry. "

II. PROPERTIES OF AXIALLY SYMMETRIC
MONOPOLE S

u,'= (cosne, sinn8, 0),
u,'=(0, 0, 1),
u,' = (sinne, —cosne, 0),

u,"= (cose, sine, 0, 0),
u~~ =(0, 0, 1, 0),

u,"= (sin8, —cos8, 0, 0),
u~~ =(0,0, 0, 1),

(2.1)

(2 2)

As discussed in Ref. 8, a simple way to de-
scribe axially symmetric gauge-field configura-
tions is obtained by introducing sets of orthonor-
mal vectors,

and expanding the fiel.ds in the form

(2.3)
%'e may reexpress the A, ~, A. fields in terms of
the new variables 5'„' thus obtaining

W~ —iS'~
2./9 .e'"'(w', —w,'- iws —iw,')

e '"'(w,'+w', +iw', -iw„')

-~,'+i+
(2.4)

A =
'" (W' —W —iW' —iW')

e-'"'(w', + w,'+iw', —iw')

-8' +i%"2
(2.5)

This is the most genera1 form real axisymmetric
fields may assume.

Let us, however, consider the possibility of
requiring mirror symmetry. A mirror transfor-
mation IVAN is defined as a reflection through a plane
containing the symmetry axis z. Under such a
transformation

K=MZ exp(imT, ) . (2.8)

W'=W'=S =W'=O
1 2 1, 2

%3=%3=0
3 4

(2.10)

We then immediately find that 3g invariance
implies" ~"

w, (~, z, e)-w, (r, z, 8), i=1-, 2, 4 (2.6a)
and the mirror-invariant axisymmetric fields are
in the form

w, (~, z, e) - w, (~, z, -8) . - (2.6b)

W, (r, z, 8) —W,.(x. , z, 8), i = 1,2, 3

W~(x, z, e)- W4(r, z, e-) .
(2.7a)

(2.'Ib)

Since we are dealing with gauge theories, the 1HZ

transformation is completed by a gauge trans-
formation that must be consistent with the request
that

However, this transformation alone would change
the sign of the magnetic charge, a pseudoscalar
quantity; therefore it cannot possibly be a symme-
try of monopoles, and we must associate to it a
Z transformation (magnetic charge conjugation)
defined by

lV3

e '"~(w' —W')

e '"
(W,'+W', )

, a-, =-(a,)'

(2.11a)

1
2v'2

e-'"'(w'+ w')-
2

(2.11b)
Comparison with Eqs. (1.18) and (1.19) is now

straightforward. It makes apparent that the multi-
monopol. e solutions are indeed mirror symmetric,
and it leads to the identifications

(MZ) =I. (2.8)

e" 3 is such a transformation: T, generates
gauge rotations leaving the third gauge component
of W„' unaltered. ' We can define the complete
mirror transformation:

„K„ i „Z,+„Z
y„Z„Q' ' y„Z„Q
n „K„„Q„~ „K, „Q,

„Q' „Z „Q'
W'+ W'=O +3+ W' =O.1 3 & 2 4

(2.12)

(2.13)

(2.14)
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Further insight is obtained by performing the
fsin'gular) gauge transformation

-f tfe/2

(2.15)
e jtf8/2

This transformation removes e""~factors from
Eels. (2.4) and (2.5) while affecting only the W~

component in a nontrivial way:

that all solutions of the stationary axially symme-
tric Einstein equations correspond to solutions
of the self-dual mirror-symmetric SU(2) gauge
fields satisfying the special conditions Eqs.
{2.26).

As a consequence, the R-gauge multimonopole
solutions, automatically satisfying Eqs. {2.26},
naturally provide solutions to the Ernst equation,

2 n 5'„'= 8"„' otherwise. (2.16)
Re&v'& -(ve)'=0,

by the identification

(2.27)

'l gra +e @re
3 0 4 (2.1V)

The Bogomol'nyi self-duality equations then as-
sume the form

—c""(8 tl +6 W 'g)=~ P +& W, P t P 1't

For the purpose of comparison with previous no-

tation, '" let us define
(2.28)

Finally let us observe that the gaoge-invariant
property of multimonopole solutions, '

A;A;-=q'y'=1 —v' gin y, (2.2S)

leads to an immediate identification of the super-
potential:

(2.18} r=gln zg =ludo. (2.30}

—,'c»(8 W~- s W'„+~~'"W~W„") =—E '"y q".
(2.19)

ft is easy to show that Eels. (2.18) imply the exis-
tence of a superpotential. T(r, z) such that 1luanti-
ties that are gauge invariant under transformations
preserving axial symmetry may be reexpressed in
terms of 7".

Moreover, as shown in Ref. 8, when the axially
symmetric gauge fields are also mirror symmetric
7 turns out to be a solution of the nonlinear fourth-
order partial differential equation:

(2.31)

R
qP

lR —$ ~2T (2.20)

1} q =n'-r ~S S --e +S S rrr ~r (2.21) {2.32)

(2.22)

Let us now consider the consequences of the
transformation Eq. (2.15) on the mirror-symme-
tric multimonopole solutions. First of al. l., since
the A gauge is once more preserved, we may de-
fine rotated potentials

are implicitly defined in terms of T through Eqs.
(2.20), (2.21), and (2.22).

All fields may now be reexpressed as functions
of v, so that we are able to write down the
solution in any arbitrary real mirror-symmetric
gauge:

p' =l1 sinn, p' =Ig cosn,

that are now real functions.
The field components reduce to

(2.23)
7} = $ sinn+8 cosn t g =

l/l cosn —E s111n t (2.33)

(2.24)
where n(r, z) is an arbitrary real (Abelian} gauge
function and n =0 is the unitary gauge.
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