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We study chiral fields [U,. in the group U(N)] on a periodic lattice (U,. = U,.+L), with action
S = (1/g')S, ,Tr(U, U, +, + U, U, +,), as prototypes for lattice gauge theories [quantum chromodynamics (QCD)] at
N, = ao. Indeed, these chiral chains are equivalent to gauge theories on the surface of an L-faced polyhedron (e.g.,
L = 4 is a tetrahedron, L = 6 is the cube, and L = ao is two-dimensional QCD). The one-link Schwinger-Dyson
equation of Brower and Nauenberg, which gives the square of the transfer matrix, is solved exactly for all N. From
the large-N solution, we solve exactly the finite chains for L = 2, 3, 4, and ao, on the weak-coupling side of the
Gross-Witten singularity, which occurs at P = (g'N) ' = 1/4, 1/3, n. /8, and 1/2, respectively. We carry out weak
and strong perturbation expansions at N, = 00 to estimate the singular part for all L, and to show confinement (as
g'N~oo) and asymptotic freedom (g'N —A) in the Migdal P function for QCD. The stability of the location of the
Gross-Witten singularity for different-size lattices (L) suggests that QCD at N, = ao enjoys this singularity in the

transition region from strong to weak coupling.

I. INTRODUCTION

Although the 1/N expansion to quantum chromo-
dynamics (QCD) (Ref. 1)is generally acknowledged
to be a sensible approximation scheme, progress
toward calculating eventhe first (N, = ~) term has
been confined to severely truncated (or toy) models.
Nonetheless, these warm-up exercises are be-
ginning to provide both the arsenal of 1/N tech-
niques and a little insight into the special proper-
ties of N, =~ QCD. Here we wish to consider a
class of finite-lattice chiral models, which we
argue are the basic ingredient of either the Migdal
recursion relations or Kadanoff's blocking trans-
formation. '3 Thus, we hope to improve the 1/N
technology in a direction that will allow at least
approximate lattice QCD calculations at N, =~.

The basic idea inherent in the Migdal recursion
relation is to move bonds (variationally) so the
gauge theory in dimension d =4 (or d =2) becomes
equivalent to the d =2 (or d = 1) chiral model,

Z= dO,. exp / Tr U.U~+U, , U,
t . 1.1

&ig)

p = I/A. -=I/Ng, where i,j labels the sites, U, is
an 1V &&X matrix of the adjoint representation for
U(N), and dU, is the Haar measure. The action is
the sum over nearest neighbors ((ij) = links). In-
deed, for d =2 gauge theories (QCD2), this corre-
spondence with the chiral spin model (d = 1) is an
exact consequence of gauge invariance. Going to
the A, =0 gauge, QCD2 is equivalent to a product
of K chiral chains of length L,

Z = dU, exp NP g Tr(U, V„& + U„&Vt)
i=i

(1.2)

for a K ~L rectangular lattice. The study of these
chiral chains is the central focus for this paper.

If we impose periodic boundary conditions,
U~, &

——U&, these chiral chains are amusing in their
own right, since for L = 4, 6, 8, 12, 20 they are
equivalent to lattice gauge theories on the surface
of regular polyhedra (tetrahedron, cube, octahe-
dron, etc.). These small three -dimensional lattice
configurations can serve as basic blocks in
Kadanoff' s blocking transformation, thus leading
to a starting point for an approximate real-space
renormalization-group calculation. This equiva-
lence can be established by a particular gauge
choice and is shown in Appendix A.

The case of a chiral chain with an infinite length
(L -~) has been examined by Gross and Witten. 4

They found that at N, =~ the free energy was
piecewise analytic with a weak (third-order)
transition at P =P, = —,

' between the strong-coupling
(P -0) and the weak-coupling (P -~) domains. We
show that, for L =2, 3, and 4, there is a critical
point at P, =4, —,', and w/8, respectively. (L =2
again corresponds to a Gross-Witten model with

P replaced by 2P. Our L =3 result agrees with
that of Friedan, 5 obtained from the strong-coupling
domain. ) These new results are obtained by
making use of the single-link integral of Brower
and Nauenberg.

A chiral chain is specified by its periodicity L
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and its transfer matrix T whose matrix elements
are

whereas decimation corresponds to

This latter step involves the product of the trans-
fer matrix T, integrated over the internal
(crossed) sites. For example, T is calculated by

~ «l&' ~l&i~«&f««&~&~I»«~I~~I«i&

dVexp NP Tr AtU+ V~A (1.6)

where A = U& + U2. Indeed, this last integral is
precisely the single-link integral solved (at N,
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FIG. 1. A simple bond-moving scheme for Migdal's
recursion relation of the d =2 chiral model. Dotted
bonds have been moved to double the strength on double-
line bonds.

(U2
i
T

~
Ui) = exp[NP Tr(UiU2 + URUi}] .

Before proceeding to the details of our calcula-
tions, we wish to show how the transfer matrix is
related to the more general problem of Migdal's
recursion relations. A Migdal approximation
typically involves two operations: (1}bond moving
and (2) decimation. For example, in one variation
of this approach we might consider a square lat-
tice first grouped into X &X blocks (X an integer).
Operation (1) moves all the interior bonds to the
block boundary (see Fig. 1, for X =2), which
amounts to changing p to Xp, and operation (2) in-
tegrates out these sites on the boundary as indi-
cated by a cross in Fig. 1. As explained by
Kadanoff, these two operations can be considered
as multiplications in two different spaces of cou-
pling parameters related by duality. That is, for
the matrix elements given by (1.3), bond moving
corresponds to

where the sum over the primitive characters y„
completely diagonalizes the transfer matrix. In
(1.7), X„are eigenvalues of T and the characters
are normalized by

r X (U2U)d X (U Ui) = 5. , d.,x.,(U2U1) ~

(1.8)

It thus follows that

U IT ~U&=Z ~ d (UU)

For N -~, this approach is not very promising
since the vth term -(pN )"~, where r„ is the rank
of the tensor product which defines the vth irre-
ducible representation. Since X„-(p)"~, the con-
vergence of the series improves rapidly as P -0
with N fixed, but deteriorates for N -~ at fixed p.
From the arguments of Brower and Nauenberg,
we know that the actual limit is

&U2 iT'IUi& ='"p["'f.(UiU2+ U2Ui}]

whe~e f„-O(1)and fi p(1/N) Tr——(UiU2+ U2Ui).
The full Migdal recursion relation at R, =~ is

therefore still more difficult than our exactly
soluble examples. However, we can see some
qualitative properties by looking at strong- and
weak-coupling expansions. As g X-~, we recall
from Ref. 6, that f2 = (1/N)(l/g N) Tr [(U, + U2)

x(Ui+U2)]. Comparing with fi, this corresponds
to, under a decimation, 1/g2N -(1/giN)2. We can
generalize this to show that a ~-fold decimation
(fi -f~).gives

(1/g N) - (1/g N)" .

(1.10)

Now by alternating bond moving and decimation in
the manner described in Ref. 3 for a d-dimensional
chiral-spin model or 2d-dimensional gauge model,
we obtain

(1/g'N) '=X&" '(1/g'N)", (1.11)

where g = 1 and 2 for spin and gauge models, re-
spectively. The differential p function for X =1+e,
P(g) = —ng//e is then given by

—P(g)/g =- [hi(g'N) —1]+
2 2

(1.12)

=~) by Brower and Nauenberg by the use of
Schwinger-Dyson equations. In Sec. II, we return
to this problem for the group U(N) and find an
exact solution to T for all ¹

The essential ingredient of a Migdal approxima-
tion is to alternate computing T"with ((U2 i

T
i
Ui))".

In Kadanoff's treatment for finite N, this is facil-
itated by' the character expansion for

(U2 (T iUi) = Q XQ„X„(U2Ui),
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for g'N -~. This exhibits the expected confine-
ment phase for large coupling.

The weak-coupling expansion can be done by
using the calculation of T" in Sec. IV for g N -0.
The salient feature is that the one-loop piece
Tr(lnD) is essential at tbe critical dimension
d =2N to give the right sign for asymptotic free-
dom )

-P(g)/a =— +—(S' N) .(2n -d)
2 8

(1.13)

In our calculation, we have arbitrarily truncated
the action to (1/g2)'Tr(U»+ Ut») after each itera-
tion. As pointed out by Kadanoff, 3' a proper cal-
culation would keep higher terms, Tr(U» ), etc. ,
which is equivalent to truncation to the quadratic
terms in the field strenghts (U»+ U»t= 2 -E2). This
procedure gives a eoeffieient of —,', [instead of
n/8=A in Eq. (13)] in much better accord with the
exact result of 11/48)r2.

In the present context, we use this Migdal ap-
proximation as merely an il.lustration of how our
results on chiral chains might be extended to QCD4
at N, =~. Our main objective which we return to
in the Conclusion is to make it plausible that QCD4
enjoys the same third-order crossover singularity
encountered in our finite-lattice examples.

with the boundary condition Zo{x, , 0) = 1 and it is
completely symmetric in x,. Equation (2.3), at
R, -~, can be either solved perturbatively in P
(strong-coupling expansion) or solved exactly,
leading to (2.2), valid in the weak-coupling region.

I et us define a new function by multiplying Zo
by the Vandemonde determinant

rrr

Wo(x„P) —= Z(){x„P) (x, —x,.).f(j
(2.4)

where z»-=2NPv~x, For N =. 1, this corresponds to
the Bessel's equation; for general N, the com-
pletely antisymmetric solution is given by (see
Appendix B)

so that Wo is completely antisymmetric in x„. As
shown in Appendix 8, this leads to a partial dif-
ferential equation

2 g 8gz„2, , +(3-2N) g~„,
k zk

-QA"» + 3N(N —1)(N —2) H/0 ——0, (2.5)

II. SINGLE-LINK INTEGRAL REVISITED
Wo = (const) det [z, ' I, ,(z,)], (2.6)

The representation, Eq. (1.6), for the square of
the transfer matrix belongs to the general class of
single™link integrals

Z (A A, p)= fd exp[NUU r( UT+AAU )], (p.r)

where U is an element of the group U(N) and A. is
an arbitrary N xN matrix. This integral was
evaluated at N, =~ for the weak-coupling phase in
Ref. 6,

1 1 1f, = —,lnZ, 2p —g Wx,—,g lnp{Wx,.+Wx/) ——,',
(2.2)

where x,. are eigenvalues of the Hermitian matrix
AA . This result will be used repeatedly later.
In this section, we review and generalize the re-
sult of Ref. 6 to the case where both N and P can
be arbitrary.

The U(N) invarianee of the Haar measure im-
plies that tbe one-link integral, (2.1), depends
only on the eigenvalues of the Hermitian matrix
AA~ and that the function Zo(x, , P) satisf'les a
Schwinger-Dyson equation. Restricting to tbe U(N)
singlet subspace, the Schwinger-Dyson equation
was shown to be equivalent to a partial differen-
tial equation,

e'
1»(~) 2+ '[/2 [1 +&(1/A)]

to obtain

det(z, '-'f ,(~,.))

(2.9)

= exp z,. ——,
' ln 2mz,. det z,.

J

(2.10)

where I,(z) is the Bessel function. By imposing
the boundary condition at P =0, we obtain the exact
result valid for all N

- N-$

Z (2)p{]p-r) /2) (I [ )
det(~ ' I'- {(~') )

det((z ')' ') '

(2.7)

The structure of Eq. (2.7) is illustrated in Ap-
pendix B by considering various special choices
of the matrix A. where the single-link integral is
previously known. To obtain the large-N limit,
we can rewrite (2.7) as

N-1

g(z,. +z/) det(g, ' ')

S&nce z, =0(N) we can make use of the asymptotic
behavior
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It then follows that

1 tz+z, 3
f, =„—,inZ, -—,Qz,.—,ginl, '

J 4~J

(2.11}

If one next substitutes 2PNMx, for z, , Eq. (2.2) is
then obtained. Since (2.9) has been used, (2.2) is
the exact N, =~ solution only for the weak-coupling
phase.

We are hopeful that the integral for SU(N) and
the 1V, =~ solution for the strong-coupling side
may also be solved by exploiting the fermionic
character of the Schwinger-Dyson equation.

d p cot — —4 sin8 =0,&8 —pl (3.4)

which differs from the infinite-chain model only
in replacing p by 2p. It then follows that a third-
order phase transition exists between the strong-
and weak-coupling domains at P, = —,'. For P & —,',
the density function is

A. Two-link chiral chain

For I.=2, Eq. (1.2) is already in the desired
form with S,',2,'(UVt) =(2P)(l/N) Tr(UV~+ VU'), i.e. ,
the large-N density p2(8) is given by the solution
of the Gross-Witten equation

III. EXACT RESULTS FOR CHIRAL CHAINS
~P 8 i 1 . , 8 '"

p2(8) =—cos —
(

——sin'-
n 2(4P 2

(3.5)

In this section, we present exact N, =~ solutions
for chiral chains with periods f.=2, 3, and 4 (Fig.
2). Our strategy is to first perform group inte-
grations in (1.2) with the help of the single-link
integral result for all U; except two, leading to a
representation for ZL, in the form

with p2 nonvanishing only in the range ~8
~

~ 8,
=—2 sin '(-,'P) ~ m, and satisfying the normalization
condition

(3.6)

Z~ = dUdVexp N 8,'„' UV' (3 1)

where —w~ 8,. ~ m, h=det(h, ,), h, „=exp[i(j8~)].
In the limit N -, Z~ is dominated by a stationary
configuration, with 8,. distribution specified by a
density function p~(8 }, which is given by the solu-
tion of

I' d p cot +—S,'„' 8 pi =0.

suitable for a large-N steepest-descent analysis.
In particular, since the integral depends only on
the combination UV', we are able to change vari-
able to 8, , e "J being eigenvalues of UV',

z = (const) JSs, (n;tssx)n ;[tots.'„'(s,)), (S.tl

B. Three-link chiral chain

Choosing U=U&, V=U2, S,'„' is then given by

ef f — 8T r(Uv + vU } dU N AT@(A U3+ U 3 A)(3) t +
38

(3.V)

where A = U+ V. Since the integral (3.7) is pre-
cisely a single-link integral, it follows from (2.8)
that it is a function of AA =2+ UV~+ VU~ only. In
the limit N -~, we substitute the limit (2.2) for
S,'«' into (3.3), obtaining the equation for the spec-
tral density p~(8),

2ts sin8+sin-
~

. 8l
2 j

)k

I

&Vl) &

I/2
III24

(3.3) C 8 —P 1-I' dp p(P) cot +—
«6} 2 2

8sxn—
2

8cos + cos
2 2

(3.8)

where 0 ~ 8, ~ m, and it is to be determined by the
normalization condition (3.6).

A systematic procedure for solving (3.8) is de-
scribed in Appendix C. Here we simply state that
the solution is

P 8 8 ( 1 )1/2
p,(8) =—cos —2cos —+ i& ——

i

7t 4 2 ( 3pi
m

4 5 S 2

FIG. 2. The behavior of the single-plaquette expec-
tation va1ue as a function of P andI-. At the critica1
point (marked by a cross), 8&go& &/aP is still contin-
uous, but the second derivative shows a discontinuity.

8 (
2 cos

2 ( 3P
(3.9)

with ~8~ - 8,=2cos '(1-l/3P)'~ . This result is
valid in the region P, ~ —= —,', where p3(8) is mani-
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festly non-negative. In view of the result pre-
viously obtained by Friedan~ for the strong-cou-
pling domain, it follows that a critical point exists
at P, =-,'. Our result for p3(8) agrees with that of
Friedan at P =P, and we shall. shortly demonstrate
that this again corresponds to a third-order phase
transition.

C. Four-link chiral chain

note that a single-link expectation value I&)I(P)
—= (1/N)(Tr(U, U, )) is related to E(P) by

1 8E(P )
(P)=2q -8P (3.16)

At N, -~, I&)I(P) can be easily obtained from (3.13)

Illi(d) fdd Ill(S) cOSH

With L =4, we choose U=U&, V=U, ; S,'« is then
given by

3/2
=P +- ——-P 1-—

2 BP 3P
(3.17}

el)d ~eI Il— dU eN gT'&+ IJ2 s
&&2+

)
(4)

2e

EBT r(A @4+p4A )
48

ISS

(3.10)

8
Sln

28 "()c 8
4p sin —-&' d(t) p(Q) cot +

C cos + cos
2 2

(3.11)

The solution is (see Appendix C for the details)

p (8) = sin —singp g g i/2

4
71 2 2

(3.12)

with 0 & 8, & n determined by the normalization
condition

2P @c g 8 1 /2

d 8 sin ——sin—
~ g 2 2

(3.13)

At P =II/8, 8, =II where it corresponds to a crit-
ical point for the transition from the weak- to the
strong-coupling domain.

D. The weak-strong transition for L = 3

When our weak-coupling result for the three-
link chiral chain is compared with that for the
strong-coupling region the nature of the critical
point at P, = —,

' can. be determined by comparing the
derivatives of the free energy E(P) from both sides
of P, . From Ref. 5, if we define the free energy
by

E(P) =—
g In2'g(p)

1 (3.14)

we find, for P & —,',

where again A = U + V. It follows from (2.2), (3.3),
and (3.14) that the spectral density p, (8) is deter-
mined by

From (3.19) and (3.21), we find both II)I(P) and
BI&)I(P)/BP are continuous at P„ taking on values
2", and '8', respectively. However, & I&)I/8P di-
verges when approaching P, from above and is
finite from below, therefore explicitly demonst, rat-
ing that the critical point for the three-link chiral
chain is again third order.

Finally, by integrating I&)I(P}, for P & P„

g( )d=( LS) J ddlcI(d) I —'O I )c I

C

=GP —ln2P ——,
'

ln3 ——', +E„,(1/P), (3.18)

1 1 1+ (1 —1/3P)' "
reg

p
In

~

! »
~

~ I ~

~
~ I 2

2

+ 3P ——'P 1 — 1 -— ——+—

vanishes as 1/P -0. We shall show in Sec. IV that
the "singular" part of E(P) can be obtained by con-
sidering Z~ to one-loop order.

Thus we know that the chiral chains have third-
order transitions for L =2, 3, and ~ whose loca-
tion is determined dynamically. It seems very
likely that all the chiral chains have a third-order
transition with a crossover singularity which
moves monotonically from P, = —,

' at I, =2 to P, =-,'

at L =~, in accord with our subsequent, analysis
in Sec. IV.

Finally, we wish to emphasize that the case
I. =2 is unique in that the one-loop correction (see
Sec. IV) gives the exact result for N, =~ on the
weak-coupling side. For L =3 and 4 this is not
the case, and for L ~ 5 we are unable to find ana-
lytical solutions, since this requires computing f,
in Eq. (1.10) for X & 3. The possible role of some
kind of semiclassical configurations or effective
action for even these finite cyclic chains is still
obscure. Their solution might give deeper insight
into the N, =~ QCD problem.

E (P) =3P' —-'P'~, '+ -'ln (3.15)
IV. BEYOND EXACT SOLUTIONS

where z& ———2(3P) sin —,
' sin '(3P) . At P =P„

EgP, ) = 25 +-,' ln —', . To find E,(P) for P ~ P„we
The exact solutions we have presented so far

support the supposition that the presence of a
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critical point of a higher order is a general feature
of lattice gauge systems in the large-N limit.
However, in the absence of analytic solutions for
systems more involved than the four-link chain,
we must resort to expansion schemes for gaining
further insight. While strong-coupling expansions
can be performed by means of rather standard
techniques, the weak-coupling expansion is much
more involved. In order to provide an estimate of
the first nontrivial contributions to the functional
integral in the limit P -~, we take advantage of the
observation that the weak coupling is dominated
by the classical solutions.

The matrix elements of an L-fold transfer ma-
trix can be represented by a function integral

X NBTr(Umi+ mi2+ ~ + cuL i& + H.c.)Xe

ur, —(Zi ), a = 1, . . . ,L - 1 . (4 2)

We next carry out the semiclassical approxima-
tion by integrating the Gaussian fluctuation about
the solution (4.2). Define

-~ (Z )%=el(g/2&+Hy
O' A L (4.3)

and expand v~ around the identity, keeping only the
quadratic terms in 8& for the exponent in (4.1) so
that

S =NP Tr[w, + w, s—et+ ~ ~ ~ + so~, (Z~ ) + H.c.]

~ ~
~ ~

L "i
~ ~ ~

NBTr(cubi+ coim2+ ~ + mL iUY +H. c.)de g8

(4.1)

Denoting Z~ -=(UV')'~, the classical solution which
maximizes the action in (4.1) can easily be found:

the identity matrix; by expanding about the identi-
ty, we find, under a X-fold decimation (f, -f„),

1 1 1 X-1
g 2N y 2~ 4y2 (4.6)

Now, by alternating bond moving and decimation
for a d-dimensional chiral chain in the manner
described in Ref. 3, we obtain

( 1 , , lt' 1) A. -l
(g'N XI~'N) 4&' (4.7)

Similar analysis can also be carried out for a 2d-
dimensional gauge model. The differential P func-
tion is then given by

P(g) 2n -d n

g 2 8
(4.8)

as promised in the Introduction.
Our result (4.5) also allows us to immediately

obtain the free energy of the closed chain to the
one-loop order. Setting U=V, thus ZL=I, we ob-
tain

F~ (P) = 2L P —z (I. —1) ln2P —~ (I, —1) —2 lnL .
(4.9)

For L=3, F,(p)= 6p -1n2p -z' -z ln3. This should
be compared with Eq. (3.18); we notice that they
agree exactly at 1/P-O.

Equation (4.9) also allows us to obtain an esti-
mate for the dependence of the critical coupling
P, on L by matching it from the results from the
strong-coupling domain. Both from our three-
link analysis and from that of Ref. 4, we expect
that the transition would be of the third order; we
therefore concentrate on the second derivative of
the free energy with respect to P. From Eq.
(4.9), we have

=NLP Tr(Z~+Z~t)

-zing

8(M; jDNq8~~, (4.4)
eP

where D z
= —,

' Tr[AX&(z+ z )]. and M;& is a matrix
with edt( M&) = L. After performing the Gaussian
integrations, we obtain for f~ defined by Eq.
(1.11), in the limit N ~ and P large,

fz(UV ) = —TrP(Z~+Zz) —,Tr Ln[D~~(Z)]

2L BP2 BP 4L P~
'

From a strong-coupling analysis, we have

W, =- P+ P~ '+ ~ ~ ~

1 a2g= 1+ (L —l)P~
2L BP*

(4.10)

(4.11)

(4..12)

-z(L —1)(ln2P+-,') -& lnL, (4.5)

where Z~ = (UV")~~ and we have adopted the nor-
malization Tr~ ~~=25 ~. Note, in particular, for
L=2, Eq. (4.5) can be shown to agree with our
exact large-X result valid in the weak-coupling
region with P finite.

The above result can be used to find the be-
havior of the differential Migdal P function as
g'N-0. Note that in this limit, UV is close to

By matching (4.11) with (4.12), we obtain

1, -1 1
4L P 2 c

——= 1+(I -1)P ~ '. (4.13)

1
& (L)—= ———

2 4I' (4.14)

Equation (4.13) yields P, =O, —,', 0.319, 0.366, z

for L=1, 2, 3, 4, and , respectively, whereas
our corresponding exact values are 0, —,', —,', v/8,

For large I, we obtain
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Thus, by keeping only two terms for the free en-
ergy in the strong- and weak-coupling expansions,
we are able to determine the crossover singularity
to 5-10% accuracy (see Fig. 3).

V; CONCLUSIONS

P~„(P)N-' . (5.1)

Thus, in QCD, the Gross-Witten singularity is es-

~c
I/2

+
+s

+
/

/
I
I
I
I I

I 2 3 4 L

FIG. 3. The critical point as a function of L. The
known exact values are marked by a cross —the dashed
curve is obtained from the interpolating formula Eq.
(4.13).

I/4—

In this paper, we have extended the analysis of
the one-link or external-field problem of Ref. 6,
and applied it to several finite chiral chains as a
bridge to QCD, at N, =~. For the single-link
problem, we have recast the Schwinger-Dyson
equation of Brower and Nauenberg' in terms of
N independent fermionic coordinates. This al-
lowed a general solution oi the U(N) integral. We
are also hopeful that by exploiting this fermionic
character along the lines of Brezin et al. ,' the
SU(N) problem and the strong-coupling phase at
N=~ can also be solved.

Already, with our weak-coupling solution and the
power-series solution at strong coupling, we see
the necessity for a phase boundary (see note add-
ed) in the general external-field problem at N,

What is not obvious is whether or not the
subsequent integrals over the sources (or other
links in AtA) will smear out the singularity, so
that no hint of the Gross-Witten4 singularity per-
sists in QCD, .

Another way to raise this question is to note
that the singularity found by Gross and Witten in

QCD, actually occurs in the first term of the
character expansion (1.7). Indeed, the free ener-
gy per plaquette [f=F/V d(d —1)] is given exactly
by the first character,

fdu Tr(U) exp[(l/go') T r(U+ U~)]
2 fdu exp[(1/g, ) T r(U+ U )]

sentially a "kinematical" feature of the first term
in the character expansion. In any other many-
plaquette model the character expansion is an in-
finite series, and it might seem miraculous if the
singularity at P =

& in each term were to cancel
and move to another location. However, as seen
by our finite lattice examples just such a "mira-
cle" occurs. The neighboring plaquettes do not
wash out the kinematical singularity, but rather
shift it to a dynamically determined location,
while (at least in the L= 3 chiral chain) the nature
of the singularity (i.e. , its third-order property)
is unaffected. We feel that this is a persuasive
illustration of how this singularity may be gener-
alized to QCD, . The fluctuations in the N' group
manifold cause a sharp transition, which is only
gently perturbed by the nearby plaquettes. We
know from Creutz's" Monte Carlo calculations
that the correlations are very short-ranged at g'N
= 2, so the effect is essentially a local one.

Moreover, the recent Monte Carlo calculations
for SU, QCD show a sharp peak in the specific
heat. " This appears to be rather consistent with
a developing cusp in E"(P) at N, =~, but somewhat
difficult to understand in terms of surface rough-
ening" since it appears in a bulk quantity. Final-
ly, recent efforts to estimate the crossover point
in N, =~ from series expansions indicate a value
for (g N) ctsosov reat a little more than 2, in remark-
able agreement with our most "realistic" finite
lattice, the cube." A glance at Fig. 3 gives
(g'N)„,»„„=2.4 in this case. While these argu-
ments are still quite qualitative, the evidence is
encouraging.

Efforts are underway to see if the presence of a
pinch effect where complex singularities in g'N
collapse at real g'N= 2 can be related to instan-
tonlike lattice effects. Clearly, if rather small
lattices are to be used via Monte Carlo calcula-
tions to obtain information on the continuum
theory at gp 0 a firm understanding of the
crossover region is imperative. Indeed, if at
N, = ~, the third-order singularity occurs and
its width is order 1/N the extrapolation to go'= 0
may not be hurt badly for any calculations just in-
side the transition point. Owing to the many de-
grees of freedom in the group, small spacetime
lattices may not be so small after all.

Note added. On completing this work, we were
informed by Brezin and Gross" of an elegant ex-
tension of the solution of Ref. 6 at N, = ~ to the
strong-coupling phase, where they show that the
phase boundary occurs at g'N = (1/2N) (1/Kx. ).
This allows us to calculate the free energy in the
strong-coupling region for L, = 3—corroborating
Friedan's solution —and for I = 4, thus completely
solving the tetrahedron problem. In both cases
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To begin with let us count the degrees of gauge
freedom. Given E edges, and E faces, we must
gauge away E-E (E=I) link variables (U=1).
From Euler's theorem E-E= V- 2, we see for a
closed surface (no handles) there are two extra
gauge transformations left over. However, a glo-
bal gauge transformation of all the vertices inside
or outside the curve C cannot affect the links we
wish to set to U=1. Hence the number is exactly
right.

Now to see that such a gauge choice is indeed
possible we note that the links on the inside (out-
side) of the closed path form a tree graph. By
working from the center*' at one ungauged vertex
to the edges, gauging the link you pass, all the
links can be gauged except the ends, which inter-
sect C. (Incidentally, for higher topologies with
H handles we cannot choose such a gauge. There
are V - 2+ 2' links to gauge, and of the V gauge
choices, one overall gauge is useless. Hence, it
is not possible to set V- 2+2' gauges except for
H=O. ) In the case H=O, we have one gauge left,
to set any link in the remaining chiral chain to U

=1, getting a complete fixed gauge.
As an application of the general gauge-fixing

procedure we have devised, we want to show how
to reduce the problem of a single plaquette propa-
gating in time to a chiral chain problem.

The lattice version of the problem corresponds
to the gauge theory of an infinitely long "tower" of
elementary cubes. However, by projecting the ex-
ternal surface of the tower on a plane and gauging
the links as in Fig. 5, we observe that the "time-
like" plaquettes are described by the product of
two links and the "spacelike" plaquettes are de-
scribed by a single link —the overall action may
then assume the form

S=PÃ P Tr(U, U)t„+ U„, Ut) ++Tr(U4, + U4~, )

(A2)

the free energy exhibits a third-order phase
transition. Details are given in the following pa-
per."
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APPENDIX A: GAUGE THEORIES ON POLYHEDRA

To prove the equivalence of gauge theories on
three-dimensional polyhedra with one-dimensional
periodic chiral chains, we must pick a particular
gauge. Consider for example the cube of Fig. 4(a)
flattened to the surface of a plane as in Fig. 4(b).
Any polyhedron can be similarly drawn. Now pick
a closed path C on the surface that starts on one
face and intersects each face once and only once.
This divides the surface of E faces (or plaquettes)
into two regions, inside and outside of the closed
curve. Now we attempt to perform gauge trans-
formations at V vertices to try to set all the links
not intersected by the path C to U=1. Clearly,
if this is possible, the gauge action which is a sum
over I" plaquettes,

S=—
2 Tr U&+
1'

(AI)
g pi

U~ being product of U's around a plaquette P, be-
comes an I -link periodic chain.
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FIG. 4. (a) Cube with dashed lines gauged to U =1,

leaving a six-link chiral chain for the gauge field theory
on the surface. (b) Cube Qattened to plane —. the surfaces
are paired by considering a closed path (dotted) which
covers the surface by entering and exiting the faces
across the nongauged lines.
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FIG. 5. Helical gauge for the propagating square.
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corresponding to an infinite one-dimensional chain
with potential terms. It is worth mentioning that
the Hamiltonian form of this problem has been
solved by Jevicki and Sakita (Ref. 16) and their

weak-coupling solution is exactly the same as our
L = 4 weak-coupling solution, with critical point
P, = v/B.

APPENDIX B

~e want to find out the effect of replacing Zo with Wo/II«&(x, —x&) in the Schwinger-Dyson equation, Eq.
(2.3) . By the use of

sZ, ~ 1 1 ttW0

sx, „x,-x, ' ll (x, —x,)»,
$&j

e2W,

„„(x,-x,). 11 (x, -x,) ...x, -x, », ».2= 2 (B2)

one finds that 5'0 obeys the equation

1 ~ x& 1 ~ x& xq 2 ~ xqxt.N~x, -x, N' ~(x, -x)' N', ~, (x, -x)(x, -x) N'~(x, -x)(x, -x).

N" N x —x N, x —x, 9x N ~8x

xg, N(N- 1)
7

A, s xa xk
(B4)

However, it is easy to prove the following algebra-
ic identities:

I

the sum for the permutations of an arbitrary set of
three indices k, s, t. Collecting all results and
rescaling the variables to z~ = 2NPMx~ it is straight-
forward to obtain Eq. (2.5):

1 2 . xg, 2 xsxa 2 —N—x+—
2

— +—2
~ x, -x~ N x~-x, (B5)

xp xy 2 ~ xgxg 1

(x, -xJ, (BB)
(N- 1)'

Moreover,

2

2N(N —1)(N —2)
3l

Q zg +yN(N- l)(N —2) Wo
——0. (BB)

Equation (BB) with the constraint that Wo be a
completely antisymmetric function of the z, looks
like a Schrodinger-type equation for a gas of N
noninteracting fermions in external potential field.
Its solution will then have the form of a Slater
determinant involving the single-particle wave
functions for the first N energy levels.

Let us show that such a solution may assume the
form

Wo
——(const) det(zi' 'I),(z,)) . (BB)

as one may easily check by evaluating explicitly
By an extensive use of the properties of Bessel
functions one finds that

ez~
'=det(zl' 'I, |(zi), . . . , z, ' 'Ig, (z,), . . . , zn I~ i(z~)),

2

2"= W, +det(zf Ig f(zf) (2i-3)z~' I, 2(z~), . . . , zz' 'I, &(z„)),98y

(Blo)

(811)
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8 WZ„2"+ (3 —2N)z~ - z~ Wo
—d—et(z& 'I, ,(z,), . . . , 2(i - N)zo'I, 2(zo}, . . . , z„' I,.)( z„)) .k eg

(812)

(81.3)

The determinant in E(I. (812) can be split into a sum of determinants in which only one element in the
kth column is different from zero.

This allows us to eliminate all the other elements in the same row. Now we can perform the sum on 0
by first grouping together all the determinants having the nonzero element of the kth column in the same
row (say the ith): 0IZJ og

~ ~ ~

gdet(z, ' 'I, ,(z,), . . . , 2(i —N) g),'I, 2(zg, . . . , z))( I(,(zg)}=gdet 2(m —N)z~ I q(z~)
m ~ ~ ~

N -(I

Now the properties of Bessel function imply that

z I 2(z)=z"I„(z)+2(m-1)z 'I, (z) (814}

and after elimination of the linearly dependent vec-
tors the previous sum simply amounts to

/2(m —N)2(m —1}det(zy' 'I, ,( zg})
m

4N(N- 1)(N- 2) W

6

and this concludes our proof.
%'e may compare our result with the previously

known limiting situations discussed by Bars and

Green. %hen A=a I one must take the limit z&

-2PNa for each i—this amounts to taking the
proper derivatives of Bessel functions and the
final result is

Z,(z,. -2PNa) = det(I, ,(2PNa)} .

Analogous arguments work for the case when only
one eigenvalue of A is different from zero —the
result is
zo(zj 2PNa, z& &~ 0)

=(N- 1)~(PNa)' "I„,(2PNa). (816)

Finally, as we have shown in Sec. II, the large-N-
limit result of Brower and Nauenberg is recovered
from the present general result.

APPENDIX C

With variable changes z =e ", z = e'e(&, z = eoe(' for I.= 2, 3, 4, respectively, E(ls. (3.4), (3.8), (3.11) can
be restated as, on the unit circle between zf(I, ) and z, (L),

R,(z) = Re[a,(z, p,)]
where

)4(z) =
(—.) l

z -z '),

R,(z) =i —. i[(z'-z-') + (z -z-')],«i
2

R,(z)= —. (z -z-')

(C2a)

(C2b)

(C2c)

e (2) (g -~ "(» d "+ z)
&.(z, z,)-f z( zozll (z(() = ,—, , z.(z'),

-e (2) 2 p(2) g' s -s'
()P& (g —yl 1 singI(2 '~('~ dg' (z + z'l

C C

'c"& 8 —(() sing/0
' 'W~), z

&4(z& p&) = dQ cot
2

+ g~ . ~ p4(Q) = 4 dz z»&) p4(z )
8 (4)

'

i

2 cos8/4 + sln8/& N'(g
C C

In (CS), 0 ~ 8,(I,) ~ g and will eventually be determined by the normalization condition on p~ (8).
For these three cases, it is not difficult to determine directly that E~(8) must be given by

(CSa)

(CSb)

(CSc)

E)g) = 4P sing —4R2P cos-[cos8+» —cosg]~',

(. . 8 ( 8 8 ( 1 ~' ( 8 g)~'
F (8) = 2P

~
sing + sin- + 2RSP ) cos — 2 cos —+ ( 1 ——

~
cos~(3) —cos —

~

2 ), 4 2 I, SP ( 2 2)

(C4a)
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E4(8) = Q sin ——2v"2P[cos8, (4) —cos8] ~'. (C4c)

However, a more systematic procedure exists
which we describe in what follows. We shall first
drop the subscript I..

it follows from (C1) and (C3) that

leads to Eq. (3.5).
(b) I, = 3: We parametrize G,(z) by

G,(z}= i(a+ b +-,') —, -ia(z -z ') . z+1
z+z '+1 z —1

(C9}

p2
G(z)— (C6) so that

is a meromorphic function with possible poles at
zeros of R (z}. Since the asymptotic behavior of
E(z) and R(z) and their behavior at z = 0 are
known, G(z) can be parametrized in terms of a
few parameters. Once this is done, going back to
the cut on the unit circle, one finds

4v2p 2 = (P2)(z1l2 + z 0'3)2 (z3 + z 3) + —(z + z &)
1

lw

(2P-e +2)

+ 2f P[(z~'-z-~')'] . (C10)

p'(t) =
4
—,[2R(z)G(z) -R'(z)] . (C6)

The remaining unknown parameters can be unique-
ly specified by (i) the positivity of p(8), and (ii)
E(z) is analytic inside the unit circle, where E(z)
= R(z) -2zip(z) We.now return to individual
cases.

(a) I. = 2: In this case, we can parametrize

The positivity and the analyticity requirements
dictate that, of the eight zeros of p'(z, ), a double
zero exists at z = —1, two simple zeros at z, and

z,* on the right-half unit circle, and one additional
pair of complex conjugate double zeros on the unit
circle. This forces us to have 5 =0 and a = (—,}P(1
—I/3P)" --,'P --'„which in turn leads to (3.9).

(c} I, = 4: We can. parametrize G,(z) as

(CV)
G,(z) =--, (C11)

leading to the representation

t'16
~ 8 2(1 . 28 4

p,' =
~

—,P' cos —
~

——sin'- ——,Pb . (CS)
2

For P ~ -„ the positivity and the analyticity con-
ditions force one to have 5 = 0. This, in turn,

which directly leads to

4m p
'= ICP' ——sin-a . , 8

4 2P

Writing sin~(—,8, }=a~ & 1, we arrive at (3.12) with
8, (4) determined by the normalization condition
(3.13).

*On leave of absence from the Scuola Normale Super-
iore, Pisa, Italy.
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