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Quantum chromodynamics on a tetrahedron at N, = «
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We show how the N, = oo limit for the single-link integral can be extracted from the finite-V, solution both in the
weak- and in the strong-coupling regimes. This result is used to provide a complete N, = « solution for quantum
chromodynamics on a tetrahedron, thus implicitly providing a solution to the Makeenko-Migdal equation for a

1981

three-dimensional (albeit elementary) lattice system.

I. INTRODUCTION

The use of steepest-descent techniques has
recently led to many interesting studies of lattice
gauge theories in the large-N, limit. Although
this limit can greatly reduce the degree of free-
dom of the gauge systems due to the absence of
fluctuations, extreme complexity still remains
so that, till now, only a few truncated models
have been solved. In this approach, one central
step involves the evaluation of the single-link
integral

ZO(A'A,B)zdeexp[NBTr(A'U+AU')] , (1.1)

where U is an element of the group U(N) and A

is an arbitrary NXN matrix. We have recently
shown® that ZO(A*A,B) can be explicitly expressed
in terms of elementary functions, and, for N
finite, it is entire in B. It has also been shown
that the large-N limit of Z, must admit two dis-
tinct branches, referred to as the strong- and
the weak-coupling (small and large B, respec-
tively) regimes.

In this paper, we show how the N =« limit for
the single-link integral can be extracted from the
finite-N, solution both in the weak- and in the
strong-coupling regimes, and how this result
can be used to study finite lattice quantum chro-
modynamics (QCD) at N,=«. In particular, the
complete N,= solution for QCD on a tetrahedron
is obtained (as well as for other simpler configu-
rations), thus implicitly providing for the first
time an exact solution to the Makeenko-Migdal
equation® for a three-dimensional (albeit elemen-
tary) lattice system.

The large-N limit of Eq. (1.1) in the weak-
coupling regime was first obtained by Brower
and Nauenberg? by directly solving a partial dif-
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ferential equation for Z . Recently, Brezin and
Gross* extended the analysis to include the strong-
coupling regime and showed that, at the “strong-
weak” crossover point,

lim < Tr((44")"/?) =28, , 1.2)

N~
the third derivative of F=(1/N?)1nZ, had a dis-
continuity, symptomatic of a “third-order” trans-
ition. In Sec. II we show how Eq. (1.2) can be
obtained from our knowledge of the exact finite-N
solution for Z,.

QCD on a tetrahedron is defined by the action
1

Si=gz ‘f\:Tr(U,,(f)+ Ul (f)) (1.3)
where the plaquette sum is labeled by vertices of
four triangle faces (123), (234), (341), and (412),
[Fig. 1(a)] and the plaquette product is

U, (ijk) = UGHU(jR )U(ki ) , (1.4
with U(ij) the unitary NX N matrix variable for
the link from the ith to the jth vertices. By gaug-
ing U(42) and U(13) to identity, the action (1.3)
becomes that of an L-link periodic chiral chain
[Fig. 1(0)],
L
SL:NBE Tr(U, U}, +U,,,U}), (1.5)
=1 .
whereL=4, g =Ng?)r!, U,=U,=U(12), Ul=
=U(23), U,=U(34), and U= U(41). We have pre-
viously shown' that, in general, gauge theories
on polyhedra are equivalent to chiral fields on a
periodic lattice, and have solved them exactly
at N, == in the weak-coupling region for periods
L=2,3, 4, and . In Sec. III we obtain corres-
ponding solutions at N, = in the strong-coupling
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FIG. 1. (a) A tetrahedron with link variable U (ij)
between vertices. (b) Tetrahedron flattened to plane.
Dashed lines have their link variables gauged to U =1,
leaving a four-link chiral chain. A closed path (dashed)
covers the surface by entering and exiting the triangle
faces across the nongauged lines.

limit. [The strong-coupling solutions for L =2
and © were implicitly known from the analysis of
two-dimensional QCD (QCD,) by Gross and Witten?
Friedan® has previously obtained a strong-cou-
pling solution for the case L=3. We show in
Appendix A that our solution for L=3, although
arrived at using a completely different technique,
agrees with that of Friedan, thus confirming its
uniqueness. ] Our result completes the effort,
began in Ref. 1, in establishing the fact that, for
L=2, 3, 4, and »=, a third-order crossover
singularity occurs for N, =« at 8 =%, 4, /8,
and 1, respectively (Fig. 2).

It is by now clear from the analysis of the
single-link integral (1.1) that the original sing-
ularity found by Gross and Witten in QCD, cannot
be purely kinematical since the condition (1.2)
depends on the structure of the external sources
A and A", However, it is not obvious whether
or not the subsequent integrals over the sources
will smear out the singularity so that no hint
of the Gross-Witten singularity persists in QCD,.

Our analysis clearly indicates that whereas the
integration over sources does remove the original
Gross-Witten singularity at g, =%, it does not

(L=1)
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FIG. 2. The behavior of the single-plaquette expect-

ation value as a function of 8 and L., At the critical

point (marked by a cross) 9(W;)dp is still continuous,

but its derivative shows a discontinuity.
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remove it, but rather moves it to a new location.
Unlike a conventional phase transition which
usually requires infinite spatial extension, this
crossover singularity comes about due primarily
to the large fluctuation in the infinite group vol-
ume at N, =« while the spatial correlations
remain short ranged. Therefore, our result
strongly suggests that this singular phenomenon
persists for QCD, at N, =,

Whereas this singularity might be generic for
gauge theories at N, ==, its location in g does
depend on the local topology. Recent efforts’ in
estimating the crossover point at N, =<« from
series expansions indicate a value for B, at a
little less than 4. It is amazing that this is in
good agreement with our result for the “minimum”
three-dimensional finite lattice system, the
tetrahedron, where 8,=m/8=20.395.

IL. N, = o LIMIT OF SINGLE-LINK INTEGRAL

We have shown in Ref. 1 that at finite N the
single-link integral Eq. (1.1) is proportional to
the wave function for a system of N independent
fermions and the Slater determinant can be re-
arranged in terms of modified Bessel functions
I,,, k=1,2,...,N,

Z,A'A, B) =detl(z )+, , (z))]/detl 2 2], (2.1)

D(2) = (R1)(2/2)"(2), @2.2)
where 2z, =2NBVx;, j=1,2, .. . ,N are eigenvalues

of the matrix 2NV AAT. Since x,’s are bounded,
the large-N limit of (2.1) can in principle be ob-
tained from the known asymptotic limit

Vur (&) 22 (1 + (1+22/R2V/2)R(1 4 22 /R2)1 /4
X expl (% +22)1/2 —p] . 2.3)

Owing to the explicit dependence on % in (2.3),
the asymptotic limit of (2.1) cannot be explicitly
carried out. However, Eq. (2.3) suggests an
ansatz that, in the large-N limit, the dependence
on the index % under the square roots in (2.3)
can be replaced by a “mean” value %, so that,
up to a numerical constant,

,  det[(z,>+ ) >0 /2]
Zyee 2 | 7,2)k
°7 detl(e 2 +E)*]

N
x [T {expl(z2 +B2/21/ (2 2 + 720/ . (2.4)
=1

Replacing z; by 2NBvx, and defining 7= (/N)?,
where 0<r<1, we obtain at large N
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R

(,r +462 )1/2

E (r +48%x;) 1/2+(1'+432x)1/2 )
2N2 2 i w

2.5)

where the constant is determined by making use
of the known limit 8 ~0,
Since F must satisfy the differential equation®

I R O )
+_1_ s (OF aF) ﬁz(zx)

z
N® & %, —%s \0x,

(2.6)

this allows us to check on the consistency of our
ansatz (2.4). Cumbersome but straightforward
algebra then turns Eq. (2.6) into the condition

(r)[ Ll agtny - ]—0, @.7

which determines 7 (or the mean value %).
Equation (2.7) allows two possibilities:

(i) »=0 2.8)
and

W) = ; (r + 4%, /2= 1, 2.9)
When substituted back into Eq. (2.5), Eq. (2.8)
leads to the weak-coupling solution of Brower
and Nauenberg® and Eq. (2.9) leads to the strong-
coupling solution of Brezin and Gross.*

We note that, from (2.8) and (2.9), 7 can take
on values only in the range [0, 1], consistent with
our original ansatz. The case »— 1 corresponds
to the extreme strong-coupling limit where only
a finite number of eigenvalues are different from
zero and it reproduces the known solutions for
this limiting case.®»® On the other hand, the con-
dition (2.8) occurs when

lim —E(x -1/2) =28,

N-n

(2.10)

is first obtained, i.e., Eq. (1.2), and (2.8)
persists throughout the entire weak-coupling
region B<f,. Equation (2.10) defines a strong-
weak crossover point where the third derivative
of F is discontinuous.*

III. QCD ON TETRAHEDRON

Given (1.5), the partition function for a four-
link chiral chain can be expressed as
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= [ avav expln’s, @V, (3.1)

where U,V can be any pair of nonadjacent link
variables and the integrand is simply the square
of a single-link integral Eq. (1.1), with A=U+V.
We have previously explained in Ref. 1 that this
representation, Eq. (3.1), together with the
result of Sec. II, is directly suitable for a large-
N steepest-descent analysis. By changing var-
iables to 6,, ¢ being eigenvalues of UV", the
large-N limit of Z, is dominated by a stationary
configuration, specified by a spectral density
p(8) which can be obtained by solving the equation

Pf d¢>p(¢)cot(02_¢') +8%Se”[9,p]=0. 3.2)

It follows from Eq. (2.5) that, for — 0 <46
Eq. (3.2)can be written as

4____ﬁg(sem9 —Pf d¢p(¢)[cot (9 2¢)

-3 (zaeea)])

c?

(3.3)
where
2(6) =4[8B*(1 + cos) +7]'/? (3.4)
and p(¢) satisfies a normalization condition
6c
f dop(d)=1 . (3.5)
%

Whereas 0 < §, <7 in the weak-coupling region,
the limit in the strong-coupling region spans the
entire range [- 7, 7] and the condition Eq. (2.9) in
a continuum notation becomes

[T asloto)/z(@)=2. (3.6)

The spectral density p(8) can now be found by
the following procedure. In terms of the variable
z=e¢'?, the right-hand side of Eq. (3.3) is the
principal part of an analytic function

dz gz’ N [z+z
=0 — N
F(Z) f Z' p(z )[g(z) zl ’ (3 )
where the integration contour is along the unit
circle. Note that the product g(z)F(z) is analytic
in the interior of the unit circle, which can be

mapped into the entire complex plane by a var-
iable change

x=2(1 +cosb)=2+z+1/z . (3.8)

A careful analysis then indicates that a real an-
alytic function H(x) can be constructed,
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H(x)=-

gOFG) 1 f A 1B ,(3.9)

x@-0"72"7 ) x-x

where x,_ =2(1 + cos 6,). When approaching the
branch cut from above, we find

() = 2B 00)> 0, Rell)=26" .

(3.10)

Equations (3.9) and (3.10) allow us to solve for
p(6) uniquely.

A. Weak-coupling limit

This limit has been solved previously in Ref.
1; we repeat the analysis here for completeness.
With »=0, g(6) reduces to BVx so that ImH
=27Bp(8)/(@& — x)*/2>0 for x,<x<4. Since p(0) is
in general nonzero, we immediately obtained a
unique function H(x) satisfying (3.9) and (3.10),

He) =281 - [(x -2 )1/2/[x - 0)[/2},  (3.11)
so that the spectral density is
P(6)=<-2f—> (sinzg‘i—sin"’ 22)1/2 , (3.12)

where 0< 6, <7 is determined by the normaliza-
tion, Eq. (3.5). This, in turn, indicates that the
weak-coupling solution Eq. (3.12) is valid only for
B=>B,=n/8. Whenp=8,, 6, =m.

B. Strong-coupling limit

In terms of H(x), the strong-coupling condition
(3.6) or (2.9) can be reduced to

H(-v/48%)=28..

Since 6, =7 in this region, and both p(0) and p(m)
are in general nonzero, a unique solution for
H(x) satisfying (3.9), (3.10), and (3.13) is

(3.13)

_ x+r/48 | _ e g%(6)/p*
H(x)—2f32 {1 “[x(x_‘})]l/z}—zﬁ {1 - x(x_4)]1/2} ’
(3.14)
so that, from (3.10),
p(e)=¥=2f<x-sm2 g)”z (3.15)

(A\=1+#/168%). It is clear either from the con-
struction of H(x) or directly from (3.15) that
p(6) satisfies the strong-coupling condition (3.6)
automatically. The constant », 0<s7v<1, is
again determined by the normalization condition
(3.5), i.e.,

2 T . 1/2
;QLM[(HI{B—Z) -smz-g?] =1, (3.16)

which is possible only for B< g = /8. As B— B;s
7 vanishes; Eq. (3.15) then agrees with the limit
of Eq. (3.12) with p— 8.

It is interesting to note that in both the weak- and
the strong-coupling regions, our spectral density
(3.12) and (3.15) coincides in form with that found
by Jevicki and Sakita® for an apparently unrelated
problem: the Hamiltonian problem for a single
propagating plaquette. There is a vague hint of
some sort of universality such that a few common
features (four independent matrix variables with
a dominant purely kinetic interaction) seem to
determine the N= behavior independent of the
details of the model.

For completeness, we also solve in Appendix A
the strong-coupling three-link chiral chain pre-
viously considered by Friedan® Our analysis has
the advantage of being much less involved than that
of Friedan. Although our result agrees with his,
our analysis bears no apparent relation to his in
intermediate steps.

Finally, we would like to comment on the rela-
tionship of our approach to the Makeenko-Migdal
(MM) equation for loop averages. As shown by
Paffuti and Rossi? and by Friedan® for two- and
three-plaquette problems, our steepest-descent
analysis for determining the spectral density
p(6) is equivalent to a purely algebraic approach
obtained by restricting the MM equation on the
lattice to an appropriately chosen subset of loops
on which-the equation closes. This can also be
established for the four-plaquette problem. An
algorithm can then be found so that a general
loop average can always be expressed algebra-
ically in terms of the generating functional for the
subset of loops appropriate for the density p(6)
(which we have obtained without directly using the
MM loop equation).
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APPENDIX A: THREE-LINK CHIRAL CHAIN
IN STRONG-COUPLING REGION

For the L =3 chiral chain, the spectral density
satisfies

(28sind) (1 + 8%7)

:pf de ps(d) [cot(9§¢) - g(ég;gw)] ’
(A1)




where g(6) is given by (3.4). In terms of the
variable z =¢*®, the right-hand side of (A1) be-
comes the principal part of an analytic function

Lgde g [2te
Fye)= 2 2’ ps(z )[1 " g(z)] [z —z’] (a2)
1
=H, (2)+ g———(z)Hz(z) , (A3)

where H, and H, are analytic in the interior of
the unit circle.

To exploit the analyticity structure, we first
change the variable from z to x, Eq. (3.8), then
to

yetetenir=E2 (a4)
where c¢=7/4Bp%. One can then show that
1/2
Hs(y)z—[%%w F,(2) (A5)

is real analytic in y, with branch cut between
V¢ and (4 +¢)*/2, and on the cut,

ReH,=B(1+y) . (a6)

In terms of H,(y), the strong-coupling condition
(3.6) becomes

H,(0)=8 (am)

and the normalization condition (3.5) becomes an
asymptotic condition

-1

Hs(y) ~ éy_ . . (AB)

g~
Equations (A6) and (A7) allows us to determine
H,(y) uniquely. We find

By(y +b)
[(3"‘\/?)(3’ ~(4+ 0)1/2)]1/2 ’

Hy(y)=B1 +y) - (A9)

where

Ve t@tops

3 (A10)

b=(1+5")=1

Furthermore, by enforcing (A8), one obtains

52 -o6t=pg"1, (Aa11)

which relates ¢ (thus » and %) to 8. It then fol-
lows that the spectral density in the strong-cou-
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pling domain is

pulO) ==y + )y + V& )y + VAT,
(A12)
The crossover point occurs at c=»=0, which,
from (A10), corresponds to §=-1, b=0, and
from (A11), B, =4, as expected.h® Atg=1,
we obtain

pa(e):;—ﬂ (cosg)(zcés%>3/2 (A13)

in agreement with the weak-coupling limit result
obtained in Ref. 1.

Lastly, let us compare our result with that of
Friedan. From (A2) and (A3), it can be seen
that H,(z) is related to the D(z) function of Friedan
by

H (2)=iD(z) - iB(z - z°1) . (A14)
From (A3) and (A5), we can show that
P(z)=8"122D%(z) =23 + a(B)B 222 + Bz +1 , (A15)

which is the key result of Friedan, obtained by a
somewhat involved reasoning.

With the help of (A11), the coefficient a(B) in
(A15) can be expressed as

a(B)=p*(62-25) , (a16)

which can be shown to be a function of g2 only,
therefore satisfying the strong-coupling expansion
constraint. Finally, by identifying 6 with z, of
Friedan, the demand that P(z) has a double zero

atz,, |z,| <1, leads to

2,0 =Bz, -2=0 . - (A17)

Alas, this mysterious condition of Friedan can
now be understood as the normalization condition
(A11), where

B2 T A

3 (A18)

Note that lzzl <1 precisely corresponds to our
strong-coupling condition ¢= 0. Therefore,
Friedan’s result agrees with our strong-coupling
solution, (A12).
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