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Construction of exact multimonopole solutions
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The newly found exact axially symmetric multimonopole solutions of arbitrary topological charge are constructed
and proven to be real. Arguments supporting the regularity of the solutions are presented.

I. INTRODUCTION

where e is an arbitrary constant, the gauge
coupling constant. The problem, simply stated,
is to solve the self-duality equations

a a
Fpv +2 Gyves &F (1.2)

(our convention is f»,4-=+1) for the gauge poten-
tials A'„subject to the following requirements:

(i) In all gauges, A'„are static (independent
of x~}: &4A„=O. In this case A; is referred to
as the Higgs field.

(ii) In some gauge, A'„are all real nonsingular
functions of (x„x„x,}.

(iii} The gauge-invariant quantity h2—= A;A4
has the asymptotic form

Q2 f2 2

ex
+0(r ') as r-~,

where r2= x,'+x,2+x,', f is an arbitrary con-
stant with dimensions of inverse length, and n

is a positive integer called the topological

Ward' made a major breakthrough in our under-
standing of the monopole sector of classical
Yang-Mills gauge theories by presenting for the
first time an exact axially symmetric monopole
solution of topological charge two. Inspired by
Ward's work, the present authors" recently
found exact axially symmetric monopole solutions
of arbitrary topological charge. The purpose of
this paper is to give a construction of the solu-
tions presented in Ref. 2 with a proof of their
reality and to discuss the singularity problem.
We present a number of checks and arguments
in favor of the complete regularity, though they
do not yet amount to a rigorous proof.

To recapitulate, let us define in four-dimen-
sional Euclidean space (x„x„x„x,) the gauge
potentials A'„where a = 1,2, 3 and p =1,2, 3, 4.
The gauge-field strength is defined by

charge. We assume that ef&0. (To compare our
formulas with Ward's, one should set f =1, e =2.)
The energy E of the monopole is then

I

FpvFpvd & 2 v ~ d &-4~ gy 1 4

where we have defined the magnetic charge g
to be (n/e). From now on we will use units in
which e =f=1.

In Ref. 2 it was found that requirements (i}
and (iii) can be easily satisfied whereas (ii) is
very difficult to implement and for n =3 was
originally done using the symbol-manipulating
computer program MACSYMA. For n& 3 it was
found that requiring the gauge field be real and
nonsingular on the x, axis gives a unique candi-
date for the n-monopole solution. One must still
prove that this candidate gives real nonsingular
'gauge fields over all three-dimensional Euclidean
space, and this is the very purpose of this paper.

The n-monopoole solutions are constructed from
n&n determinants that are, however, too cumber-
some to evaluate for any practical purpose, such
as a direct check of requirement (ii). We have
realized, however, that in order to prove reality
and nonsingularity one does not have to explicitly
compute these determinants. In particular the
proof of reality is extremely simple, being a
straightforward generalization of Ward's original
proof.

The singularity problem, however, is much
' more involved and amounts to checking that a

certain n & n determinant is nonvanishing every-
where in three-dimensional Euclidean space.
Since we are dealing with an elliptic (albeit
nonlinear) problem, a proper way to handle it
consists of looking for two separate classes of
solutions. The first class is regular at infinity
except possibly for a line singularity along the x,
axis. The second class is regular on the x, axis
(and on the x, =0 plane) and it is real analytic
around it.
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The proper way to analyze regularity at infinity
is to start from the class of solutions first intro-
duced in Ref. 2 involving determinants of some
function ~& where —n&L&n that we have found to
be expressible in terms of-derivatives of modi-
fied spherical Bessel functions of negative order.
Using 6, we are able to exactly compute the
Abelian part h" of the norm h of the Higgs field
A4..

where o' are the Pauli. matrices. For real gauge
fields, A„and E„„areanti-Hermitian traceless
matrices. We now analytically continue A& into

complex space where x„x„x„x4are complex.
The self-duality equations (1.2}are then valid
also in complex space, in a regioncontaining
real space where the x's are real. Now consider
the four new complex variables P, P, q, and q
defined by

(1.5a) v2p-=x, +ix„v2p-=x, ix„-
&2q—=x, —ix, v 2q—= x, +ix .

(2.2)

r,' =x,'+x, '+(x, —q,), (1.5b)
The self-duality equations (1.2) then reduce to

for —n & L&n. (1.6)

The miraculous equality expressed in Eq. (1.6}
is the heart of our proof of reality and provides
the matching we were looking for between solu-
tions belonging to the two different classes. A

full proof of regularity would now require showing
that the domains of regularity of the two (coinci-
dent) solutions cover all three-dimensional space.

In the course of our analysis, we have found a
number of interesting and elegant mathematical
structures that are discussed in the appendices.
First of all, Eq. (1.6) is a yet unknown property
of Bessel functions and second, we can prove the
equivalence of Toeplitz determinants involved
in our solution to a special case of U(s) group in-
tegrals over the invariant Haar measure. Final-
ly, this allows us to establish a formal equiva-
lence of these determinants to the partition func-
tion of two-dimensional lattice quantum chromo-
dynamics (@CD) and as a consequence we can
also discuss the large-n limit of monopoles.

II. FORMULATION OF THE SELF-DUALITY
EQUATIONS

We begin by defining the 2 &2 matrix-valued
fields

&a
A„=— . A'„and

2z (2.1)
0

Fpv =- . Fpv =SpAv SvAp+ [Ap&Av]p
2$

where q„are arbitrary complex constants con-
strained only by the requirement that h" be real.
Equation (1.5a) is valid everywhere up to exponen-
tially damped corrections of order 8 ~"~ around
each singularity of h".

On the other hand, the proper way to analyze
regularity on the x, axis and the x, =0 plane is to
start from a class of functions &, where
-n& L&n and which are power-series expandable
around the origin. We have found &, to be ex-
pressible in terms of integrals of modified cylin-
drical Bessel functions. Our fundamental result
is the proof that for our unique candidate n-
monopole solution

Ep, =, Ep,- =0, and I"pp+ I",q —-0. (2.3}

The equations &~ =0 and &~; =0 can be immediate-

ly integrated, since they are pure gauge, to give

A, =D-1D„

A —=D D-,
A, =D 1D, ,

A —,=D-'D-„
(2.4)

where D and D are arbitrary 2&2 complex ma-
trix functions of P, P, q, and q with determinant
=I and D~=- ~~D, etc. Gauge transformations are
the trans formations

D-V(p, q)DZ, D- V-'(p, q)Dz, (2.5)

J=- DD 1

then the remaining self-duality equation +»
+I „-=0becomes

(~ Vv)v+(~ '~,-); =o.

(2.'r)

(2.6)

Under the gauge transformations (2.5), Z trans-
forms as

~- 7}(p,q P~(p, q).

Since J is an arbitrary complex 2 &2 matrix
function with determinant one it can be pa-
rametrized as

(2.9)

(2.1O}

where Z is an arbitrary complex matrix function
of p, p, q, and q whereas V (V} is an arbitrary
complex matrix function of P, q (P, q) and we take
the determinants of , V, and V to be one. Under
the gauge transformation (2.5) the gauge potential
A„and gauge-field strength I"„, transform as

A -~-'A z+&-'s & F -&-'F ~. (2.6)

The energy density F&,F„'„=-2 Tr(F„„F„,) is
invariant under gauge transformations. Let us
define a matrix J by
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where Q, p, and p are arbitrary and independent
complex functions of P, P, q, and q. The self-
duality equations (2,8) in terms of Q, p, and p
become

(2.11a)

2 + ~2 =0~ ~2 + ~2 =0 2.11b

To construct the gauge potentials A„ from J re-
quires a selection of gauge [i.e., there are an
infinite number of ways of factoring (2.10) in the
form (2.V)]. We will work exclusively in Yang's
R gauge which is defined by J =—RR ' where

(2.12)

The gauge potentials in the R gauge take the form

matrix~

zz' =(R~ Vt V-'R)-' (2.16)

and this matrix will make A& and &„„anti-
Hermitian as demanded by requirement (ii).

III. SOLUTION OF THE SELF-DUALITY
EQUATIONS {211). THE, ATIYAH WARD ANSATZs, 6

Let us define (2n + 1) functions 4, where
-n - l ~ n which satisfy the following equations:

~P &l ———eq &l+1, ~q ~l =BP&l+1 . (3.1)

It is now convenient to define the following nota-
tion:

= determinant of the jxj matrix whose
entry in the 4th row and 1th column is
giVen by 4k„, Where the 4'S are de-.

fined by (3.1) and j, k, I are positive in-
tegers whereas m can be any positive
or negative integer or zero.

(3.2)

We can now state the nth Atiyah-Ward ansatz 8„
as follows. The self-duality equations (2.11}are
solved by („Q,„p, „p) where

(2.13)

where u~P, q. Now because of requirement (i)
the gauge potentials (2.13) must be x, independent
and we require this to be true in all gauges which
implies that the gauge transformation matrix
must be x4 independent:

~nXn ~nXn
( q )n+1 k+l n-1 k l

nV
= i ~ I Irn-1 Xn-1 ~n-1Xn-1

0+l -n k-l

p=—
~n Xn

zion

Xn
P~k+& n 2 i y)n»k-1-1
~n-1 Xn-1 i I ~n-1 Xn-1ii k+l «n » k-l

~nXn ~nXn

n p 8 n-1 Xn-l, = i-~ I ~n-1Xn-l,
k+ l -n k —.l

(3.3a)

(s.sb)

(3.3c)

842 =0 (2.14}

by virtue of (2.6). In particular k'~A;A4
= —2Tr(A~A, ) is gauge invariant.

Even if the gauge potentials A& derived from
(2.13) [e.g., A, =(-i/v2 }(A,—A-, }]are static, they
will not in general be anti-Hermitian as demanded
by requirement (ii). For real gauge fields
A~ =-A„(the symbol =' is used for equations
valid only for real values of x„x„x„x,) we have
from (2.4}and (2. I}

A~ =' —A„m D = (Dt) i~ j =DD i =' DDt, (2.15)

i.e., for real gauge fields 4 is a positive-definite
2 x2 Hermitian matrix. A necessary and sufficient
condition to meet requirement (ii) (we must, of
course, also check that the gauge fields are non-
singular functions of x» x» and x,) is that we be
able to find matrices V'(p, q) and V(p, q) in Eq.
(2.9}such that V'(p, q)RR 'V(p, q) is a positive-
definite Hermitian matrix. If we can find such
matrices V and 7 then the gauge transformation
matrix 2 in (2.6) is simply a square root of the

A useful relation that follows from Jacobi's
theorem on subdeterminants of adjugate matrices
is

yy n+1 Xn+l,
2 — k+ l -n-2

n4 +npn&= —Hn-&Xn-|
k+ l -n

~n+1 Xn+l,
k I

~n-l, Xn-l, ~

k-l
(3.4)

In Ref. 2 it was shown that the E's are given by

60 =,p =e'"&0, (S.ea)

where

sinhr,
+k

(3.5c)
/

(s.ea)

&, =P '&~A„, P '&~A, , (k=0., 1,2, .. . , n),

(s.eb)

r,' =x,'+x, '+(x, —z„}', (3.6c)

b., = (—I)'e'*4(v 2 p) '(1 —&,)"A„(k=1,2, . . . , I),
(3.5b)

=(—1)'e'"4(v 2p) '(1+s,)'il. (k =1,2, . . . , n),
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In Ref. 2 it was shown that to obtain a monopole
solution of arbitrary topological charge m ~l one
should take the C„ansatz with

sinhr„
Ao= z4=1

where

(4.1a)

and n~ and ~~ are arbitrary complex constants
constrained only by the requirement that A„be a
real function of x„x„and x, for k=0, 1,2, . .. , n.

IV. THE ARBITRARY n-MONOPOLE SOLUTION

V. EXPLICIT FORMULAS FOR A„AND INTEGRAL
REPRESENTATIONS FOR 6

(x/2)'»' "
k II'(k+ v+1) ' (s.l}

from which it follows that for real x and
v&-1, x "I,(x) is a nonvanishing positive func-
tion of x.

Using Eqs. (3.6) the formulas for &» given in
Ref, 2 can be compactly written as follows:

Let us denote by I,(x} the modified Bessel func-
tion of x of the first kind of order v. Explicitly,

r,' =x,'+x, '+(x, —z»)',

z»= —k (in),(n +1)

(4.1b)

(4.1c)

I/a

A,. = — g ej»r»' 'kl, @ j(r,) (j =0, 1,2, . . . , n),
A=1

(n —1)!
(k —1)!(n—k}! ' (4.1d)

Note that ~, —~, I =i& and o.~ are the binomial
coefficients. From now on we will assume that
n» and z» are given by (4.1d) and (4.1c), respec-
tively.

Choosing the matrices T'(pq) and V(pq) to be

(5.2)

where n» and r„are given by (4.1).
Let us now define the real variables s and 8 as

follows:

&2P =x, +ix, =se", v 2P =x, -ix, =se-",
(S.3a)

so that
l 0

v(pq) = I=, v(pq} =
y-i(g 2p)-n s'=x, '+x,', 8=tan '(x,/x, ). (s.3b)

0 1 —y(M2p)"
(4.2)

There exists a very useful integral representa-
tion for (sinhr)/r which is'

y must be a real constant,

—y*(2pp )"(.0'+.p. P)e ""4
(4.3a)

and requiring that VAR IV be a positive-definite
Hermitian matrix for („Q,„p,„p) constructed
from (4.1}, it was found that in order to have real
gauge fields,

sinh(x '+x +x '}'+
(x'+x '+x')'j'

I
e *"I,(s(1 —t»y-k}dt . (S.4)

-I

Using Egs. (4.1), (5.2}, and (5.4) one finds

=y»[(2w)" '(n —1)!j» =+1, (4.3b)
I

e "3 'I "I s l —I," I& dt
@=I -I

(s.sa) .

' —V ln~nxn (4.s)

It was also asserted in Ref. 2 that the following
determinants

( 1 )j(j-g)kII jxj II jxj (4 4)

@re nonvanishing for j =l, 2, ..., n and thereby
ensuring the gauge fields are nonsingular. Equa-
tion (4.4}allows us to write the "superposition
formula" of Ref. 2 as follows:

~ n-I
& n't

2 cos~ e *3'I,(s(1 —t')'+)dt.I2

(s.sb)

From (5.5b) it is obvious that Ao is a nonvanishing
positive function for all values of (x„x„x,),
i.e., over all three-dimensional Euclidean space.

Let us now define the following functions:

I

I
a, = »' (-1)'e'"4 " 2 cos — e *' I, (s(1 —t')' }ktd, (5.6)

where -n & l&n. It is shown in Appendix A that
the functions 6, as defined in (3.5) are given by

~„=n,„-(v 2p)-"[(2v)"-'(n-1)!je- ", (s.vb)

for -n&l&n, (5.Va) 6 „=2 „—(v 2p } "[(2n')" (n —1)!je» . (5.7c)
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VI. EXACT EQUIVALENCE OF POTENTIALS
CONSTRUCTED FROM DI TO THOSE

CONSTRUCTED FROM Dl

Equations (5.7) prove that within the range
-n ~ E ~ n the functions 6, and 6, are equal to each
other except at the end points l =n and I, =- n.
We will now prove that the gauge potentials con-
structed from („Q, „p, „p) using (3.3) are exact~i
equivalent to those constructed from („Q,„p,„p)
using (3.3}where the b's are replaced by b, 's.

Using Eqs. (3.3) and (5.7) it is easy to verify
that

(6.1a}

and argued that solutions of the self-duality equa-
tions (2.11) can be extracted from (7.2) using
techniques of algebraic geometry and twistor
theory. It was Corrigan, Fairlie, Goddard, and
Yates' who showed how to explicitly extract
(„Q,„p,„p ) from (7.2) leading eventually to the
nth Atiyah-Ward ansatz C„as defined in Eq.
(3.3) with 4's replaced by b.'s.

In the context of monopoles, Ward' argued that
in order for the gauge potentials extracted from
('l.2} to be static and real it was sufficient to as-
sume there exist two 2 && 2 matrices Q~") and
Q~s) such that

Q(n)g(n) (~ (0 ~)Q(n) 9(n)(& g) (7 3a)

„p =„p+(&2P) "(2n')" '(n —1)!e",
.P =.p (~-P) "(2&)" '( — )!

from which it follows

(6.1b)

(6.1c)

Q~" is analytic away from g =0,

Q~") is analytic away from f =~,

detB'")((u, g) =+1,

(7.3b)

(7.3c)

('!.M)

n4' n4 r npu npui npu npus (e.2)

VII. PROOF OF REALITY

In this section we will prove that the complex
gauge potentials constructed from („Q,„P,„P)
using (3.3}where the n, 's are replaced by 5's
are in fact complex gauge equivalent to real gauge
potentials. Our proof is a straightforward
generalization of Ward's original proof for the
charge-2 monopole.

Let us define three new complex variables cv„
ra&„and &a as follows (we warn the reader that
our notation differs radically from Ward's):

for u=P, q and thus, by virtue of Eq. (2.13), prov-
ing the assertion made in the beginning of this
section.

eu( (; + (: ~ )4
Q- woo

gives

(n —1)!)("' [e' &+(-1)"e' 2]o("'( „„g)= ~ )

(7.4)

(7.5)

Equation (7.5) could also have been derived as
follows. The essence of the n-monopole solution
(4.1) is contained in the following "splitting rule":

[g (n)((d g)]t g (n) (~nc gn $) (7 3 )

We now proceed to compute 9 " (&u„(d„g)for the
n-monopole solution (4.1) with n, , given by (5.6).
Substituting (5.6) into (7.2b) and using the relation

~2(, =(a'-P&), ~».=- ((f+PK '),

&u=(u, —&u, =x, ——(e'eg —e 'eg ')

(7.1a}

(7.1t )

f!t(n)( g) g(n-X) ~ +
~+ +g(n-X)

2t 3 2 3 2

(7.6}

where g is to be regarded as a complex parameter
ranging over the extended complex line, i.e., the
Riemann sphere.

Atiyah and Ward in their original paper' de-
fined a so-called transition matrix g " (to„&u„f)
by

e 2 0
Q(n)

L 0 e 2
(7.7a)

so that Eq. (7.5) could have been derived by just
knowing 0' given in Ward's paper. '

We now choose the matrices Q~(") and Q(s") to be

-gn fl(n) (~ ~ g)p
8(")(~„~., t) = (7.2a)

where

0
Q(n) -ru,

n
2e

n z(„1),... , ( —,)

0 ")(&u„&um, g) = g b,,f ",
~oo

(7.2b)

from which it follows that

(7.7b)
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Q
(n) (+ g)

(n —1)!v" ' [e~+(-1)"e ]
2 n

(&u —z»)

(-1)"&"e

((u- z, )
2e

(n —1)!v" &

(7.8)

which one easily checks satisfies all of Ward's
requirements in Eq. (7.3}. Thus, the reality of
the gauge fields resulting from (4.1) is guaran-
teed.

"(n)
QZ =

e

0

(8.4b }

VIII. GENERAL STATIC SELF-DUAL GAUGE FIELDS
WHICH ARE REAL BUT NOT NECESSARILY

NON SINGULAR

In Sec, VII we proved that the ~-monopole solu-
tion as defined by Eq. (4.1}is complex gauge
equivalent to real gauge fields. In this section
we find a general class, which includes the solu-
tion (4.1), of self-dual gauge fields which are both
static and real but not necessarily nonsingular.

More specifically, we take a general Atiyah-
Ward transition matrix 9 ":

et@ + 1 ne-w
real ~E(&o) =

q, g (~-q, )

(8.5a)

and

. . (~*-q,). (8.5b}

where q„q„... , q„are arbitrary complex con-
stants with q, &0. It is then easy to check that in
order to satisfy Ward's conditions (7.3a), (7.3d),
and (7.3e) the function E(&e) must necessarily be

(~i~ ~»~ &)
8"'(~ ~ c)= (8.1)

and ask what is the general form of Q&"'(&d„cu„g)
consistent with the requirement that the gauge
fields be static and real (not necessarily non-
singular). Let us first consider the requirement
that the gauge fields be static. In Ref. 2 it was
shown that if

„Q =e'"4@4, „p =e'"4Q», „p =e'" Q&-, (8.2a)

Qe, Q~, Q~ are functions of z„z„z,only,

(8.2b)

then the gauge fields are guaranteed to be static.
By virtue of Eqs. (7.2b) and (3.3}, the transition
matrix (8.1) can give static monopole solutions
of the form (8.2}only if

static ~ fl'"'(&u„~„g)=e &' &E(cu), (s.S)

where E(e) is an arbitrary function of &u = &u, —&u, .
We now turn to the requirement that the gauge

fields be (complex gauge equivalent to) real which
means that we must be able to satisfy all of
Ward's conditions (7.3). To satisfy Ward's con-
ditions (7.3b) and (7.3c) we choose the matrices
Q&"' and g&"' to be

for k =1,2, .. . , n. (s.s}
- The next three sections of this paper are de-

voted to proving Eq. (8.6). Note that by virtue
of Kq. (AS},. only for the choice q, =z, does E(&d)
become an entire function of e.

IX. MULTIMONOPOLE SOLUTIONS OUTSIDE
THE CORE REGION

In order to discuss the singularity properties
of bur candidate solutions, we can consider the
problem of finding solutions that are regular at
spatial infinity separately from the problem of
regularity at the origin.

In particular, there exists a general class of
axisymmetric solutions that can be derived from

Equation (8.5b) implies that qo must be real and

q„q„.. . , q„are either real or occur in complex-
conjugate pairs. Thus, we have found a general
class of static and real self-dual gauge fields
that are derivable from the transition matrix
(8.1}built from Eqs. (8.3) and (8.5).

It is the final requirement that the gauge fields
be nonsingular which uniquely fixes the constants
q„q„.. . , q„ to be given by Eq. (4.1c), i.e.,

n+1
nonsingular ~ q» =z» = —0 (iw)

e2 0

0 e 2

(8.4a)

where

sinhr, .
(9.1)
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r =s +(xs —qq. ) (9.2)

and q, , p, are now arbitrary parameters (with the
only request that their choice preserves the
reality of A,). This form of the solution is
naturally suggested by the analysis given in the
previous section.

We are going to show that these solutions cor-
respond to n topological charges concentrated
in finite regions around locations in the two-
dimensional x,—s plane.

The analysis of the self-duality equations in the
unitary gauge' clearly shows that, due to the
presence of two different kinds of "physical"
(gauge-invariant) field components, massive and
massless, it is possible to define two regions in
space: the "core" where the magnetic charge is
localized and the exponentially damped massive
field components take values that are significantly
different from zero, and the "Abelian" region
where the damping is effective, and only the long-

. range massless fields survive.
It is easy to check that these surviving fields

obey the (scalar and vector) Laplace equation up
to exponentially depressed corrections. In par-
ticular, the norm of the Higgs field h =(A;A; )'h

can be split into

B~ ) =det4g (9.8)

While this is a hopeless task when 4, is given
by Eqs. (9.5) and (9.6), dramatic simplifications
occur when the form Eq. (9.'1) is assumed.

First of all, let us remember that, when each
column of a determinant is written as a sum of
columns, as happens in our problem since

&a-~ = ~ I +a-i( j)A (9.9)

the determinant itself may be decomposed into a
sum of determinants,

deth„, = P detP&ih ' ', i,
$ j ~ 0 ~ ~ jn$

(9.10)

recursion relations Eqs. (3.1}so that they define
a bonafide (albeit singular) solution of the self-
duality equations. (b} It is natural to think of the
Abelian solution as arising from the limit when
the characteristic scale (or inverse mass) in the
monopole problem is set to zero: it is then
natural to regard Eq. (9.V} as the corresponding
limit of Eq. (9.6).

In order to determine the gauge-invariant fields
we have to evaluate the fundamental Toeplitz
determinant

h=h +O(e '"&)

and h" satisfies

V'h =0.

(9.3)

(9.4}
~( j)A r'( i-m)6 &g qg g ~( j)A=e

S
(9.11)

where the sum runs over all possible choices
1 (j, &n. However, since

Our aim is to derive the exact form of h" for
the most general axisymmetric solution, i.e.,
(9.1), corresponding to the Q„ansatz.

We may define

(i')
j=1

(9.5)

and in Appendix A we show that

rjx, —q, —r,. e j
v 2P 2r,.

x, —q,. +r, 'I e "&.
WSp & 2r,. (9.6)

It is straightforward to identify the exponential-
ly damped contribution coming from each 4,"
and to define the Abelian counterpart of Eq. (9.6):

s j 2t')

Let us notice that (a) b,""as defined in Eq. (9.'l)
still satisfies the Helmholtz equation and the

whenever the same value of j„appears in two dif-
ferent columns linear dependence implies a
vanishing determinant. This special feature al-
lows us to restrict the sum in Eq. (9.10) to the
determinants where each value from 1 to a ap-
pears once and only once among the j„ that is,

detb. " = g deti3
perm( ji)

By using Eq. (9.'l) and simple properties of
Toeplitz determinants (and by removing the ir-
relevant e'"4 factors) we find

(9.12)

/

deta"„, = "[ P Q det[(x, —q. —r }'-'j.
2&y perm(g &)

(9.13)
the determinants in Eq. (9.13) can be given a
Vandemonde structure by extracting common
factors in the columns and, by further deleting
an overall numerical factor that does not affect
the logarithmic derivatives, we are led to the
form

n rj n

deta", , = —
i g ]Q (x, —q, ,

—r, ,
)' 'detI(x, —q, ,

—r, ,
)' 'J.

j ) perm( j &)

(9.14)
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But notice that by insertion of a factor (-1}(-1}'where 5 is the number of permutations we can rearrange
the previous expression into the form

n ( r n

det»)A, , =,
~ g (-1) (x, —q,. —r, ,

)' 'det[(x, q—, —r, )' 'J,
='l «» ) ) ~ (», ) 'r'='i

and the sum after permutation defines a new Vandemonde determinant, such that

e~n

deta», =
~
det[(x, —q, —,)' ']det[(x, —q, —,)' '].

j-=1 j
A trivial property of Vandemonde determinants now leads to

(9.15}

(9.16)

™

Let us now recall that

(h )' =1 —V'Indet»). "»,
n I

=1 —Vm g (r, —lnr»}

x, —q,. —r,. x, —q, —r,. l

x~ —q) —t'~ x~ —qg —t~ )
(e.lv)

(9.18)

(9.19)

It is straightforward to check that

2 2 2 1
V 'r& =—and V' 1nr,. = (e.ao)

qA t) hA
1

(9.2'I)

I

and in the Abelian region B =H, relating )I»A to h"
through

and it does not take too much effort to verify that

x, -q, -~, x, -q,. -r,. 't 2
V lnl — ' 1—

It is easy to integrate Eq. (9.2'I) when h" is ex-
pressed by Eq. (9.23), thus obtaining

Collecting all results we finally obtain
n Q

(h")' =(I —P»=l

(9.21)

(9.22)

n

gA Q X» q»

k=1
(9.28)

gA may differ from g. only by exponentially
damped corrections. Actually, in the n =1 case
the relationship

and our strikingly simple final result for the
Abelian (Higgs) field outside the core region is (e.ae}

h =1 —Q —.A

k=1
(9.23}

It is trivial to check that this is indeed a solu-
tion of Eq. (8.2), and to find the asymptotic limit

h ~1——Pl (9.24)

K~ =B~h ~ (e.as)

and gA, the axial component of the vector poten-
tial (or stream function}, related to the diverg-
enceless magnetic induction field 8:

1B„=—ep„8~/,r (9.26}

corresponding to an n-monopole solution, as ex-
pected on general grounds.

It is important to observe that when we deal
with axisymmetric monopoles the massless fields
are completely described in terms of h", the
scalar potential related to the curl-free magnetic
field H; in cylindrical coordinates (p, , v =1,2):

holds everywhere.
Two considerations are at hand:
(a) h" is real due to the presence of complex-

conjugate pairs for each complex quantity ap-
pearing in the equations;

(b) h" blows up on the x, axis when q» is real
and

(9.3o)"3=qa

and it blows up on the x, =0 plane when q„ is
imaginary and

s=[q»l. (9.31)

The Abelian solution appears to be characterized
by pointlike singularities. In order to remove
these singularities, we must replace Eq. (9.'7}

with Eq. (9.6}, noticing that the "smoothed" func-
tions 4,'~' are obtained from their Abelian
counterparts through the symmetrization

»).', »'(r, )= »).',""(r,) +»).',""
( r. ,)- (9.32)
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It is easy to check that this choice is uniquely
dictated by the request of regularity around each
location, that is, when x,-0.

Our derivation of the Abelian solution im-
mediately implies that all the exponentially
damped corrections we have introduced involve
at least one factor e '"&. WhenP &0, each of
these factors is relevant only in a finite region
around the corresponding singularity of the
Abelian solution.

We have found that a sensible way of defining
the core consists in considering the circles of
radius & defined in the s-~, plane and having
their centers at the points defined by Eqs. (9.30)
or (9.31}. Our candidate solutions are charac-
terized by

(9.33)

such that each of the locations is outside all other
elementary cores and the overall core region is
a pancake-shaped volume having a radius equal to
v(m+1)/2 in the x, =0 plane.

As one can easily check from the definition equation
(9.6}our correction automatically introduces (for
n &1) a line singularity along the x, axis due to
the blowing up factors: (x, —q, a ~,)/&2P.

Let us notice that this singularity was fic-
titious in the Abelian case, because it corres-
ponded to the Dirac string, and it did not appear
in the gauge-invariant quantities. However, for
arbitrary locations this cancellation will not in

general occur in the smoothed configurations we
have now constructed. It will be our task to show
that no such singularity occurs in our candidate
solutions.

X. MULTIMONOPOLE SOLUTIONS INSIDE THE CORE

When we consider the behavior of the solutions
in finite domains, such as the core region, we

expect that their regularity properties are re-
flected in the possibility of expressing them by
power-series expansions in the coordinate varia-
bles. It turns out that the approach based on Eqs.
(3.6) and the introduction of the functions 6, is not

appropriate, just because it was appropriate for
the discussion of the asymptotic behavior we gave
in the previous section. It is natural, instead,
to start from Eqs. ("1.2) and introduce the gen-
erating function 0 " that, under the reality con-
straint, turns out to be a meromorphic function
of cv, +co2 and au, as shown in Sec. VIII.

This property of ~ " is critical to the purpose

Re, 0 "'(e' ~') & 0, (10.2)

where

-(„)(,. ), , " """ +"(-1}" " '" "
(10 3)P (x, —is sing - q, )

In Eq. (1p.3}we have dropped irrelevant factors
of e'"4 and set 8=0 since H', ", does not depend
on 8.

By considering the x~ =0 plane, we immediately
see that the choice q„=~„ensures that

Q(n)(ei )) x p) -sess)) + ( 1) e
Q (—is sing —e„)

is real and nonvanishing in the interval

n +1
7r.

2

(10,4)

In order to move out of the s plane, let us con-
sider the first order of an expansion of Eq. .(10.3)
in powers of x,:

of expressing our results as power-series ex-
pansions; the analyticity domains of 0 "~ are the
natural candidates for the analyticity domains
of the solutions.

At this stage we do not know the convergence
properties of these expansions in the general
case with arbitrary locations Q~. We have, how-
ever, developed a number of techniques in order
to analyze the singularity behavior of our candi-
date solutions.

In Appendix B we present some direct ap-
proaches that lead to a proof of the absence of
singularities within a cylinder of radius s =2
around the x, axis and in a disc of radius
s =(n +1}&/2 in the x, =0 plane. In Appendix C
we discuss a more general approach to the prop-
erties of Toeplitz determinants that leads to the
representation

J
d

0 ~' l=l

4s 2 Ps 4 l g( )(s(g()
~ 1 ~ 4 9
k&l i=1

(10.1)
Let us sketch the procedure by which starting

from Eq. (10.1) we can ensure the absence of
singularities in the core region for our solutions.

First of all, it is apparent that a strong suf-
ficient condition for the positivity of the integral
in Eq. (10.1}is the positivity of the integrand, that
1S~

&'"'(e'~) =&'")(e'~ x, =0) 1+x, [tanh(-issing)]( ""—
7 8 ~., -is sing-e& +O(x,*)). (10.5)
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Let us observe that

(tanhx)( ""=gh~
(10.6)

As a consequence, it is easy to check that the
purely imaginary function

n

[tanh(-is sing)]' ""-Q
k (.

xssm( z,

is a smooth, bounded function in the interval

n

2
(10.6)

It is then possible to show that Eq. (10.2) holds
in a finite region outside the x, =0 plane and the
width of this region is approximated by the con-
dition

/~&1. (lo.g)

I et us notice however, that the condition Eq.
(10.2) ensures us that the determinant not only
is nonvanishing in its region of validity, but also
it is different from zero by a finite amount.

Then by continuity the region where Hgj

nonvanishing can be further enlarged well beyond
the limit given by Eq. (10.9). It is appropriate
to observe that, due to the strong analyticity
properties of 0 "', all functions are smooth and
well behaved.

This analysis could be extended to higher orders
of the series expansion inx, and the bounds for
positivity could be made more rigorous. How-

ever, a fundamental consideration is due at this
stage: If we believe that regular solutions to the
self-duality equations have to exist, at least in a
finite domain like the core region, the arguments
we have developed lead to a unique determination
of the free parameters, such that if the solution
exists, it is bound to be the one we have discussed.

In this context, let us observe that the results
presented in Appendix C provide the following
estimate of the n x n Toeplitz determinant when
s&n and x~&s:

a""",—= 12"(" ') '"'1
11

sin' —I

ex+.P 4e'(" "-' („ I) t'

2s i " ( ( 2si
jg /

(10.10)

show that our solutions are regular and smooth
on and around the s plane for all values of s,
quite independently of the restriction to the core
region. More generally, it is apparent from the
study of the one- and two-monopole solutions
(see Appendix 8) that all of our estimates are
extremely conservative. As a matter of fact, we

XI. DISCUSSION OF REGULARITY

In Sec. IX we have constructed solutions of the
self-duality equations in terms of matrix ele-
ments L,.- These solutions are regular at spatial
infinity and well behaved everywhere outside the
core region, except possibly for a line singularity
along the x, axis.

In Sec. X we have constructed solutions in terms
of the matrix elements b. , and we have shown that
by a special choice of parameters q„=z„ these
solutions turn out to be regular on the x, =0
plane and continuous and smooth around the plane.
Moreover, we have explicitly shown that these
solutions are regular on and around the x, axis.

However, as we have shown in Appendix A, for
the special choice of parameters characterizing
our unique solution

n, (q, =z,) =s, (q, =z,), -n&f&n. (11.1)
Equation (11.1) implies that our solution shares
the properties of solutions belonging to both
classes. The only missing step toward the com-
pletion of a forma. l proof of regularity is now the
determination of quantitative bounds on the respec-
tive regions of regularity ("inner" and "outer"
core radius) such that these regions may be shown
to cover all three-dimensional space. While this

would like to express the following conjecture:
we believe that the convergence radius of solu-
tions constructed from a generating function

" coincides with the convergence radius of
Q ", such that when "' is an entire function,
as it happens to be for our regular solutions, the
convergence region is the whole space. This
conjecture, if proven, would also provide an ex-
tremely powerful tooI in the analysis of the posi-
tivity properties of Toeplitz forms and U(n)

group integrals.
Finally, we expect that discussions similar to

the one we have presented in this section can be
extended to the (generally complex and singular)
class of solutions generated by

1
il(e($) e(g4 g~&I I/ I dte f(x3 (slhl())p(t)

-1

(10,11)

where p(t) is some arbitrary weight function,
positive in the interval -1- t 1 in order to en-
sure positivity of 4o. It would be interesting to
know which constraints the request of singularity
in some finite region imposes on the form of
P (t). Let us recall that the known regular solu-
tions have
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turns out to be a rather formidable mathematical
task, we would like to stress that a number of
different pieces of evidence leave little doubt
about the final result. Let us recall among them
the unique determination of the solutions and the
explicitly checked regularity of the two- and
three-monopole configurations.

Finally, let us observe that (as shown in Ap-
pendix D} the determinant H","", associated with
the n-monopole solution in the limit n-~ is a
positive convex function with a minimum nonzezo
value at the origin. Based on the analysis of the
m=1, 2, and 3 determinants, we conjecture this
property to be true for any finite I, thus ensuring
regularity of our solutions,

XII. DISCUSSION

We have presented here a construction for
static, finite-energy, axisymmetric (and mirror
symmetric'} n-monopole solutions of the Yang-
Mills-Higgs equations in the limit of vanishing
Higgs potential.

These solutions are now mell understood: we
know that the gauge-invariant quantities are alge-
braic combinations of elementary functions and
we have complete control over the fields outside
the core region.

However, the task of writing down explicit ex-
pressions for the fields in all space is extremely
cumbersome and not even in any sense useful in
order to get a better understanding of the solu-
tions when n+ 3.

It is thus gratifying that, by use of simple sym-
metry arguments, we are able to dramatically
simplify the exact form of the norm h of the Higgs
field on the x, axis and on the x, =0 plane.

The norm 5 of Higgs field is given by

I (x„s)= "~; + ""'","' (12.1)

and in general is not a rational function. However,
as we will now show, h does become a rational
function on the x, axis and on the x, =0 plane.

On the x, axis

„p(x„s=0) =„p(x„s=0) =0, (12.2)

because 8~(x„s=0) =0 for kw0, and h reduces to

I (x„s=0) =
I S, ln „g(x„s=0)l =

I S, in', (x„s= 0)I .
(12.2)

Equations (A6) and ('l. 5) imply that

1 -(„)a,(x„s=0) = — Q'"'(s =0, 8, x„x„e'~)d}I}

(12.4a)

(n —1)!}}'" ',.„[e»+(-1)"e~~j

II (x —z}})
(12.4b)

from which it follows that
n

l (x„s=0)= (tamx, )'-»" —g4=1 +3

(12.5a)

(12.5b)

where the g' in (12.5b) means to omit the sum
for k =1, 2, . .. , n. We note that Eq. (12.3) could
also have been derived from the superpotential
approach' by observing that because of the Dirac
quantization condition I t!}(x3,s =0)i =n.

Similarly on the x, =0 plane

„y,(s, x, =O}=0, (12.6a)

„'P,(s,x~= 0)„P;(s,x, = 0} „P,(s,x3= 0) '

„j5;(s,x, =0) '

(1 —&.,).6 (12.V}

In closing, we make the obvious remark that it
would be most desirable to be able to construct,
using techniques developed in this paper, multi-
monopole solutions with separated centers, that
have been proved to exist. '
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APPENDIX A: PROPERTIES OF bI AND 6

Following Atiyah and Ward's original approach, '
we may assume that the fundamental function de-
scribing a self-dual solution is Q(&u„&u„f), such
that reality (and probably lack of singularities,
too) amounts to a simple property of fl, as we
have shown.

The multimonopole solutions are generated by
the "splitting rule"

+Q'"-" x.——' (Al)

(12.6b}
because „Q is an even function of x, and
e '" „p(s, x,) = —e'" „p(s, -x,). Thus we find

~(. .=0)= ("'"
x3- 0
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leading to the function

~(„), , (n —1)! „,e2 &+(-1)"e2 2

(401~ 2~ g j 1T

g (~ -&2)

( 1)! n-1 ~+rd e +( 1) ~
n

2rr( -")
k=1

(A2)

Well-known properties of complex variable func-
tions allow us to write down the expressions

e —e --- ( (cp1+ 22 2ilik=1
(A3a}

e+e" (2;;& (k+2 }'))' )1+ (A3b)

Equations (A3), when inserted in Eq. (A2) to-
gether with the definition of z2, i.e., (4.1c), make
the analytic structure of e " 2)0 " in the
plane apparent: this function turns out to be an
entire function of ~, with equally spaced zeros
everywhere along the imaginary axis at a distance
i& from each other, except for the n zeros cor-
responding to the monopole locations z„ that are
removed. This property seems to be critical in
ensuring the absence of singularities for the n-
monopole solution.

Consistency with Eq. (7.2b} requires the follow-
ing property to be true:

ix -i l 8 i -tx4 =e'"4e ' —, dte '"~ 2cos —t [

where l-0 and

~il 8

(s)' x, j (A10)

e-sc)os g+ist ~P+il f

The g integral corresponds to a known integral
representation for the Bessel functions of

imaginary argument, ~ and finally we get

1 )n-1

a, =e'"4e " (-1)'-,' dt e '"2 2cos —t i

2 ]
)41+t 2,4

(AS}

matching with Eq. (5.6}. We mention that the
direct Laurent series expansion in Eq. (A5) would

have led to
1 (. tn-

L, =(-1}'e'*4e " —' dti2 cos — e '"2

(1 —t)" (1 +t)"' &s )
k! (k+l}! ),2 i

(A9}

coinciding with the power-series expansion of Eq,
(As). Equation (A9} makes it apparent that we are
allowed to write

(A4)

In order to check Eq. (A4) we can make use of the
following integral representation of 0 ", im-
mediately deducible from Eqs. (A1) and (A2):

(n) ix4-(a fh)(ei~C+e +g )=e 4

1 dte-"*2-!2k)!""-'"' '"i 2cos —t i

x 2cos —t (A11)

By performing the t integrations (again corres
ponding to representations of Bessel functions} we
find

We may now perform the f integrations by the
observation that the integral may be evaluated
along the unit circle in the complex g plane

(t =e"}.

(A5)
22 ( ~ ' I + 2(|)))x2&m) (s/2)'""'

{x,-x„)'")' (k+ I)!

(A12)

We shall now exploit a fundamental property of
Bessel functions, that is, the relationship

1 e"'a'"'(s, e, x„x„e"}d)I .
0

(As)
1 d I„x I„, („) (A13)

By the change of variable )t)- )ti- 8 we then obtain in order to obtain from Eq. (A12)

(s/2)22 ( 1 d i (v 'i'I, (2 )(x2-z )~
k! i((x, -x ) d[(, — )/2]) iP (x, -~„)"' (A14a)

( 7T &i'i'I)12 g(2" ) ~ {s/2)' (F 'i'1g2 g+2(x2 -8 )
m 'li 2 ) (& )x/2 l ~ k! )P (x x )l/2-l 2 (A14b)
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where (A14b) holds for I& 1.
We now notice that, by recalling Eq. (5.2), we

may write

(e/2)"
A&=A& — A, 2(x s=o) for l& 1.t l yt JN 3y

(A15)

is a yet unknown property of Bessel functions.

APPENDIX 8: REGULARITY CHECKS

In order for the gauge fields to be nonsingular
we must show that the 'Toeplitz determinant

But we know that »2& "i&=ff2"1' (81)

A2(x„s = 0)= 0 when 1& )'2&n

and we then obtain

X, =A, when 0& l&n,

A„=A„-A„(s= 0) .

(A16)

(A17a)

(A17b)

never vanishes for j= 1,2, . . . , n. For j= 1 this is
obvious because A0, by virtue of Eq. (5.5b), never
vanishes. For n= 2 a direct "brute force" proof
can be given as follows. For the n= 2 monopole
we must show that, p2$ never vanishes. Equations
(5.2), (3.5), and (4.1) for n= 2 give

It now follows trivially from Eq. (A10) that Eqs.
(5.7) are satisfied.

We would also like to mention that it is possible
to derive rather explicit expressions for 6, from
the original definitions.

I et us recall that

1~2~ 0 1 1

2e""4 (r'+ w2/4)
s in', sinhr,s xp2

—(1+coshr, coshr, )

where

(82a)

n

+a&s &a &a (A16)
4~1

and let us focus on 6,"= h, (r, 0).
One can show by induction that, for l) 0,

x. -r'&' e" i(x, +r 'e~(o) eh4 A19a)
~2p ) 2r 'i ~2p 2r

6", = e'*' '
I

—— ' — (A19b)
v2@ ) 2r ~2p 2r

and h, (r2, e2) is then obtained by the replacements

X3 X3 +Q p (A20)

such that Eq. (A18) may immediately be used to
get the final explicit result.

Equations (A19) are solutions of Eq. (3.1) and
must, therefore, also be solutions of the Helm-
holtz equation. In order to make this apparent,
let us write them in terms of generalized spheri-
cal harmonics (I egendre functions):

P
(x er x e"

e42 4e 110
( 1 )1P--1i 2 P 1

2y ' x 2r
(A21)

where P'(coso. ) = (cot1x/2)' . I et us observe that
Eq. (A21) develops singulariti'es whenever I& 0.

'The astonishing cancellation of singularities oc-
curring in Eq. (A18) is the key to the existence of
regular solutions. The identity that can be extrac-
ted from Eqs. (All) and (A17), when l&n,

r2=s2+x22, r12=s2+ (x2 —iw/2)2,

r, '=s2+ (x, + iw/2)2.
(82b)

For s=0 we know 4o' —4,4, =ho'WO, so we only
consider the case s& 0 in which case Eq. (82b) im-
plies

r'+ v'/4& r r, .
I et us now define

&a =a+ ib, r2=a —ib,

(83)

(1T /4) —b
cps=2. . .cosh'a for r„r24 0. (87)

We now use the inequality

(88)

where a and b are real. Equation (83) implies

Ial& O, 0&lbl&vr/2.

We are now ready to prove (82a) never vanishes.
The proof is by contradiction. Suppose (82a) van-
ishes for some value of s and x„ then

1+ coshr, coshr, = sinhr, sinhr, . (86)
(r'+ w2/4)

&P'2

For a = b = 0 (i.e. , r, = r, = 0) Eq. (86) implies v2

=4 which is impossible, and, therefore (82a) can-
not vanish for a=b=0.

Using Eqs. (84), Eq. (86) can be written as

pl

42m

2 tf-1

"
(n I'}I,i2, (r.)—

Ii(„)

to show that Eq. (87) implies

fo, I.l& o, (89a)

sin'b= (211/x)' for la I= 0 and o&l 5 I&./2,
(89b)
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which is impossible and thus the assumption
(82a) vanishes is proved to be false.

An identical brute force proof works for the n
= 3 monopole except the intermediate steps are
much- more complicated, so much so that original-
ly we had to use the symbol-manipul. ating compu-
ter program MACSYMA. For n& 3 this brute force
technique becomes impractical and it is more effi-
cient to proceed as follows. Let us define the real
functions:

S, = s-'*4K,(e= s)

~0

&(x„s,0)= g 5~t; ~=e ~40(e=s)
QS~ 40

(n —1)t e'Va'(c

[I"(2(n+ 1))j'
~0

[ x3+-,'s(f —f ')]'
x 1+

[—,(n+ 1)+k]'m'

(814a)

(814b)

(815a)

In deriving Eq. (814b) we have used Eq. (A3).
Equation (814a) implies

&t ~
n-x t'I+i t/2

2cos —
~

e "I
2 j (I —

, t
2g

e'4"Q(x s e'")dg2' 3y (815b)

&($((s(1 -f2) ~ )dt, (810a)

where -n l» n and from. which it follows that

5,&0, 6„,&0 for s&0,
0 for s = 0, and /' = 1,2, . . . ,n (810b)

It is easy to check that

~fxf &ifx4~Mfxf ~

lt 1 I
(81la)

&0

where the jx j 'Toeplitz matrix Mf~f is defined by

where in (815b) we have chosen the contour of in-
tegration to be the unit circle f= e'4 with 0~ g
& 2F.

Consider now the &3= 0 plane, in which case the
Toeplitz matrix Mf"f becomes a real. symmetric
jx j matrix. From (814b) it is easy to see that

4

A(x, = O, s, e ) & 0 for s &
~m

iQ n+ I&

2 )
(816)

and from (815b) it is easy to see that, for x, = 0
and s & (n+ 1)w/2, the real symmetric matrix
M " is positive definite fi.e. , the quadratic form
Q~, ,q~M~"fq, & 0 for any real j-component (not all
of which are zero) vector g]. Thus we have proved

(Bllb) H~ "~+ 0 for x = 0 and s ~ n+1
2

(817)

Our problem is to prove the determinant ~M
never vanishes for j=1,2, . . . ,n. To do this, we
study the determinant ~M~" ~~ in different regions
of three-dimensional Euclidean space as follows.
The determinant ~M "~~, by virtue of (810b),
never vanishes on the x3 axis where s = 0. Let us
now consider a solid cylinder of radius s &

&

around the x3 axis. Using the series representa-
tion (5.1) for I„ it is easy to verify that

~ 1
50& 5~, + 5„+~ ~ ~ + 5,&f » for s &

~ . (812)

Equation (812) shows that, for s ~ 2, the matrix
Mf"f is strictly diagonall. y dominated and there-
fore, by virtue of the Gerschgorin circle theorem,
cannot have a vanishing eigenvalue. 'Thus we
have proved

a~f"', x0 for s~-,'. (813)

Let us now define the generating function for 5
as

APPENDIX C: TOEPLITZ DETERMINANTS AND U(n)
GROUP INTEGRATION

As shown in Sec. IV, the discussion of the regu-
larity properties for the n-monopole solutions of
the self-duality equations amounts to showing that
the determinants B~", are nowhere vanishing when
j-n.

According to the definition Eq. (3.2),

a', ",'=det(a~, ), }t,l =i, . . . ,j
and since

1 2r

dg8 0 (8 )l
0

t

(Cl)

(C2)

II~~"~f are by definition Toeplitz determinants.
It is in general very hard to find simple, neces-

sary, and sufficient conditions for the positivity
of a Toeplitz determinant. - With this goal in mind,
we found it useful to establish a general equival-
ence between Toeplitz determinants and a class of
group integrals over the U(n)-invariant Haar mea-
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sure. The U(j) group integral is defined as fol-
lows:

D (x) = d-et(x', ') -=, (x, —x, ) .
ACE

(C8)

l(F) fdUF(U), (cs) When E(U) is an invariant function over the group,

~,(U) =~,(U.),
where dU is the Haar measure in the group U(j)
which satisfies the integration over dT is trivial and we are left

with
dU=d(UV) =d(VU),

where V is an arbitrary unitary matrix.
One can diagonalize U through

(c4)

i(F,)= fns(4)F, (U ). (c10)

U= TUDT, UD = e~"& 6)~, (C6)

where T is a unitary matrix. The measure can
now be written as

d U=dT d»«((t)),

where d»«(P) was given by Weyl as

A further simplification occurs when El can be
written as the determinant of a function G(U), in
which case

2F ] &~ ~

&(detG) = —.
)

' D(e« "«)D(e '"«) G(ei'«)
0

d~(|) = —.
' D(.")D(. '" ).1 ~ - ~ dg«jt' 2mi~l

D(x) is the Vandermonde determinant

(cv) (C11)

where G(e'"«) is now an ordinary function of one
variable. Now by writing down explicit formulas
for the determinants

D(e'»'«)D(e «()«) = ~ e«&x-»()« ~ ~ s«n»-""je . e « "& "«e "«y-1 -l)
j=l ~ 'Ay

~ 1y

(c12)

and by inserting Eq. (C12) into Eq. (Cll) we obtain

&(detG) = —. & ... e ... t e'"» ««'"«G(e«"«).1 ()--. d(«
kl ~ nk~ El ~ ~ ~ l~

(cls)

U(e" )U(e ") 4eis' ' 4=')
«)(«

(clv)

and write the following representation of the H'"~.

We may now define

p «(«)-«) (() G (e « i))dg

and find

I(detG) =detGn «,

(c14)

(c16)

~ 4-4)
~t

0 j' Q 1 k&l

«»«)

(c18)

which is by definition a Toeplitz determinant. As
an immediate consequence, we may write

lf«" ~ =f(det fl(")(U)), (c16)

that is, we have turned our j &&j determinant into
group integrals over the group U(j). A determi-
nant still appears in the right-hand side of Eq.
(C16), but since U may be diagonalized the deter-
minant simply reduces to the product of the eigen-
valut, s. Once the equivalence is established, we
can use known properties of the Weyl measure,
such as the identity

It is apparent from Eq. (C18) that a strong suffi-
cient condition for II,~ to be nowhere vanishing is

jul

g(n) (ei«i«) g 0

We have made use of the property Eq. (C19) in
Sec. Kin order to ensure the absence of singulari-
ties of the solution in the core region.

We would like to notice here that a (presumably)
weaker condition can be extracted from Eq. (C18)
by observing that the result is unaltered if we re-
strict Q'"'(e'"), formally defined as an infinite sum
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g(n& (st») Q s-t)tt~
t&o

to the finite sum

(C20) g&„&(,q)
1 d8g&„&( „)sin(j--,')(8-y)

sin(8 —)I&)/2 caa)

j-1
g(rt)(sttt)(j) ~ l'

/+1
(cal)

It is straightforward to extract from the repre-
sentation Eq. (AV) the result

As a further exercise in the evaluation of Toe-
plitz determinants through U(j) integration let us
compute the large-s behavior of Hk",". First of all,
let us consider the representation of 4, obtained
in Eq. (Av):

1+»1y2e
4e —

~ df s- s(2 cos t d( e-» co»t&+t»t »t»»+tlt
2 2)&

For large s the integral is peaked around g = 0 and we can perform a Gaussian integration

n-1 e8
4 =e'"4e "' "'- dt 2cos —t

g 2 2 (2)&s)"'

(cas)

(c24)

det G», = det(a)» ' G», , (c26)

where a is arbitrary.
We may now reexpress our result in the form

s+x3 / 2s w 4' —l -x" -1
H" —= dt2

(ca&)
I

In turn, whenx, &s, the t integral is peaked around
f = (l -x,)/s and a second Gaussian integration
gives

2 W l-X
4 —= e'"4e '" "'—e'"3 " ' ' 2cos-

2s 2 s
(ca5)

When we consider a Toeplitz determinant, it is
straightforward to show that

f

where we have removed the irrelevant dependence
on x4. It is straightforward to find that the proper
choice of G(et") for this problem is

G(et")=Z
I ~2«~ (»-n+1) —qs t"-»"

"'
(n —1& ( )&

i &
as

(cas)

The integration may now be carried out explicitly
for arbitrary j and x,.

We shall restrict our attention here to the case
wherein j=n, describing the behavior of the solu-

ti.on on the s plane for s&n and in the regionx, &s:

(&s+x»»/»s) n. an(n-))
sin t ~ G

(et�&)�)

kl
I 2~ ) 2g f&j f

(C29)

Each g& takes n values from (I -n)v/as to (n —1)v/
2s but the contributions coming from ))=at are
identically zero. We have to pick up only the n t

permutations where each gt takes a different value.
Moreover, all resulting factors turn out to have

the same form, and collecting all factors we ob-
tain

~+3/ ":1 / g+ n-k
H»Xn sm "—

2s .k', &
2s

(cso)

At very large s, Eq. (CSO) reduces to

Gt=g C(A») »t
k~1

corresponding to a function

(css)

We mention here that the large-x, behavior on

the x, axis (s= 0) is easily evaluated and turns out

to be exactly the same as Eq. (CS1) with s replaced

by x,.
A last application of this method leads to an al-

ternative proof of the fundamental result of Sec.
IX, Eq. (9.1V). Let us consider the class of n xn
determinants where

sg n

ffnx n ( I ) l ll -1
k-l 2s»

G(st") = Q G,e ""=Q avC»&(g» —»&),
oo. knl

(cs4)

corresponding to the expected behavior
where we have defined the complex numbers g»

through

(csa) e44k Q ~ (cs5)
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Insertion of Eq. (CS6) into Eq. (C11) in;mediately
leads to

r(detC)=( C) (1-—'){1-—'). (C$6)

e"
det 4~, cc

k~&

t 4 jX3 —g - —f'- X3 —Q'g —g)
X3 —g g

—t'g X3 —g ~ —f'-

By choosing

kc=pkk2~-k
k

we obtain

egl8 e-&x4 gA
l

and

(csv)

(css)

(cse)
APPENDIX D: EQUIVALENCE %PITH LATTICE QCD2

AND THE LIMIT n ~~

In Appendix C we have shown that

rr', ",'=r(detC'"'{(r))= f drrdettrr '(rr). "

By using the explicit form of &'"', Eq. (V.5), it is
trivial to show that

(e —1)'rr" ' f x3 (s( 2) Tr ( U+ U ) + y ne-x3+ (s( 2) Tr (U-U )t
e-g jg4 8' fx f '

d U e-(&( 2) Tr (U+U )

2 5

II[x, -(s/2)»(U- U') —z,l
k 1

In turn, this expression is equivalent, thanks to Eqs. (&IS), to

...det ix ——»(U- U') i'-
k-l ~ )~ ~ )~ 3 Z

k'
(Ds)

where z', =i [(vn+ I)/2-k'] as in Eq. (4.1c), but
with the restriction that k' be different from

~ 0 ~ y n 0

When x3=0, Eq. (DS) is equivalent to the parti-
tion function of lattice two-dimensional QCD with

a gauge coupling g'=1/s and with an infinite num-

ber of "fermions" having masses

(D4)

Indeed it is easy to recognize the well-known Wil-
son action in the exponent 2s tr(U+ U~) and the
fermionic interpretation emerges as a natural way

of representing the determinants. Within this in-
terpr etation

= 1n 8-]n x4 +nX t1
k-i (D5)

j n d p e-(e/ 2) tr. ( U+U t) (D6)

plays the role of the free energy (vacuum expecta-
tion value of the Hamiltonian) and the statement
that only the first n determinants are nowhere van-
ishing implies that, in this version of QCD„a
larger group requires suppression of more low-
mass particles in the fermionic spectrum if we

want the Hamiltonian to be bounded below and the
theory to be well defined.

As an immediate by-product of this equivalence,
we may study the large-n limit of the monopole
solution as a large-n QCD, problem. " In particu-
lar, let us observe that when n- ~ all fermions
are suppressed, and r reduces to

It is apparent from Eq. (D6) that in this limit the
solution becomes invariant under translations
along the x3 axis. In order to understand this
phenomenon, let us consider the n- ~ limit of the
Abelian result Eq. (9.1S):

k=1 —g —=-2+ e "'"3)Z,-(2ks).
k~& +k k~ 1

(Dv)

= (tanhx, )' ""1

k~& 3 +k

we find out

k(x, =O) = O. (De)

Equation (D6} is the pure Yang-Mills problem first
studied by Gross and Witten. " According to their
result, the n- ~ limit is (up to an irrelevant addi-
tive constant)

T=4S . y
S~n1 2

2n s
7 =ns ——ln ——4n, s~ n.

2 n

(DIOa)

(D10b)

Let us compute the gauge-invariant fields corre-
sponding to Eqs. (Dlo} through the superpotential
equations'

The Abelian result itself is a sum of terms that
are exponentially damped in the x3 direction, and

the core contributions may then suppress all x,
dependence.

As a check of this result, let us evaluate h along
the x, axis directly from the known explicit expres-
sion Eq. (12.5a). Since
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Q2- ] (Dlla) h'= 0, P'=n', (D12)

g'+E'=n' —s'V'r+ 2s —,ds'

hg = -&~r .

(Dllb)

(Dllc)

a trivial solution of the self-duality equation, reg-
ular for any finite value of s.

When s ~ n one finds

h'=1--, tf&=0, E'=ns, (D13)
In the (strong-coupling) region s-n, where the

result could have been obtained by a direct applica-
tion of Szego's theorem to the large-n Toeplitz de-
terminant H~",", one finds

corresponding to a finite amount of energy and
topological charge per unit length and satisfying
the desired boundary conditions.
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