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The recently proposed representation of the general real, not necessarily regular, n-monopole solution is shown to
be incomplete and nonunique by presenting real solutions that do not fit into it. W'e also present some results on a
one-parameter family of separated collinear monopoles.

I. INTRODUCTION

In the last few months there has been rapid pro-
gress in determining exact multimonopole solu-
tions of the Yang-Mill-Higgs theory in the limit
of vanishing Higgs potential. Ward's two-mono-
pole solution' triggered the search for more ex-
plicit general analytic results. This search cul-
minated in the construction of superimposed axi-
symmetric multimonopoles of arbitrary charge2
(later reproduced by different and independent
methods by various authors) and in the proof that
separated multimonopole solutions can be actually
constructed (at least in principle) and possess the
expected number of degrees of freedom. ' For a
more detailed introduction to the development of
the multimonopole-solution literature, we refer
the reader to Ref. 8.

In this paper we want to discuss a number of as-
pects of this problem that have emerged by care-
ful consideration of the previous results, with the
aim of achieving a better understanding of the
methods involved and their generality. We have
specifically addressed two different (and some-
what orthogonal) questions.

(a) is the space of real static solutions complete-
ly described by the formalism used in Ref. 3'? (A
brief introduction to this formalism is contained in
Appendix A which also establ. ishes our notational
conventions. ) We emphasize that within this for-
malism, Ref. 3 claims to find the most general
form of real, not neccessarily regular, multi-
monopole solution.

(b) What do the known separated solutions look
like, at least for small values of the parameters
and in a region where a Taylor series expansion
of the sot.utions is reliable?

Our answer to the first question is that it is
possible to identify at least one new class of real

static solutions, possessing axial symmetry, for
which no representation seems to exist that falls
into the classification given in Ref. 3. However,
when the request of nonsingularity is enforced, the
regular solutions belonging to this class turn out
to coincide with the previously found "convention-
al" solutions. This phenomenon in turn accounts
for the possibility of unconventional representa-
tions of the known solutions, whose equivalence
to the standard representation is by no means
mathematically obvious.

Moreover, we have also constructed, at least
for the single-monopole case, a definitely non-
equivalent representation leading nevertheless to
gauge-equivalent gauge fieMs. It is unclear at
this stage which could be the "physical" criterion
of equivalence l.eading to the identification of all
real static solutions in a unique way, and account-
ing naturally for all other representations.

For what concerns the explicit analysis of the
known solutions, we have first identified the sim-
plest sufficiently general class of separated multi-
monopoles. This one-parameter class naturally
generalizes Ward's separated two-monopole solu-
tion4 and appears to be possibly the only class for
which all the constraint conditions may be explic-
itly solved and the solutions can be written down in
in closed form.

We have performed a perturbative analysis with
the help of the symbol-manipulating computer pro-
gram MACsYMA and managed to identify the zeros
of the Higgs field (i. e. , the locations of the mono-
poles) when up to four monopoies are present. A
clear pattern emerges: the monopoles are collin-
ear and they are "completely" separated, i.e. ,
no residual degeneracy in the locations survives,
even in this simple one-parameter class.

As a final comment on the separated solutions,
we want to point out the interesting open problem
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of analyzing the regime mhen the separation para-
meters become very large. While this task is rel-
evant to our complete understanding of the space
of parameters for the general solutions, it has so
far eluded our analysis for lack of sensible expan-
sion techniques in the domain of interest.

II. REAL AXISYMMETRIC SOLUTIONS

2P„(~) &„(&d)= ((u —q,),
(2.3)

where q, are parameters, independent of P. Equa-
tion (2.3) in turn is exactly the generating function
for general static and axisymmetric self-dua1.
gauge fields that was derived in Ref. 2.

We mant to analyze the properties of this class
of solutions. Let us first of all notice that

&)(x)=e'"4e ' &qe(&s, x,) .

This condition in turn implies that

(2. i)

In this section we want to analyze the reality
condition and show that a class of real solutions
may be constructed such that it cannot be des-
cribed in the framework presented by Corrigan
and Goddard. '

The request of axial symmetry is easily imple-
mented by the condition that

where

1

P (q,, —q, )

such that

(2.4)

(2. 5)

Q(&u„~„g)= g &&f =e") "2E(&u)
co

(2.2) where

up to equivalence transformations. It is easy to
identify the most general generating function Q

that is consistent with Eq. (2.2) and with reality
within Corrigan and Goddard's scheme:

o)) 1 e" +(-1) e" &df
2st 2((d —q, )

(2. 6)

and the contour integral may be explicitly evalua-
ted to give

~q

(Q) 1~4 j $ t)) e x3 q))) g|)t e x3 qQ + y~
' e' — —1 e

y s 2f'„s - 2

;&4,~g e x3 —
qr,

—x~ ' e" x3 —q~+yI, ' e + -1 e~e 4e'
-2~&

(2. 7)

n(s =0) =e'"';.,e"3+ (-i)"e "3

2w(x, —q, )

().);x, e'3+ (-1)"e"'
(),)

(2. 9)

(2. io)

where the + signs correspond to the regions where
1(x~ —q„+ )"~)/s ~

~ 1, respectively. lt is apparent
that 4,'~' is in general discontinuous and the only
way to make it continuous is to request that E((d)
be an entire function, such that

e'a y( 1) e ')) e~). ( 1)~e ')))

2
=o, =1 . (23)

2

In general, however, 4, is continuous on the x,(0) .

axis:

t& = 1 —Q —+ 0 (e "' ") . (2. i2)

These results lead to an identification between
these solutions and those found by Lee' and For-
gacs, Horvath, and Palla' in their approach to the
multimonopole problem.

Let us now approach the problem from a differ-
rent point of view. A fairly general class of com-
plex but entire generating functions is described by

1
Q=e"""'-,' dte '"p(t) (2. 13)

where p(t) is an arbitrary weight function. Solu-
tions in this class admit the representation

The norm of the Higgs field on the x, axis is easily
evaluated to be where

vil&
=(-1)'e'"4, 1+ A&, t o 0s' Bx

(2. i4)

t = (tanh, )' ' -g
x3 —

q~
(2.11)

and by dropping exponential terms one also obtains

s

(2. i5)
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It is easy to check that &, satisfy the recursion
equations implied by the representation (2. 14) and
the recursive definition of the &, :

A, =p 'g~A. . . (2.16a)

[2p'8~( p '8~) + 8,a,]A, =A, . (2. 16b)

Now, let us focus our attention on a special class
of weight functions, which we define by analogy
with the previously discussed real solutions:

(2. 17)

components .
We have proven the following fundamental prop-

erty (see Appendix B):
22n-2 e2i &4 m

p n+mx n+m g n-mxn-m
ih-l (2pp)n k-l (2. 24)

where II'"', =1 by convention. The special case
for m =1 of the identity Eq. (2.24) is the sufficient
condition for reality of these solutions, as shown
in Ref. 8.

By performing a formal summation of the series

Equation (2. 17) implies that

—sinh((o —q, )
Q —e a

a-a
(2. 18)

we have managed to obtain a representation for the
generating function of these solutions:

We can compare 0 with 0 and immediately ob-
serve that D does not define a class of real solu-
tions. However, as we have shown in Ref. 2

0 = e ~5 (it) —
g~

4=1

-e"" '&(&„(id)). (2.26)

S

A, =A,' —g 2 A, (~„s=0),
k=p

where

t'w i,
'"~ -I„,, (x,)

~ (~ )I/2-l
I a

and it is amazing to observe that A, satisfies ex-
actly the same Eqs. (2.16) as A, does. There-
fore, if we define

(2.20)

e+i l 8 P l

=(-1) e'"~ 1Ts' Bx3

l-i le e &3 Qa &a=e 4e
2'v~ s

we obtain a new class of solutions that coincide
neither with the solutions described by 4, , nor
with our original real 4, solutions. Actually one
may easily evaluate ~,' and find that

n+1
q = —k, A'=&, . . . , (2. 27)

also implies &, =&, , ~l~ &n and the equivalence
(in a deeper sense than we now understand) of the
corresponding 0 "' and 0 "'.

However, Eq. (2. 26), while being a compact and

especially useful way of representing these solu-
tions does not easily fit into the general transi-
tion-matrix description of self-dual gauge fields
where 0 is assumed to be an analytic function in a
proper sense (and moreover for regularity we ex-
pect it to be an entire function) and not a distri-
bution. In turn we could not find any equivalence
transformation consistent with Corrigan and God-

r &n)dard's general scheme and turning 0 into a
more conventional object.

Needless to say, the special choice of parame-
ters making the solutions regular,

A +&A

2f'~
(2.22) III. A NONEQUIVALENT REPRESENTATION

FOR THE SINGLE-MONOPOLE SOLUTION

b, , (s =0) 0 0 and singular (2. 23)

and see that they describe different field configur-
ations. However, as was first realized by Narain, '
Eq. (2.20) again defines real. solutions, whose re-
ality is proven by explicitly finding the gauge
transformation that removes all the imaginary

Equation (2.22) is a version of Eqs. (2. 7) where
the discontinuity has been removed without re-
sorting to a special choice of parameters. While
once more the asymptotic behavior is described
by Eq. (2. 12), it is immediate to compare the so-
lutiOnS On the ~3 axiS, Where

Until now we have assumed that some &ind of
equivalence may be defined between different rep-
resentations of the same solution in terms of gen-
erating functions. Actually, both the kind of equi-
valence assumed in Corrigan and Goddard's paper
and the extension we have considered in the pre-
vious section are characterized by the fact that

—n&l&n

for the nth ansatz, which in turn implies that once
a gauge-f ixing procedure is def ined, s uch as the one
employed by Corrigan et al. in their construction,
the gauge fields are uniquely determined.
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but the resulting gauge fields are gauge equivalent
to the static solution.

Let us recall that a single instanton located at
the origin may be described within the 8, ansatz
by choosing

g(l) 1

4(d ~h)2
(3.3)

The generating function for a string of instantons
located along the "time" axis at the points x4

——27tn

is then

0=+
2(d ~

—2g lTn 2('d2 —2$7Tn

2(&u, —up, ) 1 —e'"' 1 —e "2

which is also equal to

sinh~ 10=+
2(gp cosh —cosh((ui + co2)

(3.4)

(3.5)

Equation (3.4) is not equivalent, in the sense of

Eq. (3.1), to the standard representation

s j,nh~0= G)y + Q)2

2 (coq —

cog�)

(d
(3.6)

We ean, however, compare the gauge fields, by
noticing that in the 8, ansatz they may be written
in the compact form

A~ =q~„B„ln&

and that

(3.7)

However, this is not the end of the story. At
least for the single-monopole solution, starting
from the known instanton representation for the
solution itself, ' we managed to b'uild up a nonex-
plicitly time-independent generating function such
that

(3.2)

concept than the mathematical equivalence used in
classifying the transition matrices.

IV. COLLINEAR MULTIMONOPOLES
CLOSE TOGETHER

In this section we study multimonopole solutions
that are situated close together on a line. That
the monopol. es are actually separted is verified by
computing the zeros of the Higgs field which can
be interpreted physically as the "location" of the
monopoles in space. This is to be contrasted
with the axially symmetric multimonopoles'
which represent superimposed monopoles with the
Higgs field vanishing at only one point, the origin
x, =x, =x, =0.

The separated n-monopole solution, to be dis-
cussed below, depends continuously on a single
real parameter d such that as d- 0 we regain the
axially symmetric n-monopole solution. ' For d w 0
the regularity of the solution can be insured pro-
vided d is sufficiently small, because the d =0
solution is known to be regular and by continuity
this will be true for d close to zero.

The d=0 axially symmetric n-monopole solution
Higgs field has an nth-order zero at the origin.
For sufficiently small de 0 we find that the Higgs
field acquires n simple zeros at n distinct points
in space, close to the origin and on a line [note
that we always use dimensionless space coordin-
ates where length scales are measured in units of
(gauge coupling constantxvacuum expectation val-
ue of Higgs field) ]. We will present explicit per-
turbative results for the zeros of the Higgs field
to lowest order in d for n=3, 4. This perturbative
calculation, though conceptually trivial, is in
practice extremely cumbersome and had to be dpne
with the help of the symbol manipulating computer
program MACSYMA .

Motivated by Ward's two-monopole solution4 we
take the transition matrix to be equivalent to

sinhy 1 sinhy&o= e'"4. 3.8
2x cosh' —cosx4'

It is easy to recognize that the gauge transforma-
tions'

&(~, t) =
( )n n

K
(-n

(4. 1a)

U'(8) =exp(+iT ~g),

sing, sinhx8= tan' 4 —'EJ'
cosh' cosx4 —1

(3.9)

turn the two field configurations into each other.
We think it is intriguing to recognize that two dif-
ferent generating functions for which no superficial
equivalence can be identified may generate the
same self-dual field configuration. Apparently,
equivalence in the gauge-theory sense is a deeper

1 ~(d/2)(g g-~)»2
f=~/e, c -=2

1
.
&

. dg, (4. 1b)

'~ + ~ n+1

(4. 1c)

Note that as d- 0, e —1 and we regain the axially
symmetric n-monopole solution. ' With respect to
the Corrigan-Goddard constraint equations, 3 Eq.
(4. 1) is the only solution we have been able to
construct explicitly; in particular, (4. 1) is the
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liw=l+g'-g-, g'-=wow, „l'",
1 2' - -1

a -=— (1+idsiny) 'fmdt)
+fl

www 0

(4.2a)

most general solution with f depending linearly on
(d ~

It is easy to see that Eq. (4. 1) satisfies Ward's
reality requirements [Eqs. (A8d) and (A8e)],
whereas to check that it also satisfied (A8a)—
(A8c) we proceed as follows. Considered as a
function of the complex parameter f, I/e is analy-
tic except for branch points at / =0, ~, -d '
+(I+d ')'f'. Therefore 1/e is analytic within
an annular region, which contains the circle

~

l'
~ =1, so that it can be expanded in a Laurent

series:

can compute the Higgs field, in Yang's R gauge,
using Eqs. (A9).

When d =0 the n-monopole solution becomes
axially symmetric and the Higgs field has an nth-
order zero at the origin, where it behaves as'

d=p: h, -s"cos(n8), h, -s"sin(n8), h, -x,
(4.5)

and se' =—x, +ix2. Therefore to investigate the
zeros of the Higgs field for sufficiently small d0
we need to compute the Higgs field to order n in
the variables x» x» x„and d which are treated
as small deviations from the origin and d = 0,
respectively. For this purpose we directly ex-
pand 0 in Eq. (4.4b) to (n+1)th order in x» x„
x„and d. Using Eq. (AVc) and the formula

1 2
&& — e"""(1+idsin)t) 'f'd)t

27T 0

We can now define the variables

fi =&2+&g

f2 = ~d2 +~8

(4.2b)

(4.3)

(4. 6)

we can then compute the A 's to (n + 1)th order
Finally, Eq. (A9) gives the Higgs field to nth or-
der. The results of our calculations for n=3, 4
are as follows:

f=f2 f.=~/&-
so that f, (f,) is analytic away from f = ~ (t' =0).
It is then easy to check that

(e f2 p )(g dEl( p

0 e 1EQ t' "I Ee 1 %Pe
(4.4a)

n=3: 1 1+—,d'scos8+ ——,s'cos(38),w' 90 67T2

3 2 . 1 1+ —,d ssin8+ ——,s sin(38),
7T' 90 67T2

4 4x3 6"s x3

Il =If 2[emfa + ( 1)-ne&f2] (4.4b)
)'1 1+i ———2x -1+—+x d
)( 6 7T2 3 8

so that Ward's reality requirements (A8a)-(A8c)
are also satisfied. From Eqs. (4.4b) and (A7c)
one can compute the 4's after which one computes
„Q, „p, „p using Eqs. (AVa) and (A7b). Finally one

I

zeros: x, =x2=x2=0; x2=0, x, =dyad, x2=, +yod /2,

15 3
16 15 —7T )

n=4: h, = — + — +, d's'cos(28) ——+,—,s cos(48),
3d 1 5 1 25 5 4

24 547T 97T

5 1 25
h = — +, d's'sin(28)+ ——+ 2 —,s'sin(48),

128 487T2 24 547T 97T

h, = ——
~ ~(4xs' —6s2x, —12x,'dx, + 3s'dx, ) + ——,2x, —1 +—+ x, d—1 656 i

2 2 2 2 1 40 d . 3d

zeros: x, =0, x, =ay, d, x, =ay, d /2; x, =0, x, =ay d, x, =ay d /2,
3w 60 —3w'w(1120+160w' —27w )'7')'7'

4@2 120 —1007T +97T

As asserted, the zeros of the Higgs field are at n
distinct points on a line, in the x2 =0 plane, with
a universal slope of x,/x, =d/2. It is important
to note that to the order we are working k„h„and
h, are real —a situation which we know cannot be
true to all orders.
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APPENDIX A: MULTIMONOPOLE FORMALISM

Let us define in four-dimensional Euclidean
space (x, ,x„x„x,) the SU(2) gauge potentials An

when a=1,2, 3 and JLt. =1,2, 3,4. The gauge fieM
strength is defined by

find A„. Corrigan et aE. ,
'4 working in Yang's R

gauge, started from Eq. (A6) and found the follow-
ing solutions of Eq. (A5) for any n=1, 2, S, . . . :

~nxn0-l
n'V 0 n 1xn-1 &

=—8 A' —8 4' +e'~~A~A~ .
p, V ~ V V g V

(Al)

Multimonopole solutions with magnetic charge
n=1, 2, 3, . . . may be found within the framework
described in Ref. 8. This means that we want to
solve the self-duality equations

(A2)pa 1 ga
QV 2 p, VPS Pg

(our convention is e»,4=+1) with the requirement
that A' be static (independent of x4), real, and
regular. We also require that A;A', —1 —2n/r
+O(1 ') as 1 -=(x,'+ x,'+x,')'"- ~ (note that A4n

is just the Higgs field). Provided these conditions
are met the solutions will correspond to finite en-
ergy E = n1 f E' „F'„d'x=4wn magnetic monopole
solutions with magnetic charge n.

Ypng" has shown that by introducing complex
coordinates

where

so that

~nxn
)~ff n-1x n-1 l

lf-1

m- g+1

m+ j-1 b,

(1))1l 1))2, 0) 0
27rz

(A7a)

(A7b)

(A7c)

&2p =x, +ix„W& p =x, —ix„ (As) ~~+ l
—~a+ l, 1 ~ (A7d)

v 2q=x, ix„—1t2q=x, +ix, ,

and by choosing a certain gauge, the R gauge, any
solution of Eq. (A2) can be brought to the following
form: A =—(on/2i)An:

o
(A4)

p~ 0 g

where u=p, q and p, p, p satisfy the following

coupled equations:

(8081 +8,8-)»4+ &f& '(PpP$+P, p, ) =o,
(p-'p, )&+(y 'p, );=o,
(p 'pp), + (y 'p;), =o .

(A5a)

(Asb)

-(.). . .(V n'"'((u„(o„r)&,
G y(d1, (d2, gg =

i

(o
(A8)

On the other hand, Ward, '2 using techniques of
algebraic geometry and twistor theory, showed
that all information on self-dual gauge fields can
be "coded" into the structure of complex analytic
vector bundles that are specified by a transition
matrix G. In general there is no known procedure
for explicitly extracting A, from G. However,
Atiyah and Ward" argued that if the transition ma-
trix G is of the form

It remains to determine which of the above solu-
tions indeed give static, real, and regular gauge
fields.

Ward' has shown that in order for the gauge
fields resulting from Eq. (A7) to be static and in

some gauge real, it is sufficient to assume that
there exist two 2&&2 matrices Q~ and Qs such that
(()) = &d1

—C))2):

Q1, G(&1i 1))n, f)Qz= G(1)), g),

Qz is analytic away from .$=O,

Qz is analytic away from (=~,
detG(1)), f) =+1, ,

[G(~ & I')= (G&u*, F ') . --

(A8a)

(A8b)

(A8c)

(A8d)

(A8e)

&, =-&', =2 -[(p —„p)+8,(„p+ p)1 (A9a)

11,=W,'=.
2

-[-(„p+„p)+&,(„p-„p)1,
n

(A9b)

There is no known simple criterion that insures
the regularity of the gauge fields but a necessary
condition' is that G(1)), f) must be an entire function
of the space coordinates x„x„x3 x4.

Finally we note that in Yang's R gauge (A4) the
Higgs field A4 has the following components:

where ~2+, =(q pt), )) 2', =—-(q+pp '), and f is
a complex parameter, then one can systematically 11 —=A = —8 ln„(f& . (A9c)
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APPENDIX 8: IDENTITIES BETWEEN
DETERMINANTS

We want to show that, when
then

(I)""(-I)'
P (q,.-q, )

'

(a);„(a)~)=mtlk~) e'" ~) =~),k, +~),k, -
lf=l

where

(B1)
02n2 2i x4 m

+(n+m) 2 e +(n m)
k- 1 (2pp)n k-1 (B4)

and

e'k"k (I'X2 —q —e 2 k
l, k, sk 2~ 2 i ~2p

(B2) In order to prove Eq. (B4) let us first observe
that, by exploiting standard properties of deter-
minants, we can write the expansion

(n m) $(n m)g4 D(n+m)
Q- l 1 1 n+m num( 1 lkk 1~m ~m)

where «i,e, i„,„e„,„)means permutation over all indices for the determinants

(B5)

~ ~ ~

n m+1

2262 ' ' + n„m~2 2262

D(n+m) (B6)

n+m-1 n+m n+m ~o &n.m&n. m

Let us observe that whenever the index i, =i,, and e, =e,, the corresponding determinant vanishes, such that
we can write the further decomposition

~ n+mi2

~ (n+m' ~(n+m»4=e
l=m

~(n+m)
l(&1~1"'&n+m-2l n+m-2l6 )

(fl 1'' ~n+m 2l n+m 2l)

CPA' I

(BV)

where

D™ = D ™
l ~1'll ~ &n™2ln+m-2l . «&1~1'''lcm-2l~mm-2l pl, l jlk-1 ~ jl, l jl, -l) '

( j k ~ s j )
1

~k' k'

(B8)

By trivially generalizing a formula by Narain' we can now show that

'2 n+m-2l - ] 2 l (n+m-l )
+(n+m) ) JS

( )2
' '

( )2 (( D(n+m-21)
«ll 1''' + -2l n+ -2l~l &l ~ ~ Q ~ ~ &g 0' ~ ~ &t ~& ~ Ap «~1~1 ' ln+m-2l n+m-2l

)=1 ~ )&1
(B9)

Let us now use the property that defines real solutions,

(-1) '
II(q, —q, )''

(B10)

and define the complementary roots q q„such that „)1i,),s)1 Wj,. By substituting Eq. (B10) into
Eq. (B9) we immediately obtain

~n+m (2
~(n+m) g (n+m) x4

0-l
l=m

1)(n+1)

(&1sl'' '~ n+m-2l n+m-2l) (21' ' ' s!) -II(=)IIs=l (qs) qns)
(ii 1' 2' 0 «m

l(n+m-l)
y n-2l (~m-2l )

161' ~ ' n+m-2l ~m-2l )(-)
I et us now perform the change of variables I' =I —))2 in Eq. (Bll), thus obtaining

(B11)
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c(n m)/2.(n+m) s (n+m) g4
p

~ y (l'+m)(n-l')

D {&1&1.~ ~ & n+m-2l'In+m-2l ') (B12)

(-1)'"'"
161 ~ ~ &n-m-2l n-m«2l) ( j1 pl) LLt=&&8=1 ~~jt

(&1' ' ' P l+m)

However by repeating the previous arguments we could have obtained
c (n m)/2

&r(n-m) j (n-m) x4
HP l

l=o

l (n-m-l)„( 2 (n-m-2l )x2-
(

E PP
D{& 161' ' ' & n-m-2l en-m-2l ~ (B12)

(B14)

By observing that j, and g, enter in a symmetric way in Eqs. (B12) and (B18) and can therefore be inter-
changed, we recognize by direct comparison of the last two equations that

(n+m) 2 e (n m) (0)
~2n -2 2f x4 m

0- l (2pp)lt 0- l
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