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Two-dimensional CP ' models are analyzed by means of the 1/1V expansion, performed up to the
first nonleading order. The expectation values of gauge- and renormalization-group-invariant quantities
are computed in a regulated continuum version of the theory: renormalizability and absence of infrared
divergences are explicitly verified. Special attention is devoted to open and closed loops of gauge fields
and to their correlations. No single-particle mass for the "elementary" gauge-dependent fields can be
consistently defined. The observable mass parameter is related to the lowest-energy bound state and
shows a nonanalytic dependence on 1/N. The qualitative picture of the CP ' models resulting from
the large-N approximation is quantitatively confirmed in the 1/1V expansion.
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I. INTRODUCTION

Two-dimensional CP ' models take a special place in
the realm of quantum-field-theory models because of the
close resemblance between many of their dynamical
features and the properties expected to hold (but often
very difficult to prove) in QCD [1,2]. Among these prop-
erties we mention asymptotic freedom, spontaneous mass
generation, unbroken gauge invariance, dynamical ap-
pearance of a linear confining potential between non-
gauge-invariant states, and topological structure (instan-
tons, anomalies, 8 vacua). These models have however a
number of computational advantages with respect to
QCD: they involve spin (instead of gauge) fields and
lower space dimensionality and, last but not least, they
possess a viable 1/N expansion [1,2,3]. These considera-
tions make CP ' models a quite natural candidate for a
detailed exploration of dynamical mechanisms and a test-
ing ground for both analytical and numerical methods in
strongly interacting relativistic quantum field theory.
However, despite the already extensive literature on the
subject, it appears that most properties have been only
qualitatively discussed, and quantitative predictions
beyond the leading large-N limit have not been presented
yet.

In view of the renewed interest around these models,
especially in the context of the numerical simulation ap-
proach to quantum field theories [4,5], we decided to per-
form a systematic analysis of the first nonleading order in
the 1/N expansion, with the ultimate goal of offering the
possibility of quantitative tests of agreement between this
theoretical approach and other analytical and numerical
methods. The purpose of the present work is therefore
twofold: (a) we want to identify the physical quantities
that are "measurable" (i.e., gauge and renormalization-
group invariant) and receive nontrivial contributions
from the first order of the 1/N expansion; (b) we want to
compute these contributions and show that they are con-
sistent with the qualitative picture of the model. In order
to do this, we decided to focus on the continuum version
of the models and on the very simple sharp-momentum
(SM) cutoff regularization scheme. Converting our re-

suits to different continuum or lattice schemes may not
be technically trivial but is certainly conceptually
straightforward, if we follow the lines of Refs. [6] and [7].

The present paper is organized as follows. In Sec. II
we discuss the 1/N expansion of the CP ' models in
their continuum version. In Sec. III we compute the 1/N
contribution to the free energy density and extract the
1/N dependence of the renormalization-group P function
in the SM scheme. In Sec. IV we study a class of gauge-
invariant two-point functions obtained by introducing a
path-dependent gauge field "string" between two funda-
mental field operators, and show that no single-particle
mass for the fundamental field can be consistently
defined. Renormalization of ultraviolet singularities ap-
pearing in open and closed loops is discussed and a com-
pletely finite, calculable self-energy function is presented.
In Sec. V we extract quantitative predictions for the mag-
netic susceptibility and the second moment of the two-
point correlation function. In Sec. VI we discuss the
properties of closed loops of gauge fields ("Wilson
loops" ), and compute their 1/N expectation values for
circular and "long" rectangular loops, checking in partic-
ular the asymptotic area law and fixing the coefficient of
the perimeter term. In Sec. VII loop-loop correlation
functions are discussed and evaluated. In Sec. VIII we
consider the two-point correlation function of local
gauge-invariant composite operators made out of two
fundamental fields. We explicitly prove the relationship
between the asymptotic large-distance behavior of this
correlation and the mass of the two-particle bound state
corresponding to the lowest-energy eigenvalue of the
confining potential. We give an explicit representation of
the 1/N contribution to the correlation and extract some
qualitative and quantitative physical information.

Throughout ail our analysis we find full agreement
with the qualitative picture rising from the iarge-N ap-
proximation, while we put rigorous quantitative con-
straints on the speed of approach to large-N asymptopia.

II. THE 1/N EXPANSION OF THE CP ' MODELS

The bare continuum Lagrangian of the two-
dimensional CP ' models is [1,2]
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S= Jd xD„zD„z,
2

(2.1)

zz=1 (2.2)

and a covariant derivative D„—=8„+iA„has been defined
in terms of the composite gauge fields:

A„= 2(i(—zB„z—
8& zz): (z—()„z . (2.3)

The 1/N expansion of the generating functional is ob-
tained by introducing the external currents J coupled to
the z fields and Lagrange mu1tiplier fields introduced in
order to implement the constraint. By standard manipu-
lations one obtains

S= fd x[()„zB„z+(zB„z)+ia(zz —1)

where z is an ¹omponent complex vector field subject
to the constraint
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Jd x[D&zD„z+ia(zz —1)+ZJ+zJ],

(2 4) where g =Q 1 +4m () /p .
A well-known result concerning the vector propagator

is the appearance of a massless pole [1,2], whose
Landau-gauge representation is

where now D„—=()„+iA,„. A Gaussian integration on the
z variable leads to
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By taking the second functional derivative of the
effective action around the saddle point we may obtain
the propagators of the quantum Auctuations associated
with the fields a and A,„; both are O(1/N) quantities
that can be expressed by the functions

where —imo is the large-N vacuum expectation value of
the a field and it is determined as a function off from the
saddle-point condition imposed on S,ff.

For the sake of simplicity in computations, throughout
the present paper we shall make use of the SM regulariza-
tion scheme, whose main features are discussed in Ref.
[7]. Physical quantities depend on the cutoff parameter
M; however, renormalization-group-invariant quantities
can be shown to depend only on the physical mass pa-
rameter m (M,f), related to the coupling constant by
the standard renormalization-group relationship. The
large-N limit of this relationship is exactly the saddle-
point condition we mentioned before. In our notation it
takes the form

As a consequence, A.„becomes a dynamical gauge field,
giving rise to a linear confining potential between z and z.
A more subtle consequence is the systematic appearance
of infrared divergences in all expectation values of opera-
tors that are not gauge invariant. In particular, as we
shall see, this will prevent the possibility of giving a phys-
ical definition of mass for the z particle; we shall interpret
this fact as a further signal of confinement.

The 1/N perturbative expansion can now be performed
by expanding the effective action around the saddle point
and then generating efFective vertices (which are nothing
but one-loop integrals over massive z-field propagators)
for the interactions of the a and A, fields. The 1/N expan-
sion is also a loop expansion in the loops generated by the
vertices and propagators of the effective fields. An expli-
cit construction of the first few relevant effective vertices
is given in Appendix A; we are indebted to H. Panago-
poulos for some of the techniques and results presented
there.

The interaction of the effective fields with the "elemen-
tary" fields z can be expressed in terms of Feynman rules
that can be easily extracted from Eq. (2.5). These Feyn-
man rules are collected in Fig. 1. There is however some
computational convenience in choosing a slightly
different, but completely equivalent, form of the effective
action, obtained by an explicit use of the constraint zz = 1
in an intermediate stage of the computation:

S,(r=NTrln( —()„B„—i[8„,A,„]+mo+ia )+ Jd x ia +A,„A,„+J — Jd„a„i[—()„,A„]—+m', +i, a,
(2.10)

This choice allows for the complete elimination of the two-vector-field vertex ("seagull diagram") from the Feynman
rules. One may explicitly verify that the sum of the corresponding contributions is identically zero.
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A last comment concerns renormalization: we expect to be able to renormalize the theory just by renormalizing the
coupling, the mass parameter, and the z-field wave function, order by order in the I/N expansion [8]. We shall verify
this statement to second nontrivial order.

III. THE FREE ENERGY

From a conceptual and computational point of view the free energy density, being gauge and renormalization-group
invariant and carrying no dependence on external momenta, is the simplest physical quantity we may evaluate in the
1/N expansion. The first two nontrivial contributions are contained in the expression

p'+ma N, 1 ~I".)(s')F—=N Trln
2
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p 2f 2 6( )(p) 2 6(g)(p)
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where c& =0.611671 457. . .. c& is a numerical constant

We have normalized F to its zero-mass value, which cor-
responds to subtracting the perturbative tail and keeping
only the scaling part of the free energy density [6]. This
is a necessary prerequisite to our computation, but it is
not yet a regularization; to make Eq. (3.1) ultraviolet
finite we still have to subtract the leading term of the ex-
pansion in powers of I /p . The resulting regularized ex-
pression is

Nmo 1 J2 ++1F= +—f— lnln lnln
4n 2 (2~)2 g
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Applying the saddle-point condition (2.6) we easily obtain

2 1 8
l
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P(f) 2
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N 2m 1 f /m. —+0 1

N

(3 6)

The first two nontrivial powers of f are associated with
universal coef5cients; these may be compared and found
to agree with previous results appearing in the literature
[10]. In the next section we shall also verify the self-

consistency of our determination of P.

IV. THE GAUGE-INVARIANT TWO-POINT FUNCTION

related to the finite part of the vector propagator loop. It
can be computed at all desired numerical accuracy but, in
contrast with the scalar propagator loop it does not seem
to be amenable to the properties of any known special
function. We suspect this phenomenon to be related to
the lack of complete integrability of the quantum CP
models [9].

As a straightforward consequence of our result (3.4),
we are ready to extract the O(1/N) contributions to the
renormalization-group P function in the SM scheme, via
the renormalization-group equation

T

1

P2 + m02

1
y&( )(p) {pp + pp)

As we anticipated in Sec. II, non-gauge-invariant
Green's functions are plagued by the infrared divergen-
cies originated by the massless propagator 5„'„'. Let us

indeed consider the O(1/N) contributions to the two-

point function 2fG (x,y) = (z(y)z (x) ). The correspond-

ing Feynman diagrams are drawn in Fig. 2, and their
momentum-space representation is

FIG. 1. The Feynman rules of the models. where

1 1
&(p)

1

N p'+m2 p'+m2 ' (4.1}
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(2m) (p+k) +mo (2~) (2m) (q +ma} (q+k) +mo

d k k„k„(2p„+k„)(2p„+k )
z~(~)(k) ~~-

(2m) "" k (p+k) +ma

2k d2q 1+5( )(0)f 6(g)(k) 5
(2m) (2m) (q +ma)

k„k„(2q„+k„)(2q +k „)
k (q+k) +ma

(4.2}

It is easy to obtain from Eq. (4.2) the representation

5( )(k)
X(p)=
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2 (2n. ) Bm ()
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(4.3)
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and by making use of the explicit expressions of the prop-
agators we also obtain

d'k ~( )«) d'k ~( )(k}
X(p) =

(2m) (p+k) +ma (2m) k +4mo

showing the expected consistency with the
renormalization-group P function obtained in the previ-
ous section. However, when trying to evaluate the con-
stant in the last term of Eq. (4.6) one easily recognizes
that this quantity is divergent when the infrared regula-
tor is sent to zero. The obvious origin of this infrared ca-
tastrophe is the lack of gauge invariance of the correla-
tion functions we are studying.

As we shall see, it is possible to restore gauge invari-
ance and regulate the infrared behavior without spoiling
the nice ultraviolet structure we have found. This is
achieved in a quite natural way by introducing a gauge
"string" between the two gauge "charges. " Since the
gauge symmetry is Abelian, no path ordering is needed
and we may simply consider the class of (path-dependent)
correlations

2fGe(x, yi=(z( )yexp i J d)„A„(() z(x)), (4.7)

where t„are the points of the path 8 connecting x and y.
In the first nontrivial order of 1/N perturbation theory
we therefore obtain the contributions

d k g (k)
1

(2m ) k +4m
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In order to extract the corrections to the mass parame-
ter we must evaluate X(pz= —mo) [6], that is
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Ultraviolet regularization by SM cutofF subtraction
leads to the following parameterization of the ultraviolet
divergence:

M M
mo lnln 2+yE +3mo ln ln

2
—2 +const

mo
~

mo

where the second term is the infrared-divergent quantity
we have just computed.

In what follows, we shall focus on a special subclass of
these correlation functions, which we call "straight open
strings" and corresponds to the choice of connecting the
points x and y through the minimal straight path
parametrized by

(4.6} t„=y„+A,(x„—y ), 0~2(, ~1. (4.9)

FIG. 2. 0 (1!N)contributions to the two-point function.

When the path belongs to this class, the correlation func-
tion depends only an the distance between the two points
x and y, and it is therefore possible to consider its Fourier
transform, with obviaus advantages from a computation-
al point of view. Most intermediate integratians can be
performed analytically and one can with a reasonable
efFort show that
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The infrared behavior of this expression is obtained by simply setting k =0 in the terms multiplying &„'„'(k):
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Therefore there is no infrared divergence in the dk in-
tegration and the resulting Green's function has no in-
frared pathology. Let us now introduce the auxiliary
functions

A (p, k) = dA, dA,
'
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and notice that, thanks to the transversality property
k„hz„'(k) =0, we may derive the relationships
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In addition, it is possible to perform analytically the A, in-
tegrations, thus obtaining
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We can therefore write our results in the compact form
where 5=+k (p +mo) —(pk) .

However this is not the end of the story. In fact, when
we consider the ultraviolet behavior of the integrand in
Eq. (4.16), we recognize that for large values of k a new
divergence may be originated by the leading contribution
to BA /Bm02..

5 A k n1(pk) . (pk)arctan
3m2 I $3 2 5

X 1 ad+8
Bmo

(4.16)
where we can write 5=k+p~sin 8+m o with
(pk)=ipiikicos8. An explicit evaluation of this diver-
gence is given by
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Now noticing that
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where E and K are the standard elliptic functions, we can parametrize the divergence by

f d k ~I&I(k) 1 dk 2E
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GP"(x,y}=exp( —y) lx —yl —yo}G&(x,y) . (4.24)

This apparently discouraging result is nevertheless
quite easily interpreted in coordinate space. Actually it
has been known for some time [11,12,13] that the intro-
duction of a gauge "string" may lead to the appearance
of a new class of ultraviolet divergences, related to self-
energy effects (self-mass of the string) and to wave-
function renormalization of the end points in the case of
an open string. These divergences can be parametrized in
terms of a multiplicative renormalization factor
exp(y, L+yo), where L is the physical length of the
string and y1, yo are divergent factors growing linearly
and logarithmically, respectively, with the cutoff parame-
ter M. We therefore expect to be able to renormalize our
"straight open string" by a multiplicative renormaliza-
tion defined by

The momentum-space counterpart of Eq. (4.24) is
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where we notice that

0 (q 2+ y2)3/2
(4.26)

Within the 1/N expansion yo and y, are 0 (1/N) quanti-
ties, and we may therefore keep the leading orders in y
after performing the q integration. As a consequence we
consistently obtain
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The q integration can be performed by standard Feynman parameter techniques, the y1~0 limit can be easily taken

and the final result is
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By comparing Eq. (4.28) with Eq. (4.23)
traviolet finite by the choice

d k
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(2'�)
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(0)

M& 2~ 2 k2
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we immediately check that the gauge-invariant two-point function is made ul-
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It may be interesting to rederive from strict coordinate-space considerations the origin of the divergent terms in the
open-string Green's function. Appendix B is devoted to this analysis.

We can now summarize all the results of this section by writing down a completely ultraviolet and infrared-finite ex-
pression for the expectation value of the "straight open-string" effective self-energy function. This expression is suitable
for numerical evaluation for all values of the momentum p such that p ) —m 0:
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1 M
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1 M
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X~"(p) is plotted as a function ofp in Fig. 3.

(4.31)

50

40—

30

The principal-part prescription [6] and the choice of zero
as the lower limit of integration in the last integral {string
self-mass counterterm} are dictated by the interpretation
of this e8'ect as purely perturbative and by the consequent
request that it be removed by all physically relevant am-
plitudes, exactly as we proceeded in the evaluation of the
free energy density. An alternative representation of
Xe'"{p) suitable for analytic continuation in the region

p (—m 0 is discussed in Appendix C.
We can now extract the finite (M-independent} part of

karen.

y=—fd'x(z{x)z(0}) (5.1)

and the mass gap, whose standard definition refers to the
asymptotic long-distance behavior of the two-point func-
tion; for practical purposes one may sometimes consider,
as an alternative definition of the correlation length, the
second moment of the two-point correlation function:

V. EXPECTATION VALUES OF
RENORMALIZATION-GROUP-INVARIANT

QUANTITIES

In our analysis of the CP ' models we are constantly
keeping in mind the possibility of performing numerical
lattice simulations for specific values of N and comparing
the results to our theoretical predictions. In this perspec-
tive it is quite important to focus on those special objects
of quantum field theory that correspond to
renormalization-group-invariant (or covariant) functions.
These are also the typical quantities one might try to
evaluate in a numerical simulation.

The literature on two-dimensional spin models usually
focuses on two such quantities: the magnetic susceptibili-

ty, whose definition would be in our case

Jd x(x /4)( (x)z(0))
&x') =

fd x (z(x)z(0) )
(5.2)

-10

-20 (

2.5 5.0
p /m

I

7.5 10.0

FIG. 3. The Snite part of X~, X~", plotted as a function ofp .

However in the CP ' models many problems are to be
faced. First of all, in order to get finite results we must
replace the two-point function with a gauge-invariant ex-
pression, which we did in the previous section by intro-
ducing the straight open strings. Now, applying our re-
sults and going to momentum space, we can replace Eqs.
(5.1) and (5.2) by the "string susceptibility"
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and the "string second correlation moment"
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What about CP ' models? We can certainly take the
formal limit p ~—ma in Eq. (4.30) and, recaHing Eq.
{4.5},write
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XV{0}
2

=—Inln +—ln In —2 +c
Nip 2 mp 2 mp

2 2 ]

ci =5.91575. . . ;

~XV"(o} I M'=—lnln ——ln In —2 +c', ,
Bp 2 m 2 m

c
&
=115.725. . .

implying, in particular,

1 1 M M(x~)s~ . I ——lnln +31n ln —2
mp N mp22

'

mp
\

{5.5}

(5.6}

+c( c) (5.7)

Let us only mention a few observations about the phys-
ical interpretation of these results. Equation (5.4} implies
an anomalous dimension for the open-string operator:

1

N 2m

31—
I f/n— (5.8)

If we extract an anomalous dimension of the z field from
the wave-function renormalization of X{p},we in turn
find

There is no conceptual problem in the numerical evalua-
tion of the quantities entering Eqs. {5.3) and {5.3). Our
results, extracted from Eq. (4.30},are

PRg 1=2+@+0
m N

(5.12)

Equation (5.11} is ultraviolet finite, but the limits

p +md~0 and k ~0 do not commute; as a conse-
quence the infrared singularity cancellation holding for
all nonzero values of p +mp is no longer present and
X+"(—m0} is a divergent quantity. Therefore no mild
extrapolation from p2=0 can refiect the real asymptotic
behavior of the Green's functions at large distance; only a
careful analysis of the approach to singularity might lead
us to a determination of the large-distance behavior.

It is certainly worth observing that the relatively big
numerical factor c, —c', =21.641 appearing in Eq. (5.7) is
already a signal of the existence of the nearby singularity,
and at the same time it implies a rather weak conver-
gence of the I /N expansion for the quantity under exam-
ination.

As we already discussed, in Cp ' models it is possible
to define a I /N expandable renormalization-group-
invariant mass scale m(M, f) (the so-called A parameter
of perturbative asymptotically free quantum field theory).
However, Eq. (5.11)shows that it is not possible to identi-

fy unambiguously a I /N expandable single-particle mass.
This phenomenon is obviously related to the existence of
a linearly rising confining potential.

In fact, due to confinement, the mass scale appearing in
the large-distance behavior of the Green's functions can
only be related to the two-particle zz bound state corre-
sponding to the lowest-energy level of the linear poten-
tial. In the large-N approximation the leading contribu-
tions to this mass can be found by evaluating the lowest
eigenvalue of the corresponding Schrodinger equation
[2,14]. Since m =ma+0(1/N) one obtains

1

N 2m

21—
1 fln— (5 9) where s is the first eigenvalue of the operator

d 6n.
2+ X

dx
(5.13)

subject to the condition of even-parity eigenfunction, and
therefore

' 2/3
6m.

Q

I

(5.14)

where a&= —1.01879297. . . is the first zero of the
derivative of the Airy function Ai (cf. [15]}[in the exist-
ing literature, the coefficient of the linear potential in Eq.
(5.13) is sometimes erroneously written as 12m /N].

The main features of the quantity m~ are its nonana-
lytic dependence on 1/N, apparent in Eq. (5.14), and the

The difference between y and 2y is obviously due to the
string end-point wave-function renormalization we have
already discussed in Sec. IV.

The correlation length (x )s is a renormalization-
group-invariant quantity, whose renormalization-group
structure is easily seen to be consistent with that found in
Eq. (3.4) for the scaling part of the free energy density.
However, while (x )s, is certainly a well defined, scaling
physical quantity, we cannot mimic the analysis of the
0 (N) models and interpret it as an alternative, approxi-
mate definition of the mass gap. In the 0 (N) case this in-
terpretation rested on the essentially linear dependence of
X(p) on p in the region —m &p &0, implying
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condition c. &0 implying that the bound-state mass lies
above the large-N two-particle threshold 2mo. As a
consequence one gets precise predictions on the structure
of the singularity in X&"(p ): Eqs. (5.12) and (5.14) can be
shown to imply that, in the region around p +mo=0,
X~"(p )-1/Qp +m o, and moreover, in order not to
find bound states below the two-particle threshold,
X~"(p ) &0 when 0&p +mo &mo. We performed a nu-

merical analysis of Eq. (4.30) in the region
0 &p +m o & m o and found that the parametrization

25

20

8
.g 15

a

20

Xe"(p ) c+ +c'++0(co) for p +m() &0,
mo

5
0 0.2

I

0.4 0.6
I

0.8 1.0

elfin(p 2) c +c' +O(co) for p +mo &0,
mo

())=+~1+p /mg, c+ =—22.20, c'+ =——4.90,

(5.15)

FIG. 4. coX~q", plotted as a function of co. The circles are the
results of numerical integration; the solid line is a third degree
polynomial fit.

VI. CLOSED LOOPS

is quite satisfactory, in full agreement with the above dis-
cussion. Technical difBculties prevented us from numeri-
cally analyzing the region p +m o & 0; we do not howev-
er expect any major surprise and we believe that the
physical picture that has been drawn is completely plausi-
ble. The function AX(."(p) is compared in Fig. 4 with Eq.
(5.15), for small values ofp 2+ m ~~.

In our analysis of gauge-invariant operators developing
nontrivial vacuum expectation values within the 1/N ex-

pansion, we are now naturally led to considering closed
gauge field loops:

sttt)=(exp i)J)tdt„4„(t) (6.1)

where C is an arbitrary closed path. Truncating the 1/N
expansion to O(1/N) we obtain

L (8)-=) ——(t))tdt„t)ttdt A„(t)A (t )', „'
=1— (t) dt„fcdt'„ f e'"" '' 5„„—" '

b( )( ) .
(2n ) k2

(6.2)

L(R)=1— fd k b(k)(k)R J)(kR) . (6.4)

To this stage, we have not yet analyzed the problem of ul-
traviolet divergences arising from the string "self-mass"
(closed loops have no wave-function renormalization
problems). We can extract the large-k behavior of the in-

tegrand from the asymptotic expansion of Ji ..

We shall for simplicity focus on two special classes of
loops: circular loops and "long" rectangular loops. As
we shall see, this analysis is sufficient to allow for some
general physical conclusions.

Let us start with circular loops of radius R. In order to
get rid of the angular degrees of freedom we compute

kpk~ .k{ p)el t —f

k

2' 2
R 2 d g cos8eikR cos8 =(271)2R 2J2(kR ), (6.3)

0

where J, is the standard Bessel function. Therefore

J (z)- 1 . 3
1 —sin2z+ cos2z +O . (6.5)

7rz 4z z'

and can be easily removed by subtraction, leading us with
the renormalized expression

1 2 2 2 ~(A)(L„„(R)=1——m.R fd k J)(kR)
I.

1 b, (k')(k)
d k

mkR 2~
. (6.6)

As one may easily appreciate, the subtraction we have
performed is exactly the same we might have guessed
from our discussion of open-string renormalization

Therefore the only divergent term is originated from the
large-k part of

1 R
2 NkR
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L„„(R) =exp( —y, 2n R )L (R), (6.7)

where y, is the same as in Eq. (4.29). It is also easy to
recognize that Eq. (6.6) is free of infrared divergences, as
we might have expected from the gauge-invariant charac-
ter of quantity whose expectation value we are evaluat-
ing. Equation (6.6) is therefore ready for numerical eval-
uation. Moreover, its large-R behavior can be extracted
without much effort: we must only recognize that in this
case the integration is dominated by the small-k region,
where

12am p
A(k)(k) k~o

Since

(6.8)

presented in Sec. IV, and Eq. (6.6) is just the 1/N expan-
sion of

00 p )
dk

+2f [h(k)(k, )
—b, (k)(k, ) ] (6.15}

This is essentially the Fourier transform of the gauge field

propagator; the only physically relevant observation con-
cerns the fact that this procedure automatically removes
both the infrared ambiguity resulting from the 1/R be-
havior of the propagator at small k and the ultraviolet
singularity resulting from self-mass effects and thus fixes
the zero-point value of the potential in an apparently
unambiguous way. By very simple manipulations Eq.
(6.15) can be rearranged in the form

NV(R)=6m moR+2c~mo

Ultraviolet regularization is in agreement with previous
cases and leads to

00 k)
NV(R) = —2f cosk, Rb ~k~(k, )

p 2m

we obtain

(6.9)
2f—cosk, R b, ~ki(k, )—127TlB p 8k )

k2 2m.

6H 2 2«L,
L„„(R) — 1 — mo R — moR .

g 00 N N
(6.10)

= —0. 116375. . . . (6.11)

We have numerically verified that once the asymptotic
behavior (6.10) has been subtracted one is left with a
bounded and rapidly oscillating function of R.

Let us now consider "long" rectangular loops, charac-
terized by the lengths of the two sides R and T, and con-
sider the limit T~ao. According to standard lore, the
quantity

V(R ) = —lim —lnL„„(R,T)
1

T~00 T
(6.12)

can be interpreted as the interaction potential generated
by gauge fields between two static sources. All computa-
tions are straightforward. We start from

L(R, T)=1— f f dx f dte
2N (2~)~ o o

The constant cL can be determined by use of the asymp-
totic expansion (6.5) and turns out to be

2
e) (o) mo dk

CL = b (k)(k) —h(k)(k) —12m
Alp p

(6.16}

where the last integral is infrared and ultraviolet regular
and its large-distance contribution is exponentially
depressed. NV(R) is plotted in Fig. 5, together with the
first two terms of the right-hand side (RHS) of Eq. (6.16).

The comparison between Eqs. (6.6) and (6.16) leads to
the very plausible conjecture that the most general closed
gauge loop may be parametrized, at least to O(1/N) in
the 1/N expansion, by the following "geometrical"
large-distance representation:

6' p
CL

L ( C ) = 1 — m o ( area) — m o(perimeter )+. . . ,

(6.17)

where neglected terms are rapidly vanishing when the
space dimensions of the loop become larger than 1/mo.
This picture is consistent with the description of the
large-distance physics dominated by the "Coulombic"
potential emerging form Eq. (6.8) plus a "small" zero-

40

30—

and obtain

Xk k(k)( k) (6.13)

lim lnL (R, T)=-
T~ 00 2N f (2~) ik,

X2m5(ko)Tk h(k)(k)

10—

0
0

I

0.2
I

0.4
I

0.6
I

0.8 1.0

T ~ 2kqR dki
4sin b, (k )

N o 2 () ' 2

(6.14)

Rm

FIG. 5. The zz potential XV(R) (solid line), compared to the
area + perimeter law (dashed line).
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point energy renormalization effect; we remind that the
exact, all-order prediction for a purely Coulombic poten-
tial mould be

2 2 d2I
G(r R) k2+ (k)eik. R

(2~)'
(7.6)

L (C ) =exp — m (area)
6~

0

for all non-self-intersecting loops.

(6.18)

Equation (7.6) admits a very simple interpretation, since
it corresponds to applying Stokes' theorem to the loop in-

tegral

g,dr„~„(r)=fda E„„a„~., (7.7)

VII. LOOP-LOOP CORRELATIONS

The correlation between two loops is another gauge-
invariant object that can easily be evaluated to O(1/N).
From the general definition

Gtd'„ett=(exp ice ddt„exp it)te d dt„
(7.1)

we immediately obtain

G(C), C2)

dttet)tedt e''„" ''tt't„'tk)) .1, d k
8) )t 82 v

(2 )2 )tv

(7.2}

exactly to 0 (1/N)
A last result about the loop-loop correlation concerns

the small-R regime, where the predictions of standard
perturbation theory are expected to hold. We are now
considering the regime 1/mp »R » r and we must
evaluate

2 2 d2k
G(r R) k22()(0)(k)eik R

(2 )2 (k) (7.9)

where o. is the surface bounded by the loop, and approxi-
mating the RHS in the case r «1/mp with the area of
the loop times the value of the field at its center. Indeed,
we obtain

2

(E„~i3„&„(R)s~() A~(0) ) =—f e'"'"k b(k)(k)
N (2m)

(7.8)

If we consider for simplicity and definiteness the case
of two circular loops of radius r and distance between
centers equal to R, we can apply Eq. (6.3) and find

G ( r, R ) = ——f r J—) ( kr)e '"'
bk(k)(k)d 2k1

where

2'
k

ln —2
2

mp

k
ln —+——1f

r fJ, (kr)JO(kR)b(k)(k)k dk . (7.3)

Equation (7.3) is both infrared and ultraviolet regular,
and therefore it requires no subtraction.

When the distance R between the two loops is large
compared to both the loop radius r and to the correlation
length 1/m(), the integration is dominated by the small-k
region. However an orthogonality condition holds:

= lim
c~p 1——1+—f e

(7.10)

where f is the renormalized perturbative coupling con-
stant and p is the renormalization scale. By applying the
techniques developed in Ref. [7] we can show that the in-

tegral in Eq. (7.9) can be expressed in terms of the asymp-
totic non-Borel-summable series

f J)(kr)JO(kR)=0 if R )2r, (7.4)

and therefore the large-distance 1oop-loop correlation is
rapidly vanishing. Actually an analysis of the singulari-
ties of b, (k)(k) in the complex k plane shows, as proven in

Appendix D, that the asymptotic behavior is

G(r, R) I) (2mor )

(nr mp) ~- (mpr) (mph)

8 " (k+1)!
R4 "

(1 ~22 2/4]k+2

where ak are defined by

( )2
I (1+x)
1 (1—x)

the leading terms are

(7.11)

(7.12}

—2moR

2
e

e-o (m()R)
(7.5)

consistently with our physical insight. The relationship
G(C„C2)=0 is exact in the case of a purely Coulombic
potential.

In the especial case when the loop radius is much
smaller than the correlation length, i.e., R »1/mp »T,
we may approximate in the integrand J, ( kr ) by kr /2 and
obtain

ao=1, a) =2(1—yz), a2=2(1 —yR) —1 .

Equations (7.5), (7.6), and (7.11) have been numerically
verified and describe accurately the leading behaviors of
the correlation functions, as shown in Figs. 6 and 7.

VIII. COMPOSITE OPERATORS AND THEIR
CORRELATIONS

The introduction of strings is not the only way of con-
structing gauge-invariant operators in the CP ' models.
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FIG. 6.IG. 6. The normalized O(1/X) contribution
loop correlation y( R)

contribution to the loop-

r =0.0,0.2,0.4,0.6 0.8
r, , plotted as a funct1on of R for
8, 1.0 (from bottom to top).

10
0.1

Rm
0

FIG. 7. The loo-loop-loop correlation g(O, R) (solid
e first three orders of

Actually one may define the loc le e oca composite operator P =
—,'(+cr.S), (8.4)

P,"(x)=z, (x)zj(x)

and easil verif
'

y
'

y its local gauge invariance. P" is a r-
jection operator, enjoyin thg e properties

(8.1}

P2=P, trP =1, (8 2)

and the Lagrangian itself can be reformulated in terms of

where n are the Pauli matrices S are
'

ma nces e the constituent fields

orrelation functions of the corn osite
different locations are t '

i
th fo t th b fp be free of infrared patholo-xpec t em to be fre

invariance implies that

&P,,(x))=—5 . . (8.5)

D„zD„z= ,'Tr(d„Pd&P—) . (8.3)

It is worth noticing that in the case
parametrize P by

in e case N=2 we may

We can therefore focus on the connected artp

( 'p )een s unction of its

y —&P;, ( )P (y)),.„„—(P;, ( )P (J kl N2 ij kl

P; (x) 1
~

~y-'q ~kgb% ~~ai )
.1

J

(8.6)

SU(N) invariance of the am litu
that

e amp etude immediately implies

N(N+1 5"5jk N5lj 5kl, (8.7)

D(x,y)=(x —B„B„-ijB„,A,„f+mj'j-ia, )

and notice that

(zl(x)zi(x)z;(y}zi(y) )

(8.9)

N(z, (x)zl(x)z, (y)z (y) ) —1

N —1
(8.8)

where we have imposed the tracel
the normaliz

e tracelessness condition and
a ization condition B (0)= 1. Th

therefore reduced t th t
B (x —y), that ma

e o t e evaluation of t"the scalar quantity
a may in turn be represented by Since, b they gap equation, we have

(D(x,x)) =1,
it is easy to obtain

(8.1 1)

=(D (x,y) +,y (D(x,x)D(y,y—) ) . (8.10

When evaluatin B x-'
g B(x —y) in the context of the 1/N

expansion, it is convenient to intro
B(x —y)= 2

md e(olo ) 1
[N(D (x,y))+(D(x, x)D(yy)) conn

(8.12)
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We can now classify the diagrams of the 1/N expan-
sion contributing to the full inverse propagator of the
quantum field a within the following three classes:
is just the one-loop contribution: 60 '=NA~ ~,

. 6, ' is
the sum of all the diagrams such that the (removed)
external a legs emerge from the same effective vertex
("tadpoles" ); b,z

' is the sum of all the diagrams such that

(D (x,y)) = " (ho '+b, } '),4f2
(8.13)

while it takes some combinatorial effort to prove that

the external a legs emerge from two distinct irreducibly
connected vertices. It is then rather easy to recognize
that

2

(D(x,x)D(y,y))„„„= b2 ' —(bo '+b, } }+62')50, (bo }+5}}+62 ')

0 1(b, '+b, ') . (8.14)

In conclusion we managed to obtain the relationship

8(x —y)= 1+—(6 +b, )
4f'
N N

(8.15)

relating the two-point function of the composite operator P to the "tadpole" contributions in the a field propagator.
We stress that the "tadpole" structure of 6&

' is such only at a pictorial level: due to the nonlocal character of the
effective vertices, 6& cannot be seen as a momentum-independent insertion along the a line.

Equation (8.15) leads us to another, and physically more interesting, consideration about the interpretation of the
function 8 (x —y). Let us introduce the full ("dressed") propagator of the z fields in coordinate space, G (x —y), and
the t-channel four-point irreducible vertex V(x },x2',y},yz), without worrying about their infrared convergence proper-
ties. Let us also define the inverse kernel of the product 6 6 by the condition

fdy}dy2b(x„x2;y„y2)G(y, —z, )G(y2 z~) =5(x,——z, )5(x2 z2) . — (8.16)

Finally let us notice that the quantity 50 +6, can be represented in coordinate space, in compact notation, by

bo '(x —y)+5} '(x —y)=5(x —x, )5(x —x2)b, '(x},xz, t},t2)', (t},tz,y},y2)5(y —y})5(y —y2)

1
5(x x})5(x x2) g V(x} x2 y} y2)5(y —y} )5(y —y2) (8.17)

where integration over repeated couples of coordinate indices is assumed. The graphical proof of this relationship is
given in Fig. 8. Because of gauge invariance, the operator 6—V will turn out to be free of infrared divergences.

Since we are interested in the large-distance behavior of the function 8 (x —y), we may look for the lowest-energy
zero-eigenvalue eigenfunction of the operator 6—V. However this is nothing but the Bethe-Salpeter equation of our
model, and therefore the large-distance behavior of B is related to the lowest-mass bound state of the zz system. This is
exactly the quantity m~ we have computed in the large-N limit in Eqs. (5.12) and (5.14) by solving the Schrodinger
equation, which is nothing but the nonrelativistic limit of the Bethe-Salpeter equation.

The problem of finding the coefficient of the large-distance exponential decay is in principle solved by the previous
considerations. However, we would like to get more insight in the detailed structure of the composite operator Green s
function by a direct evaluation of the O(1/N) contributions to 8 and possibly by a check of the above-mentioned
asymptotic behavior. The diagrams contributing to 6} to 0 (1/N) are drawn in Fig. 9.

It is easy to write down an expression for these diagrams in terms of the effective four-point vertices defined in Ap-
pendix A:

b, } '(p)= —f b( )(k)[V4( )(p, k)+ V4( '(p, —k)+ V4 '(p, k)]d k

+b( )(0) 6( )(p) f b( )(k)— b( )(k)j d k 1

()m() (2m) 2 ()m()

2

+ f b(„)(k) V„"(p,k)+ V„"(p,—k)+ V("„)(p,k)+5„„b( )(p)

+~( )(0) ~ ~( )(p) 2 ~(x)(k)
d k 1

Bm() (2m) 2 ()m()
(8.18)
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By making use of the explicit form of the efFective vertices it is also possible to show that

V„'„'(p,k)+ V„".(p, —k)+ V„",'(p, k)+5„,"'a l"
k„k

[
—(k 2+4m 2

)[V(~) (p, k )+ V4~ (p, —k ) ]—( k +4m () +2p ) V4" (p, k ) +4[ V3 (p, k ) + V, (p, —k ) ] ]
k

(8.19)

and by considering the k ~0 limit of Eq. (8.19) one may check the infrared regularity of the only potentially dangerous
contributions.

Collecting all contributions we get the form

2

5) '(p)= —f b( )(k) V4" (p, k)+ V4" (p, —k)+ V4 '(p, k)+ 2 2 2b( )(p}

d k—f b( )(k) (k +4m )[V"(p, k)+ V"(p, —k)]

k+ (k +4m () +2p ) V4 (p&k) 4[ V3(p&k)+ V3(pp k)]+
2 z ~ &(z)(p)

k +4m() am()

(8.20)

Equation (8.20) is obviously still in bad need of ultra-
violet regularization. Performing this regularization will

also be a check of renormalizability, because we expect
the divergences of Eq. (8.20) to be directly related to the
mass, vertex, and wave-function renormalization of the
model. The following large-k behaviors are easily de-
rived:

f

�45(
) (p) —2m () 5( ) (p)M' (2~)' k' am,'

d'k ~(')(k), , a
4h( ) (p)+ 6m () 5( ) (p)

M' (2n. ) k 8m 0

(8.22}

V,"(p,k)+ V,"(p,—k) —, , a(-.I(p)kz am()

+ 4~( )(p}
2

k

2m'o+ b, ( )(p),k' am,'

V,'"'(p, k)
k

V3(p, k)+ V3(p, —k)~
~ 4( )(p) .2

k

(8.21)

Equation (8.22) is however nothing but the contribu-
tion of the diagrams originated by the insertion of the fol-
lowing counterterms in 60 '. mass counterterm

d2k b( ')(k)
2 d2k b, ()j')(k)

2mo +6mo
M2 (2~)2 k4 M' (2~)' k'

(8.23)

wave-function counterterm

Therefore the divergence of Eq. (8.20) is regularized by
the addition of

~—1+~—1
0 1

ee + ee V + V V ee +

+

+e+ ee +

+ ee

FIG. 8. Graphical proof of Eq. (8.16). FICx. 9. O(1/N) contributions to 6& '.
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b( ')(k)
(p +m()) M' (2~)2 k'

d'k ~('){k)
M2 (2~)2 k4

{8.25}

The structure of Eqs. {8.23) and (8.24) is dictated by the
request of ultraviolet finiteness for the two-point func-
tion; in particular compare Eq. (8.23} to Eq. (4.6) and Eq.
(8.24) to Eq. (5.9). The check of the vertex renormaliza-
tion is straightforward.

In conclusion we verified that the cancellation of ultra-
violet divergences in the two-point function of the com-
posite operator I' is ensured by the renormalizability of
the 1/N expansion. Equations (8.20) and (8.22) open the
road to numerical evaluation of b, ( '(p), at least in the re-
gion p +4m@) 0. The half-line p +4mp real and nega-
tive is a branch cut of the function b, ) '(p) in the complex

p plane. This is a property shared by the function
50 '(p) and is nothing but the standard behavior above
the two-particle threshold.

It is possible to define 6&
' ""and 5&

'""in full analogy
with Xfi'" and X~" (see Sec. IV). b, )

'"" is plotted as a
function ofp in Fig. 10.

We can now address the problem of a direct determina-
tion of the asymptotic large-distance behavior of
8 (x —y). In momentum space we must look for the first
singularity of 60 '(p}+b,, '(p}; i.e., we must look for a
zero of the function (b,p '+6) ') '. To first order in the
1/N expansion this condition reduces to solving the
equation

~0(P) —~0(P)~7 '(P)~0(P}=0. (8.26)

It is almost trivial to show that the necessary condition
for 1/N expandability of the solution of Eq. (8.26) is the
finiteness of X( —

m0 ), in which case one would simply
obtain p =-—4[mp+1/NX( —mp)], consistent with re-

d k—2(p'+m,')f (8.24)
M' (2~}' k'

scalar vertex counterterm

normalization group. However this is not the case, and
we must resort to an analysis similar to that developed in
Sec. V. The expectation that the equation

~0 '(p)=~( '(p) (8.27)

[equivalent to Eq. (8.26)] be solved by p2= —
m77 implies

a well-defined singular behavior of b i (p) in the region
around p +4m p =0. Noticing that, in the above-
mentioned region,

7() N 1

p2+4~ 2 ~0+ 4mp Qp 2+ 4m 2

7() +iN I

p +4mo~o mo /~p +4m

(8.28)

we obtain the predictions

2
—1 fin C+mp

"(p) —,c+ (0,
p'+4m', -0+ (p'+4m (') )'

c mp
2

g —
7 fin(p) +7

p'+4m,'-0- (p'+4m() )'

(8.29)

c =12m.( —a
7

)3/2

Numerically we could only analyze the region

p +4m 0 )0, where we found consistency with Eq. (8.29}
and specifically determined the numerical value
c+ ~ —9.425. The quantity (4+p /m20) b, )

'"" is plot-
ted as a function of Q4+p /m 0 in Fig. 11.

Altogether, it appears once more that the physical pic-
ture of the CP model drawn on the basis of the large-
N results is confirmed by the 1/N expansion and there-
fore acceptable for suSciently high values of N.

For completeness we must mention that, starting from
the definition (8.6) and in analogy with Eqs. (5.1) and (5.2)

0—

-2.5—
Ol
8

~8

I

CQ

07
8
C4+

-7.5—

—10.0 -2.5
I

2.5
2/ 2

5.0
I

7.5 10.0

-10
0 0.2 0.4 0.6

(4+ 2/ 2)1/2
1.0

FIG. 10. The finite part of 6& ', 6& '"",plotted as a function
of@ .

FIG. 11. {4+p /~0) hl ' "", plotted as a function of
Q4+p /mo. The circles are the results of numerical integra-
tion; the solid line is a fourth degree polynomial fit.
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gz= fd x&trP(x)P(0)&, (8.30)

it is possible to define a magnetic susceptibility and a mo-
ment of the correlation function associated with the P
field:

&«P(x)P(0) &
= B(x)N —1

N
4/2

3 (N 1—)(bp '+5, ') . (8.32)

fd x & trP (x)P (0) &

where

f d x(x /4)&trP(x)p(0)&
&x'&p= (8.31)

As usual we may evaluate y~ and &x &~ starting from
the momentum-space representation of ho '+5, ,

' and
considering the behavior of this quantity around p =0.
The divergent regularized terms can be extracted from
Eq. (8.22) and the finite parts may be numerically evalu-
ated. We find the following result:

+o(p'),p2

p o 47fmo 6mo
(8.33)

g —1 ren

p2 p 4mm pN

M M p 2 M 2 M—31nln —ln ln —2 +c + —lnln +—ln ln —2 +c'
mo2 mo2

P
0 mo mo

2 2 P +o(p },

(8.34)

and as a consequence

1 1 M' 3 M'
&x &p=

z
1 ——lnln

2
——ln ln —2

6mo N mo N mo

1——(c~+6c~ ) (8.35)

where cp—= —0.9508, c&~1.7405.
When comparing Eq. (8.35}with Eq. (5.7}we may veri-

fy that & x &~ has the same renormalization-group behav-
ior as &x &s and it is therefore a renormalization-group-
invariant quantity, as expected. We can also extract from
Eq. (8.22) the anomalous dimension of the P field, finding

results: one can define a topological density

q (x)= s„+„zD~= e„„B„A„,1

and it expectation value in a e vacuum is

3mo 1e+o, , ~e(&~.
Nm

One can also define a topological susceptibility

y, =fdzx & q(x)q(0) &

and find the relationship

(9.1)

(9.2)

(9.3)

N m

1 f 2
Xp 2—

N 2n. 1 f /n. —
1

1 f/n—
3 2 1mo+0

mN N
(9.4)

(8.36)

The difference between yz and 2y [cf. Eq. (5.9}]is due to
the vertex renormalization afFecting the renormalization-
group properties of the composite operator P; in particu-
lar let us notice that, according to Eq. (8.36), y~ turns
out to be O(fz) in standard perturbation theory. It is
pleasant to observe that this result can be shown to
reproduce the known anomalous dimension of the field
S/f in the O(3}=CP' case.

IX. CONCLUSIONS AND OUTLOOK

We think we have offered a rather complete overview
of the physical predictions that can be obtained from the
first nonleading order of the 1/N expansion in CP
models. We have not discussed the topological proper-
ties, because this topic has already received a systematic
treatment in the literature, both in the continuum version
[1,16] and on the lattice [3,17].

We only review for completeness the basic continuum

It is obvious that, like most perturbative results, ours
can be in principle improved in many difFerent directions.
In our opinion, the most attractive possibility involves
the conversion of our results to some lattice version of
the models and the numerical exploration of the wide gap
separating large-N asymptopia (N R 20, according to our
results} from the solvable N=2 case. The qualitative
features of the CP'=O(3) model still bear a sensible
resemblance to the physical picture of the CP ' models
that we have been confirming in our work. Finding a
smooth, monotonic dependence of the physical quantities
on N would be an encouraging indication about the
predictive power of the 1/N expansion.

APPENDIX A: Ei i Kt.l iVE VERTICES
(IN COLLABORATION WITH H. PANAGOPOULOS)

The effective vertices of the 1/N expansion are nothing
but one-loop integrals over the fundamental field propa-
gators with appropriate couplings to the external lines.
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The problem of evaluating the most general one-loop
integral in two dimensions has been addressed many
times and very general compact formulas have been
presented in the literature [18,19,20]. Unfortunately,
these vertices are momentum dependent, and the momen-
ta relevant to our problem correspond to exceptional
configurations, such that the formal expressions appear-
ing in the literature become formally singular and cannot
be used in the computations. %e therefore computed
from scratch the vertices at exceptional momenta (a pro-
cedure simpler than taking the formal limit) and will

present here our results.
One basic ingredient is the three-point scalar vertex

d q 1 1
~3(P1 P2) =

(2m} q +mo (q+p1) +mo

1

(q+p2} +mo
(A 1)

a symmetric function ofp» p2, and p, —p2. We can com-
pute it via the two-dimensional identity

1

[q2+m20][(q+p, ) +ma][(q+p2) +mo]

p 1 [p2(p2 pl }]+2(plp2 }(p1q} 2p 1(p2q) p2 [pl(p1 p2 }]+2(p1p2 }(p2q) p2(p lq}=& '(P)P2) . . . , +
[q2+m(2) ][(q +p, )2+m(2) ] [q2+m(2) ][(q+p2 }2+m(2) ]

(p) +p 2)(p 1P2)+2p5 2
—4(pa» )'+2(qp2) [p) —(p)P2)]+2(qp) )[p 2

—(p 1P2 }1

[(q +p, }2+m(2) ][(q +p2 }2+m (2) ]
(A2)

where

&(P1 P2 }=P5 2(P1 —
P2 }'+4m 0[p 5»2

—(P 1P2 }'].

The integration is now straightforward and we obtain

~3(pl &P2) + (Pl&P2)[p 1 [P2(P2 Pl )]~(u)(pl )+P2 [pl(pl P2) l~(a)(P2 }+(Pl P2) (Plp2 +(a)(pl P2)]

(A3)

(A4)

Equation (A4) can be shown to agree, after a rotation from Euclidean to Minkowski space, with results appearing in the
literature. The exceptional limit of Eq. (A4) corresponds to the case when one of the external momenta vanishes. It is
however very easy to see from Eq. (Al) that

»m I'3(pl P2} 2~( )(pl) 2 2[~( )(pl)+~( )(0)].
),-0 2 Bm 0 p)+4m 0

(AS)

Let us now consider the four-point vertices: the exceptional configurations we are interested in are the cases when
the external momenta are equal two by two. Let us define

(2n) [q +mo] (q+p, ) +ma (q+p2) +ma
(A6)

By applying the identity (A2) we are led to an explicitly integrable but cumbersome expression. It takes some algebraic
efFort to generate the final result

I'4"(P)P2)=& '(P).P2}, , [~( )(P1)+~( )(o)]+, , [~( I(P2)+~( )(o}]2+4 g {a) pl {a) p2+4m 0

+D '(P P )([(P P}'(P P»+P'1P'—(P P»']—
X j [PZ

—(P )P2)]P15( )(P1)+[P, —(P,P2)]Pub( I(P2)]

+ [(P) —P2) (P)P2)]'~( )(P1 —P2»
—D '(P»p )[P5 ' —(P P }']j(P'+4mo')[(P P» —P']~(.I(p»

+(P2+4mo)[(P)P2} Pz]~( )(P2}

+[(Pl P2) +4mo](P1 P2} ~( )(P) P2)] (A7)
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We must also evaluate

(b) d q 1 1 1 1
V4 (p( pz)= 3 32%2 q2+m2 q+p 2+m2 q+p 2+m2 q+p +p 2+m2

In this case, the computation is made easier by the identity

(A8)

(q +mo)[(q+p, ) +rno][(q+p2} +mo][(q+p, +p2) +mo]

1

(q +mo)[(q+p() +mol[(q+p»'+mo]

1

(q2+mo][(q+p() +mo][(q+p(+p2)'+mo]

1

(q3+ 2)[(q+p ) +m ][(q+p, +p ) +m ]

1

[(q+p) }'+ o]l(q+p»'+ o]l(q+p(+P2}'+mol (A9)

leading immediately, also thanks to the symmetries of V3, to

1
V4 '(P(,P2) [ V3(pl, p2 } V3(pl, P2 }] .

p(pz
(A10)

We insist that, even if Eqs. (A7} and (A10) might in principle be recovered by taking the proper limits of the general ex-
pression, in practice we found that the direct derivation of Eq. (A5} from Eq. (A4) is already so involved to discourage
us from further pursuing this approach.

For our purposes we also need the mixed four-point scalar-vector vertices in exceptional momentum configurations.
We quote here the definitions:

(2q„+k„)(2q,+k„)
V&(;)(p, k)=

(2n. )2 (q2+m()) [(q+p) +m()][(q+k) +m()]

2q&+k„ 1 2q„+2p„+k„
V„','(p, k}=

(2m)2 q +mo (q+k) +mo (q+p) +mo (q+p+k} +mo

(A 1 1)

(A12)

Actually we only need the combination of vertices appearing in Eq. (8.19) and this can be shown to be a transverse ten-
sor. Therefore we can limit ourselves to computing

IcRk
( )5„—"z V„'„'(p,k)= (k +4rno)V~" (p—, k)+2V3(p, k)+ 1—

k

4m() pk b( )(0)
k2 p2 p2+4~ 2

and

+ (p+k) +4mo 1+ k

p

(a)p 1 ~ )( k)
k (p3+4m ) k

(A13)

5„„—" V„''(p, k)= —(k +2p +4mo)V4'"'(p, k) —
z b( )(p)+ 6( )(p —k)

+
3 b( )(p +k)+2V3(p, k}+2V3(p, —k) .

Ic

The derivation of Eq. (8.19) from Eqs. (A13) and (A14) is now straightforward.

(A14)

APPENDIX B: STRING DIVERGENCES IN COORDINATE SPACE

It is quite instructive to identify the origin of string divergences in coordinate space. We know from Sec. IV that, to
0 (1/N), string ultraviolet divergences are only originated by the term
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(z(y)z(x) }(,)f "dt f "dt' ( A (t)A (t'))(o)2X 3' 3'

Go(x —y) f deaf dA, '(y —x)„(y —x)Q(„)(()(.—A, ')(y —x))
0

~(),)(k)

2N
Go(x —y}f C(klx —yl), (Bl)

where we have applied the standard parametrization of
straight open lines (4.9) and defined

C(z)= dg dg' e'" """'z sin 8j(g —g')z cos8 2 2

0 0 2m

1 {. dk
(2~)3 k

{ d'k ~(3.)(k)
P0 &

(85)

(B6}

=2z f Jo(x)dx —2zJ, (z)+2JO(z) —2 .
0

we find the expected divergent behavior

Go(x —y)(y)lx —yl+yo) . (B7)
It is important to notice that the derivation of Eqs. (Bl)
and (B2) does not really depend on the space dimen-
sionality, and therefore our results equally apply to
straight lines in different dimensionalities.

Now the crucial observation concerns the asymptotic
behavior of C(z) for large z: we can prove that

It is however already clear from Eq. (B3) that, in arbi-
trary dimensions and in first order of the I /N expansion,
the only possible string divergences are a factor growing
linearly with the string length (self-mass) and a constant
factor (end-point wave-function renormalization).

C(z) =2(z —1)——J,(z)+02 1

Z Z2
(B3)

APPENDIX C: ALTERNATIVE REPRESENTATIONS
OF THE FUNCTIONS A AND BAND RELATED

INTEGRALS

d'k—Go(x —y) f (klx —
yl

—1),
(2n) k

and by recalling that

(B4)

and in any case the remainder is an oscillating function.
The string divergence in coordinate space is therefore
parametrized by

For the purpose of analytic continuation of X('"(p) to
the region p +m 0 &0 it may be sometimes useful to pos-
sess integral representations depending explicitly only on
the variable p . This may be achieved by exchanging the
integration over the string parameters A, , A,

' with the an-
gular integration; the latter can be analytically performed
and leaves us with functions of p and k . In particular
let us notice that

In turn one can show that

p —m —
A, k

—1
dA(1 l~l)

)( z+ 2+g2k2)2 4g2k2p2]3l2
(Cl)

and

8= dAA,
1 1 1

2 2 2 2

1

p2+A(1 —)(.)k +ma (p+)(k) +mo (p —Ak) +mo
L

(C2)

f dO 2. 1

2' 1+2p sin g J 0 [( 2+ m 2 +g2k 2)2 4)(2k2p2]l/2

)(,(k +4m())
X —1

p +A(1 —
A, )k +mo p +A(1 —)(, )k +mo

(C3)
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APPENDIX D: ASYMPTOTiC BEHAVIOR
OF LOOP-LOOP CORRELATIONS

logarithm cause the appearance of branch cuts along the
whole imaginary axis, with branch points at k =+2im0.
We can therefore rotate the integration contour

In Sec. VII we derived the integral representation of
the loop-loop correlation function G (r, R ) for two identi-
cal circular loops of radius r at a distance R. Let us
define the auxiliary function

y(, R)=N G(r, R)
(err m )

Jf (kr)Jo(kR)b (&)(k)k dk, (D 1)
err mo 0

k~ix+c, x, c real,

and recall the properties

J,(ixr) =iI, (xr ),

Ho (ixR ) = — K—o(xR ) .
2l

We then obtain

(D6)

(D7)

(D8)

normalized to the areas of the loops in order to admit a
finite limit when r~0. We are interested in the asymp-
totic behavior of J((r,R) when R ~ ac, as well as in nu-
merical evaluation for finite r and R. The integral in Eq.
(Dl) is well defined, but it is not absolutely convergent,
and this fact complicates both analytic and numerical
manipulations. We can however modify the integration
contour in the complex k plane to obtain an integral rep-
resentation of y(r, R) better suited to our needs.

Let us recall the following properties of the Bessel
functions:

y(r, R)=— 4
m-2r2m 4

0

X f xIf(xr)Ko(xR)Imh(z)(ix +e)dx .
0

(D9)

However b,(&)(ix+e) is real when 0&x &2mo, while,
when x & 2m0,

' 1/2
4m 0

LE, ,
x

(D 10)
Jo(z) =

—,'[H(o" (z)+Ho( '(z)],

where

Ho' '(z) =Jo(z)+iYo(z)
1/2

ki(z —m/4)
~ +0

7TZ Z

(D2)

(D3)

ln =ln +in .
g
—1 1 —

g

In conclusion we obtain the representation

y(r, R)= f xIf(xr)Ko(xR)
@2m 2~0

0

and when z is real Jo(z) =ReHo" (z). Therefore,

y(r, R)= — Ref Jf(kr)Ho( '(kR)h())(k)k dk .
7Tr mo 0

(trf) + gin —2
1+
1 —g

2 dX

(D 1 1)

(D4)

We must now study the singularities of the integrand,
that are the singularities of the function

Equation (Dl 1) is mow ready for numerical evaluation
and for an asymptotic expansion at large R, based on the
asymptotic expansion of K0,

1/2

2'
[+I

ln 2

77
Ko(z) -=

2z
e ' 1+0 1

Z
(D12)

' 1/2

1+

in the complex k plane. The denominator in Eq. (D5)
never vanishes for k+0; however the square root and the

and as a consequence, for large R we have
—2Rm 0

g(r, R)—=
z I, (2m ro)

m0 R m0

77 —2Rmo
e

r 0R m02 2
(D13)
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