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Two-dimensional SU(N) x SU(N) chiral models on the lattice
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Lattice SU(N)xSU(N) chiral models are analyzed by strong and weak coupling expansions and
by numerical simulations. Twelfth-order strong coupling series for the free and internal energy are
obtained for all N & 6. Three-loop contributions to the internal energy and to the lattice P function
are evaluated for all N and nonuniversal corrections to the asymptotic A parameter are computed in
the "temperature" and the "energy" schemes. Numerical simulations con6rm a faster approach to
asymptopia of the energy scheme. A phenomenological correlation between the peak in the speci6c
heat and the dip of the P function is observed. Tests of scaling are performed for various physical
quantities, finding substantial scaling at ( & 2. In particular, at N = 6 three different mass ratios
are determined numerically and found in agreement, within statistical errors of about 1%, with the
theoretical predictions from the exact S-matrix theory.

PACS number(s): 11.15.Ha, 11.15.Pg, 75.10.Hk

I. INTRODUCTION

Two-dimensional SU(N) x SU(N) principal chiral mod-
els defined by the continuum Lagrangian

sin(re/N)
sin(vr/N)

1&r &X —1 (2)

and the bound state of r particles transforms as the to-
tally antisymmetric tensor of rank r. The mass-A pa-
rameter ratio has been computed, and the result is [4]

8vr sin or/N

e 7r/N
(3)

where MS denotes the modified minimal subtraction
scheme. A "standard" lattice version of principal chiral
models is obtained by choosing the action

are the simplest quantum field theories sharing with non-
Abelian gauge theories the property of asymptotic free-
dom and whose large N limit is a sum over planar dia-
grams. Because of the existence of higher-order conser-
vation laws, multiparticle amplitudes are factorized, and
exact 8 matrices have been proposed [1—3]. The resulting
bound state mass spectrum is represented by

formed (at N = 3), most recently by Dagotto and Kogut
[12] and Hasenbusch and Meyer [13].

As a preliminary step within a more general program
whose ultimate goal is performing the numerical 1/N ex-
pansion of matrix-valued field theories, we decided to ex-
plore the properties of principal chiral models at larger-
than-usual values of ¹ In particular we wanted to inves-
tigate the following issues: region of applicability, accu-
racy, and N dependence of the strong coupling series;
the onset of scaling, with special attention to the in-
terplay between thermodynamical (peak in the specific
heat) and field theoretical (dip in the P-function) effects;
a check of conjectured exact results (especially mass ra-
tios) by Monte Carlo measurements in the scaling region;
the role of coupling redefinitions in the widening of the
asymptotic scaling regions.

To this purpose, we performed a variety of strong cou-
pling and weak coupling calculations, and a number of
numerical simulations for different values of N, and es-
pecially at N = 6, where the mass spectrum is sufB-
ciently nontrivial (two independent mass ratios can be
measured and compared with prediction), and O(l/Nz)
effects should be already significantly depressed.

In the present paper we only report on our analytical
results, without ofFering any details on the derivations,
that will be presented elsewhere.

II. ANALYTICAL RESULTS

S = 2/3N ) Re Tr [U—„Ut+„]
n, p

(4)

whose properties have been investigated by several au-
thors [5—11] especially by strong-coupling and mean field
methods. Numerical simulations have also been per-

A. Strong coupling

We found that the most convenient approach to strong
coupling is the character expansion. Free energy charac-
ter expansion for U(N) chiral models to twelfth order
and mass gap expansion to fifth order were presented in
Ref. [5]. The formal extension of these series to SU(N)
is easily achieved with the above-mentioned precision for
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N & 6. Paying some attention in order to avoid double-
counting, SU(6) can be also obtained by the same tech-
nique.

We found explicit representations of the coe%cients of
the SU(N) character expansion in the strong coupling

regime in terms of Bessel functions, by generalizing the
technique discussed in Refs. [11, 14]. These represen-
tations are exact up to 0 (P2 ). As a consequence we
could compute the SU(N) free energy to twelfth order in

P for N ) 6 in two dimensions:

F = 2P + 2P + 4P + 14+ P + 56+

8N2(35N —17) 2N2(14N —llN4 + 8N —2) 16N4(9N4 —26N2 + 8)(¹—1)2 (N' —1) 3(¹—1) (¹—4)2

NN —2 NN —i NN

N~+' N~+' (N + 2)N N ' N
24 4 ~+4 O ( ~+'&

(N + 2)! (N —1)N!|(N + 1)! N! (N —2)! (5)

In the case N = 6 an analysis of the O(P +
) and

O($2~) contributions led to the result

1 F = 2P + 2P + 11.2P + 68.602449/

and Q2 ———0.0670.
Asymptotic scaling requires the ratio of any dimen-

sional quantity to the appropriate power of the two-loop
l.at tice scale,

+374.945306 P' + 6395.760105P' +
(6)

AL, 21 — (bpT)
' ' exp

I

b, yb,'—
E bpT)

(10)

The internal energy (per link) density E is immediately
obtained from the previous results by

to go to a constant as T ~ 0. bo and bi are the erst
universal coeKcients of the expansion of the P function:

1 OI"4¹Bp
(7) d

pl(T) = —u —T = —bpT —bi T —b2 T +
GQ

L

These results have been used to draw the strong cou-

pling curves in our 6gures and compare very well with
numerical simulations in the region P 0.25.

B. Weak coupling

N N2
bo ———,bi8' 1287r 2 (12)

Short weak coupling series for the free-energy density
of U(N) and SU(N) chiral models were presented in Ref.
[6]

We calculated the energy density up to three loops
finding

MS
N' —2)

v32exp
I

vr

AL, 2¹ (13)

Evaluation of the ratios of A parameters requires a one-
loop calculation in perturbation theory, which leads to

E = 1 — —Re Tr [U„U„+„]N

N —1 ag ag2

8¹P P P2

where

(8)
8X

T@ —— —E (14)

In order to get a more accurate description of the ap-
proach to asymptotic scaling we performed the change of
variables suggested by Parisi [15], defining a new temper-
ature TF. proportional to the energy:

N2 —2

32N2
3N4 —14N2 + 20

768N4
—8%2+ 24

64¹

N' —4N' + 12
64¹

2 ) (9)

Notice that the corresponding specific heat is, by de6ni-
tion, constant. The ratio of A@, the A parameter of the
P~ scheme, and Al. is easily obtained from the two-loop
term of the energy density:

A@ t' N —2l= ~ pl

Qi and Q2 being numerical constants: Qi ——0.0958876 We encountered the usual (and yet unexplained) phe-
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nomenon of a much better convergence to asymptotic
scaling for quantities plotted as functions of P@ [16—18].
We tried to check for a perturbative explanation of this
phenomenon by computing the first perturbative correc-
tion to the two loop lattice scale,

A = (8~p)"'e-"~ i+ ' ' 'p-'+O(p-')b —bob2

Nb30

(i6)

in the standard and the P@ scheme, which requires the
calculation of the three-loop term of the P function in
both schemes.

In the standard scheme we found

1 N3 N2 —2

(2n)s 128 2N2

, (2N4 —13N'+186¹ )
(17)

where Gi ——0.04616363 [19,20]. The equivalence of the
SU(2) x SU(2) chiral model to the O(4) cr model allows
a check of this equation; indeed for N = 2 it must give
(and indeed it does) the same b2i of the standard lattice
O(4) cr model [19].

The P function of the P@ scheme can be written in the
form

phenomenon is fully nonperturbative, and it can presum-
ably be traced to the phenomenologically apparent corre-
lation existing between the peak in the specific heat and
the dip in the lattice P function: the nonperturbative
variable transformation that flattens the peak manages
to fill the dip, in a theoretically yet uncontrolled way.

III. NUMERICAL RESULTS

1
G(z —y) = —Re Tr [U(z) U(y) t]

N (21)

We define the correlation function (a from the second
moment of the correlation function G(z). On the lattice

We performed Monte Carlo simulations of the lattice
SU(N) x SU(N) chiral models for a wide range of values
of N (in particular N = 3, 6, 9, 15) and P. Summaries of
the runs are presented in Tables I, II, III, and IV.

In our simulations we implemented the Cabibbo-
Marinari algorithm [21) to upgrade SU(N) matrices by
updating its SU(2) subgroups. In most cases, we chose to
update the N —1 diagonal subsequent SU(2) subgroups
of each SU(N) matrix variable by employing the over-
heat-bath algorithm [22] (for the "heat bath" part of it
we used the Kennedy-Pendleton algorithm [23]).

An important class of observables of the SU(N) x
SU(N) chiral models can be constructed by considering
the group invariant correlation function

d 8N2
Pa(Ta) =— ad, T~ =-N, , &(T)Pi(&)

where

G(o o)
G

—1
4sin vr/I G(0, 1)

(22)

C(T) = 1 dE
(is)

is the specific heat and T must be considered as a func-
tion of T@. Expanding perturbatively Eq. (18) and using
Eq. (8) one finds

b2
——b2 + N bo (a2 —ai) + Nbiai (20)

As one may easily verify, the linear corrections to the
two-loop lattice scale in Eq. (16) are small and of the
same order of magnitude (although of opposite sign).
They cannot therefore explain the failure of the first and
the success of the second scheme with respect to achiev-
ing asymptotic scaling. We believe that the origin of this

where G(k, k„) is the Fourier transform of G(z). The
inverse mass gap ( is extracted from the long distance
behavior of the zero space momentum correlation func-
tion constructed with G(z). Moreover we measured the
diagonal wall-wall correlation length (~ to test rotation
invariance. M = 1/( should reproduce in the contin-
uum limit the mass of the fundamental state. The first
definition of correlation length (~ off'ers the advantage
of being directly measurable, while the calculation of (
requires a fit procedure. On the other hand, since (G, is
an ofF-shell quantity an analytical prediction exists only
for the inverse mass-gap [Eq. (3)].

In Tables I, II, III, and IV we present data for the en-
ergy density E, the specific heat C:—~ &&, the magnetic

TABLE I. Summary of the numerical results for N = 3.

0.18
0.225
0.25
0.27
0.27
0.27
0.29
0.30
0.315

18
24
30
36
42
48
81
SO

120

0.74118(5)
0-62819(12)
0.55589(4)
0.49992(4)
0.50000(3)
0.50003(3)
0.45172(3)
0.43111(2)
0.40400(2)

0.0712(4)
0.143(2)
0.1814(9)
0.1935(10)
0.1936(10)
0.1918(12)
0.187(2)
0.176(2)
0.166(3)

Xm

3.843(5)
9.is(3)

19.09(4)
40.22(9)
40.05(9)
40.21(9)
93.i(s)

144.2(8)
283(3)

(a
1.003(17)
i.87(2)
3.027(14)
4.79(2)
4.78(2)
4.81(3)
7.99(10)

10.41(10)
15.5(3)

0.990(10)
0.986(5)
0.988(3)
0.987(5)
0.984(6)
0.989(10)
0.993(7)
0.981(9)

0.994(13)
0.995(7)
1.004(4)
0.999(3)
0.995(6)
1.000(10)
0.989(9)
0.997(12)
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TABLE II. Summary of the numerical results for N = 6.

0.10
0.15
0.175
0.20
0.225
0.25
0.26
0.27
0.28
0.285
0.29
0.29
0.30
0.30
0.30
0.31
0.31
0.32
0.32
0.40
0.50

15
18
18

18
18
24
24
30
30
30
36
36
42
48
54
60
75
81
60
60

0.89781(3)
0.84170(2)
0.81060(2)
0.77592(2)
0.73506(4)
0.68234(8)
0.65537(7)
0.62377(5)
0.58690(8)
0.56710(7)
0.54730(7)
0.54732(7)
0.51134(5)
0.51134(5)
0.51139(8)
0.48188(4)
0.48186(4)
0.45764(3)
0.45769(3)
0.34033(5)
0.26335(4)

0.01076(7)
0.02690(10)
0.0399(2)
0.0596(3)
0.0903(6)
0.153(2)
0.200(3)
0.248(2)
0.302 (4)
0.332(6)
0.323(4)
0.323(5)
0.300(4)
0.296(3)
0.288(8)
0.256(3)
0.258(4)
0.227(3)
0.230{5)

Xm

1.5717(12)
2.091(2)
2.4806(14)
3.0425(18)
3.936(3)
5.731(9)
7.120(11)
9.407(9)

13.68(3)
17.28(3)
22.31(5)
22.38(6)
38.27(9)
38.30(12)
38.23(16)
65.1(3)
65.1(2)

108.4(5)
107.4(6)

(c
0.396(12)
0.56(2)
0.671(9)
0.816(12)

1.332(10)
1.560 (14)
1.882(6)
2.410(17)
2.836(13)
3.354(18)
3.37(2)
4.75(2)
4.76(2)
4.78(5)
6.55(5)
6.61(4)
9.14(7)
9.00(11)

I!~/(-

0.991(7)
0.994(6)
0.989(6)
0.991(8)
0.986(6)
0.989(4)
0.994(6)
0.999(6)
0.986(6)
0.992(5)
O.996(5)
0.997(7)

0.998(7)
0.997(6)
1.007(7)
0.992(5)
0.996(8)
0.996(4)
0.998(10)
O.995(5)
1.oo5(5)
1.000(7)
0.995(7)
1.001(8)

0.987(11) 0.998(15)

TABLE III. Summary of the numerical results for N = 9.

0.175
0.20
0.25
0.27
0.28
0.29
0.295
0.30
0.30
0.30
0.31
0.31
0.32

18
24
18
24
24
30
36
30
36
42
42
54
60

0.812908(11)
0.780870(12)
0.70339(8)
0.65937(13)
0.62920(12)
0.58801(13)
0.56281(12)
0.53844(21)
0.53845(16)
0.53847(12)
0.50028(9)
0.50035(9)
0.47234(5)

0.03?69(13)
0.0538(3)
0.120(2)
0.205(6)
0.268(8)
0.410(15)
0.457(16)
0.420(25)
0.411(21)
0.411(16)
0.307(12)
0.318(12)
0.252(10)

2.4494(12)
2.948(12)
4.868(8)
6.792(15)
8.78(2)

13.27(3)
17.96(5)
25.36(14)
25.22(12)
25.26(9)
47.1(2)
47.2(2)
81.6(4)

(G

0.672(7)
0.792 ( 10)
1.177(11)
1.497(17)
1.777(13)
2.371(14)
2.89(2)
3.67(3)
3.63(4)
3.68(4)
5.39(5)
5.46(5)
7.65(7)

0.980(8)
0.990(9)
0.994(7)
0.994(7)

0.992(8)
0.999(6)

0.993(9)
0.995(4)

0.995(10)
0.997(10)
0.987(7)
0.998(5)

0.998(8)
1.009{6)

0.995(10)
1.006(5)

TABLE IV. Summary of the numerical results for X = 15.

0.20
0.25
0.28
0.29
0.30
0.31

24
24
24
24
30
45

0.781395(16)
0.70846(3)
0.64990(9)
0.62134(13)
0.56809(18)
0.51202{10)

0.0515(5)
0.100(3)
0.204(8)
0.294(14)
0.67{4)
O.35(3)

2.9392(14)
4.692(4)
7.251(11)
9.31(2)

16.53{5)
38.89(16)

(c
O.775(12)
1.158(14)
1.561(10)
1.857(9)
2.750(12)
4.78(3)

0.997(10)
0.998(6)
0.995(5)
0.983(8)

0.992(9)
0.995(7)
1.000(6)
0.998(7)



49 TWO-DIMENSIONAL SU(N) XSU(N) CHIRAL MODELS ON THE. . . 1625

1.0 I I I

I

I I I I I I I I

I

1 I I I

I

I I 120 I I

I

I I I I

I

I I I I

I

I I

0.8

N=3
100—

MG/h„» (o)
MG/hL, 2l IE (o)

:5oo c (x)

E 0.6

0.4

X~

X
X

X 40
g 8

0 2 i i I & i i & I I & i i I

0. 1 0.2 0.3 0.4
I I I I I I

0.5
I I I I I I I I I I I I

0.2 0.25 0.3

FIG. 1. Energy versus P for N = 6. The dashed and dot-
ted lines represent respectively the 12th order strong coupling
and the third-order weak coupling series.

FIG. 3. Speci6c heat and asymptotic scaling test
Mo/AL„s& for N = 3. The dashed line shows the analytical
prediction (3). Data of C are multiplied by 500.

susceptibility y defined from the correlation function
G(x), the correlation length (~, and the dimensionless
ratios (~/( and (g/(, respectively, for N = 3, 6, 9, 15.

We carefully checked for finite size effects. It turned
out that for z:—L/(c, & 8 the finite size systematic errors
in evaluating infinite volume quantities should be safely
smaller than 1%, which is the typical statistical error of
our data.

In Figs. 1 and 2 we show the energy density versus

P respectively at N = 6 and N = 9. There the strong
coupling series up to twelfth order in P and the weak
coupling one up to third order in P are drawn.

As in other asymptotically free models, at all values
of N the specific heat shows a peak, connecting the two
different asymptotic behaviors, monotonically increasing
in the strong coupling region and decreasing at large
P. In Figs. 3, 4, 5, and 6 C is plotted respectively
for N = 3, 6, 9, 15 with the corresponding 13th order
strong coupling series (except for N = 3). Increas-

ing N, the peak moves slightly towards higher P values

(p~«k 0.285 at N = 6, p~«k 0.30 at N = 15),
and becomes more and more pronounced. We found the
position of the peak to be more stable at large N when
plotting C versus (~, as in Fig. 7. Notice that, increas-
ing N, the specific heat around the peak does not show
any apparent convergence to a finite value, which might
be an indication of a (first order?) phase transition at
N =oo.

The 12th order (13th order) strong coupling series of
the energy (specific heat) are in quantitative agreement
(within our statistical errors) for P 0.2, and in qualita-
tive agreement up to the peak of the specific heat, whose
position should give an estimate of the strong coupling
convergence radius.

Tests of scaling, based on the stability of dimensionless
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X
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X. '

CF~ 0 ™
0.4

p 2 i i I

0.1

I I I I I I I I I I I I I I I I

0.3 0.4 0.5

FIG. 2. Energy versus P for N = 9. The dashed and dot-
ted lines represent respectively the 12th-order strong coupling
and the third-order weak coupling series.

I I I I I I I I I I I I I I I 1 I I I I I I I I I I I

0.2 0.225 0.25 0.275 0.3 0.325

FIG. 4. Speci6c heat and asymptotic scaling test
Mo/Ar, q~ for N = 6. The dotted line represents the 13th-
order strong coupling series of C. The dashed line shows the
analytical prediction (3). Data of C and the corresponding
strong coupling series are multiplied by 500.
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FIG. 5. Speci6c heat and asymptotic scaling test
Ma/Ai„qI for N = 9. The dotted line represents the 13th-
order strong coupling series of C. The dashed line shows the
analytical prediction (3).

physical quantities (for example, the ratio (G/( ) and
rotation invariance (checking that ( /(~ 1), showed

that, within our statistical errors, the scaling region is
reached already at small correlation lengths, i.e., for (G
2 ~ Fitting data in the scaling region to a constant we

found

FIG. 7. Specific heat versus (G.

the strong coupling series is in progress.
We checked asymptotic scaling according to the two-

loop formula (10) by analyzing MG/AL, 2~
= I/((GAL„&~).

In Figs. 3, 4, 5, and 6 we show the corresponding data
respectively for N = 3, 6, 9, and 15. At all values of N we

observe the usual dip in the P function, which is, again,
more and more pronounced when increasing ¹ Since

we compare MG/AL, 2~ directly with Eq. (3)
[using also Eq. (13)], whose predictions,

(G/( = 0.987(2)
= 0.993(2)
= 0.995(3)
= 0.994(4)

for N =3
for N =6
for N =9
for N =15 (23)

M/Ag = 48.266... for N =3
= 72.412... for N = 6

= 77.989... for N = 9
= 81.001... for N = 15 (24)

400

300—

I

I

I I I I

I

I I I I

I

I I I I

I

I I I I

N=15

MG/Aq qi (o)
MG/AI /II E (O)

5oo c (&&)

Notice that scaling is observed even before the peak of
the specific heat. Since strong coupling series should be
effective in this region, it might be possible to calculate
continuum physical quantities by strong coupling tech-
niques. In order to investigate this issue, work to extend

1 A~
MG/AI„2i~z =—

GAE, 2l
(25)

are represented by dashed lines in the figures. Notice
that the Monte Carlo data are much larger than the pre-
dicted values, while the first perturbative corrections in

Eq. (16) are, in all cases, about 20'%%uII at P 0.3. Further-
more, data show a similarity with the behavior of the
specific heat, strengthening the idea of a strong correla-
tion between the two phenomena.

The approach to asymptotic scaling gets an impressive
improvement using the P@ scheme. In Figs. 3, 4, 5, and
6 we also plot

i00 +

0
0.2

I I I I I I I I I I I I I I I

0.225 0.25 0.275 0.3 0.325

FIG. 6. Specific heat and asymptotic scaling test
MG/Al, qI for N = 15. The dotted line represents the 13th-
order strong coupling series of C. The dashed line shows the
analytical prediction (3).

Now data approach the correct value, and the discrep-
ancies are even smaller than the linear correction calcu-
lated in Sec. III (which is about 15% at P 0.3). So
Battening the peak of the specific heat by performing the
coupling redefinitions T m T@, the dip of the p func-

tion disappears. We believe this to be the key point of
the success of the P@ scheme in widening the asymptotic
scaling region. The peak of the specific heat should be
explicable in terms of complex P singularities of the par-
tition function close to the real axis [24]. The sharpening
of the peak with increasing N would indicate that the
complex singularities get nearer and nearer to the real
axis, pinching it at N = oo where a phase transition is
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expected. Such singularities should also cause the abrupt
departure from the weak coupling behavior. Then a cou-
pling transformation eliminating the peak should move
the complex P-singularities away from the real axis, and
therefore improve the approach to asymptotic scaling.

From the Monte Carlo data and the exact result (3)
we can extract the efFective A parameters Al, (N, P) and
Az(N, /3E). Figures 8 and 9 show respectively the ra-
tios AL, (N, /3)/AI, ,2((N, P) and Aa(N, Pa)/Aa 2i(N, Pa),
where AL, 2i(N, P) and A@ 2i(N, P@) are the correspond-
ing two-loop functions: AI, 2i(N, z) = A@ 2i(N, z)
(8vrz)i/ exp( —87rz). Similarly to the specific heat, the
effective A parameter Ai, (N, P) does not give evidence
of convergence at large N. On the contrary Az(N, PE)
appears to approach a finite function A@(oo, P@), which
is well approximated by the two-loop formula.

In conclusion, scaling and asymptotic scaling (in the
/3E scheme) are observed at all values of N considered,
even around the peak of the specific heat. It is interesting
to notice that, even though the behavior of the speci6c
heat with respect to N suggests the existence of a phase
transition at N = oo, the above scenario is apparently
stable at large ¹

FIG. 10. M/Mo, M2/M, and Ms/M versus (G for N =
6. Dotted lines show the exact predictions (2) for the ratios
Ms/M and Ms/M.

IV. MASS SPECTRUM AT N = B

(~)0 b,d ——U bUcd —UadUcb (26)

Oabcdef UabUcd Ue f UabUc f Ued Uad UcbUe f
(33

+Uad UcfU, b + Ua fUcbUed Ua f Ucd Ueb

having respectively the same transformation properties
of the two and three particle bound states. The mass
values M2 and M3 were determined from the large dis-
tance behavior of the zero space momentum correlation
functions constructed with the above operators. In prac-
tice we found distances d & 1.5(~ to be large enough
to 6t the data to the expected exponential behavior. In
Table V and in Fig. 10 we present the data for the ratios
M/M~, M2/M, and Ms/M, analyzed using the jackknife
method. They show good scaling. Fitting them to a con-
stant we found

TABLE V. Mass spectrum for N = 6.

We studied the mass spectrum at N = 6, where Eq. (2)
predicts the existence of two independent mass ratios. In
order to extract the other two independent mass values
besides the fundamental one, we considered the operators

0.8

I I I I I I I I I I I I I I I I I I I I I I I I I i I

018 02 022 024 026 028

FIG. 9. AE(N, PE)/Aa, 2I (N, Pa) versus PE.

0.29
0.30
0.31
0.32

M/Mo

0.991(8)
0.993(3)
0.992(4)
0.996(4)

M2/M

1.78(3)
1.74(2)
1.72(2)
1.74(2)

Ms/M

2.02(3)
2.04(4)
1.98(3)
2.06(5)
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M/MG = 0.993(2)
Mz/M = 1.74(1)
Ms/M = 2.01(2) (28)

This result confirms, within statistical errors of about

l%%uo, the conjectured exact result (2), which predicts

Mz/M = 1.73205...

Ms/M = 2 (29)
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