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Two-dimensional SU(1V) x SU(1V) chiral models on the lattice.
II. The Green's function
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Analytical and numerical methods are applied to principal chiral models on a two-dimensional
lattice and their predictions are tested and compared. New techniques for the strong coupling
expansion of SU(%) models are developed and applied to the evaluation of the two-point correlation
function. The momentum-space lattice propagator is constructed with precision 0 (P ) and an
evaluation of the correlation length is obtained for several different definitions. Three-loop weak

coupling contributions to the internal energy and to the lattice P and p functions are evaluated
for all N, and the effect of adopting the "energy" definition of temperature is computed with the
same precision. Renormalization-group-improved predictions for the two-point Green s function in

the weak coupling (continuum) regime are obtained and successfully compared with Monte Carlo
data. We find that strong coupling is predictive up to a point where asymptotic scaling in the energy
scheme is observed. Continuum physics is insensitive to the effects of the large N phase transition
occurring in the lattice model. Universality in N is already well established for N 1.0 and the
large X physics is well described by a "hadronization" picture.

PACS number(s): 11.15.Ha, 11.15.Pg, 75.10.Hk

I. INTRODUCTION

The study of two-dimensional SU(N) xSU(N) prin-
cipal chiral models is strongly motivated by the deep
analogies between this class of field theories and four-
dimensional non-Abelian gauge theories. We only men-
tion here asymptotic freedom and the existence of a large
N limit that can be represented as a sum over planar
diagrams. A standard lattice version of the continuum
action

Sl„= 2NP ) Re T—r U„Ut+„
n, p,

1

NT

No exact solution of these models is known, even in the
large N limit. An exact S matrix has however been con-
jectured [1—3], and numerical evidence seems to indicate
that the corresponding bound state spectrum is repro-
duced in the continuum limit [4]. Also the mass-A pa-
rameter ratio has been conjectured by using the Bethe
ansatz approach, and the result is [5]

M
MS

MS

sin 7r/N

7rjN

where MS denotes the modified minimal-subtraction
scheme.

Information coming from the S matrix and large N
factorization leads to the conclusion that when W m oo
principal chiral models are just free field theory in dis-
guise. In other words, a local nonlinear mapping should
exist between the Lagrangian fields U and some Gaussian

d'x —Tr B„U(x)B„Ut(x)T
is obtained by introducing a nearest-neighbor interaction

variables [6]. The nontriviality of the realization may
however be appreciated when considering the two-point
Green's function of the Lagrangian field: While at small
Euclidean momenta there is substantial evidence for an
essentially Gaussian (free field) behavior, at large mo-

menta, where results from standard weak coupling per-
turbation theory are expected to hold by asymptotic free-
dom, the Lagrangian Beld seems to behave more like a
composite object formed by two elementary (Gaussian)
excitations, which cannot however appear like deconfined
free particles. This elementary "hadronization" picture,
where however the Lagrangian fields themselves play the
role of hadrons, is strongly supported by all numerical
evidence that we have produced, and for N & 6 is uni-
versal, i.e. , independent of X, which confirms that the
1/N expansion, were it available, would be an extremely
predictive tool in the analysis of these models.

In the persistent absence of such an expansion, we here
tried to apply all other analytical and numerical meth-
ods of lattice field theory that seemed appropriate to the
problem at hand. In particular we systematically ex-
tended the strong coupling character expansion to SU(N)
groups, generating compact formulas for many "stan-
dard" integrals and character coefEcients and extending
the series for the free and internal energy, the magnetic
susceptibility, and various definitions of the mass gap.
Since principal chiral models possess a wide scaling win-
dow in the strong coupling domain, these results become
a powerful tool for the analytic computation of physical
(continuum) quantities with very small systematic error
due to scaling violations.

We also performed many three-loop weak coupling lat-
tice computations in order to improve our understanding
of the approach to asymptotic scaling. We found that in-
troducing a new coupling T~ proportional to the energy
[7], the so-called "energy" variable, allows an amazingly
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impressive improvement in the convergence of lattice re-
sults towards the continuum "asymptotic scaling" predic-
tions, not only when considering such ratios as M/AL„
but also when parametrizing the running coupling de-
pendence of the two-point Green's function in the large
momentum regime.

Some of the numerical and analytical results presented
here were announced (and presented without proof) in
our Refs. [4, 8]. The study of the two-point Green's func-
tion in turn is fully original and constitutes another im-
pressive test of scaling and universality in the context of
large N principal chiral models.

This paper is organized as follows.
In Sec. II we describe a new technique for the strong

coupling expansion of SU(N) models. The strong cou-

pling series of the &ee-energy density is calculated up to
O(P ) forN)7.

In Sec. III we apply our new technique to the evalu-
ation of the two-point correlation function. Strong cou-
pling series of several diferent definitions of correlation
length are presented.

In Sec. IV we compute the three-loop weak coupling
contributions to the internal energy, and to the lattice
P function and anomalous dimension of the fundamental
field. The corresponding quantities in the energy scheme
are also calculated. Continuum predictions for the two-

point correlation function are obtained by solving the
corresponding renormalization group equation.

In Sec. V we present the results of Monte Carlo simula-
tions for several large values of N, and compare them to
our analytical (strong and weak coupling) calculations.

Spq = dU TrU TrUt (4)

= exp [F(P)]) d(„)z(„))t(„)(U)
(&)

where P(„)is a sum over all finite dimensional irreducible
representations of the group and y~„) and d~„) are the
corresponding characters and dimensions. Let us now
recall from Ref. [19] a few exact results concerning the
U(N) integration. If we denote by

A )v = det[I +, , (s)] (7)

where I~ are the modified Bessel functions and s = 2NP,
we find that

I'~(P) = lnAo)v(s), (8)

(9)

where dU is the normalized Haar measure for SU(N).
According to the definitions, the free-energy density E
can be obtained ft.om evaluating

expjF[P)] = f dU exp WP(TrU+ TrUt)

In turn knowledge of F allows the knowledge of the coefB-
cients z(„)(P) of the character expansion of the integrand:

xp NP (Tr U + Tr Ut)

II. STRONG COUPLING EXPANSION
OF SU(1V) MODELS

As stated in the Introduction, a renewed interest in the
strong coupling expansion of chiral models was stimu-
lated by the observation of precocious scaling well within
the expected convergence radius of the strong coupling
series [4], and by the relevance of the complex P singu-
larities of the partition function close to the real axis [9].

Strong coupling in matrix-valued lattice models was pi-
oneered many years ago by several authors. Most studies
were however addressed to the (relatively simpler) prob-
lem of computing U(N) group integrals [10—13], while
not many results are available concerning SU(N) inte-
gration [14—16]. Moreover, while very general compact
formulas can sometimes be written, often these formulas
require a lot of supplementary work in order to extract
the directly relevant information. Alternatively, tables
of numerical coeKcients can be routinely generated by
computer programs [17], but generality of the results is
completely lost. In the search for sufBciently general, but
at the same time manageable results we tried to follow a
pathway originally opened in Refs. [18—20], whose nota-
tion we shall try to follow as far as possible.

We shall focus on the &ee-energy density of the one-
dimensional SU(N) xSU(N) chiral model, which can be
reinterpreted as a generating functional for SU(N) group
integral in the "standard form"

and the following nonlinear ordinary diEerential equa-
tions are satisfied:

1 1 (dpi )v& N2
——s—&i,~ +sds ds 1 —bi~ ( ds 1 s

+(1—b, , ~) Ai, ~ = 0, (10)

ln F~ —ln F~
d8

(d&i,x

Moreover [20],

2
+m, & +m+1, N +m —1,N

= &~,iv —i&~,i'd+i (1 —&i,~) (12)

As a consequence of these equations, one may obtain the
following strong coupling U(N) results [19,20]:

Di ~(P) = J~(2NP) + 0 (P +
)

+2,K(p) JN (2Np) ~N i (2Np) JN+1 (2Np)—
+o (p'"), (14)
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FN(P) = N P —) kJN+i, (2NP) +0(P +
)

k=1
FN(p) = FN(p) + ln ) ((detU)" )

The passage to SU(N) is effected by the relationship implying

FN(P) = 1V P + 2JN(2NP) —2JN i(2NP) JN+i(2NP) —) kJN+i, (21VP) + 0 (P )
k=1

(17)

We can now make use of known relationships concerning the series expansion of a product of Bessel functions to
obtain a wide number of "standard" integrals:

S,,„=J!, p&N,

SpN+„——) (—1)~,
~ ~, p&N+1, (N+p)! t'pi

P& P & N+q

(
—1)~ (N + p)' (2N + 2q —2&

, ;(p —q)'. (N+q)'. ~
p&N+S, (20)

(2N + 2q)!(2N + p)! (pi
(2N+ q)!(N+ q+1)!(N+ q)! iq&

p&N+S . (2i)

One may check that essentially all Hansen's results [17]
are correctly reproduced and extended to arbitrary N by
the above formulas. Equations (18)—(21) are our first set
of compact results concerning SU(N) integration.

Even more important is however the possibility of ex-
tracting similar results for the coe%cients of the character
expansion. Let us brieffy recall from Ref. [18] the follow-

ing expression of U(N) character coefficients z(„)(P):

Z(~+8, i N
)

Z(p) ~oo
Z(8 ]N)

where, by definition,

z(, ,nr) —— ( (det U)' )

d(, )z(„+,, i~) —— ( (det U)' y(„)(U) )

(23)

(24)

(25)

det [Ig +, ,(2NP) ]d' ' ~
d [I (NP)] ( ( ))

(22)

Its SU(N) counterpart can be represented in the form

and all quantities are computed with the U(N) measure.
These results become however rapidly useless with grow-
ing N, due to the intractability of the determinants. We
may however easily recover from the previous results the
coefBcient of the fundamental character:

|9
Nz, (p) = FN (p)

= NP + JN, (2NP) —JN+i(2NP) —) JN+k(2NP) JNgk+1(2NP) + 0 (P )
k=o

(26)

Moreover we may want to restrict our attention to the
first 2N orders of the strong coupling series, in or-
der to exploit the techniques discussed in the Grst part
of this section. In this case the character coefficients
of U(N) can be reconstructed by the use of Schwinger-
Dyson equations [18]. Appendix A is devoted to a presen-
tation of our main results concerning the compact eval-
uation of U(N) and SU(N) character coefficients.

For what concerns the physical problem of evaluating
the d-dimensional free-energy density in SU(N) xSU(N)

I

chiral models within the strong coupling expansion, we
address the reader to Ref. [18] for a discussion of the re-
lationship between the SU(N) and the U(N) character
expansions. Suffice it to say that knowing the U(N) ex-
pansion to 0 (P2 ) allows an immediate identification
with the corresponding SU(N) expansion when N ) m.
When N = m only a minor modification is required in
order to avoid a double counting due to the self-duality of
the representation (1 1;0) = (0; 1 ~2). When N & m
the procedure must be much more careful, but in any
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case this condition would violate the already mentioned
restriction on the applicability of our approach, which
does not trivially extend to more than 2N orders of the
strong coupling series.

In order to exhibit some new results concerning the
I

strong coupling series for the free energy of the principal
chiral models, let us first introduce the notion of "poten-
tial" intimately related to that presented by Green and
Samuel in Ref. [18]:

s t s t 1—t s t 2—t 2t 2s 2—2t
Wst z(2 p) d(2 p) + z(y2. p) l(yp. p) + 2 z(&.z) d(&.&~

—2 N zz ¹

For comparison, we mention that

(27)

(29)

Wsc = Vsg + 2 V8t (28)

where V and V have been defined in Ref. [18]. The tenth order strong coupling character expansion for the free energy
in d dimensions is then [21]

I 1 I N, + 2
I 2 I (zg+ W42j + 41

2 I
+32

I 3 I

(&& FN (&&

&2)

+ 8
I 2 I

+48
I 3 I

—Wggz~ +Wsgz~ + 14
2 I

+372
I 3 I

+1296
I 4 I z~

(ttl (dl 1 s 4 (dl (d& (dl
E2) E3) .2 . E2) &3) E4).

+ 96
I 3 I W2xzz + 24

I 2 I
+576

I 3 I
+1536

I 4 I
Wxzzz

~dl, (dl (dl (dl

+ 56
I I

+ 4656
I I

+ 46272
I I

+ 95232
I I

zi
I 2) (3) (4) (6)

Equation (29) holds for all U(N) and for SU(N) when N ) 5. The SU(N) result for the "potential" W, t can be
obtained in the form

P" 4 (
Wst —- , 1+ JN(2NP) N'

I
1+

N I

+P ' —N JN+2(2NP)
I
1+ —

I

2s —228 11' '
2t

) t s—
—2JN(2NP)

I
1 —

I
. (30)¹)( ) t s-

+ JN 2(2NP)
I

1 —
N I

( gt s( — )t s-
+I1-—

I
+211-,

I

-4

By explicitly expanding in powers of P the 14th order character expansion for the Bee energy [presented in Ref. [18]
up to 0 (P~2j ], we obtain, for U(N) models (N & 7),

2 5 2 8%2 5%2 —2p2 p4 ps N (5N 2) s SN (5N 2) yQ

(N2 —1)2 (N2 —1)2

8N2(35N2 —17) 2Nz(14NQ —11N + 8N —2) 16N (9N —26N + 8)
(N2 1)2 (N2 —1)4 3(Nz —1)2 (N2 —4) z

432¹2
+ 1176+

¹

—1

32N4 240N2(5N —2) N (248N —144N + 48)(¹—1)2 (¹—1)2 (¹—1)s

N2(436NQ —344N4 + 208N2 —48) 64N4(9N4 —26Nz + 8)(¹—1)4 (¹—l)2(¹—4)z

and, for the SU(N) models (N ) 7),

4N 2
N 4NN 8N

N! (N + 1)! N!
2NN+2 8(N+ 2)NN 4NN+~ 24NN ' 4NN 2

(N + 2)! (N + 1)! (N —1)N! N! (N —2)!
2NN+4 4NN+2(N + 4) 4NN+t(N + 4N + 2) 8NN+1(1 + N N2)

3(N + 3)! (N + 2)! (N + 1)(N + 1)! (N —1)(N + 1)!
4NN+s 24NN (N + 2) 4NN 8NN 24NN+'

3(N —1)(N —2)N! (N + 1)! (N —1)! N! (N —1)N!
4NN 112NN ' 24NN 2

N+s N+s
(N —1)z (N —3)! N! (N —2)!

(31)
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The SU(6) result, including an analysis of the 0 (P ) contribution, is finally

56 s 84 038 s 459 308 is 548 436 4292 2 4 6 s
5 1225 1225 85 750

+ +

The strong coupling series of the internal energy E can be obtained by

1dy
4 dP

In order to extend the strong coupling series of thermodynamical functions to
pute the strong coupling series of correlation functions, it will prove convenient
corresponding to nontrivial loop topologies and three-body interactions. For the
in view of further developments, we shall define

higher orders and in order to com-
to define more involved potentials
purposes of the present paper, and

(1;1) (2;0) (1 ;0) , b (1;1) (2;0) (1 ,0
(z'. z', ) d . (z. z„

ab Z 1 ]) + Z(1.1) + ' + (1.1) Z 1("i; i "i '; i) ' &"(;oi "l 'oi&
(35)

a b b c c 2 2b+2c
Wabc = Z(1.1) Z(2.p) d(2.p) + Z(1&.0)d(] 2.0) Z(2.p) d(2 ~ 0) + Z(1$.0) d(12 ~ Q) 2N Wa] Z1

a b+c b+c
zl] ii zl2 pid(2. ei + z(„s)d(i2.pi + permutations of (a, b, c)

+ a+b+c d2 d 4N4 2a+2b+2c
(1 1) (1 1) (1;1) 1 )

and the three-body potentials

(36)

1—2t s tVq„——N (3 0) d(3.0) + Z(2 1 0) d(2 1.0) + Z(2, 1)d(2;1) Z(2.p) d(2.p)

q
(2 1 0) (2)1;0) + (13 p) (1;0) + (12 1) (1 1) (12 0) ~(]2;0)

1—t q s t 2t+1 q+2 z(2 1)d(2. 1) + z(12 1)d(12.1) z(1.1)d(1.1)
—2N Z1 Wq+s, t+1

-2 N'+ + 'W —2 'N '+ q+2
Z1 q Z1

III. STRONG COUPLING EXPANSION OF
CORRELATION FUNCTIONS

G(p) = ) G(x) exp
~

i
)

(40)

and extract the mass gap from the (imaginary momen-
tum) pole singularity of G(p), i.e. , by solving the equation

G (p=ip) = 0 (41)

There are a few well-known (but not necessarily well un-
derstood) results concerning the evaluation of the mass

A typical application of the strong coupling analysis
amounts to the evaluation of the so-called "true mass
gap" of the model, which in turn is defined to be the
coefficient of the asymptotic exponential decay of the two
point correlation function of the order parameter. In
SU(N) x SU(N) chiral models one defines

G(z) = N(T [U (*)U(0)j) (38)

and the true mass gap is

p, = — lim
ln G(T)

(39)

It is also possible to introduce the lattice momentum
transform

gap. In particular it is often stated that in the strong
coupling regime G(z) "does not exponentiate" and it is
therefore necessary to define the wall-wall correlation

G (xi') = ) G(zi, xi') (42)

enjoying the exponentiation property, and assume

lnG (x~~)
p = — lim (43)

Appendix B is devoted to a short discussion of this ques-
tion, which finds an easy illustration in the context of the
exactly solvable Gaussian model.

In practice, when extracting physical quantities from
Monte Carlo simulations, one typically faces a situation
where it is nonrealistic to solve numerically Eq. (41),
which requires an analytic continuation to negative p
of the (usually poorly known) function G (p). We shall
be able to perform this exercise in our specific study, but
this is far from being an easily generalizable practice. On
the other side, working on a finite lattice often prevents
us from exploring a sizable region where exponentiation
may hold with small errors for arbitrary P. We therefore
found it convenient to analyze explicitly the strong cou-
pling expansion of the Green's function G(x) for finite
fixed lattice distance in order to establish a benchmark
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both for exponentiation and for the analysis of the nu-

merical results.
Without entering many details of the (sometimes cum-

bersome) strong coupling calculations, we want to sketch
the main ingredients and logical steps before presenting
our results. In passing we notice that we might consider
a slightly more general Green's function than Eq. (38):

( ~ [U'( )U(0)])
G(„)——

d(.)

where r can be restricted, for principal chiral models,
to the completely antisymmetric representations (1";0).
The strong coupling expansion is naturally ordered in the
length of the path that we choose in order to connect the

point z = (zl, z2) with the origin. In turn, since every
path can be decomposed into a sum of shorter paths,
we may in general establish recursive relationships con-
necting the (fixed length) contributions to G(xl, x2) with
the (shorter length) contributions to Green's functions of
nearby points.

The strong coupling character expansion of Green's
functions involves, to lowest orders, only a summation
over properly weighted self-avoiding walks. The effect
of "potentials" is a higher order contribution that must
be included by considering bifurcating paths "dressed"
with properly chosen representations of the link opera-
tors. For all U(N) groups (N & 2) and SU(N) groups
(N & 4) the 0 (Ps) strong coupling character expansion
may be represented by

G(zl) x2) = zl CO(zl) X2) + C2(zl) X2)zl + C4(zl ~ X2)zl + A(zl) X2)zj~ Wll + B(zl) x2) W21 + 0 (zl)

(45)

(47)

where the quantities C21, (zl, x2) represent the number of self-avoiding walks connecting the origin with the lattice
point z = (zl, Z2) and whose length is l = zl + Z2 + 2k, while the functions A and B satisfy the relationship

A(zl, Z2) + 2B(zl, X2) = 2(xl + X2) Cp(zl, X2) (46)

In Appendix C we derived the results

C ( )
~(z, +Z2& ~(z, +

*1

fz, + z, l xl(zl + 1) Z2(Z2+ 1)
C2(z] ) z2) +Z2+1 z] + 1

(48)

,(Z, +Z2 x2(Z2 + 3) zl(zl + 3)
C4(zg, z2) z1Z2 + 2zl + 2Z2 + +

zan+1 z2+1

+ (Z2 —1)x2(x2 + 1)(x2 + 2) (zl —1)xl(zl + 1)(zl + 2)+
2(xl + 1)(xl + 2) 2(Z2 + 1)(Z2 + 2)

2z] z2

zy+z2 (49)

z2 + z2
A(zl 1 Z2) 2 Co (zl I Z2)zy+z2

2zgz2
B(zl, z2) = Co(*1,X2)Zi+ Z2

Writing down and solving recursion equations for the co-
efficients of the strong coupling series for Green's func-
tions is a very powerful but by no means simple or effi-
cient approach to the evaluation of the mass gap. In prac-
tice we may observe that, to any given order of the strong
coupling expansion, the recursive relations between coef-
ficients imply that only a finite number of short distance
wall-wall correlations for L & L may violate exact expo-
nentiation because of boundary condition effects. There-
fore one may compute the quantities

lnG (L+ 1) —lnG (L)

for the first few values of L until they become constant.
The constants obtained are directly related to the masses
by the relationships

p,„.s, = lnG„.g, (L) —lnG„d,(L+ 1),

= lnGg; s(L) —lnGs; s(L+1),
2

where by de6nition

G.;,.(I,) = ) G(L, X2),

Gg;~s(L) = ) G(L —X2, X2)

L&L, ,

L&L&,

(54)
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It is possible to prove that the alternative definition of p,

based on solving the equation

G (p=ip) = 0

perturbatively in the strong coupling expansion param-
eter gives stable results only after all correlations up to
I = L have been included in the Fourier transform of
the propagator, and the result obviously coincides with
Eqs. (53) and (54). It is therefore convenient to construct
explicitly the Fourier transform of the inverse propagator
and extract the relevant physical parameters by a direct
analysis of this last quantity, making use of the above
considerations in order to establish the accuracy of the
computations, which in general will not coincide with the
precision reached in the evaluation of G i(p).

The evaluation of G i(p) is dramatically simplified by
the observation that any strong coupling expanded two-
point Green's function can be unambiguously separated
into the form

G, (0) =1,
1dr

Gp(1, 0) = 1 —E(zi) = — = s(zi)4dp

which can be cast into the form

(60)

- t'2n& (zBoi '"
Ao„kn) ( Ao)

Ap —1
zBp ——

4E

where Gp{z) is originated by the Fourier transform of the
generalized Gaussian propagator

1
Gp(J) =

Ap(z, ) —2ziBp(z, ) Q„cosp„
and the functions Ap{zi) and Bp(zi) are uniquely deter-
mined by the conditions

G(z) = Gp(z) + EG(z), (58) From the results of the previous section we may extract

s(zi) = zi + 2zi + 6zi + 2ziWii + 28zi + 12ziWii +2ziWsi
+140zi + 76zi Wii + 6zi W2p + 8zi Wsi + 2Visi + zi Vioo + 0 (zi ) (62)

As a consequence we obtain

Ap(zi) = 1+4zi + 12zi + 60zi + 16zi Wii + 316zi + 96zi Wii + 16zi Wsi + 1844zi

+848ziWii+ 64ziWii + 48ziW2o + 64ziWsi + 16ziVisi + 8ziVjoo + 0 (zi ),

Bp(zi) = 1+ zi + 7zi + 2zi Wii + 31zi + 6zi Wii + 2zi Wsi + 189zi + 86zi Wii
+6zi Wii + 6zi W20 + 2zi Wsi + 2zi V131 + Zi Vloo + 0 (Zi ) (64)

A direct evaluation of all coordinate-space Green's functions that are nontrivial to 0 (ziio) allows us to determine
AG(z) with the same precision, since Gp(z) is easily obtained by antitransforming Eq. (59). By noticing that the
first nontrivial contributions to AG(z) are 0 (zsi), it is now relatively easy to evaluate directly G (p) to 0 (zi ).
We obtained

G (p) = A(zi) + ziB(zi)p + ziC(zi)pip2 + ziD(zi) (pi + p2) + ziE(zi)p pip2 + 0 (zi )

where p2 = 4sin (p„/2),p2 = P„p2,and

A(zi) = Ap(zi) —4ziBp(zi) —ski )zi (1 —4zi + 3zi + 6zi —3zi)
-16' ' z,' (1 —4z + 2z,') —Sal' z,' —Sa ' z,"—16'(' z,"+0 (z,"),

(65)

(66)

H(zi) = Bo(zi) + 4A~ uzi (1 —2zi + 2zi + 3zi) + sb, ~ lzi (1 —2zi) + 10K~ uzi + 8A~ zi + 8E~ ~zi + 0 (zi )

(67)

C(z ) = —2b, ~ j —4A'l iz —sb, "z,' —4Z"z,'+ 0 (z,') (68)

D(z ) = —2b, ~ l —2b, ~ lz —2A~ )z + 0 (z )

E(z, ) = W~'l+0(,') .

We have defined the following combinations of potentials:

(70)
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(71)

—Z1 W31 + 4Z1 W21 + Z1 Wlp 7Z1 W11 4&
(2) —4 —2 —2

(72)

= z1 W11 + 2z1 W31 4z1 W21 —2z1 W10 + 4z1 W11 + 1, (73)

2z1 W21 + z1 W111 2zj W11 4Z1 W31 + Z1 W41 + 16Z1 W21
—2z1 W20 —3z1 W11 —26z1 W11 + 4z1 W10 —9, (74)

(s) -s 1 —10 —9 —3 —4 —8 —6Vj 1p + —Z1 V221 —Z1 V131 Z1 Vj pp
—Z1 W11 + Z1 W41 —8z1 W31

—2 1 53+—Z1 W21 3Z1 W20 —Z1 W11 —53Z1 W11 + 13z1 W10 + Z1W11W21 + Wp, —1 (75)

Equation (65) is a rather compact collection of physically
relevant results concerning the strong coupling regime
of the models under investigations. We notice that the
nearest-neighbor Gaussian structure of the propagator
starts being violated to 0 (z~) in diagonal correlations
and only to 0 (zz~) in side correlations. We therefore
expect a substantial agreement of the ratio (~/(, where

= (z2) and (~ = I/p»~e7 with its Gaussian value
even for not too strong values of the coupling (as we will
see in Sec. V).

By standard arguments we can establish relationships
between the propagator, the susceptibility and its second
moment:

) L G4ii43g (L)
L=1

ziB(zx)
A(zg)2

(77)

Hence we obtain

1 A(zq)
(z2) zgB(zg)

(7S)

X(~ ) = —).(*]+~/)G(~17&2) = ) L Gside(L)
1)+2 L=1

x= ) G(zg7x2) = G8is, (0) + 2) G0ig, (L)
+1 y2 L=1

ZQ
1

zgB(zg)

= Gg; g(0) + 2 ) Gs; g(L) = 1

A(zg)
(76) Moreover, by solving appropriate algebraic equations we

find

M„d, ——2 (cosh@„g,—1) ~ MG + zi A(zg) D(zg)
Z]

(S0)

h ps;~g 1
r Mz A(zq) (z&D(zq) z&C(zq) l z&A(zq) E(zq)

By substituting our explicit results we find

1+4z, + 12z,'+36z, + 100z, + (284+ 8z, *W„zz+ (788+ 48z, 'Woo+ 8' ' )z,

+~ 2204+ 216z, Wzo + 8z, Wo, 4-3213 ' )z, 4- (6068+ 800z, Wzz+ 48z, Wz, + 8843 '

+164 z1 + 16820 + 8z1 V131 + 4z1 Vjpp + 2904z1 W11 + 24z1 W11 + 24z

(3)' 9+200z, Wz, + 30421 ' + 64K + 84o™~z, +(46172+ 48z, Vioz+ 24z, Voo+ 0840z, *W z

+192z W + 144z W + 704z W + 1000K + 160' + 64A + 8A + 164 z + a z

(»)
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z lMG. ' = 1 —4zl + 3zl + 2 2zl Wll zl —4A zl + 6 + 6zl Wll —2zl W31 + 164 zl

166()+8~() zl+ 14 2zl V131 —zl Vlpp 4zl W11 —2zl W11 6zl W20

+10z W3 + 4A + 326 —106( ) z + 126 ) —166( ) + 32'( ) —86( )

-8S(') +16z,-'W„S(') z,'+ O z," (s3)

zl ZG —— 1 —zl + —6 —2zl F11 zl —4A( ) zl + —18 —2zl Wll —2zl TV31 + 8A zl

—8A Zl + —98 —2Z1 V131 zl Vlpp —52Z1 Wl 1 2Z1 &11
—6Z1 W20 + 2zl &31(2) 7 9 —4 —2 —4 2 —4 —6

—286')+162(') —106') z'+ 606' +166' —86' —86(')+16Z-'W 6' z'+0 z"
(84)

22
p,„a,—— —lnzl —2zl — 2+ 2zl W» zl + 4zl W» + 4A ' zl

5

4+ 2Z W —6A z — —+4Z VV +4z W' —166 +86 + 26( z"86

28 + 32zl ~11 + Zl Wll + 6zl ~20 zl W31 + 2zl V131 + 1 V] pp + +286

-16'' —2S')+2~' z' —2S(') "+O z,' (s5)

Pdiag 5 1 1 4

y2
= —ln 2zl —z — —+ 2z R'll + —6 z

2g( ) + /( ) + /( ) +O (s6)

The contribution proportional to

Zl TV31 —2Z1 %21 + Zl All

in Eq. (85) was obtained by evaluating the 0 (z~~~) contribution to G(3, 0) and could not have been predicted from

the knowledge of the 0 (z~~P) contributions to G ~(p): This is in accord with our previously discussed considerations.
Further useful results are

+2)I—1)z~W~~ + 2zz (E~, ~ —24I I) bz z + 22)21. + 5)z~ —4(I+4)zzlVzz + 2)151 .+ 28)z~W~~

—2(L —3)z& Wz& + 2(L + 2)z& Wzp —20zz Wqq + 2(L + 6)zz Wsq + 2(L —1)W4q —2(2I —3)z) Wqq

+4(I —1)z~Wzz + 2(L —l)z~W))) + 2z) LV3y + z&LV)pp+ 2z) 4 6L, y

+2z 2A + 4 —2A( bL, 0+ 0 zl (88)

ln G„q,(L) = L ln zq + 2(L + 1)zq + —(L + 7)z~ + 2(I + 2) z~ + —(L + 51)z~ + 2Lz~ Wqq
3 5

—4(L —1)zq Wgg + 4Lz) Wgg + 2(5L + 9)zq + 4(3L + 1)zq Wgg —2(3L + 1)zq Wzg + 2LW3$

+2zz b, hr, p + —(172 —3L)z~ + 4(L + l)z~ Wqp —12(L —1)z) W) q + 4(2L + 3)z~ Wzq

(89)

lnGg; s(L) = Lln2z) + (L+ 4)z) + (2L+ )z) + {L+1)z) W)q + —{L—1) Wz)
2 2

1 4 (1) 754+79L 6 L 4 4 2 3+—z~ A hl, p + z~ + —z) Wyp + (2L + 9)z~ W&z + (L + 4)z) Wzg + LWsg-
+ z W + —z ~()g + —z ~()+2~() —4~() g +O z
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The results we have obtained are expressed in the lan-

guage of the character expansion. However, within the
precision of our expansion it is possible, for all U(N) and
SU(N) groups with N sufficiently large, to convert the
results into a standard strong coupling series by the re-
placements (dictated by our previous analysis)

In Appendix D we give explicitly the N = oo strong
coupling series of some relevant quantities considered in
this section.

Zj

z1 W11 0,—2

(90)
IV. WEAK COUPLING EXPANSION

4N'
WQ, —1 —z1 W1Q —2Z1 %21 —

2
—2 —4 4

2 N2 —1 N-+oo

(92)

For both continuum and lattice, at low temperature,
the perturbative expansion is performed by setting

2N2(5N2 —2)
N2 1 2

U = e' A=) TA (102)

z1 W41
—8 N2(9N4 —6N + 2)

(N2 —1)s

N2(7N2 —2)
1 11 —

(N2

(94)

(95)

[T are the generators of the SU(N) group and A are
N —1 real fields] and expanding U in powers of A. The
above change of variables introduces an additional ill-
defined determinant in the partition function: Indeed
[24],

[dU]=K [dA )e s-

z1 W21
—6 N (IIN —6N + 2) : 11(¹—1)s

—4N'
ZV —].) N-+oo

(96)

(97)

(103)

—4
z1 V1QQ 0 ,

—5
z1 Vj.1Q —0

—9
z1 Vj 31 0

8N4(3N2 —2)(¹—1)'(¹—4) iv~~

(98)

(99)

(100)

(101)

where As, = P ifs,A and K is an irrelevant constant.
In dimensional regularization, the measure term does not
contribute, as a consequence of the rule f d"k = 0 ~
b'~(0) = 0, where d is the space dimension.

Short weak coupling series for the &ee-energy density
of U(N) and SU(N) chiral models on the lattice were
presented in Ref. [25]. We calculated the energy density
up to three loops finding

~ ~ ~

N2 —18¹ (104)

where

N2 —2

32¹
3N4 —14N2 + 20

768¹
N —4N +12 N —8N +24

64N Q' ' 64N (105)

Q1 and Q2 being numerical constants:

(2n.)2 (2m. )2 (-2 + k2 P)
(ki + k2)„(ki+ ks)„

Q2 —— b( k;)
k2 k22 ks2 k42

-2 j=' (106)

Q1 ——0.095 8876 and Q2 ———0.0670.
We calculated



6082 PAOLO ROSSI AND ETTORE VICARI

G(T, x)
j[dU] ~Re Tr [U(0)U(z)t] exp( —S/T)

f [dU] exp( —S/T)
(107)

in perturbation theory, and in two regularization schemes: dimensional and lattice regularizations. In dimensional

regularization and in x space,

N2 —1 T 1 N2 —1 N2 —2 T2 1
(108)

where S~ = (2Tr)+22'(21'(1+ e/2) and e = d —2. In p space,

Gri(T p, ~) = —
s 1 + TSg +T—Sap

N21 3N i
64 e 128

(109)

On the lattice we obtained [neglecting 0 (a ) terms]

Ga(Tz, a) = 1 + T E)z/)a+ T E)z/a)(1+ 2E)z/a)) +
N' —1 N' —1 N'-2

where

( 3
E(z/a) = —

~

lna/z —pg ——ln2
~2 )

(110)

N2 —1 T N —2 ( 1')
Gl, (T,p, a) = — 1 + T

i B(pa) + —
~2N p~ 4N ( 4)

where

B(pa) = —
~

lnpa ——ln2
~

2Tr i 2

1 ( 5 1)
C(pa) =

i
ln pa ——ln 2 ——

~{2x)' ( 2 2)
(113)

and Gi is a numerical constant: Gi ——0.04616363 [26,
27]. The equivalence of the SU{2)x SU(2) chiral model to
the O(4) 0 model allows a check of these expressions; in-

deed, for N = 2 they must give (and indeed they do) the
same results obtained for the corresponding correlation
functions in the standard lattice O(4) cr model [26].

On the lattice, neglecting O(a2 ln" a) terms, the cor-

relation function GI, (T, p, a) satisfies the renormalization
group equation

t9—+ pr(T) + "/1(T) Gl, (T,p, ) = 0,
BQ, AT

(114)

where the functions Pl. (T) and pL, (T) tell us how the
temperature and the 6eld U should vary with the lattice
spacing a to keep the renormalized quantities 6xed:

d
pL, (T)—: a T= —bo T ——b—i T —b2 T + . . .

Ia

GR(t, z, p) = Zr/(T, ap) Gl, (T, z, a) (117)

where t is the renormalized coupling connected to the
temperature by the relation T = tZq, and p is an energy
scale. In Eqs. (115) and (116),bp, bi, and pi are universal
coefficients independent of the regularization scheme, and
appearing also in the renormalization group equations
giving the behavior of the renormalized quantities when

varying p keeping the bare quantities 6xed:

N
60 ———

8'
N —1

bg
N2

128vr 2

(118)

The coefficients 62, p2, and p3 can be calculated
using the procedure described in Ref. [26]. We determine

the renormalized functions Z, (T, ap) and ZUM (T, ap)
that satisfy the equations

G& {t,x, p) = ZU (T, ap) GI, (T, x, a)

T = ZM'(T, ap)t, (119)

(112)
I

ZU is the function entering the renormalization of the
two-point function

pl, (T) =—a—InZU = piT+p2 T +ps T

(115)

(116)

where t and G& (t, z, p) are respectively the coupling
and the correlation function renormalized in the MS
scheme. Renormalizing in the MS scheme the expres-
sions (108) and (109) we find
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GMS(t, = 2e ~s) = 1 + O(t )

GMs t 1

p —t = t—p —ln Z, (T, uy, )
MS

dp dp
= p (t) = —bpt' —b, t' —b2 t'+ - . .

MS

(127)

Zrr (T, ap) = 1 + MiT + —
~

1+ —
~
MlMS 1 ( bp)

vi)

MiL1 T— + O(T ) (i23)

where

Ml ——ei (inane + fl), ei ——pi, fl ———
2 ln2

(124)

The ratio of the A parameters AMs and Ar, is given by

3¹'
2N p2 128 2~ 2

1 + + O(t ), (120)

where p@ is the Euler constant. Then by imposing Eq.
(119) we obtain

Z, (T, ay) = 1 + Li T + L2T + O(T ), (121)

where

L; = c; (ln ap + d;), ci = bp

5 N2 —2
d] = ——ln 2 —7c

2 2¹
1 2 (2N —13N +18

d2 ————ln2 + ——z. + 4Gi
2 4 ( 6¹

(i22) and

Pr, (T) = Ta——lnZi (T, ap)
dG

(i29)

pr, (T) = a—lnZrrs(T, ap) .
da

(i30)

By comparing the perturbative expansions of Eqs. (127)
and (128) with those of Eqs. (129) and (130), the coeffi-
cients b2~ and p3~ can be written in terms of the quan-
tities introduced in Eq. (121) and the corresponding co-
efficients b2, p2, , and ps, , which have been already
calculated [28]:

3¹3 1
Ms 512 (2&)3

(131)

and [29]

MS

p ln ZU (T ap) 7Ms(t)
dp

= P1~ + P2MS~ + '73MS~ + '
7

(128)

where PMs(t) and pMs(t) are, respectively, the P function
and the anomalous dimension of the field U in the MS
renormalization scheme. On the other hand, deriving
with respect to a, keeping the renormalized quantities y,

and t. fixed, we must obtain the P function and the U field
anomalous dimension defined in Eqs. (115) and (116):

AMS ( N2 —2)
AL,

= exp( —dl) = ~32exp
~

lr
2N2 )

(125)
Indeed

3N(N2 —1) 1

256 (2z)
(i32)

p2~ is easily obtained from Eq. (116):

(N2 —1)(N2 —2)= bppi(fi —dl) = 64~¹ (126)

b2~
——b2, + bpbi (di —dp)

73L, '73Ms + 71 bp (di fl) bl (d2 fl)

By definition, when keeping the bare quantities a and
T 6xed we must have In particular we 6nd

(134)

(i36)

In the large N limit,

N —2 2 /2N —13N +18b„=, 1+z. , —7r' ~, +4G,
~)27r 3 128 2N2 g 6¹ (i35)

Having calcu1ated b2, we can evaluate the erst perturbative correction. to the two-loop relationship between the
lattice scale AL, and the temperature:

(8 p)1/2 —swP 1+ 1 P 2L p
—1+ O {p

—
2)

b2 —bpb2

Nb3p
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b2i bob

Nb~
0.060 509 5 (137)

In order to solve Eq. (114), let us introduce the dimensionless function HL, (T, pa) = p GL, (T,p, a). A formal solution
of Eq. (114) is given by

Hl, (T,pa) = HL, (0, 1) exp dz '')
where 0—:0(T,pa) satisfies the equation

(138)

0(T, &) = pl, (O)
t9y

Defining the function

z(T):—exp
~

dT pL, (T) l

alibi —f2~ho p2~bibo+ g i(b z~b o—bi)bo —ps~be+ (alibi —p2~bo) 2 3

0 0

HL, (T,pa) can be rewritten in the form

Hl, (T,pa) = z(T) ' z(8) Hl. (0, 1)

Solving perturbatively Eq. (139) we find

1 bi lnu bi lnu(lnu —1) + b2~bo —bi (In ub1— +
bou b2ou b u2 ( us )

(139)

(140)

(142)

where u = 1n(p/AL, ). The perturbative expansion of
Hl, (8, 1) can be obtained from Eq. (112).

In order to get a more accurate description of the ap-
proach to asymptotic scaling we performed the change of
variables suggested by Parisi [7], defining a new temper-
ature TE proportional to the energy:

C(T)
1 dE

(147)

is the specific heat and T must be considered as a function
of Tz. Expanding perturbatively Eq. (146) and using
Eq. (104) one finds

8N b2 ——b2, + N bo (a2 —ai) + Nbiai
(143)

The scale Az is related to the variable Pz by

(148)

Az (
exp

/

vr

Al, ( 4¹)
(144)

The ratio of Az, the A parameter of the Pz scheme,
and AL, is easily obtained from the two-loop term of the
energy density:

Az = (8vrPz)'~'
b2 —bobg—8~Pz 1+ 1 0 2EP —1+O (P

—
2)

0

(149)

Within the Pz scheme, the two-point function
Gz(Tz, p, a) must satisfy the renormalization group
equation [neglecting 0 (a ln" a) terms]

In the large N limit

b2i —hob2

Wb3o
—0.040 09 (150)

t9 t9——+ Pz(Tz) + Vz(Tz) Gz(Tz, p, ) = o
t9a OTE

The function pz(Tz) is easily obtained from the rela-
tion

d SN'
Pz(Tz)—: a Tz = —

z
—C(T) Pl, (T)da ¹

—1
(146)

(145)

The P function of the Pz scheme can be written in the
form

z(Tz) = &1(T),

and therefore

(Nz —1)(N2 —2)

Y& 7s 2 Y2 Nai + f1N' (2a', —a.)

(151)

(152)

where The renormalization equation (145) can be solved fol-
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lowing the same procedure used in the standard scheme.
Defining HE (TE,pa) = p GE(TE, p, a) we obtain

HE(TE 1 pn) zE(TE) zE(OE) H(OE I)

where

zE(T)—:exp
~

dTE
~E(TE)l
PE TE )

and OE = OE(TE, pa) satisfies the equation

(153)

(154)

y OE—(TE, y) = pE(OE),
By

(155)

whose perturbative solution is obtained from Eq. (142) by
substituting b2~ ~ b2a and AL, ~ AE. The perturbative
expansion of HE(HE, I) can be found by reexpressing
perturbatively T in terms of TE in the right-hand side
(RHS) of Eq. (112).

Notice that having performed only a coupling redefi-
nition T ~ TE, it must be GE(TE, p, a) = Gl, (T, p, a).
But when evaluating them at some finite order in pertur-
bation theory we get different results, which are different
approximations of the same quantity.

V. NUMERICAL RESULTS

In order to investigate numerically the large N limit
of SU(N)xSU(N) chiral models, we performed Monte
Carlo simulations for several large values of N. We will
show numerical results for N = 6, 9, 15, 21, 30. In Ref. [4]

some results at N = 6, 9, 15 were already presented, and
in the following we will use some of those data. A sum-
mary of our new large statistics Monte Carlo results is
presented in Table I.

In our simulations we used local algorithms contain-
ing overrelaxation procedures. We implemented the
Cabibbo-Marinari algorithm [30] to upgrade SU(N) ma-
trices by updating their SU(2) subgroups. In most cases,
the SU(2) updatings were performed by using the over-
heat-bath algorithm [31] (for the "heat bath" part of it
we used the Kennedy-Pendleton algorithm [32]). A sweep
consisted in updating a number of SU(2) subgroups at
all sites of the lattice. For relatively small values of N
(N & 6, say) we chose to update the N —1 diagonal sub-
sequent SU(2) subgroups of each SU(N) matrix variable.
At larger N we found more efficient to select randomly
the SU(2) subgroups among the (

2
l subgroups act-N(N —x)

ing on each 2 x 2 submatrix. At each site the SU(2)
subgroup identified by the indices i, j (1 & i & j & N)
was updated with a probability P =

N ~, so that the av-

erage number of SU(2) updatings per SU(N) site variable
was n = o,N. In our simulations we always chose n & 1,
decreasing n when increasing N. At N = 21, 30 we used
cr = 0.5. (We should say that our choices of the values
of n came from a rough study of the performances of the
algorithm since the construction of the "most" efficient
algorithm was not among our principal purposes. ) Such
an algorithm turns out to be quite efficient in the range
of N and P (and correlation lengths) we considered.

TABLE I. Summary of the numerical results. Errors of data marked by an asterisk could be underestimated. When more
than one lattice size appears, the corresponding results were obtained collecting data of simulations at the reported lattice sizes
(which were, in all cases, in agreement within the errors).

0.20
0.20
0.20
0.28
0.28
0.28
0.29
0.29
0.295
0.30
0.30
0.30
0.3025
0.3025
0.304
0.305
0.305
0.305
0.31
0.31
0.31
0.31
0.32
0.32
0.33

15 18,21
21 18,21
30 18
15 18,24
21 18,24
30 18

9 24 30
30 21
9 24)30,36,42

15 24,30,36,42
21 24
30 24
21 30
30 30
30 24
15 36
21 30
30 30
6 60
9 48

15 45
21 42
9 66

15 66
6 102

0.781405(7)
0.781427(7)
0.781422(10)
0.65000(5)
0.65290(3)
0.65352(3)
0.58772(7)
0.63058(3)
0.56278(6)
0.56806(4)
0.58799(14)
0.59927(8)
0.56525(19)
0.58479(10)
0.5627(4)
0.53415(8)
0.54098(10)
0.54658(14)
0.48187(2)
0.50030(4)
0.51178(4)
0.51548(6)
0.47234(3)
0.48072 (2)
0.43706(2)

0.0527(3)
0.0527(3)
0.0522(6)
0.191(5)
0.170(3)
0.163(4)
0.412(5)
0.208(6)
0.444(5)
0.68(2)
o.65(s)
o.ss(2)
i.o2(5)*
0.79(5)'
2.6(3)'
O. 52(2)
o.73(3)
1.05(io)'
0.257(3)
0.302(6)
o.a54(7)
0.41(2)
0.252(3)
0.264(5)
0.212(3)

2.9380(7)
2.9381(5)
2.9379(8)
7.249(6)
7.069(5)
7.o32(5)

is.s2(s)
8.497(8)

18.03(4)
16.574(13)
i2.91(a)
ii.a5(2)
17.02(5)
13.24(3)
i7.52(9)
26.86(7)
24.14(6)
22. ia(5)
65.2(2)
47.25(12)
39.06(10)
36.66 (12)
82.4(3)
70.5(3)

175 3(2.0)

(a
0.786(3)
0.788(2)
0.787(2)
1.560(4)
1.532(3)
i.529(3)
2.369(10)
1.740(4)
2.913(9)
2.742(5)
2.3o9(7)
2.114(7)
2.786(10)
2.338(7)
2.839(8)
3.782(16)
3.523(10)
3.320(12)
6.63(3)
5.44(3)
4.80(2)
4.61(2)
7.70(4)
6.96(4)

12.13(16)

(
0.8360(4)
0.8358(3)
0.834(2)
1.587(2)
1.5605(10)
1.5544(15)
2.395(9)
1.765(5)
2.949(13)
2.767(9)
2.333(7)
2.137(10)
2.813(12)
2.362(9)
2.866(11)
s.s2(a)
3.57(2)
3.35(2)
6.69(4)
5.49(5)
4.84(3)
4.65(3)
7.78(7)
7.04(4)

12.23(21)

4/(
0.941(3)
0.943(2)
0.944(3)
0.9834(13)
0.9819(11)
0.9837(12)
0.9889(9)
0.9857(7)
0.988(2)
0.9907(10)
0.9899(7)
0.989(2)
0.9903(8)
0.990(2)
0.9907(13)
0.989(3)
0.988(2)
0.990(2)
0.9909(10)
0.9908(17)
0.9911(12)
0.9915(10)
o.99o(2)
0.9892(11)
o.99i(a)

4/(-
0.9724(4)
0.9726(4)
0.973(2)
0.9922(6)
0.9917(4)
0.9916(5)
1.000(2)
0.992(2)
0.996(3)
1.000(1)
0.997(2)
0.993(3)
0.997(2)
0.999(2)
0.998(2)
0.996(4)
0.998(3)
1.000(s)
1.003(3)
0.998(5)
1.001(2)
0.999(3)
1.002(3)
1.000(3)
1.001(9)
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1.0An important class of observables of the SU(N) x
SU(N) chiral models can be constructed from the cor-
relation function G(z —y) = ( ~Re Tr [U(z) U(y) t] ).

The inverse mass gap ( is extracted from the long dis-
tance behavior of the zero space momentum (wall-wall)
correlation function constructed with G(z). Moreover we
measured the diagonal wall-wall correlation length (~ to
test rotation invariance. M:—1/( should reproduce in
the continuum limit the mass of the fundamental state.
Another definition of correlation length (~ comes from
the second moment of G(z). In the small momentum
regime, pz(&2 « 1, we expect the behavior

x

06 I-

X
X

X
X

Qz

oo0.2

Q + P
(156)

0.0
0.0

I

0.4 0.50.3O. l 0.2

where G(p) is the Fourier transform of G(z), MG = Q
and Z~ is a constant. On the lattice we can use the
two lowest components of G(p) to obtain the following
definition of (~'.

FIG. 1. Energy and specific heat vs P for N = 6. The solid

and dashed lines represent, respectively, the strong coupling

[up to 0 (P ) for E and up to 0 (P ) for C] and the weak

coupling series.
1 G(0, 0)

G
—1

4sin m/L G(0 I)
(157)

gence to a finite value. This might be an indication of a
phase transition at N = oo, which a rough extrapolation
would place at P„„s0.305, with an uncertainty of few

per mille. From N = 6 up to N = 30, we found the
position of the peak to be very stable with respect to the
correlation length: It occurs at (~ 2.80 for N & 6.

Rotation invariance at distances d ( is checked by
measuring the ratio (g/( . In Fig. 4 the ratio (g/( is
plotted versus (~. Data show effective rotation invari-
ance already for (~ 2. At smaller correlation lengths,
discrepancies &om 1 are well reproduced by the Gaussian
model (see Appendix B), which predicts

» ,( + 1 + 4(.
(158)

x

-' C
0, 8

X

x

TABLE II. Strong coupling results at N = oo.

0.0
0() 0.3 0.4

0.7814220
0.7090132
0 .6556834
0 .6352185
0.6129234

0.20
0.25
0.28
0.29
0.30

0.052534 2.93042
0.101253 4.53372
0.154155 6.24295
0.179292 7.01908
0.210053 7.93319

0.?8782
1.14095
1.52097
1.71684
1.98464

0.83545
1.17077
1.51721
1.68254
1.88946

FIG. 2. Energy and specific heat vs p for N = 9. The solid
and dashed lines represent, respectively, the strong coupling
[up to 0 (P ) for E and up to 0 (P ) for C] and the weak
coupling series.

where G(k, k„)is the lattice Fourier transform of G(z).
In Table I we present data for the energy density E,

the speci6c heat C =
& &&, the magnetic susceptibility

g = G(0), the correlation lengths (g and (, and the di-
mensionless ratios (~/( and (g/(~. Data analyses were
performed by using the jackknife method. For compar-
ison, in Table II we report some strong coupling results
at N = oo obtained in Secs. II and III.

Finite size effects were carefully checked (see also
Ref. [4]). Finite size systematic errors in evaluating in-
finite volume quantities should be smaller than the sta-
tistical errors of all numerical results presented in this
paper. In all cases we used lattice sizes L & 8.5(G. .

Figures 1, 2, and 3 show the Monte Carlo data of the
energy density and the specific heat respectively at N =
6, N = 9, and N = 15, with the corresponding strong and
weak coupling series calculated in the previous sections.
As in other asymptotically free models, at all values of
N the specific heat shows a peak, connecting the two
diferent asymptotic behaviors: monotonically increasing
in the strong coupling region and decreasing at large P.
The position of the peak of C should give an estimate of
the strong coupling convergence radius.

As already observed in Ref. [4] and confirmed by our
more recent data at N ) 15, increasing N the peak of C
moves slightly toward higher P values and becomes more
and more pronounced, not showing any apparent conver-
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1.0

x

o C

0,6

0.4

X
Q

02

C&)

oor
0.0 0. 1 0.2 0.3

I

0.4 0.5

eat vs ~& for N = 15. TheFIG. 3. Energy and speci6c heat vs ~
ivel the strong cou-solid and dashed lines represent, respectively,

pling [up to 0 I9 i frE nad put oO(p ) forC]andthe
weak coupling series.

the Gaussian case thethen discrepancies arise since in th
continuum limit is 1.

Notice that scaling is observed even around t e pea
of the speci6c ea, evenh t though its behavior with re-

ts ect to N suggests the existence o a phase transition aspec o
t N = oo the modes responsible forN = oo. In a sense, at = oo

the phase transition s ouh ld be effectively decoupled from
m limit meantthose determining the physical continuum limit, mean

as the renormalization group trajecto '
tories where dimen-

Similar considerations hold for the approach to asymp-
n

' a "good" definition of temper-
ature. goo ed" d finition of temperature turns ou o

E [ E . (143)], whose corresponding spe-be T@ oc see q.
cific heat is, by definition, constant. From e on
Carlo data of M = 1/( and assuming the exact result
3) we extract the effective A parameters Ar, (,P) and

Ag(N, Pg):

(161)

Other important tests of scaling are based on the sta-
b'1'ty of dimensionless physical quanti

'
antities such as the

ratio ~/(, which is in general different from one. Data
are shown in Fig. 5. i in s a '

few per mille, (~/( is stable or (~
N f r N & 6 showing a rapid convergence to t e

N = oo value. We conclude that, in the large N imi,

0.991, (159)

/1= 2(Gln + 1+( (2(a G
(160)

& 2 butis very goo a smd t small correlation lengths (~

with an uncertainty of about one pone er mille. As shown in
Gaussian model pre ic-Fig. 5, the comparison with the Caus

'

tion

where R is t e mass- paLi -A arameter ratio obtaine y
Fi ure 6(3) +I, @ +Ms(AMs/AL @)' Figure

shows the ratio AI, (N, P)/Ar„2i(N, P), where AL„2i(N,P)
is the correspon inh ding two-loop function: A1, 2i

8 )
~ ~i . Aiound the region where the specific

heat has a peak, also AI, (N, P)/AL, 2i(N, P) shows a
peak, whose shape tends to be singular when N -+ oo
or „„s0.305, consistently with the extrapolation

&om the speci c ea .'fi h t The observed peaks in the ratio
Al, N, P)/AI, 2i(N, P) correspond to dips in the P unc-
tions, and the singularity of L, oo,A oo would reveal a sin-

h N = oo P function. The similarity wit
the behavior of the specific heat suggests tha e pe

d the di of the P function have the same origin.

of the partition function close to the rea axis
ey are pr

1 axis 9 that for
N ~ oo should 6nally pinch the real axis.

A 1 d observed in other contexts (see for exam-sarea yo
pie [33—35]), the approach to asymptotic sca ing ge

1.02

1.00—

0.98

O.96— FIG. 4. The ratio (q/(~ vs (a. The sohd
line represen s et th Gaussian prediction (158).

0.94

0.92

x N-6
o N=g
o N=15
o N=21
~ N=30

0.90
0

I

10
I

12
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1.02

0.98

(J(w 0.96—

0.94—

0.92

x N-6
o N=g
~ N=15
&& N=21
~ N=30

FIG. 5. The ratio (G/( vs (o. The solid
line represents the Gaussian prediction (]6O).
The dashed line is the result of a Bt.

090 t

0 2 4
I

10 12

4.5

3.5

x N=6
o N=g

N=15
o N=21
n N=30

3.0

2.5

Z. Q I-

I
O 4

FIG. 6. Ar, (N, P)/Al, q~(N, P) vs P. The
dotted lines connecting diferent sets of data
are drawn to guide the eyes.
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„ l..0 FIG ~ 7. AE(N p )/ EA2l E(N pE) vs pE ~
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impressive improvement in the P@ scheme, where the dip
of the P function disappears at all values of N. Fig-
ure 7 shows the ratio A@(N, P@)jA@ 2i(N, P@}, where

A@(N, PE) is the efFective A parameter of the P~ scheme,
and A@ 2i(NI p@} is the corresponding two-loop func-
tion. Unlike Ar, (N, P), Aa(N, P@) appears to approach
a smooth function A@(oo, P@) that is well approximated

by the two-loop formula A@(oo,P@) (8+P@) e
even around the peak of the speci6c heat, which is placed
at P@ 0.220 for N & 6 (the peak position being much
more stable in N when described by the variable P@ in-
stead of P).

In Sec. IV we found that in the standard and the en-

ergy schemes the linear corrections to the two-loop lattice
scale in Eqs. (136) and (149) are small and of the same
order of magnitude, although of opposite sign. Therefore
perturbative arguments do not explain the failure of the
standard and the success of the I9@ scheme with respect
to achieving asymptotic scaling. We believe the fatten-
ing of the specific heat to be the key feature of the P@
scheme. A coupling transformation eliminating the peak
of the specific heat should move the complex P singular-
ities away kom the real axis, and therefore improve the
approach to asymptotic scaling.

The above considerations are consistent with the rela-
tionship (146). Indeed, assuming that at N = oo the P
function of the P@ scheme is not singular (as data seem
to show) and the specific heat has a divergence at P„„s,
then Eq. (146) predicts a singularity in the N = oo P
function of the standard scheme at P„„s.

Asymptotic scaling within the PE scheme can be also
checked by using the strong coupling estimates of E, $

I

70
(

60

50

30

20

10

Mix E,2I

M 6/AE

0
0.17

I

0.18
E

0.19 0.20 0.21 0.22

FIG. 8. Asymptotic scaling test by using strong coupling
estimates. The dotted line represents the exact result (3).

and $~. In Fig. 8 we show the results using the strong
coupling series obtained in Secs. II and III [E up to
0(p' ), ( up to O(p ), and (~ up to O(ps)] at N = oo,
and for P@ ( 0.220, which should be the approximate
position of the specific heat singularity. The comparison
with the predicted mass-A parameter ratio is very good,
especially for (~ whose series has alternate signs.

Another quantity we found to be very sensitive to the
change of variable T -+ T@ is the renormalization con-
stant ZG introduced in Eq. (156). Its dependence on P
can be determined by renormalization group considera-
tions; indeed, it inust satisfy Eq. (116). One finds

Z~ =c(N) N~'i 'z(T) = c(N)P «'i ' 1 + 0
I

—
I

b i — b (ll

= c(N) N~'~ ' z@(T@) = c(N) P@
' ' 1 + 0

I p
(162)

where the function z(T) and z@(T@) were defined in
Eqs. (140) and (154), and c(N) is a constant independent
of the regularization scheme. In Figs. 9 and 10 we plot-
ted, respectively, the quantities cr, (N, P)—:ZG, P~'~ ' and

c@(N,P@) = Z~P&' '. Figure 9 shows also the strong
coupling estimate of cl, (oo, P) obtained from Eq. (84).
cL, (N, P) appears to be far from being approximately
constant. It tends to be singular when N —+ oo at
P„-„s 0.305, consistently with the previous estimates
of the singularity. On the contrary, c@(N,PE) shows a
much smoother behavior and a rapid convergence at large
N. Again, perturbative arguments do not help to explain
such difFerent behaviors, since perturbative corrections
are small for both schemes. Indeed from Eqs. (140) and
(154) we can derive the following relationships at N = oo:

0.085 21 0.013 14
cl, (oo, P) = c(oo) 1 + +

0.26

0.22

.4
0.18

0.14

0.10
0.18 0.21

I

0.24
I

0.27
I

0.30

x N=6
o N=9
~ N=15
o N=21
~ N=30

I

0.33 0.36

(163)
FIG. 9. cL, = ZoP+ vs P. The dashed jiue shows the

strong coupling series for N = oo. The dotted lines connecting
difFerent sets of data are dravrn to guide the eyes.
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CE

0.16

0. 14

0. 12

010—

N=6
~ N=9:N=15

M(kq, k2) at N = 30 and for various values of P chosen
inside the expected convergence region of the strong cou-

pling expansion. As expected from the strong coupling
considerations, at P = 0.20 the propagator is effectively
Gaussian. Discrepancies, although small, are clear for

P ) 0.28, especially in the diagonal components.
In order to study the continuum limit of G(k), we con-

sider the dimensionless function

0.08

I(k;P, N) =-

G(k; P, N)
(166)

L(k; P, N) is renormalization group invariant and, there
fore, for k a &1

0.06
0. 15

I

0.18 0.21

I

0.24 0.27 0.30 L(k; P, N) L(k Q, N) (167)

FIG. 10. c@ ——Zapz' vs pz

0.022 71 0.000 79
c~(oo, P~) = c(oo) 1 +

F E

+oI(1
4 z)

(164)

We could get an estimate of c(oo) from the data at the
largest available P@ values, obtaining c(oo) 0.10 Jthe
perturbative corrections in Eq. (164) are about 10%%up at
P@ 0.25].

In Sec. III we found that at large X the correlation
function breaks the Gaussian form at relatively high or-
ders in the strong coupling expansion. Therefore in the
very strong coupling domain, G(k) should be well ap-
proximated by Eq. (156) everywhere and not only for
k (( MG. When the Gaussian approxim. ation works we
should find

the function L(y, N) being independent of P. Notice
that in the Gaussian model we would have I(y) = y.
In Figs. 12 and 13 we plotted the components (k, 0) and
(k, k) of L(kt, k2, P, N) versus k (& obtained respectively
at N = 6 for P = 0.31 and P = 0.33, and at N = 9 for

P = 0.31 and P = 0.32. All sets of data follow a single
curve for k2(&2 & (&2/a2, which must be the continuum
function L(y, N) at the given N. Then discrepancies, i.e. ,

scaling violations, arise. Comparing data at different P,
we also learn that (i) when there is rotation invariance at
a scale p, i.e. , L(p, 0;P, N) L(p/y 2, p/v 2;P, N), then
L(p; P, N) L(p2(&2, N); (ii) the diagonal components
L(k, k; P, N) are closer to the continuum limit than the
L(k, 0; P, N) ones.

Figure 14 gathers data of L(k, k; P, N) at different val-
ues of N and P. At relatively low values of k Q, all
sets of data follow approximatively a single curve, show-
ing that L(y, N) rapidly converges to its large N limit.
X = 6, 9 data give already a good approximation of
L(y;oo). At larger k2Q, the scattering of the curves
for different N is essentially due to scaling violations,
because we used data at different (G.

Mlk)—: (M1 + k') —1
G(0)

(165)
1()0

Figure ll shows the components (k, 0) and (k, k) of 90

80

L(k,o)
L(k, k) P&.33 )&,=1 '. 13(16)

'
I L(k, o)

L(k, k) PW. 31 P„,=6.63(3)
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v
i.o mW-4- —% + ——8 kk —itI- ——-jk- — — — — —s — — ——
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7 M{k,o) /=0. 30
0 M(k, k) PW.30

10

()
0

L

10 20 30 40 50

aF„
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I
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FIG. 11. M(k, O) and M(k, k) vs k at N = 30.

FIG 12. L(k, 0). and L(k, k) vs k (o at N = 6 and for

P = 0.31 and P = 0.33. The dotted lines connecting different
sets of data are drawn to guide the eyes. The dashed line
represents the Gaussian prediction.
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80—
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0 L(k, k) PW.32 @=7.70(4)
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FIG. 13. L(k, 0) and L(k, k) vs k (o at N = 9 and for

P = 0.31 and P = 0.32. The dotted lines connecting difFerent

sets of data are drawn to guide the eyes. The dashed line

represents the Gaussian prediction.

The extrapolation of L(y, N) to negative y should pro-
vide another estimate of the ratio M/M~ = (G/( . The
solution yo of the mass gap equation L(y) + 1 = 0 is

yo ———M /Mz. At sufficiently small y, L(y, oo) shows
an approximate Gaussian behavior; indeed, for y ( 5 it
is well reproduced by a polynomial function y+ byz with
b very small: b 0.01. By using this polynomial function
to extrapolate, we find yo —1 within I'Fo, consistently
with the more precise estimate (159).

We finally compare the Monte Carlo data of G(k) with

the perturbative solutions G(k)„ofthe renorrnalization
group equations (138) and (153). In Figs. 15 and 16 we

show data, respectively, at N = 6 (P = 0.33) and N =
9 (P = 0.32), with their corresponding renormalization
group equation solutions at the lowest order and at the
next two orders, calculated in the standard and the P@
schemes (see Sec. IV). In particular the lowest order

solution of the renormalization group equation for G(k)
ls

&N' —I) T~ ~" (bo
k2

in the standard scheme and

(168)

/N —I) T' ' fbo kz)
G(")" =

'( 2N

(169)

in the P@ scheme. In G(k)~ the scale is provided by the
relationship

15
)

FIG. 15. G(k, 0) and G(k, k) vs k $o at N = 6 and P =
0.33. The low and high sets of lines (solid, dashed, and dotted)
show, respectively, the renormalization group predictions of
the standard and the P@ schemes. Solid, dashed, and dotted
lines represent, respectively, the lowest, and the one and two

next order perturbative solutions.

50

& N=6 P&.33 8 =12.13(16)
0 N=9 p&.32 EG=7.70(4)
0 N=15 PW.32 P =7.04(4)
0 ¹21PW.31 @=4.61(2)
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FIG. 14. L(k, k) vs k (o.

I

40 50

FIG. 16. G(k, 0) and G(k, k) vs k fo at N = 9 sad P =
0.32. The low snd high sets of lines (solid, dashed, aud dotted)
show, respectively, the renormalization group predictions of
the standard snd the Ps schemes. Solid, dashed, and dotted
lines represent, respectively, the lowest, and the one and two
next order perturbative solutions.
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(170)
'- (Np)'-"

d(l;o) z(l;lw) — ( 1) JN+lc
l —k! (A3)

where R is the mass-A parameter ratio in the correspond-
ing scheme, and M—:I/( is taken from the Monte Carlo
sim.ulation.

Again, the best result comes from the P~ scheme, and
in particular from its lowest order approximation. The
A@ parameter shows a similar behavior too, its compar-
ison with the corresponding two-loop formula is already
very good, and the 0 (P& ) correction does not improve
it. This seems to be a general feature of the P@ scheme:
Its lowest order renormalization group estimates do not
need 0 (P& ) corrections, since they are already very
good. On the other hand, we should take into account
that this scheme comes &om a nonperturbative change
of variable.

According to the conjectured S matrix [1—3] and the
large N factorization, two-dimensional (2d) SU(N) chi-
ral theories should describe Bee particles in the limit
N ~ oo. But when considering the two-point Green's
function G(x), we see that the realization of such physi-
cal properties is not trivial at all. Indeed, renormalization
group considerations (see Sec. IV) tell us that in the limit
N ~ oo the asymptotic behavior of G(z) for z (( 1/M
ls

(NP)' (NP)' '
d(~I.0)z(yl. yN) J+

~

J++$t! / —1. (A4)

(N p)l —A:

d(0 1()z(0 1'+1~) —) (t ~)l
JN k—

k=O

(A5)

(NP)' (Np)' '
~(0;t}z{0;t+1N} — J& +

t! l —1! (A6)

"(2;o)z(2;o) = (Np) +—JN+2 + 2NpJN=1 2 I
(A7)

1
d(1;0) (1 0) — ( P) + N 2+ 2—NP JN (A8)

Moreover we have explicitly computed the SU(N) char-
acter coefficients for the first few low-dimensionality rep-
resentations:

d(, ,) z(, ,) (Np) —2JN + 4N p JN (A9)

, ( 1
G(&) - »'I

{,zM)
(171)

APPENDIX A

For low-dimensional representations the z(„}are
(known) monomials in P, while their counterparts z{„+1m)
may be reconstructed starting from the quantities

while a free Gaussian Green's function behaves as
ln(1/x). Then G(z), at small z, seems to describe the
propagation of a composite object formed by two ele-
mentary Gaussian excitations, suggesting an interesting
hadronization picture:

In the large N limit, the Lagrangian fields U, play-
ing the role of noninteracting hadrons, are constituted
by two confined particles, which appear free in the large
momentum limit, due to asymptotic freedom.

"(so)'(so) = (Np) + (Np) JN-1 — (Np) JN+—1
3 1 2 1 2

+NP JN+2 —JN+s,
(A10)

d(2, 1;0)z(2, 1;0) — (NP) + NP—JN 2 + (NP) JN+1=1 3 2

(NP)'JN+1 —+ NPJN+2,
(A11)

1
d(is. o)z(is. o)

—(NP) + JN 2 + NPJN

1 2 1 2+ (NP) JN 1 ——(NP) JN+1—
2 2

(A12)

d{2;1)z{2;1} — (NP) + (NP) JN —1 2NP JN
1 3 3 2

det U TrU' TrU-
~ 4 I

i=1
(Al)

+ 1 ——(NP) JN+1 —NP JN+2
3 2

2

which in turn are recursively constructed by applying dif-
ferential operators and algebraic Schwinger-Dyson equa-
tions (Ref. [18], Appendix D) to I'0.

I'0 ——z(1~) ——JN (2N p) + 0 (p +
) (A2)

We have found the general form of a few interesting
classes of character coeKcients:

=1 3d(12.1)z(1&.1)
—(Np) + NpJN

1 — (NP) JN, —2N—PJN
3 2

2

(NP) JN+1——3 2

2

(A14)
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APPENDIX B I-'+ m' = 0, p2 = 4) sin'! "—"
E 2

(81)
In order to improve our understanding, we briefiy con-

sidered the Gaussian model, which bears a wide resem-
blance to the very strong coupling behavior of the chiral
models for suKciently large N. The Gaussian model is
exactly solvable, and one finds that, for arbitrary values
of the coupling and arbitrary direction 0 in the spatial
lattice, Eq. (41) becomes [22, 23]

and is solved by

p, (8) = cos8arcsinh(vcos8)+sin8arcsinh(vsin8),

(82)

where

m2 ( cos28 i
!v(8) = m 2+ 1+ 1 —m (8+m )!4 4+ m2)

- -X/2

(83)

Introducing the auxiliary strong coupling variable

1
y

=
4+ m2 (84)

Ql —16p21
v(8) =—

27
1+ sin 28 +16' cos 28

[related to P by P = p + O(ps), odd function of p], we
obtain

f'rom holding at 8 = 0. For all other orientations ex-
ponentiation can be shown to hold, and in particular the
principal diagonal correlation (a quantity of fundamental
relevance for tests of rotation invariance) has the proper
exponential decay and the corresponding mass gap pq
can be shown to coincide with the value extracted from
the diagonal wall-wall correlation:

tpg &pg r

I
Ji= J2=

2 2)
that is, vis an odd function ofp for all& g 0. The crucial
observation however concerns the limit 8 ~ 0, where »&s s(» = x2 = lxl/~2)

pg ——— hm (810)
1

v(0) = —gl —4p,
2l'

(86)

which is not a function of p with definite parity. There-
fore, while for all 8 g 0 the quantity

Notice that for arbitrary 8 the two definitions do not
strictly coincide.

p(8) = p(8) + (cos8+ sin8) lnP(p) (87)

&(Xi,X2) = P" "H(*i,*2;P), (BS)

is an even function of p, this property does not hold at
8 = 0. When we consider Green's functions, we recognize
that, in strong coupling,

APPENDIX C

We could establish the recursive relationships

Cp(X1, X2) —Cp(X1 —1, X2) —Cp(X1, X2 —1) = 0

(cl)
with boundary conditions

Cp(xi, O) = Cp(O, x2) = 1
ln H(x, P) 89

the (well-known) solution

where H is always an even function of P (and p). As a
consequence, the purely kinematical singularity at 8 = 0
in Eq. (85) prevents the general relationship

(C2)

)
=!~X1+X2'! =!~X1+X'

) &
*2 ) (C3)

C2(X1 X2) C2(X1 1 X2) C2(X1 X2 1)

with boundary conditions

= CQ(X1 1 X2 + 1) + Cp(X1 + 1 X2 1) —Cp(X1 —1 X2) —Cp(X1, X2 —1) (c4)

C2(X1~ 0) Xi(X1 + 1) ) C2(0) X2) X2(X2 + 1)

the solution

(c5)
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(x, + x, & xg(xi+ 1) z2(x2+ 1)
2 &1) +2 +

) x2+1 xy+ 1
(C6)

C4(z), z2) —C4(xq —1, x2) —C4(xq, x2 —1)

C2 (xg + 1, x2 —1) + C2 (xz —1, x2 + 1) —C2 (x) ) z2) + Cp (zy + 2, x2 —1)

+ Cp(xl —l, x2 + 2) + Cp(zl x2 —2) + Cp(xl —2, x2) —3Cp(xl, z2)

with boundary conditions

xy(zl + 1) zl(zl + 1) z2(x2 + 1) z2(z2 + 1)
C4 zg, 0

4
+

2
+ 4zg, C4 O, x2

4
+

2
+ 4x2

and the solution

&z, +z, 't z2(z2 + 3) z) (zg + 3)
C4(zi, x2) =

l z&z2 + 2zi + 2*2 + +
) &&+ & zg+ 1

(z2 —1)x2(z2 + 1)(z2 + 2) (xg —1)zg(z) + l)(zg + 2) 2zgz2+ +
2(zi + 1)(zg + 2) 2(z2 + 1)(z2 + 2) z) + x2

The function B can be computed by the relationship

B(zz, zz) = ) a Cp (xl x2)

(C7)

(C8)

(C9)

(C10)

where Cp (zq, z2) is the number of minimal self-avoiding paths connecting the origin with z and forming a right

angles. Co satisfies the normalization condition

) Cp~ l(xg, z2) = Cp(zg, z2) . (C 11)

a

(1 —tg 1 —t2) ((1 —tg)(l —t2))&1)+2
a+1

(~) t, t,) Cp (z„x,)t~'t2 ——2
l

( )(, , )
l

&1 )&2

for odd a,

and, as a consequence,

2tyt2
Q B(z„z,)t*,'t*, ' =

1 —tg —t2
&1)&2

We then trivially obtain

2x/Z2
B(zg, x2) Cp(zg, z2)

&1+ &2

Solving appropriate recursive equations it is possible to prove that

for even a,

(C12)

(C13)

(C14)

APPENDIX D

We report here the N = oo strong coupling series of some relevant quantities:

F = 1 —P —2P —6P —38P —240P —1812P —141 26P + 0 (P ) (Dl)

= 1+4P + 12P + 36P + 100P + 284P + 796P + 2276P + 6444P + 18572P + 53292P + 0 (P )

(D2)

ZG = p [1 —p —6p —4p —20p —24p —148p —216p + 0 (p ) ] (D3)
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= p I —4p+3p +2p —4p +12p —40p +84p —296p +O(p j (D4)

p»~, = —lnP —2P ——P —2P —
s P —8P —

& P —70P + 0 (P )3 (D5)

p; = ~2 —ln 2p —p —3p — p + 0 (p j (D6)
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