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Principal chiral models on a (d — 1)-dimensional simplex are introduced and studied analytically
in the large N limit. The d = 0, 2, 4, and co models are explicitly solved. The relationship with
standard lattice models and with few-matrix systems in the double scaling limit is discussed.
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The importance of understanding the large N limit
of matrix-valued field models cannot be overestimated.
Not only is this the basic ingredient of the 1/N expan-
sion in the physically relevant case of QCD, but also the
existence of large N criticalities for finite values of the
coupling is the starting point for the approach to two-
dimensional quantum gravity known as the double scal-
ing limit. Moreover, we note that solutions of few-matrix
systems may have a direct application to more com-
plex systems in the context of strong-coupling expansion,
since they may be reinterpreted as generating functionals
for classes of group integrals that are required in strong-
coupling calculations [1]. Unfortunately, our knowledge
of exact solutions for the large N limit of unitary matrix
models is still impressively poor. After the solution of
Gross and Witten [2] of the single link problem, exact
results were obtained only for the external field problem
and a few toy models (L = 3,4 chiral chains) [3,4].

In this Brief Report we introduce a new class of lattice
chiral models, whose large N behavior can be analyzed by
solving an integral equation for the eigenvalue distribu-
tion of a single Hermitian semidefinite positive matrix.
The models we are going to study are principal chiral
models, with a global U(N)xU(N) symmetry, defined
on a (d — 1)-dimensional simplex formed by connecting
in a fully symmetric way d vertices by (d — 1)(d — 2)/2
links. The partition function for such a system is defined
to be

d d
Zd=/HdUiexp N > TUUl+UUN ). (1)

i=1 1>7=1

Despite its apparent simplicity, this class of models in-
cludes most of the previously known solvable systems. As
a function of the parameter d, which specifies the coor-
dination number of lattice sites, it interpolates between
the two-dimensional Gross-Witten model (with third or-
der phase transition) and the infinite-dimensional mean
field solution (showing a first order phase transition) of
standard infinite-volume lattice models. It also includes
a case which, in the double scaling limit, corresponds to
that of a ¢ = 1 conformal field theory.

It is possible to eliminate the direct interactions among
the unitary matrices U; by introducing an identity in the
form
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d d
/dA exp |-NBTr (A - ZU,.) At -N"ut
j=1

i=1
1=

/dA exp(—NBTrAA")

(2)

where A is an N X N_complex matrix. As a consequence
we obtain Z4 = Z4/Z, where

d
Zy= / [ dvida exp{ ~NBTrAA' + NBTrAS U}
=1 7

+NBTrAT > U, - Nzﬁd}. (3)
‘We now introduce the function
F[BBY] = % In / dU exp (g’I‘r[BU" + UBT]) @)

F' is a known function of the eigenvalues z; of the Her-
mitian semipositive definite matrix BBY. More specifi-
cally, in the large N limit, we know that [5,6]

F(z;) = % Z(r + z;)/?

1 (r+z)Y2% + (r + ;)12
2N?2 Zln[ 2

4,3
r 3
—— 5

and there are two distinct phases: (a) weak coupling r =
0; (b) strong coupling (1/N) Y, (r + z;)"*/2 = 1. Up to
irrelevant factors, it follows that

Zy= /dB exp {-%’I‘rBB" + N2dF(BB') — Nzﬂd} ,

(6)
where B replaces 2GA.
Morris [7] has shown that the angular integration can
be performed in the case of complex matrices, and, again
up to irrelevant factors, we may replace Eq. (6) by
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Zd—/ dz; H(l'z

i>j

exp{ - Z x;
+N2dF(z;) — Nzﬁ}. (7)

In the large IV limit it is legitimate to evaluate this inte-
gral by a saddle-point method. The saddle-point equa-
tion resulting from Eqgs. (5) and (7) is

\/7_‘;3—5 _ Z (4 — d)\/fl‘ + fz::: d\/T + xJ (8)

J#t

We introduce a new variable z; = +/7 + z; and, in the
large N limit, we assume that these eigenvalues lie in
a single interval [a,b]. Denoting the large N eigenvalue
density by p(z), Eq. (8) becomes an integral equation for

p(2),
% —d= ][Zdz'p(z') [% - (d—'—zl] , 9

z+ 2
where the integration region is restricted by the condition
0 < a < b, with a and b determined dynamically. In
particular, the normalization condition

b
/ p(2)dz' =1 (10)

must always be satisfied. Furthermore, one has the con-
straint

b !
dz
/ p(Z’) ZI S 17 (11)

with the equality holding exactly in the strong-coupling
region where a = /7.

Let us begin by first discussing several simple cases
where Eq. (9) can be solved readily. For d = 0, the
problem reduces to one with a pure Gaussian interaction,
and, by a more or less standard technique, one finds that

p(z) = ﬁv 168 — 22. (12)

For d = 0, there is no weak-coupling phase. Note also
that, since the F' term in Eq. (6) vanishes for d = 0,
Eq. (12) is obtained with a = 0. As a consequence, up
to a constant,

Zo = exp(N%1n ), (13)

as expected.
When d = 2 we obtain

pu(z) = ﬁ\/ 83— (2 —4B)%, B =3,
(14)
Ps(Z) = Z;F—Bz %, r(B8) = (1 - 25)2’
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and one may show that all results are consistent with a
reinterpretation of the model as a Gross-Witten [2] one-
plaquette model, with 8, = %

When d = 3 the model can be mapped into the three-
link chiral chain, which is known to possess a third order
phase transition at 8. = 1 [3].

The first nontrivial and new situation begins at d = 4.
We have explicitly solved the d = 4 model, both in the
weak- and in the strong-coupling phase. The eigenvalue
density may be expressed in terms of elliptic integrals,
and supplementary conditions allow for the determina-
tion of @ and b.

Introducing the variable k(8) = /1 — a?/b?, in weak
coupling we obtain, in terms of standard elliptic integrals
K,II, and FE,

(22 _ a2)1/2(b2 — 2

z H(l—-z—:,k)], (15)

with the condition 473 = bE(k). In strong coupling we
have

b
Pw(z) — m 2)—1/2

X [K(k) -

1 22
pa(2) = 3775 > (22 _ a2) 1/2(b2 _ ZZ) 1/2
[(b2 —a®)K (k) — (2% — a1 (1 - b—z,k>:| ,

(16)

with the condition 473 = b[E (k) — (a?/b%) K (k)]. In both
regimes, Eq. (10) must also be satisfied. Closed form so-
lutions for the constraints may be obtained at criticality:

when =06, =1 7 wegeta=0, b=m, and
1+1/1—z2 2
pe(z) = = 1t VizZ/m (17)

1 V1= 22/n%

Let us finally observe that a large d solution of Eq. (9)
may easily be found by assuming p(z) — 6(z — 2). The
weak-coupling solution is

z:ﬂd[lﬂ/l—g‘—i], ﬁ2ﬁ0=§—, (18)

and for strong coupling Z = 0. Amusingly enough, this
solution turns out to coincide with the large D = d/2
mean field solution [8] of infinite-volume principal chiral
models on D-dimensional hypercubic lattices with the
same coordination number as our corresponding models.

We would like to add a few comments. Solving Eq. (9)
is certainly a well defined problem for any value of d,
and in particular we expect to be able to find explicit
solutions for simple cases, suichasd =1and d = 3. It is
also possible to analyze Eq. (9) numerically; details of our
analytical and numerical techniques will be reported else-
where; we only mention that for sufficiently large 8 > 8.
we can get the eigenvalue distribution with desired accu-
racy, while near criticality convergence is slow: however
within 1% accuracy we have evidence that 8. = 1/d for
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all integer values of d [9]. It would be quite interesting
to achieve more information, both qualitative and quan-
titative, on the d dependence of the phase transition.

The thermodynamical quantity whose computation is
easiest is the internal energy per unit link, w;, which may
be obtained from

1 [, ) 1
d(d — 1)w; = 2,3-2/,, ds'p(x) (2 — ) —d = 5.
One may then extract, in the vicinity of 3., the critical

exponent for the specific heat, . At present we know
that when d = 2, = —1, when d = 3, = —%, when

(19)

d = 4,a = 0, and for sufficiently large d the transition is
first order, i.e., a = 1.

It is worth observing in this context that a more gen-
eral model involving four unitary matrices and three cou-
plings, interpolating between our d = 4 case and the
four-link chiral chain, can be reexpressed as a model of
two coupled complex matrices and admits many solvable
limits, all characterized by a = 0, which corresponds to
a ¢ = 1 conformal field theory.
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