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Simplicial chiral models
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Principal chiral models on a (d —1)-dimensional simplex are introduced and studied analytically
in the large N limit. The d = 0, 2, 4, and oo models are explicitly solved. The relationship with
standard lattice models and with few-matrix systems in the double scaling limit is discussed.
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Despi. e its apparent simplicity, this class of models in-
cludes most of the previously known solvable systems. As
a function of the parameter d, which specifies the coor-
dination number of lattice sites, it interpolates between
the two-dimensional Gross-Witten model (with third or-
der phase transition) and the infinite-dimensional mean
field solution (showing a first order phase transition) of
standard infinite-volume lattice models. It also includes
a case which, in the double scaling limit, corresponds to
that of a c = 1 conformal field theory.

It is possible to eliminate the direct interactions among
the unitary matrices U, by introducing an identity in the
form

The importance of understanding the large N limit
of matrix-valued Geld models cannot be overestimated.
Not only is this the basic ingredient of the 1/N expan-
sion in the physically relevant case of @CD, but also the
existence of large N criticalities for Gnite values of the
coupling is the starting point for the approach to two-
dimensional quantum gravity known as the double scal-
ing limit. Moreover, we note that solutions of few-matrix
systems may have a direct application to more com-
plex systems in the context of strong-coupling expansion,
since they may be reinterpreted as generating functionals
for classes of group integrals that are required in strong-
coupling calculations [1]. Unfortunately, our knowledge
of exact solutions for the large N limit of unitary matrix
models is still impressively poor. After the solution of
Gross and Witten [2] of the single link problem, exact
results were obtained only for the external Geld problem
and a few toy models (L = 3, 4 chiral chains) [3,4].

In this Brief Report we introduce a new class of lattice
chiral models, whose large N behavior can be analyzed by
solving an integral equation for the eigenvalue distribu-
tion of a single Hermitian semidefinite positive matrix.
The models we are going to study are principal chiral
models, with a global U(N) xU(N) symmetry, defined
on a (d —1)-dimensional simplex formed by connecting
in a fully symmetric way d vertices by (d —1)(d —2)/2
links. The partition function for such a system is defined
to be
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where A is an N x N complex matrix. As a consequence
we obtain Zd = Zd/Zp where
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We now introduce the function

F[BBt]= ln dU exp
~

Tr[BUt —+ UBt]
~

. (4)
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I" is a known function of the eigenvalues x, of the Her-
mitian semipositive definite matrix BB~. More specifi-
cally, in the large N limit, we know that [5,6]

F( ') = —).( +*')"
Z

( +-.)'I'+ ( +-,)'I'
)2

r 3
4 4' (5)

and there are two distinct phases: (a) weak coupling r =
0; (b) strong coupling (1/N) P,.(r + x, ) I = 1. Up to
irrelevant factors, it follows that

Z dB TrBBt + N2d~ BBt N2
4p

(6)
where B replaces 2PA.

Morris [7] has shown that the angular integration can
be performed in the case of complex matrices, and, again
up to irrelevant factors, we may replace Eq. (6) by
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In the large N limit it is legitimate to evaluate this inte-
gral by a saddle-point method. The saddle-point equa-
tion resulting from Eqs. (5) and (7) is

1/rr + x; 1 (4 —d) i/r + x; + der + x~ 8
2P N. g —z'

jwi

We introduce a new variable z, = gr + x; and, in the
large N limit, we assume that these eigenvalues lie in
a single interval [a, b] Den.oting the large N eigenvalue
density by p(z), Eq. (8) becomes an integral equation for

p(z)

6
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a

(d —2)
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where the integration region is restricted by the condition
0 & a & b, with a and b determined dynamically. In
particular, the normalization condition

(z) = b
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with the condition 4vrP = bE(k). In strong coupling we
have

1
( ) (
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and one may show that all results are consistent with a
reinterpretation of the model as a Gross-Witten [2] one-
plaquette model, with P, = 1.

When d = 3 the model can be mapped into the three-
link chiral chain, which is known to possess a third order
phase transition at P, = s [3].

The first nontrivial and new situation begins at d = 4.
We have explicitly solved the d = 4 model, both in the
weak- and in the strong-coupling phase. The eigenvalue
density may be expressed in terms of elliptic integrals,
and supplementary conditions allow for the determina-
tion of a and b.

Introducing the variable k(P) = gl —a /b, in weak
coupling we obtain, in terms of standard elliptic integrals
K, II, and E,

p(z') dz' = 1 (io)
z2

x (b —a )K(k) —(z —a )II
~

1 ——,k
~

must always be satisfied. Furthermore, one has the con-
straint

dzp(z'), ( 1,
a z'

p(z) = /16P —z2.1
4~P (12)

For d = 0, there is no weak-coupling phase. Note also
that, since the E term in Eq. (6) vanishes for d = 0,
Eq. (12) is obtained with a = 0. As a consequence, up
to a constant,

Zp ——exp(N ln P),

as expected.
When d = 2 we obtain

1
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with the equality holding exactly in the strong-coupling
region where a = ~r.

Let us begin by first discussing several simple cases
where Eq. (9) can be solved readily. For d = 0, the
problem reduces to one with a pure Gaussian interaction,
and, by a more or less standard technique, one finds that

z 1+ gl —z2/7r2
p, (z) = —ln

1 —gl —z'/sr 2

Let us finally observe that a large d solution of Eq. (9)
may easily be found by assuming p(z) + b'(z —z). The
weak-coupling solution is

z =Pd 1+ 1 1

Pd I P o Pc —dt

and for strong coupling z = 0. Amusingly enough, this
solution turns out to coincide with the large D = d/2
mean field solution [8] of infinite-volume principal chiral
models on D-dimensional hypercubic lattices with the
same coordination number as our corresponding models.

We would like to add a few comments. Solving Eq. (9)
is certainly a well defined problem for any value of d,
and in particular we expect to be able to find explicit
solutions for simple cases, such as d = 1 and d = 3. It is
also possible to analyze Eq. (9) numerically; details of our
analytical and numerical techniques will be reported else-
where; we only mention that for sufficiently large P & P,
we can get the eigenvalue distribution with desired accu-
racy, while near criticality convergence is slow: however
within 1% accuracy we have evidence that P, = 1/d for

(16)

with the condition 4vrP = b[E(k) —(a /b )K(k)]. In both
regimes, Eq. (10) must also be satisfied. Closed form so-
lutions for the constraints may be obtained at criticality:
whenP=P, = 4, weget a=0, b=a, dan
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all integer values of d [9j. It would be quite interesting
to achieve more information, both qualitative and quan-
titative, on the d dependence of the phase transition.

The thermodynamical quantity whose computation is
easiest is the internal energy per unit link, mi, which may
be obtained &om

b

d(d —1)mg —— dz'p(z')(z' —r) —d ——. (19)4pz

One may then extract, in the vicinity of P„ the critical
exponent for the spec i6c heat, a . At present we know
that when d = 2, n = —1, when d = 3, n = —2, when

d = 4, n = 0, and for suKciently large d the transition is
erst order, i.e. , a = 1.

It is worth observing in this context that a more gen-
eral model involving four unitary matrices and three cou-
plings, interpolating between our d = 4 case and the
four-link chiral chain, can be reexpressed as a model of
two coupled complex matrices and admits many solvable
limits, all characterized by n = 0, which corresponds to
a c = 1 con formal field theory.

This work was supported in part by the Department
of Energy under Contract No. DE-FG02-9 1ER40688-
Task A.

[1] M. Campostrini, P. Rossi, and E. Vicari, Phys. Rev. D (to
be published).

[2] D. J. Gross and E. Witten, Phys. Rev. D 21, 446 (1980).
[3) R. C. Brower, P. Rossi, and C-I Tan, Phys. Rev. D 23,

942 (1981);2$, 953 (1981).
[4] D. Friedan, Commun. Math. Phys. 78, 353 (1981).
[5] R. C. Brower and M. Nauenberg, Nucl. Phys. B180, 221

(1981).
[6] E. Brezin and D. J. Gross, Phys. Lett. 97H, 120 (1980).
I7] T. R. Morris, Nucl. Phys. B356, 703 (1991).
[8] J. B. Kogut, M. Snow, and M. Stone, Nucl. Phys. H200,

211 (1982).
[9] M. Campostrini and P. Rossi (unpublished).


