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Asymptotic scaling from strong coupling
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Strong-coupling analysis of two-dimensional chiral models, extended to fifteenth order, allows for the

identification of a scaling region where known continuum results are reproduced with great accuracy, and

asymptotic scaling predictions are satisfied. The properties of the large-N second-order phase transition are

quantitatively investigated.
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Two-dimensional principal chiral models can be consid-
ered as a theoretical physics laboratory in that these models
display a rich physical structure and share with four-
dimensional gauge theories a number of fundamental prop-
erties: non-Abelian symmetry with fields in the matrix rep-
resentation, asymptotic freedom, and a large-N limit which is
represented by a sum over planar diagrams. However, the
absence of local gauge invariance and the reduced number of
dimensions make chiral models much simpler to handle both
by analytical and by numerical methods. We can therefore
try to make progress in techniques suitable for four-
dimensional (4D) gauge theories by testing them first on 2D
chiral models.

Recent developments in the analytical and numerical
study of lattice two-dimensional SU(N) X SU(N) principal
chiral models have shown the existence of a scaling region,
where continuum predictions for dimensionless ratios of
physical quantities are substantially verified [1].

The scaling region begins at very small values of the cor-
relation length, g) 2, well within the region of convergence
of the strong-coupling series. Moreover by performing a
nonperturbative change of variables [2] from the standard
Lagrangian (inverse) coupling p to

N —1
E gN2E '

where F. is the internal energy of the system (which can be
measured in a Monte Carlo simulation), one can find agree-
ment in the whole scaling region between the measured mass
scale and the prediction for the mass gap/A parameter ratio
offered by the two-loop continuum renormalization group
supplemented by a Bethe ansatz evaluation [3].As a matter
of fact, this may be thought of as evidence for asymptotic
scaling within the strong-coupling regime.

We therefore felt motivated for a significant effort in im-

proving our analytical knowledge of the strong-coupling se-
ries for principal chiral models, in order to check the accu-
racy of predictions for physical (continuum) quantities solely
based on strong-coupling computations.

As a by-product, strong-coupling series can be analyzed
to investigate the critical behavior of the N= ~ theory, where
Monte Carlo data seem to indicate the existence of a transi-
tion at finite P.

Strong-coupling calculations for matrix models are best
performed by means of the character expansion. Even the

51 = —2NPQ ReTr(U(x) Ut(x+ p, )), (2)

we computed the large-N free energy

jF= 2ln dU„exp( —Sl)

to eighteenth order in the expansion in powers of p. The
resulting series is

character expansion, however, eventually runs into almost
intractable technical difficulties, related to two concurrent
phenomena: (1) the proliferation of configurations contribut-
ing to large orders of the series, whose number essentially
grows like that of nonbacktracking random walks; (2) the
appearance of topologically nontrivial configurations corre-
sponding to group integrations that cannot be performed by
applying the orthogonality of characters and the decomposi-
tion of their products into sums.

We shall devote an extended paper to a complete presen-
tation of our fifteenth-order strong-coupling character expan-
sions for arbitrary U(N) groups [extension to SU(N) is then
obtained by the techniques discussed in Refs. [4] and [1]].
We only mention that we had to rely on a mixed approach:
problem (1) above was tackled by a computer program gen-
erating all nonbacktracking random walks, computing their
correct multiplicities, and classifying them according to their
topology; problem (2), requiring the analytical evaluation of
many classes of nontrivial group integrals, and extraction of
their connected contribution to the relevant physical quanti-
ties, was solved by more conventional algebraic techniques.

We pushed our computational techniques close to their
limit; in order to extend our results to higher orders, a more
algorithmic approach would be in order, especially for rec-
ognition of diagram topologies and group integration.

In the present Rapid Communication we shall only exhibit
the results we obtained by taking the large-N limit of all the
quantities we computed. In the strong-coupling domain, con-
vergence to ¹=~is usually fast, and therefore large-N re-
sults are a good illustration of a phenomenology that repeats
itself (with small corrections) for finite values of N.

Starting from the standard nearest-neighbor interaction
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F=2P +2P +4P +19P +96P +604P +4036P

58471 663184
p16+ p18+ O(p20)

2 3

We computed all nontrivial two-point Green's functions up
to O(p'5). The corresponding information is appropriately
summarized by introducing the lattice Fourier transform

The two-point Green's functions, normalized to obtain a
finite large-N limit, are

G (p ) = g G (x)exp(ip x) (6)

1
G (x) = —Tr( Ut (x) U(0)).N (5)

and evaluating the inverse propagator

G '(» ) =A0+» 'A1+I:(» ')' —
» ')A2, 0+» 'A22+» '[(» ')' —

» ')A3, 1+» 'A33+t:(» ')' —
» "j'A4,0+» 'I:(» ')' —

» 'M42

+» 'A4, 4+» 'I:(» ')' »'f'A—5,1+5 'I:(» ')' »'lA5—,3+ ".
where

A0 ——1 —4p+4p —4p3+12p —28p +52p —132p7+324p —908p +2020p —6284p +15284p —48940p

+ 116612p —393132p + 0(p16),

A, = P(1+P + 7P + 4P + 33P + 32P + 243P + 324P + 1819P' + 2520P '+ 14859P' + 23084P' + 123883P' )

+O(P ),

A20= —P (1+6P +8P +57P +116P +500P +1152P +5155P +11632P )+O(P' ),

A22= —2P (1+2P+12P +35P +121P"+408P +1412P +4264P )+O(P ),

(7)

A31=P 1+—P +26P +144P +482P +1806P '+O(P ),

A33=2P (1+2P+20P +70P +274P )+O(P ),

I5
p12~ + 37p2+ 84p3 j + O(p16)4,0

)

A42= —P"(1+31P'+64P')+ O(P"),

A44= —2P"(1+2P)+ O(P"),

A51= 7P"+ O(P")

A53= p +O(p ). (8)

A number of physically interesting quantities can be extracted from G '(p). In particular the magnetic susceptibility is

1
y= g G(x) = —=1+4P+12P +36P +100P +284P +796P +2276P +6444P +18572P +53292P' +155500P"

Ap

+ 451516P + 1330796P +3904908P + 11617356P + O(P ),

while the second-moment definition of the correlation length leads to

1 Ap 1
MG= 2

= —= ——4+3P+2P —4P +12P —40P +84P —296P +550P —1904P +3316P —15248P(x) A P
+27756P +O(P ),

and the corresponding wave-function renormalization is ZG =A
~

Moreover, by solving the equation

(10)
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G (p =i/J, ,pY=0) =0,

we can compute the wall-wall correlation length, i.e., the true mass-gap p, , ; Eq. (11) is algebraic in

1
M, =2(cosh@.,—1)= ——4+3P+2P —4P +10P —28P +48P —206P +352P —1506P +2326P +O(P ).

By solving

G (px=i p, d/+2, py= ip, „/Q2) =0

we find the diagonal wall-wall correlation length

(13)

Pd 3 169
M„=4 cosh —1 = ——4+3P+ —P —3P — P2 8

data indicates a critical coupling P,=0.306. Extrapolating
the values of KG=1//Mo and Pz at the peak of C to N=~,
we obtain, respectively, gG

——2.8 and P~~' =0.220.
The above picture is confirmed by an analysis of the

large-N eighteenth-order strong-coupling series of C, based
on the method of the integral approximants [5,6]. We indeed
obtained quite stable results showing the critical behavior

—220P +O(P"). (16)

In order to obtain the highest-order contribution to M, , it
was necessary to compute a few (long-distance) Green's
functions to sixteenth and seventeenth order.

Lattice chiral models have a peak in the specific heat

1 dE
NdT' (15)
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which becomes more and more pronounced with increasing
N [1].Figure 1 shows Monte Carlo data for the specific heat
of SU(N) models for N= 21,30 and U(N) models for
N= 15,21. [We recall that U(N) models at finite N should
experience a phase transition with a pattern similar to the XY
model, but its location is beyond the specific heat peak. ]
With increasing N, the positions of the peaks in SU(N) and

U(N) seem to approach the same value of P, consistently
with the fact that SU(N) and U(N) models must have the
same large-N limit. This should be considered an indication
of a phase transition at N= ~; a rough extrapolation of the C

with P,—=0.306 and u=0.2, in agreement with the extrapo-
lation of Monte Carlo data. Figure 1 shows that simulation
data of C approach, for growing N, the strong-coupling de-
termination.

In spite of the existence of a phase transition at N=~,
Monte Carlo data show scaling and asymptotic scaling (in
the P~ scheme) even for P smaller than the peak of the
specific heat, suggesting an effective decoupling of the
modes responsible for the phase transition from those deter-
mining the physical continuum limit; this phenomenon mo-
tivated us to use the strong-coupling approach to test scaling
and asymptotic scaling. In Fig. 2 we plot the dimensionless
ratio /L, /MG vs the correlation length gG=—1/MG, as ob-
tained from our strong-coupling series. Notice the stability of
the curve for a large region of values of gG and the good
agreement (within about 1%) with the continuum large-N
value extrapolated by Monte Carlo data p, , /MG ——0.991(1)

In order to test asymptotic scaling we perform the vari-
able change indicated in Eq. (1), evaluating the energy from
its strong-coupling series
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FIG. 1. Specific heat vs P. The solid Irne represents the resnrn-
mation of the strong-coupling series, whose estimate of the critical

p is indicated by the vertical dashed lines.
FIG. 2. ~, /Mo vs sG—= I/Mo. The dashed line represents the

continuum result from Monte Carlo data.
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FIG. 3. Asymptotic scaling test by using strong-coupling esti-
mates. The dotted line represents the exact result (18).

pE can be expressed as a strong-coupling expanded function
of P by means of Eq. (17). In Fig. 3 the strong-coupling
estimates of p,, /AE 2t and MG /AE 2t are plotted vs PE, for a
region of coupling corresponding to correlation lengths
1~(o~3. These quantities agree with the exact continuum
prediction within 5%%uo in the whole region.

Since the large-N P function in the PE scheme is not
singular (as shown by Monte Carlo data [1] and strong-
coupling analysis) and the specific heat has a divergence at

P, , then the relationship

8N
PE(TE) = ~2 1 C(T)PL(T)

between the p function in the standard scheme pL(T) and in
the pE scheme pE(TE) leads to a nonanalytical zero of
PL(T) at P, : PL(T) —

~P
—P,~, explaining the observed be-

havior in p of the Monte Carlo data for the mass gap at large
X [1].

This phenomenon is further confirmed by an analysis of
the strong-coupling series of y and Mz. Assuming they are
well-behaved functions of the energy, we should have

[cf. Eq. (3)]. The asymptotic scaling formula for the mass

gap in the PE scheme is, in the large-N limit,
ding dlnM~

dP dP
(20)

16exp
4 &E,2t(pE),4)

+E,2l(PE) 4 rrpEexp( 87rpE)— (18)

Analyzing the corresponding series by a modified integral
approximant scheme which forces the approximant to have a
singularity at p=0.306, we found a critical behavior consis-
tent with Eq. (20) (cr=0.2).
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