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The strong-coupling character expansion of lattice models is reanalyzed in the perspective of its
complete algorithmization. The geometric problem of identifying, counting, and grouping together
all possible contributions is disentangled from the group-theoretical problem of weighting them
properly. The first problem is completely solved for wide classes of spin models admitting a character-
like expansion and for arbitrary lattice connectivity. The second problem is reduced to the evaluation
of a class of invariant group integrals defined on simple graphs. Since these integrals only depend on
the global symmetry of the model, results obtained for principal chiral models can be used without
modifications in lattice gauge theories. By applying the techniques and results obtained we study
the two-dimensional principal chiral models on the square and honeycomb lattice. These models
are a prototype field theory sharing with @CD many properties. Strong-coupling expansions for
Green's functions are derived up to 15th and 20th order, respectively. Large-N and N = oo results
are presented explicitly. Related papers are devoted to a discussion of the results.

PACS number(s): 11.15.Me, 11.15.Ha, 11.15.Pg

I. INTRODUCTION

It is certainly appropriate to consider two-dimensional
principal chiral models as a theoretical' physics labora-
tory. These models display a rich physical structure,
and share with four-dimensional gauge theories a number
of fundamental properties: non-Abelian symmetry with
fields in the matrix representation, asymptotic freedom,
and dynamical mass generation. Moreover, principal chi-
ral models admit a 1/N expansion and a large-N limit
which is a sum over planar diagrams, in total analogy
with non-Abelian gauge theories.

However, the absence of local gauge invariance and the
reduced number of dimensions make chiral models much
simpler to handle both by analytical and by numerical
methods. Moreover, the on-shell solution of the models is
known by Bethe ansatz methods: A factorized S matrix
exists and the particle spectrum is explicitly known. We
can therefore try to make progress, both in analytical
and in numerical techniques, by testing these methods
on chiral models and, in case of success, applying them
to four-dimensional gauge theories.

The spirit of this approach is well expressed in the
papers by Green and Samuel [1—3], who advocated a
systematic study of lattice chiral models as a prelimi-
nary step towards an understanding of lattice gauge the-
ories, especially in the large-N limit. One of the tech-
niques favored by the above-mentioned authors was the
strong-coupling character expansion. However, the exis-
tence of a large-N phase transition &om the strong- to
weak-coupling phase seemed to indicate at that time an
obstruction to further pushing this method of investiga-
tion.

In much more recent times, a few facts came to suggest
that this "no-go" result might be overpessimistic. It was
indeed observed by the present authors [4—6] that scal-
ing of physical observables is present in finite-N chiral

models already in a coupling region within the conver-
gence radius of the strong-coupling expansion. Moreover,
a change of variables corresponding to adopting the so-
called "energy scheme" for the definition of the temper-
ature smoothens the lattice P function to the point that
asymptotic scaling is observed within the strong-coupling
region. These patterns are unaffected by growing N, and
therefore survive the large-N phase transition. These
"experimental" observations led us to reconsider the pos-
sibility that a strong-coupling approach could be turned
into a predictive method for the evaluation of physical
quantities in the neighborhood of the continuum fixed
point of the models.

A second theoretical motivation for a renewed effort
towards extending strong-coupling series of chiral mod-
els, especially for large N, comes in connection with the
possibility that the above-mentioned transition, while un-
interesting for standard continuum physics, may be re-
lated to a description of quantum gravity by the so-called
"double scaling limit" [7—10]. In simple models, this limit
is studied by analytical techniques, but more complex
situations might need perturbative methods, and strong-
coupling seems well suited for such an analysis, which
corresponds to exploring the region in the vicinity of the
first singularity in the complex coupling constant plane.

Another significant change, of a completely different
nature, has occurred since the original studies on the
strong-coupling character expansion (cf. Ref. [11] for a
review) were performed. The increased availability of
symbolic-manipulation computer programs and the enor-
mous increase in the performance of computers have now
made the strong-coupling expansion a plausible candi-
date for an algorithmic implementation, which might ex-
tend series well beyond the level that can be reached
by purely human resources, while granting a definitely
higher reliability of results.

The purpose of the present work is to set the stage
and make a significant effort towards a complete algo-
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rithmization of the strong-coupling character expansion.
Two major classes of problems must be handled and

solved. The first has to do with counting the multiplici-
ties of terms appearing in the expansion. It is basically
a geometrical problem and it leads to the definition of a
"geometrical factor. " We must stress the fact that this
geometrical factor depends only on the lattice connec-
tivity, and therefore applies without any modification to
the strong-coupling expansion of spin models admitting
a characterlike expansion, including O(N) models with
nearest-neighbor interactions [12]. We have completely
solved this problem, with no conceptual restrictions on
the dimensionality and connectivity of the lattice. We
have not addressed the corresponding problem for lat-
tice gauge theories, but we are confident that no major
conceptual obstruction should arise in pursuing that pro-
gram.

The second class of problems is related to the eval-
uation of group integrals that appear as coefIicients of
the expansion. Evaluating group integrals is an algebraic
problem, and in principle a solved one. However, algo-
rithmic implementation is not in practice a trivial task,
and therefore we limited ourselves to a general classifica-
tion and to an explicit evaluation of the cases of direct
interest to our calculations, with a few useful generaliza-
tions. We stress that the evaluation of "group-theoretical
factors" is universal, and results may be applied as they
stand to lattice gauge theories.

The representation of the strong-coupling expansion
in terms of explicitly evaluated geometrical factors and
symbolically denoted group-theoretical factors can be
achieved by a fully computerized approach, and applies
as it stands to wide classes of nonlinear 0 models defined
on group manifolds. This is probably the main result of
the present paper. However, we shall not exhibit here the
explicit general formulas resulting from our approach, be-
cause they are so long that their practical use does neces-
sarily involve computer manipulation; therefore we shall
make available our results in form of computer files.

The application of our results to O(N) models is defi-
nitely simpler than the case discussed here, since the eval-
uation of group-theoretical factors lends itself to a corn-
pletely algorithmic implementation. The corresponding
results will be presented in a forthcoming paper.

The techniques presented here can be applied with
minor changes to higher-dimensional spin models. The
computation of geometrical factors for three-dimensional
spin models is in progress, and results for principal chiral
models and O(N) models will be presented in forthcom-
ing papers.

The present paper is organized as follows.
In Sec. II we review the character expansion, fix our

notation, and present some useful formulas.
In Sec. III we outline the procedure of the expansion

by identifying the logical steps and defining the relevant
geometrical and algebraic objects entering the compu-
tation. Among these we introduce the basic notion of
a skeleton diagram, whose multiplicity is the geometri-
cal factor and whose connected value, or potential, is the
group-theoretical factor. In Sec. IV we explain how one
may algorithmically evaluate the geometrical factor. In
Sec. V we introduce the problem of computing the group-
theoretical factor. Section VI is devoted to some techni-
cal remarks on group integration. Section VII offers some
details on the computation of potentials for principal chi-
ral models. In Sec. VIII we analyze the main features
of the strong-coupling expansion of the two-point funda-
mental Green's functions, introducing a parametrization
for the propagator in the case of a two-dimensional square
lattice. In Sec. IX we discuss the relevant features of the
honeycomb lattice, and we present a few results for phys-
ical quantities.

Appendix A is devoted to a presentation of some of our
results concerning the explicit evaluation of potentials.
Appendix 8 is a list of potentials ordered according to
their appearance in the strong-coupling expansion. Ap-
pendix C is a presentation of our results for large but
finite N in the square-lattice formulation of the mod-
els. Appendix D clarifies some nonstandard features of
honeycomb-lattice models using the Gaussian model as
a guide. Appendix E is the same as Appendix C for the
honeycomb-lattice formulation.

The present paper is the first of a series of papers de-
voted to the strong-coupling analysis of two-dimensional
lattice chiral models. In a second paper we will present
our analysis of the large-N strong-coupling series by
series-resummation techniques, while a third paper will
be devoted to a comparison with Monte Carlo studies of
the large-N critical behavior.

II. CHARACTER EXPANSION: CENEKALITIES

The strong-coupling expansion of field theories involv-
ing matrix-valued fields and enjoying G x G group sym-
metry is best performed applying the character expan-
sion, which reduces the number of contributions to a
given order in the expansion and decouples the geometri-
cal counting of configurations from the group-theoretical
factor.

The whole subject is reviewed in detail in Ref. [11],
and we recall here only those properties that are essen-
tial in order to make our presentation as far as possi-
ble self-contained. We shall only discuss the symmetry
groups G = U(N): Extensions to SU(N) can be achieved
following Ref. [1] and applying the results presented in
Ref. [5].

In the theory described by the lattice action
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SL, —— N—P ) Tr(U(x) Ut(x+p) ) + Tr(U(2:+.p) Ut(x) j],

the character expansion is achieved by replacing the Boltzmann factors with their Fourier decomposition

exp1Np[Tr(U(x) Ut(z+p)) + Tr(U(x+p) Ut(x)) l) = exp(N E(p)) ) d(, )z(„)(p)y(„)U(x) Ut(x+p)],
(P)

where

F(P) = ln dUe xp(NP(Tr U+ Tr Ut))= lndetI~, (2NP)
]- t 1¹

is the free energy of the single-matrix model, P(„)denotes the sum over all irreducible representations of G, y(„)(U)
and d(„)are the corresponding characters and dimensions, respectively, and I~; (i, j = 1, ..., N) is an NxN matrix
of modified Bessel functions. We recall here the orthogonality relations for representations:

dU17(~) (U) 17('„)*(U) = b(, ) (,)
6', bg g,() &(„)(U)= V(:)(U). (4)

In U(N) groups, (r) is characterized by two sets
of decreasing positive integers (1) = li, ..., 1„(m)
mi, ..., m~, and we define the order n of (r) by

A A+ + A

We may define the ordered set of integers (Af
Aq, ..., A~ by the relationships

t
~«)~I-)(Nl')" l'+ O(~ )= 1 1 21V

(10)

where we have introduced the quantity o~l~, the dimen-
sion of the representation l~, ..., l, of the permutation
group, enjoying the property

yI() (U)(Tr Ut)"dU = a())b„„
Ak ——lg, k &8,
AA,. —0, 8&k(N —t+1,
AA, = —mN A. +g, k & N —t+ 1.

It is then possible to write down explicit representations
of all characters and dimensions:

It is important to notice that the strong-coupling ex-
pansion and the large-N limit do not commute: Large-
N character coeKcients have jumps and singularities at
P =

2 [1], and therefore the relevant region for a strong-
coupling character expansion is p ( 2.

A consequence of Eq. (10) is the relationship

XIi)(U) =

d(A) = = XI~)(1)

det exp(ig, (A~ + N —j))
det exp(ip, (N —j))

II;., (&' —& + ~
— )

II;,(j ') (8)

z =—zi.,o (P) = P + 0 (P +'),
and, in turn, because of the property

z(~) = +(~)
8

where P,. are the eigenvalues of the matrix U. As a conse-
quence, it is possible to evaluate explicitly the character
coeKcients z~„~ by the orthogonality relations

one may obtain the large-N relationship

F(P) P2 + O (P2iv+2) (14)

According to the above observations, at K = oo the rela-
tionship I" = p may only hold when p ( 2, even if the
function P2 is perfectly regular for all P.

For the purpose of actual computations it is convenient
to have expressions in closed form for the quantities ogl~
and dgl. y

not involving infinite sums or products even
in the N —+ oo limit. We found such expressions in the
form

dip)zip) = dUexp(Np(TrU+ TrUt))yi))(U)

x exp( —N E(P))
det Ig, +~,(2NP)

det I~; (2NP)
(9)

Equation (9) becomes rapidly useless with growing N,
due to the diFiculty of evaluating determinants of large
matrices. It is, however, possible to obtain considerable
simpli6cations, in the strong-coupling regime and for suf-
6ciently large 2V, when we consider representations such
that n ( N. In this case, character coefBcients are simply
expressed by [1]

H.&,&.&.(l' —l + k —j)'
II,'=i(i'+ & —&)'

and a similar relationship for o.
g ~. Notice that these

quantities are independent of 1V. Now by manipulating
appropriately Eq. (8) we can show that
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where

~(~) ~( )
d(l)m) —

) ) +(l)m) )0+I n I

+(L;m) = (N —t —i + I,)! (N —s —j+ m, )!
(N —t —i)! .". (N —s —j)!i=1

e t N+1 —i —j+ li+ m.
1 N+1 —x —gi=lq=l

(17)

) N"
z" C~i m)

(18)

III. OUTLINE OF THE PROCEDURE

The essential feature of Eq. (17) is the possibility of ex-
tracting results with a finite number of operations even in
the large-N limit. As a by-product we obtain the large-%
character coefFicients in the useful form

We define an assignment (rf to be a choice of a rep-
resentation for each link of the lattice that is consistent
with the above requirement. Necessary conditions for an
assignment can be obtained by a close examination of the
rules for the composition of two irreducible representa-
tions of U(N) When we consider Green's functions in
the class defined by Eq. (19), we recognize that the op-
erator whose expectation value we are evaluating, when
considered from the point of view of group integration,
plays the role of a unit length link connecting the sites
x and 0, weighted by a factor d~ ). Therefore all the
relevant group integrals can be put into correspondence
with integrals appearing in the character expansion of
the partition function (possibly in higher dimensions).

Changing the convention for the orientation of links
changes each representation r into its conjugate r (I ++

m), but, since z!„!= z!„-!,it does not affect the expansion.
Hence we can consider all links terminating in a given
site as "ingoing. " It is now possible to prove that an
assignment must satisfy the following conditions at each
lattice site:

The general purpose of the strong-coupling expansion
is an evaluation of the Green's functions of the model
as power series in P. If we are interested in the mass
spectrum of the model, we may focus on the class of two-
point Green's functions defined by

) (n; — *) =0,

n+ & ) n+ (nonbacktracking condition),
&82

(22)

G(„)(z) = (X(„lU (x) U(0) ),
d( )

(19)

and even more specifically we may decide to evaluate the
fundamental two-point Green's function

G(z) = —(Tr Ut(z) U(0) ).

A. Assignments

Each lattice integration variable U(y) can only appear
in the integrand either through the representation char-
acters defined on links terminating on the lattice site y or
through the observable whose expectation value is to be
evaluated. According to the rules of group integration,
nontrivial contributions are obtained only if the product
of all representations involving U(y) contains the identity
(the trivial representation).

Evaluating such expectation values by the character
expansion involves per forming the group integrations
that are generated from choosing an arbitrary represen-
tation for each link of the lattice. As a consequence of
Eq. (10), only a finite number of nontrivial representa-
tions contribute to any definite order in the series expan-
sion of G(z) in powers of P; we must, however, find a
systematic way of identifying the relevant contributions.

As a preliminary condition for the definition of an al-
gorithmic approach to the strong-coupling expansion of
G(x), it is convenient to identify explicitly all the logi-
cal steps of such a computation and define a number of
objects that play a special role in it.

where the summation is extended to all ingoing links.
Order by order in the strong-coupling expansion, the

relevant assignments involve nontrivial representations
only on a finite number of links, which allows the possi-
bility of drawing on the lattice the diagram of each as-
signment. Such a diagram is characterized by vertices,
where more than two nontrivial representations meet,
and paths, i.e., chains of links connecting vertices. Or-
thogonality of representations implies that the choice of
representation along a given path cannot change. We will
denote the length of each path p by L„,and the corre-
sponding (nontrivial) representation by r„.The topology
8 of a diagram may be represented by the connectivity
matrix between its vertices. As we shall show later, the
value of the group integral associated with each assign-
ment can only be a function of r„,I.~, and 8; we shal1

denote it by B(„~).(~)

B. Configurations

The set (n+, n ) does not in general identify uniquely
a representation. It is convenient to define oriented con-
figurations: They are the sets of all assignments having
the same (n+, n' ) for each link of the lattice. The rel-
evance of oriented configurations in the context of the
strong-coupling expansion stays in the fact that they are
in a one-to-one correspondence with the monomials one
would obtain in the integrand after the series expansion
of the Boltzmann factor in powers of P. They are there-
fore the simplest objects admitting a meaningful defini-
tion for their connected contributions.

Equation (10) tells us that the lowest-order contribu-
tion of any character coefBcient to the strong-coupling
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series depends only on n = n++n . Hence it is useful to
define (unoriented) configurations by summing up all the
oriented configurations characterized by the same value
of ni for each link of the lattice. The set (n) = (ni, ...)
uniquely identifies a configuration. We might have de-
fined configurations directly as the sets of all assignments
sharing the same (n); our procedure ensures the possi-
bility of defining the connected contribution of a config-
uration.

We may introduce the diagrammatic representation of
oriented configurations, by drawing each oriented link

(n+, n ) as a bundle of n links, of which n+ bear a pos-
itively oriented arrow and n bear a negatively oriented
arrow. Removing the arrows leaves us with a diagram-
matic representation of (unoriented) configurations. One
may easily become convinced that the algebraic notion
of disconnection turns out to coincide with the geomet-
rical one. In this representation, a disconnection is a set
of subdiagrams such that their superposition reproduces
the original diagram. An example of disconnection is
drawn in Fig. l.

Without belaboring this topic, which is widely dis-
cussed in the literature [13,14], we only recall that the
connected part of a collection of n (abstract) objects is
recursively defined by the condition that the set of n ob-
jects coincides with the sum of the connected parts of
all its partitions, including the collection itself. In the
presence of multiple copies of the same object, in stan-
dard perturbation theory a combinatorial factor appears,
which is hidden in the character expansion; as a conse-
quence, when subtracting disconnections one must take
care of dividing by the corresponding symmetry factors
in order to restore the correct normalization.

The definitions imply that the geometric features 8
and (L) of all assignments belonging to a given config-
uration are the same; therefore the path p of a configu-
ration is characterized by Ip and by the value np of the
order of r„.

C. Skeleton diagrams

It is convenient to reduce each configuration to its
skeleton diagram, whose links are the paths of the con-
figuration. The topology 8 is obviously unchanged, and
each link is characterized by the pair of numbers (nz, L„).

In order to clarify the relevance of such a definition,
let us consider the problem of evaluating the group in-

tegrals B& &&
for the assignments belonging to a given

configuration.
An elementary consequence of Eq. (4) is the evaluation

of the simplest nontrivial group integral entering our cal-
culations:

(g)
RI I I

—
l

l z( ) SI
p=1

(24)

where v the number of paths of the configuration, and

S&
&

is the value of the group integral associated with

the skeleton diagram, in which all links are assigned unit
length and weight, and representations are chosen ac-
cording to the assignment. Further simplification is ob-
tained by noticing that the efFective strong-coupling vari-
able in the character expansion is z(P) [for large K actu-
ally z(P) P because of Eq. (12)]. Therefore by replacing
the character coefIicients z(„)with the ratios

Z(~)
'(") (25)

we may express the strong-coupling series as a series in
powers of z, with coeKcients that are functions of z(„),
by the way, these quantities for large enough N are pure
numbers, dependent on 1V but independent of P, because
of Eq. (18). V/e can rewrite Eq. (24) as

V

n") = z~." ~ z" S") .
(-.~k .I... (-,) (-) ~

p=1
(26)

since zi.o = 1, there is no dependence on the lengths of
the links with n = 1, apart from the overall factor of z,
depending only on the total length of the configuration,
L = P n„L„.Therefore the corresponding L„indices

p
can be dropped, thus defining a reduced skeleton. The
contribution of a configuration to the functional integral
is simply the sum of the contributions of all it,s assign-
ments. It then follows from Eq. (26) that whenever two
configurations can be reduced to t;he same skeleton, they
will give the same contribution.

An exchange in the ordering of the vertices will not
change the topology of a skeleton diagram; therefore con-
figurations that are related by this symmetry will give the
same contribution. Moreover, configurations sharing the
same reduced skeleton will give contributions differing
only by an overall proportionality factor, depending on
the total length I. We can group together all configura-
tions with the same reduced skeleton (taking into account
the above-mentioned symmetry) and the same value of
L: Their number is what we call the geometrical factor
The common value of each of these configurations is pro-
portional to the group-theoretical factor of the reduced
skeleton:

dUy( )(AtU) y(„)(UtB)= g( )(AtB).
()

By applying repeatedly Eq. (23) along the paths we easily
obtain

T(&)
fn, I )

(&)[z(.)j S( I (27)

+ 1
2

FIG. 1. All the nontrivial disconnections of a diagram.

(nf fi~ed

with a proportionality factor z
The strong-coupling character expansion of a group in-

tegral can therefore be organized as a series in powers of
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z = zy. p with coefEcients obtained by taking the sums
of products of geometrical and group-theoretical factors.
In order to understand the computational simplifications
achieved at this stage, let us only notice that, at differ-
ent orders in the expansion, the same reduced skeletons
may appear again and again in association with different
values of L; their group-theoretical factors, however, are
computed once and for all, while extracting the geomet-
rical factors is a task that, as we shall show later, can be
completely automatized.

4~~1
L 2

FIG. 2. Superskeleton topologies.

D. SuperskeIetons

Both for the purpose of bookkeeping and in view of the
problem of actually computing the group-theoretical fac-
tors, at this stage we need a classification and labeling
of (reduced) skeleton diagrams, which must keep track
of their topological properties and try to put into evi-
dence whatever further simplification we may conceive.
We found it convenient to isolate for each topology 8 a
"core" topology 7 which we call a superskeleton, defined
by the condition that each vertex in it is connected by at
most a single link to any other vertex (i.e. , the entries in
the connectivity matrix are either 0 or 1).

The essential ingredient for the reduction of a skeleton
to a superskeleton is the extraction of bubbles, defined as
sets of two links in a skeleton connecting the same pair
of vertices. I et us now recall the decomposition rule for
a product of characters:

(28)

where C(„,z) is a set of integer numbers counting the mul-
tiplicity of (t) in the product of representations (r) (s).
For all assignments of (r), (s) consistent with a given
skeleton, (t) must be such that the triplet (r), (s), (t)
satisfies Eqs. (21) and (22). Therefore replacing a bub-
ble with a single link and allowing for all y(&) obtained
from Eq. (28) to be inserted in it defines new consistent
assignments. Notice, however, that in general we may
not expect all these assignments to belong to the same
skeleton, since n may vary within the class of admissible
(t).

We can repeat the procedure, replacing paths with
links when needed, consistently with orthogonality of
representations and Eq. (23), until all the bubbles in the

skeleton have disappeared. The resulting diagram is the
superskeleton of our original diagram. We must stress
that a superskeleton is not a skeleton diagram, because it
does not make sense to assign a value of (n, I ) to its links.
It is, however, important to observe that the value S&

&
of

the group integral corresponding to any assignment {r)
on the skeleton 8 can be expressed as a weighted sum of
factors 8&,&

corresponding to the consistent assignments(7)

of the superskeleton 7, with weights that are related to
the factors

d(~) d(s)
C(r sf)

(&)
(29)

obtained by replacing bubbles with single links.
A superskeleton is completely identified by its topol-

ogy, and it is worth mentioning that, as in the case of
skeletons, superskeletons differing only by a permuta-
tion of vertices are equivalent, and therefore they can
be reduced to a standard form. The number of different
superskeletons that are relevant to a given order of the
strong-coupling expansion is bound to grow with the or-
der; however, for suKciently low orders their number is
so small that we found it convenient to label superskele-
tons by capital letters, in many cases related to their
actual shapes. A provisional list of labelings is provided
by Fig. 2.

This is the starting point of our classification scheme
for skeletons. Reduced skeletons are named by the sym-
bol denoting the topology of their superskeleton; the full
information concerning superskeleton links, denoted by
o, will appear as arguments; using the pair of integers ij
to denote the link connecting node i to node j, with node
numbering fixed by Fig. 2, the skeletons will be named

~(~12 j o23 j ~34 j o41 j o15 j o25j o35 j ~45) y

~(o 12 j o 23 j o 34 j o 41 j ~36 j o46 j o 15 j o 25 j o 56 j o45) &

+(o12j o23j o31j o14j o24j o34))

H(o12j o23j o34j o41j o15 j o25j o36j o46j o56)r

+(~12j +23 j o31 j o 14 j ~24 j +25 j o35 j +34 j ~45)

o contains information about n and, for n P 1, also about the length I in the original skeleton and the bubble content.
For reasons to be clarified later, we need not consider bubbles along n = 1 lines.

ln general, a bubble will be denoted by [o'1, o'2], where oi and o'2 contain the information about the bubble links.
In summary, a link information will take one of the forms
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n1, L1

n2, L2

n, p + q, [ni, Li, n2, L2]
Af P

A1) L$

ni py [nl 1 Ll j [n2 y L2 i n3& Ls]] FIG. 3. Examples of bubbles.

0 =1 (n=l),
o = n, L (n g 1, no bubble insertions),

a = n, L, [Oi i, oi 2][o2 i, 0.2 z], . . . (one or more bubble insertions on a line),
o. = [a.i i, cri 2][cr2 i, a.2 2], . . . (one or more bubble between two nodes),

(30)
(31)
(»)
(33)

the o, ~ themselves taking one of the above forms; inser-
tion of 6 identical bubbles will be denoted by exponential
notation, i.e. , [oi, a2] . Examples of this notation are
illustrated in Pig. 3.

E. Potentials

As we mentioned before, the possibility of defining the
skeletons as sets of oriented configurations ensures the
fact that we may consistently define the connected con-
tribution of each skeleton diagram to the vacuum expec-
tation value of an observable.

Since the geometrical notion of a disconnection only
depends on the topology of a diagram, as a consequence
of definitions we can define the (algebraic) connected con-
tribution of a skeleton starting from its geometrical for-
mulation. As a matter of fact, it is most convenient to ex-
ploit the fact that n = 1 lines cannot be split, and define
the connected contribution of a reduced skeleton, i.e. , the
connected group-theoretical factor, which we shall call a
potential:

When computing more general Green's functions, one
must be careful not to include among the disconnections
of the corresponding vacuum diagrams those splitting
the line associated with the operator whose expectation
value we are evaluating. Apart from this specification,
the technique we have adopted to compute the funda-
mental Green's functions can be applied to the general
case.

It is worth mentioning that we might have defined ori-
ented potentials, but this notion, while conceptually use-
ful, does not find any use in our actual computations.

A final observation concerns notation: We shall label
potentials with the same symbols adopted in the labeling
of the corresponding reduced skeletons.

We must draw some attention to the fact that our def-
inition of potentials, although referred to unoriented dia-
grams, is originated by the problem of evaluating Green's
functions. Therefore we are assuming that the orienta-
tion of one of the links has been fixed. By a trivial sym-
metry of conjugate representations, our potentials will
be one-half of the corresponding vacuum contributions
to the free energy.

(34)
(2'0) ii

'I(

(2;o)

(2;o)

(~)
connected&n& fixed

An example of the chain leading from an assignment to
the superskeleton and to the potential is illustrated in
Fig. 4.

When we are evaluating the skeletons contributing
to the partition function, the sum of their potentials
with the same geometrical factors is just the free en-
ergy. When computing the fundamental two-point func-
tion G(x), no disconnection of the vacuum diagram can
split the n = 1 line associated with the fundamental char-
acter Tr Ut(x) U(0), and there is therefore a one-to-one
correspondence between the connected contribution of a
given skeleton diagram and the contribution of the asso-
ciated vacuum diagram to the free energy. Moreover, the
weight di, o

——1j&2 is the correct normalization, ensur-
ing that in the large-N limit finite contributions to the
Green's functions correspond to finite contributions to
the free energy. From now on we may therefore focus on
the evaluation of potentials related to vacuum skeleton
diagrams.

( )
)( (2.0)

)( i(
(1,1;0)

Unlsbeled links are (1;0)
Assignment Oriented configuration Configuration

1,3 (2;o)

Skeleton Superskeleton

FIG. 4. Steps showing that a sample assignment con-
tributes to the potential Y(l, [1;2, 1];1; 2, 4, 1; 1; 1; [1;2, 2]) =
W(2, 1) Y(1;1;2, 4, 1; 1; 1; [1;2, 2]).
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Including this factor of 2, the disconnections drawn in
Fig. 1 can be written as

disc(2 W(2, I i, [2, L2', 2, 0, 1]))

= 2 x 2W(1) x 2W(2, Li, 1) + 2 x 2W(1)
x 2W(2, L2, 1) + 2W(l) x 2W(2, Li+L2)
+2 x [2W(1)] . (35)

IV. COMPUTING THE GEOMETRICAL FACTOR

The enumeration of all configurations possessing the
same reduced skeleton can be completely automatized
by the following considerations and procedures.

Equations (21) and (22) ensure the existence of a
(non-necessarily unique) nonbacktracking random walk
of length P n„L„reprod cui ngthe diagrammatic rep-

p
resentation of each configuration. We therefore gener-
ate all nonbacktracking random walks with fixed length,
fixed origin 0, and fixed end x, and we compute the cor-
responding configurations (n); i.e. , we compute n~ (the
number of times each link is visited) for each link of the
lattice.

We now face the problem that the same configura-
tion can be generated several times, from different paths.
One approach we followed was to compare the generated
configurations, and discard multiple copies, choosing one
(and only one) walk for each difFerent configuration. This
approach suffers from the problem that every different
configuration must be kept in the computer's random
access memory (RAM) in order to do the comparison,
and RAM becomes the limiting factor.

The total (bulk) free energy can be computed by sum-
ming over all the closed-loop configurations. Therefore
the free energy per site can be computed by summing
over all the configurations that are not related by a trans-
lation. These are easily obtained by generating all non-
backtracking closed random walks touching a given site,
identifying the corresponding configurations, and choos-
ing one configuration for each equivalence class under
translation symmetry. From this point on, the compu-
tation is identical both for the Green's functions and for
the free energy.

We must notice that at this point we have generated
all the sets (n) obeying Eqs. (21) and (22), but not all
of them lead to nonvanishing group integrals; we get rid
of these "null" configurations by defining their group-
theoretical factor to be zero. Our computer program
recognizes and automatically discards two classes of null
diagrams.

(1) Diagrams that can be disconnected by removing a
single node. A very simple property of invariant group
integration allows for the possibility of setting a single
integration variable to 1. As a consequence, one may
prove that, whenever the removal of a vertex in a skeleton
leaves us with disconnected subdiagrams, the value of the
group integral factorizes into a product of terms that are
just the values of its disconnected parts. Therefore, the

corresponding potentials vanish identically.
(2) Diagrams that can be disconnected by removing

two links, unless the links share the same value of n.
Such diagrams vanish as a trivial consequence of the or-
thogonality of representations.

Examples of these phenomena are drawn in Fig. 5.
We compute the reduced skeleton of each of these con-

figurations. We now group together all the configurations
which give origin to equivalent reduced skeletons (i.e. ,
which are equal apart from a permutation of vertices);
the geometrical factor is the number of such configura-
tions.

To bypass the abovementioned RAM problem, we no-
tice that the multiplicity of a configuration, i.e. , the num-
ber of times it is generated by nonbacktracking random
walks, depends only on its skeleton. Therefore we can
skip the RAM-intensive step of comparing configurations,
and just count the number of nonbacktracking random
walks which generate the same skeleton. The geometri-
cal factor is then obtained dividing this number by the
multiplicity, which is the same for all the configurations
contributing to the geometrical factor. The multiplicity
is equal to the number of nonbacktracking random walks
on the skeleton covering n„times each link p, and there-
fore it can be computed by explicitly counting such walks.
This approach completely solves the RAM problem, at a
very small CPU time cost.

We factorize each skeleton "cutting" along n = 1
paths, identify bubbles according to the scheme of
Sec. IIID, and compute the connectivity of the corre-
sponding superskeleton. The superskeleton is then either
identified as in Fig. 2, or shown to originate from a null
configuration. Finally we put together all this informa-
tion to obtain the potential, and use the superskeleton
symmetry to bring it to a standard form.

While the data needed in the intermediate stages of
this computation can be extremely large, the results of
the last step (potentials and geometrical factors) are
rather compact and can be stored for further processing.

We computed all the Green's functions up to 18th or-
der and the free energy up to 20th order on the square
lattice (they of course involve several new superskeletons
beside those drawn in Fig. 2). The longest computations
took about 1 CPU hour on a HP-730/125.

At this stage we must clarify what we mean by a stan-
dard form of a superskeleton. In suKciently complex
cases, an ambiguity may arise as a consequence of differ-
ent sequences of the elimination of the bubbles. While
the resulting superskeleton is always the same, equivalent
skeletons may receive superficially inequivalent labelings.
We have not made an effort to reduce completely all these

FIG. 5. Thoro null configurations: The first can be discon-
nected by removing a single node; the second can be discon-
nected by removing a n = 1 and a n = 3 link.
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different namings to a standard form, but we were satis-
fied with the reduction to a common form in most cases.
We checked explicitly that the computed values of differ-
ently labeled equivalent potentials are equal.

V. COMPUTING THE GROUP- THEORETICAL
FACTOR

In contrast with the previous section, we must say that
the evaluation of potentials is not yet fully automatized.

We can routinely generate all the sets {l;m) needed to
identify the representations of U(N) to a definite order.
The closed formulas presented in Sec. II enable us to
evaluate automatically their dimensions and their large-
N character coefficients.

We can perform the decomposition of the products
of these representations, thus identifying the coefFicients
C~„iland the factors defined in Eq. (29). We can there-
fore reduce the evaluation of the group-theoretical fac-
tors, by computer manipulations, to a linear combina-
tion with known coefficients of factors S& &), which are
nothing but group integrals corresponding to consistent
assignments of representations on the (unit length, unit
weight) links of a superskeleton with topology 7 .

Computing the factors S&
&

is basically a sophisticated
exercise in group integration, and it is therefore com-
pletely solved from a conceptual point of view. The group
integration over a multiple product of representations can
always be performed by decomposing the product into
sums of representations, via the introduction of appro-
priate Clebsch-Gordan coefFicients, and applying orthog-
onality of representations [Eq. (4)] in the last step. This
may, however, become a very inconvenient procedure, es-
sentially because of the fantastic proliferation of indices
(all to be finally contracted, but appearing at interme-
diate stages already in the simplest examples) resulting
from writing higher-order representations in the basis of
polynomials of the fundamental representation.

We have not seriously tried to overcome this problem in
general; i.e., we have no algorithm capable of generating
the Clebsch-Gordan coefFicients for the decomposition of
the pioduct of two arbitrary representations of U(N),
which would allow one to implement the relevant group
integrations in a computer program. Instead we followed
a slightly different approach, more limited in purpose
and simpler to implement, within our self-imposed limits,
without fully computerizing the computation.

The essentials of our approach are the following.
We observed that, for not very high orders of strong

coupling, only a small number of superskeletons and low-
order representations enter the calculation. Therefore, by

making use of a few well-known results of group integra-
tion (which can basically be derived from the knowledge
of the six-matrix de Wit —'t Hooft integral [15]),we man-

aged to compute explicitly all the factors S&
&

entering
in our calculations.

However, the possibility of inserting bubbles and vary-
ing the lengths I, allows the generation of a huge number
of different skeletons even starting from a very small set
of assignments on a superskeleton. The group-theoretical
factors of these skeletons can thus be evaluated sym-
bolically on wide classes, as functions of the above pa-
rameters (which are the saine entering the labeling of
skeletons), and the explicit evaluation of the potentials
entering an actual calculation can be implemented in a
computer algebra program.

The procedure consisting in the generalization of each
new object occurring at a definite order in the expan-
sion to a whole family of more complicated objects and
the symbolic evaluation of all the members of the family
ensures a considerable reduction in the number of new
objects appearing at each further step in the extension
of the series.

A final comment concerns the opportunity of applying
the above strategy directly to the computation of con-
nected group-theoretical factors, i.e. , of the potentials.
The generation of disconnections can be performed algo-
rithmically; however, in practice we found it simpler to
resort to geometric arguments in the cases we analyzed
explicitly. All these cases were simple enough for us to
be able to write down compact symbolic expressions re-
ferring directly to the potentials. Some of our results will
be presented in detail in the following sections.

VI. TECHNICAL REMARKS ON GROUP
INTEGRATION

In evaluating quantities like S& &, one may take advan-

tage of the invariance properties of the Haar measure for
group integration:

dp(U) = dp(UA) = dp(AU), (36)

in order to eliminate ("gauge") one of the variables (de-
fined on the nodes of the diagram). A judicious use
of gauging can induce notable simplifications in the ac-
tual computations, by replacing "open indices" (repre-
sentations) with "closed indices" (characters) in the in-
tegrands, and decoupling many variables from each other.

As an illustrative example, let us consider the simplest
nontrivial superskeleton. In principle we must evaluate

S~ ~ ~ ~ ~ ~ oc g(~~) AB g(~~) BC g(~3) CA g(rp4) A D g(~5) B D g(~6) C D dA 8BdC dD o (37)

However, by gauging the variable D we can reduce the previous expression to the factorized integral
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g(Y)
&1 i P2 &&3)+4)&5 l) 6 y(„,) (A") 'D(,~) (A) D~("

)
(At) dA

x y(„,)(Bt) D( )(B)17~( )(Bt) dB y(„,)(Ct) D(")(C)17(~)(Ct) dC,

whose factors in turn will be expressible in terms of the representations of the identity via the relationship

y(i)(At) 17(„~)(A)'D( )(A) dA = ) )((,)(At) 17(" )(A) C(,„)""dA

(~)

gp&C' g v ~(t)
(t) ( st) p+g d ~,pb )

where C(„,i)" &
are the Clebsch-Gordan coefficients and b

&&
are the (not necessarily irreducible) representations~Pe~ ~w, P~

of the identity.
We shall call these factors "gauged vertices, " and present a few explicit examples, because they are essential

ingredients of most of the actual computations we have performed; it is immediately apparent that proper gauging
can reduce the evaluation of all X (as well as Y) superskeletons to contractions of gauged vertices.

The simplest nontrivial vertex involves two n = 1 representations and one n = 2 representation. There are three
n = 2 representations, which we write down adopting the notation

D~' (A) =
2 A,,Akl + A;iAkj,

ik, j/17,.,' (A) = A;, A,„——b;k8ji,

(40)

(41)

where 17+ ——172,o and D = Dl l,o One ca.n easily show that the (ungauged) vertices are

17~' (A)AtbAtd = g(+) g(+)
ik, bd ac,jl

(~ib~kd + ~id~kb) (~aj ~cl + '4l'4j) 1

4d~

ik, jl (1;1) (1;1)
(A) Aba Acd =

haik, dbkca
1;1

l (
I

~'d4k — ~;kgb
~ ~

~.,4l —g~..~jl
~

r &" (43)

The gauged vertices are trivially obtained by contraction of indices, and correspond to the representations of the
identity matrix in the form (40), (41). Equations (42) and (43) may also be used in the evaluation of a few integrals
belonging to superskeletons with topology H.

The next vertices in order of diKculty involve one each of the n = 1, n = 2, and n = 3 representations. Adopting
for n = 3 representations the notation

(3)
X+ X3 or

(3) = +1)1,1;0)
(2,1)

X+ X2j1 )
(2, 1)

X— X1,1;1) (44)

we may express the corresponding vertices in the form

y~()(A) 17~ "(At) At „dA= h~()(ikm, jln),

where

)('2 l P(A) D~' (A ) A dA =

y~(' )(A) 17~.,'~'(A) A~ „dA=

)(~(' )(A) D~ ' "(At) A;,. dA =

S~("')(ikm, &ln),

~("('kn, ~lm),

,', a(")(ikn, &im),
d+"'"

(46)

(47)

S")('km, ~ln)
a"""(ikm, &ln)

b~(') (ikn, jim)

S [~ij ~kl~mn + ~il'4n~mj + ~in~kj ~ml + 'tlil&4j ~mn + 'tlij ~kn~ml + ~in~kl~mj I ~

s [2~ij ~klan ~il~kn~mj ~in'4j ~ml + 2~ii ~kj ~mn W ~ij ~kn~ml W ~in~kl~mj ] 1

+~„s,s„,— [~,,~, ,~„+~,.s, s„,+~,„~„a,+~,„~,~„].
2 %+1

(49)

(50)



368 MASSIMO CAMPOSTRINI, PAOLO ROSSI, AND ETTORE VICARI S2

Aside from a few technicalities, the results from group
integration presented in this section are essentially all
that is needed for an evaluation of the full 15th-order
strong-coupling contribution to the fundamental two-
point Green s functions of the two-dimensional chiral
model on the square lattice.

VII. COMPUTINC THE POTENTIALS

We must recognize that the existence of such a bubble
implies the possibility of two disconnections of the to-
tal diagram, corresponding of the two orientations of the
closed path running around the bubble. Therefore the
connected contribution of the bubble is obtained by re-
moving the two (0;0) representations from the product,
and amounts simply to replacing the bubble with a single
n = 2 line (of length L = 0), with weight obtained from
Eq. (29) and expressible in the form

The quantities that we have denoted with the general

symbol P& &&
and called potentzals are the connected(~)

fl j

parts of sums over the sets of representations consistent
with the geometry of a given skeleton diagram. Need-
less to say, knowledge of compact analytic expressions
for wide classes of potentials can only dramatically sim-

plify the task of evaluating explicitly high orders of the
character expansion. In turn, since the reduction of any
diagram to its superskeleton can be performed algorith-
mically, simplifying the problem of diagram recognition,
it would be obviously pleasant to possess expressions for
potentials general enough to be applied to superskeletons
instead of individual skeletons.

We made some progress in this direction, classifying all
and evaluating most of the skeleton diagrams whose su-
perskeletons are drawn in Fig. 2 and obey the constraint
n & 3 for all links. In this section we shall present some
general considerations and all the results that are needed
for an explicit evaluation of all G(x) up to 12th order.
We computed many more potentials, but often results
are too cumbersome to make their presentation useful
in any sense; they are available upon request from the
authors.

We recall that the potentials are labeled by the same
symbols attributed to the corresponding skeleton dia-
grams.

We already mentioned that the length of the n = 1
links does not enter the definition of the potentials.
Moreover, the bubble content of the n = 1 links is factor-
ized; i.e. , the connected value of the full diagram is simply
the product of the connected values of the diagram with-
out bubble insertion and the diagram obtained by clos-
ing the bubble on itself and dividing by N; both these
quantities are just lower-order potentials. The proof of
factorization is very simple, and can be obtained imme-
diately by gauging one of the vertices of the bubble and
integrating over the second vertex variable.

This explains why we decided not to have a notation
for skeletons with bubbles along n = 1 paths: Their name
and value are expressed by the product of their factors.

I et us now consider bubble insertions on nontrivial
links n g 1, in order of diKculty. The simplest case
involves insertion of a bubble formed by two n = 1 lines
between two vertices. I et us work out this example in
detail in order to explain the general procedure. We take
the product of representations

for B~,
2N2

1;1 = for 'Qi. i . (53)

Given the ubiquitous presence of insertions of such bub-
bles along n = 2 lines, we will adopt the shorthand no-
tation

a =2, L, b, ... —= 2, L, [1;1],... (54)

for the insertion of b [1;1] bubbles. Such insertions imply
the replacements

d~ —+ d~(B~),
di;i ~ di;i(Bi;i)',

(55)
(56)

d"B,"(a,b) =md z B,',
d2 i.pB2 i-p(a, b) = 1Vd+z+B+ + Nd z B
d+' B+ ' (a, b) = Kd~z+B+ + Kdi, izi. ,Bi.,

(57)

(58)

(59)

The insertion of the set of A: bubbles
[2, ai, bi, 1] . [2, ay, br„1]along an n = 3 line can now
be accounted for by the following substitutions in the
expression of the superskeleton:

B"(a, , b;),
i=1

(6o)

d2, 1;0 ~ d2, 1;O B2 i.p(a b)'
B~ 'i(a;, b;) (62)

in the expression for the value of the corresponding su-
perskeleton, and the inclusion of a factor 2 in front of
all the disconnections corresponding to a splitting of the
n = 2 line.

We may now consider the insertion of a bubble [1;2]
between two vertices. According to the rules for the prod-
uct of representations, the corresponding contribution is
obtained by replacing the bubble either with an n = 1
line or with an n = 3 line (with different weights attached
to different n = 3 representations). In the first case we

may apply the previously discussed factorization, while
in the second case it is convenient to define the bubble
factors B(a, b) as

((1 o) (o 1)) ((1 o) (o 1))
= (2; 0) g3 (1, 1;0) (0; 2) Q (0; 1, 1) (1;1)

(1; 1) @ (o; o) @ (o; o) (52)

Moreover, one must introduce factors of 2 ' in the dis-
connections involving the splitting of the zth n = 2 line,
and a factor 3 in the disconnections involving the full
splitting of the n = 3 line into n = 1 lines.
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Next in order of difBculty are the rules concerning the
insertions of [1,3] and [2;2] bubbles. In each case the
allowed replacements involve either an n = 2 or an n = 4
line.

The bubble factors to be inserted along an n = 4 line
are essentially trivial generalizations of our previous ex-
amples whose expressions we shall not exhibit explicitly.

The n = 2 case is more interesting, because it is the
first instance of a new phenomenon: the occurrence of
disconnections of the skeleton diagram not corresponding

I

to disconnections of the superskeleton. As one may eas-
ily understand, these disconnections correspond to lower-
order bubbles that may be removed from the skeleton
turning it into another acceptable skeleton. This possi-
bility can be systematically taken into account by de6n-
ing connected bubble insertions.

Let us therefore introduce the bubble factors
B(p; a1, b1, ... '

, a„b,), corresponding to the insertion of
[1;3,p, [1;2, a1, b1] . [1;2, a, b„]], and C(a1, b1, a2, b2),
corresponding to the insertion of [2, a1, b1,.2, a2, b2]:

d~Bg(p'a1 b1' 'a b ):Nd~ (zg ) Bg (a b )+ 'Nd2 1 pz2 1.p B2 1 p(a b )'
+ Xdz' (zz.

'

) BP' (z;, 6;) —2N dzzz (zz'Bz +2 'Bz), (63)

d1, 1B1,1(p;a1, b1, ..., a„,b ) = Nd+' (z+' )" B+' (a;, b;) + Nd ' (z
' )" B ' (a, , b;)

—N dl. lzl. l zl. lB1.1 + 2 'Bl.l (64)
i=1

dgCy(a1, b1, a2, b2) = d1, 1z1.'1B1'.1 d+z+'B+' + d z 'B"' + d1, 1z1.'1B1',1 d+z+'B+' + d z 'B ' —2N 2 '+ '

d1.1C1.1(a1,b1 , a2 b )'= d z '+ 'B '+ '+ d. . 'B '+d z 'B ' d z 'B '+d z 'B ' —2N 2~'+s' (66)
7 )

When considering disconnections of these diagrams, one
must be careful to include only those that have a cor-
responding term among the disconnections of the super-
skeleton.

These rules are the essential ingredients for the con-
struction of the connected contributions of all the skele-
ton diagrams entering our 15th-order calculations. In
particular, all potentials entering 12th-order calculations
can be obtained by the above-mentioned insertions into
the superskeletons drawn in Fig. 6.

The values of these potentials are reported in Ap-
pendix A. Here we will only report the results concerning

I

W(2, ...), for reference and illustration of our formalism.
We first recall that W(1) is completely trivial: W(l) =

1 and the associated geometrical factor is related to the
number of self-avoiding random walks of length equal to
the power of z.

For the most general potential related to W(2, L) we
are interested in, the main n = 2 line splits into q [1;1]
bubbles, r [2; 2] bubbles (the bubble links themselves
splitting into b, 1 and b, 2 [1;1] bubbles), and s [3; 1] bub-
bles (the n = 3 link splitting into u~ [2; 1] bubbles, each
n = 2 link splitting into b'& [1;1] bubbles). We obtained
the value of the potentials in the form

W(2 L q [291al, 1 91 bl, l 2 a1, 2&1 b1,2] ' ' ' [2 aT, 1 &
bf', 1 2 aT, 2) bT', 2]

x [1;3,p1, [2, a11,b11;1]. . [2, a1„,, 61„,;1]] . [1;3,p„[2,a', 1, b', 1;1]. [2, a',„,b,
' „;1]])

= z+d+B+L 2 q B+(p~, a,' 1, b'„..., a.'.„,b,
' „). C+(a;1, b;. 1, a;2, b; 2)

i=1

+zL B (p~, a~ 1, b~ 1, ..., a~ „
, b~

„ ) C (a, 1, b; 1, a; 2, b; 2)

1 L 2 q I I ! 1+2z1 1d1 1B11 B1;1(pj a' 1 bj, 1 " a b' ) C1;1(a',1 b', 1 a, 2 b', 2)
j=l i=1

gl
2 + +'N ) —2 ~ ~" ' ' W 2, p~ + ) a'

&, u~ + ) (b' I,
—1).

j=»(~&) kgP(ud) kCP(ud)

x [2 * 'W(2; a, 1, b; 1) + 2 "'W(2; a; 2, b;,2)],
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Coordinate space Green's functions are the natu-
ral output of a strong-coupling computation. Listing
their individual strong-coupling series is, however, by no
means the most compact and physically most appealing
way of presenting the results. It is certainly convenient
to introduce the lattice momentum transform

FIG. 6. Superskeletons corresponding to potentials appear-
ing up to 12th order.

G(p) = ) G(x) exp(ip x), (69)

where P(u~) are all the subsets of (1, ..., uz), and

~

is a shorthand for g

VIII. T%0-POINT GREEN'S FUNCTIONS AND
THE INVERSE PROPAGATOR

4(q+ 2) (q even), -'(q + 1)(q + 3) (q odd). (68)

The techniques and results presented in the previ-
ous sections set the stage for the evaluation of the
strong-coupling series for the two-point Green's functions
G(z) of U(N) x U(N) principal chiral models on a two
dimensional square lattice, as functions of z, z(P), and
of the potentials. At any finite order q of the strong-
coupling expansion, only a finite number of coordinate
space Green's functions are nonzero, owing to the fact
that the leading contribution comes from the shortest
walk connecting x with the origin, which is proportional
to z~ '~+~ '~; therefore all Green's functions such that
~zq~ + ~xz~ ) q vanish. The number of nontrivial Green's
functions, exploiting discrete symmetries, is, therefore,

which, because of the lattice symmetries, turns out to be
a function of the symmetric combinations of cos nipi and
cos n2p2, with ni, n2 & q.

A really dramatic simplification, however, occurs only
when we take into consideration the inverse lattice prop-
agator G (p). Indeed, because of the recursive nature of
the path-generating process, any strong-coupling expan-
sion admitting a reinterpretation as a summation over
paths can be seen, at any definite order in the expan-
sion, as originating from a generalized Gaussian model in
which the appearance of new structures violating lower-
order recursion equations can be seen as the effect of
quasilocal interactions that appear in the inverse propa-
gator as Fourier transforms of non-nearest-neighbor cou-
plings. A new structure capable of violating the recursion
must correspond to a nontrivial path topology, with the
property of multiply connecting the end points. Such a
path must necessarily be at least three times as long as
the minimal path. This argument shows that, in contrast
with Eq. (69), in the inverse propagator combinations of
cos nqpq and cosn2p2 may appear only for nq, n2 ( q/3.
A more refined analysis shows that the highest values of
nq and nz generated in G (p) to order q in the expan-
sion are

nq, n2 & u —2 (q = 3u —2), nq, n2 & u —1 (q = 3u —1),
n„n2 & u (q = 3u) (u integer). (70)

A more immediate physical interpretation of the re-
sults is obtained by introducing the traditional function

I

a natural basis for the parametrization of these indepen-
d.ent combinations is offered by

pp = 2sln—
2

p' (p')'-»' ', s+2t & u, (72)

and expressing G ~(p) as a function ofp„=2(1—cosp~).
0ne may easily get convinced that the number of inde-
pendent symmetric combinations of powers of p„enter-
ing a given order in the expansion of G ~(p) is equal to
the number of independent effective couplings one might
define at the same order, consistently with the above-
mentioned considerations. This is in turn related to the
number of lattice sites, not related by a lattice symmetry
transformation, such that ~xq

~
+ ~x2~ & u. We found that

I

where

p"=).p". ( &1)

We also found that terms with t g 0 appear in G ~(p) at
order q = 3(s + 2t), while terms with t = 0 appear only
at order q = 3s + 2; the implication of this phenomenon
will be discussed later.

We will therefore make use of the parametrization

G-'(p)=~. +~.p'+). ): &-, p"Np')' p'j'""-
s=0

to present our strong-coupling results for the inverse propagator in the form of expansions for the coefBcients A„,.
As already mentioned, the expansions of A„,will be power series on z, starting with z " when s g u and with zs"+
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when s = u, with coeKcients that are polynomials in the potentials.
The large-% limit of the A„,is

Ap

A2, o

A3g

A3, 3

A4p

A42

A44

As, i

A53

1 —4z+ 4z —4z + 12z —28z + 52z —132z + 324z —908z + 2020z
—6284 z + 15 284 z —48 940 z + 116612 z —393 132 z + 0 (z ),

z+ z + 7z + 4z + 33z" + 32z + 243z + 324z o+ 1819z~ + 2520z 2

+ 14859z + 23084z + 123883z + O(z ),
—z —6z —8z —57z —116z —500 z —1152z —5155z —11632z + O(z ),
—2 z —4 z —24 z —70 z —242 z —816 z —2824 z —8528 z + O(z ),
z + 2 z + 26z + 144z + 482 z + 1806z + O(z ),
2z" + 4z" + 40z" + 140z" + 548z" + O(z"),

s z 37z 84z + O(z~ )
—z" —31z"—64 z" + O(z"),
—2 z'4 —4 z" + O(z")
7z" + O(z"),

15 + o( 16)

(75b)

(75c)

(75d)

(75e)

(75f)

(75g)

(75h)

(75i)

(75~)

(7516)

We have computed all A„,to O(z~ ) as functions of
the potentials, but the results will not be presented here,
for reasons explained in the Introduction. We shall limit
ourselves to the presentation in Appendix C of 15th-order
expressions as explicit functions of z and ¹ These func-
tions are obtained by substituting Eq. (10) for the char-
acter expansion coefFicients, obtaining the values of the
potentials as N-dependent coefIIcients, and summing up
all homogeneous contributions.

The limitations of such a procedure can easily be iden-
tified: qth-order expressions are correct for U(N) groups
with N ) q/2 and for SU(N) groups with N & q + 2.
Even symbolic expressions for potentials suffer from some
limitations, essentially because for small N not all the
representations formally introduced are really nontriv-
ial or independent. A manifestation of this fact is
the appearance of the so-called 't Hooft —De Wit poles,
which plague U(N) strong-coupling expressions when
N ( (q —2)/4. In SU(N) another limitation comes from
the occurrence of self-dual representations, which spoil

l

the applicability of U(N) results already for N ( q/2.
In practice the results we have presented hold as they

stand for all U(N) groups with N ) 7, while by using
12th-order expressions in terms of potentials one might
obtain with a minor eEort 15th-order expressions correct
for all N ) 3. SU(N) groups are correctly reproduced
for N ) 16, and by use of 8th-order potentials one might
obtain all N & 7.

We must, however, stress that in their most abstract
formulation, i.e. , when expressed as weighted combina-
tions of connected group-theoretical factors, our results
are fully general and apply not only to principal chiral
models but also to many nonlinear o models on group
manifolds admitting a character expansion, including
O(N) models.

A number of physically interesting quantities can be
extracted from G (p) by appropriate manipulations. In
the present section we will only present the large-N limit
of some of them. In particular we obtain the magnetic
susceptibility

1 = 1+4z+ 12z + 36z + 100z + 284z + 796z + 2276z" + 6444z + 18572z
Ap

+ 53292z + 155500z +451516z + 1330796z + 3904908z + 11617356z + O(z ). (76)

By defining the second moment of the correlation functions

(77)

we can introduce the second-moment defi.nition of the correlation length

2 — 1
MG ——

(*')a
Ap

Ag

+ 3316z —15248z + 27756 z + O(z )

= ——4+ 3z+ 2z —4z + 12z —40z + 84z —296z + 550z —1904z
z

(78)

and the corresponding wave function renormalization
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Za = = z+ z3+ 7z5+ 4z6+ 33zv+ 32z8+ 243z9+ 324z10
A1

+ 1819z + 2520 z + 14859z + 23084z + 123883z + O(z ). (79)

The true mass gap should in principle be extracted
from the long-distance behavior of the two-point Green's
function:

G(x)
p = — lim ln (80)

This quantity is, however, related by standard analyticity
properties to the imaginary momentum pole singularity
of G(p), and we can therefore extract the mass gap by
solving the equation

G (pq
——ip, „pz=0)= 0. (81)

In absence of strict rotation invariance, this quantity is
to be interpreted as the wall-wall correlation length. Let
us notice that Eq. (81) involves only the coefBcients A„„
in the expansion (74) of G ~(p). The power series of
these coefficients in turn start with z + and are asso-
ciated with factors p ". Equation (81) is therefore, order

by order in the strong-coupling expansion, algebraic and
series expandable in the variable

zM, = 2z(cosh p, , —1). (s2)

By recalling the properties of A„„onecan easily get
convinced that knowledge of G (p) to O(z ) and
O(z ") allows for the determination of p,, to O(z ") and
O(z2"+ ), respectively. There is a deep connection be-
tween the orders of the strong-coupling expansion "lost"
in the evaluation of p, and the above-mentioned con-
siderations of the appearance of structures violating the
recursive relationships among paths. Indeed these struc-
tures break down the exponentiation of the wall-wall cor-
relation functions at short distances [16,17,2], and one is
easily convinced that loss of exponentiation at a distance

u implies from Eq. (80) a residual precision 2u in
the determination of p.

The resulting value is

p — lnz 2z 2 2z 2 z 8 6 310 7 70 8 188 9 520z1 28778 11 13154 12 jO

In full analogy with the discussion above, we may consider the equation for the diagonal mass gap (i.e. , the diagonal
wall-wali correlation length):

G (pq
——zpg/~2, p2 zpd/~2) =——0. (84)

Equation (84) is algebraic and series expandable in

zM„=4z
i

cosh —1
i
.( Pd

Moreover, one may show that zM&2 is an even function of z, and knowledge of G ~(p) to O(z ") allows for the
determination of pg to O(z "). The result is

2 3 4 119 6 136 8 41963 10 + Q( 12)
6 40 (s6)

I" (P) = ln
1

dU(x) exp( —Sl, ), (s7)

the internal energy

Our results for the side and diagonal mass gap in terms
of potentials, up to O(z ) and O(z~ ), respectively, are
available as explained in the Introduction. They are pre-
sented in form of explicit functions of N and z in Ap-
pendix C. In order to compute the 12th-order contri-
bution to p„we evaluated a few long-distance Green's
functions to O(z's) and O(z' ).

The analytic properties of the strong-coupling series
(radius of convergence, zeroes of partition function, crit-
ical behavior) are best studied by considering such bulk
quantities as the free energy

1 OE
@(&)=1 —— =1 —G((1 o))4 Bp

(88)

and the specific heat

02K
(89)

We were able to generate 20th-order series for the free
energy per site E in terms of the potentials introduced
in Fig. 6; the results are available as explained in the
Introduction. We shall only present here the explicit ex-
pression for large % up to 18th order, and report the
result in terms of K and P in Appendix C, with the
usual warning that they hold only for U(K), N & 9 and
SU(K), K & 18:
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'=2z2+2z +4 +19z +96zio+6p4zi2+4p36z + z + s z +~(z~ ). (90)

For large but finite N, we can use Eq. (12) to replace
the derivative with respect to P in Eq. (88) with a deriva-
tive with respect to z, thus obtaining a relationship be-
tween I" and G((1,0)), which we verified explicitly. It
should be noticed that no simple relationship between E
and G((1, 0)) can be obtained in terms of potentials.

if q = 4k, 4k+ 1,

if q = 4k+ 2, 4k+ 3, (98)

with k an integer.
The magnetic susceptibility y and second-moment cor-

relation length (c, are defined on the honeycomb lattice
in perfect analogy with square-lattice definitions:

IX. STRONG-COUPLING EXPANSION ON THE
HONEYCOMB LATTICE

~ =):G(*), ~~.' = —,').*'G(*)

On the honeycomb lattice we consider the action with
nearest-neighbor interaction, which can be written as a
sum over all links of the lattice:

Sp, = 2NP )—Re Tr [Ui U„t],
links

(91)

where l, r indicate the sites at the ends of each link. As
on the square lattice, the link length a is chosen as the
lattice spacing, i.e. , as the length unit. The continuum
action of chiral models is obtained from the a ~ 0 limit
of Sh by identifying

(92)

For what concerns the strong-coupling expansion, we
only mention that the determination of the geometrical
factor is straightforward in the light of our general discus-
sion. The only difference with the square lattice concerns
the generation of nonbacktracking random walks. It is
easy to see that the honeycomb lattice can be mapped in
a subset of the square lattice, having the same sites, the
same links in the y direction, and only the links in the x
directions starting &om even sites: Therefore the walks
on the honeycomb lattice are a subset of the walks on the
square lattice. The value of the potentials is obviously
unchanged, but since the computation can be pushed
some orders further on the honeycomb lattice a few new
calculations are needed. The only subtle point is that,
since only half of the sites of the lattice are related by
translation invariance, the &ee energy per site is one-half
of the quantity computed according to Sec. IV.

We generated strong-coupling series of the &ee energy
up to 0 (z ) and of the fundamental Green's function up
to O(z ). Our results as functions of the potentials are
available as explained in the Introduction. We present
here only the large-N results; we refer to Appendix E
for results for large but finite N.

In analogy with the square lattice, we evaluated the
strong-coupling series of the fundamental correlation
function G(x) = ~ (Tr [U(x) Ut (0)]) as a function of x,
z(P) and of the potentials. The number of nontrivial
components of G(x) which must be evaluated at a given
order q is

The analysis of models on honeycomb lattices presents
some complications, which will be illustrated in some
detail in Appendix E by considering a simple Gauss-
ian model of random walks. The point is that, unlike
square and triangular lattices, not all sites are related
by a translation; this fact does not allow a straightfor-
ward definition of a Fourier transform. Only sites at
an even distance (in the number of links) are related by
a translation. We therefore define even and odd fields
U„U:U, (x) = U(x) for even x, zero for odd x, and
U (x) = U(x) for odd x, zero for even x (the parity is
defined with respect to an arbitrarily chosen origin). We
then define the even and odd correlation functions:

G.(*-y) =
N (T IU. (*)UJ(y)])
1

= —(~ [U-(*)U.'(y)]),
1

G (x —y) = —(Tr [U, (x)Ut (y) ])

=
N (T [U-(*)Ut(y)]). (94)

Since even and odd sites lie on two distinct triangu-
lar sublattices, it is possible to de6ne consistent Fourier
transforms on each sublattice.

Guided by the analysis of the Gaussian model, we con-
sidered two orthogonal wall-wall correlation functions:

G,'-&(x) =) G.(*,y),

G2 '(*) =).[G.(x y)+G-(* y)].

(95)

G~ (x) oc exp( ——p x),
G,' '(x) oc exp( ——,'~3p, ,x).

(97)

(98)

In the continuum hmit p, q
——pq and they both should

reproduce the physical mass M propagating in the fun-
damental channel. The ratio pi/p2 allows a test of rota-

In the strong-coupling domain both GI (x) and G2l (x)
enjoy exponentiation for a suKciently large lattice dis-
tance, allowing the definition of the two corresponding
masses pq and p2.
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zMi = sz(cosh 2@i —1),
zM2 = sz(cosh 2v3p2 —1),

(gg)

(100)

tional invariance, in analogy with the side/diagonal mass
ratio of the square lattice. It is also possible to define the
quantities

which play the role of zM, and zM& in the determination
of the imaginary momentum pole of the inverse Fourier-
transformed Green's function.

In full analogy with the square lattice, we define the
magnetic susceptibility

y = ) G(x) = 1+3z+ 6z + 12z + 24z + 48z + 90z + 174z + 348z + 702z

+ 1392 zoo + 2814 zan + 5658 z&2 + 11532 z&3 + 23 706 z 4 + 49 368 z&5 + 101436 z&6

+ 211290z +. 440598z + 928614z + 1950390z + O(z ), (101)

the second moment of the correlation functions

X(*') = —,).((9 l+3 l)G. (*)+[(3 —1)'+3*l]G-(*)) (1o2)

and the second-moment definition of the correlation length

1 = —z —4+ —z —8z + —z + 8z —16z —88z + 96z

—144 + s z —40z —200z —5520z + 5848z —4208z + O(z ). (103)

We were able to obtain 26th-order results in terms of potentials for the kee energy per site:

I' = -'z'+ z'+3z" + 9z" +12z"+114z"+ '"z" +1080z"+ 5754z"

+ 87396z" + O(z") (104)

The internal energy (per link) and the specific heat can
be obtained by

E(P) = 1 —— = 1 —G((1 0) )
1 BE(P)
3 BP

, BE 1,B'E(P)
BP 3 BP2

(1o5)

(106)

The same caveats of the square-lattice case apply to the
relationship between E and G((l, 0)).

I

we present all potentials needed for a 12th-order compu-
tation and some generalizations. We also list all other
potentials we computed; their expressions are too long
and cumbersome to be reported here, and they are avail-
able upon request &om the authors.

Let us introduce a shorthand notation for bubble in-
sertion. A sequence of r [1;2] bubbles will be denoted
by

Z„(ai,bi, ..., a„b,) = [1;2,ai, bi] [1;2,a„b„];(Al)

AP PENDIX A: VALUES OF SELECTED
POTENTIALS

In Sec. VII we reported a rather general form for po-
tentials related to W(2, 1) by bubble insertions. Here

the arguments (ai, bi, ..., a„,b, ) will often be left under-
stood. A sequence of r [2; 2] bubbles and s [1;3] bubbles
(with [1;2] splittings along the n = 3 line) will be denoted
by

1 L1 Li L& L8Z„,(ai i, bi i, a2 i, b2 i, ..., »abiai2„,b2, pi, ai, bi, ...) a, b;...;p»a b
i,
...,iab„)

= [2, ai i, bi i, 2, a2 i, b2, i] . . [2,ai, bi „,2, a2„b2 ]

x [1;3,pi, 2„,(ai, bi, ..., a„,, b„,)] . [1;3,p„Z'„(ai,bi, ..., a„',b' )]; (A2)

the arguments (ai i, ..., b„' ) will also be left understood.
The shorthand notation

~(.) (» &) —= '(-)"(-) (A3)

will also be used.
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Potentials related to W(3, L) are easily obtained from the identity

W(3, L,2„)= W(2, a„,b, [1;3, L, X i]).
One must, however, compute explicitly the r = 0 case

(A4)

W(3, L) = ZI (L, 2) + Z (L, 2) + Zz i.o(L, 2) + Zi' (I, 2) + Z ' l(L, 2) —2N W(2, L) ——2V4. (A5)

We have also computed W(4, L, X, ,), whose structure is similar to W(2, I, b, Z', ,) presented in Sec. ~ll. More
gen«ally, we must mention that a generating functional for W(n, L) can easily be constructed by exploiting the
gener~i strong-coupling solution of the chiral chain problem [16,17,2]. Et is easy to become convinced that

ln) ) Z(, l(L, 2)z" = ) W(n, L)z"
n (~) n

(A6)

where the sum on the left-hand side (LHS) is extended to all representations with the same value of n. ln principle,
generating functionals for potentials with bubble insertions can also be constructed.

Let us now consider the first nontrivial superskeleton Y:
4

1'(2 1 11112 b'=4'+'8"'+'4 'N 'B' -'B'+ +4'B'+)
& +1& 1I j I I j y 2& 2J 1.1 1~ 1 1;1 1;1 + +

z~' B~' z ' B~'+ + z~' B~'+ —2~22 '+~'
2 1)1 i)1 + +

this quantity was first introduced in Ref. [5] for the special choice bi ——bz ——0, and it was termed W, , We have
also computed more general objects of the form Y(2, ai, bi, X„,„;1; 1; 1; 1;2, az, bz, X„,, ) .

Y(1;1;1;2,ai, bi, 2, az, bz, 2, as, bs) = Zi, i(a, + a&+ a3 l)(d ,ii—1)Bi'.i+ '+ '

+] zi,'iBi'. i Z~(aq, l)B+' + Z (az, 1)B ' Z~(as, 1)B+' + Z (as, 1)B '
E

1., 1

24 (44 + 44, 1)R+'+ ' + 2 (44 + 44, 1)R '+ '
)

—2&z2 '+ 'W(2, ai, bi)
~
+ permutations of indices —4N 2 '+ '+ '; (A8)

the case bi ——bz ——bs ——0 was termed W. . . in Ref. [5].

Y(3,p;2, ai, bi, 1;2, a&, b&., 1;1)
Z(s)

( 1 )za1+a2 Bb1+b2 ~ Z( )
(p

+ Z~ '
(p, 1)(z, .',Bi.',z~'B~' y

l(p 1) (z~' B ' z~2B ' g

411+412Bb1+b2

3z"Bb z"Bb g+ +

.' B '. 'B ' y
z~' B~~ z~

1;1 1;1

—2K W(2, p+ ai, bi)2 ' —2N W(2, p+ az, bz)2 '

a2 Bb2 al Bbl ~ Gl+412 Bbl+'b2
)+ +

~1+~~ ~~1+~~
1 1 1)1

z411+122 Bb1+ 2
)1;1 1;1

—2N W(2 p 0)2 '+ ' —4N 2 '+ ' (A9)

Y (3,p, X„;2, ai, bi, 1;2, az, bz, 1; 1), Y(3,p, 2'; 2, ai, bi, 2, az, bzIWe also computed a few generalizations:
1;1;2,as, bs).

Finally, we computed, for a few special values of the indices, Y(3,pi., 2, ai, 1;2,az, 1;3,pz).
The second nontrivial superskeleton is X. We computed

X (2, ai, bi, 1; 2, az, bq,. 1; 1; 1; 1; 1)

Z~(ai, 1)B+' + Z (ai, 1)B ' + Zi, i(ai, 1)Bi'.i Z~(az, 1)B+~ + Z (az, 1)B ' + Zi. i(az, l)Bi'.i

+ di, i
~

Z~(ai, l)B+' + Z (ai—, —1)B ' + Zi. i(ai, —1)Bi'.i ~

(A10)

4
x

~
Z+(az, —1)B+ + Z (az, —1)B ' + Zi, i(az, —1)Bi'.i ~

+ K Zi, i(ai + az, —1)Bi'.i+ '(di, i + 4)

—2N [2 'W(2, az, bz) ~2 'W(2, ai, bi)j —2 '+ '(4K ~2K ).
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APPENDIX B: LIST OF POTENTIALS

We list here all the potentials appearing for the first time at each order of the strong-coupling expansion; we identify
potentials differing only for the values of I and for the number b of [1;1] bubbles provided that b ) 0 (i.e. , we do not
identify b = 0 with b g 0). In the following formulas, L will indicate a generic value, and multiple occurrences of L
in the same expressions indicate any combinations of Ls (i.e. , they can take different values).

5th order:

W(2, L, b).

9th order:

10th order:

11th order:

W(3, L, [1;2, L]), W(3, L, [1;2, L, b]), Y(2, L; 1; 1; 1; 1;2, L).

Y(2, L; 2, I; 1; 1; 2, L; 1).

W(2, L, [2, L; 2, L, b]), Y(3, L; 2, L; 1; 2, I; 1; 1), Y(2, L; 1; 1; 1; 1; 2, L, b).

(B2)

(B3)

(B4)

12th order:

W(2, L, b, [2, L; 2, L]), W(3, L, [1;2, L] ), Y(2, L; 2, L; 1; 1; 2, L, b; 1),
Y(2, L, b; 1; 1; 1; 1; 2, L), X(2, L; 1; 2, L; 1; 1; 1; 1; 1).

13th order:

W(3, L, [1;2, L, [1;3, L]]), W(4, L, [1;3, L]), W(4, L, [2, L; 2, L, b]), W(2, L, b, [2, L; 2, I, b]),
Y'(3, L; 2, L; 1; 2, L, b; 1; 1), Y (3, L; 2, L; 2, L; 1; 1; 2, L), Y(2, L; 1; 1; 1; 1; [1;3, L]),
Y(2, L, b;1;1;1;1;2,L, b), Y(2, L, b;2, L;1;1;2,L;1), X(2, L;1;1;1;1;1;2,L;2, L),
H(2, L;1;2,L; 1; 1; 1; 1; 1;2,I). (B6)

14th order:

W(3, L, [1;2, L, b, [1;3, L]]), W(4, L, [1;3, L, [1;2, L]]), W(2, L, [1;[1;2, L] ]),
W (2, L, [2, L, b; 2, L, b]), W(3, L, [1;2, L] [1;2, I, b]), Y (3, L; 3, L; 2, I; 1;2, L; 1),
Y (3, L; 2, L, b; 1; 2, L; 1; 1), Y (2, L; 1; 1; 1; [1;2, L]; 2, L), Y(2, L; 2, L; 1; 1; [1;3, L]; 1),
Y (2, L; 2, L, b; 1; 1; 2, L; 1), Y(2, L, [1;3, L]; 1; 1; 1; 1; 2, L), X(1;1; 1; 1; 2, L; 2, L; 2, L; 2, L),
X(2, L; 1; 2, L; 1;3, L; 1; 1; 1), X(2, L; 1; 2, L, b; 1; 1; 1; 1; 1), X(2, L, b; 1; 1; 1; 1; 1; 2, L; 2, L),
H(1;2, I;1;2,L; 1;1;1;1;2,L), H(2, L; 2, L; 1; 1;1;2,L; 1;2,L;1),
B(1;1;2,L;1;1;1;2,L;1;1). (B7)

15th order:

W(3, L, [1;2, L, [2, L; 2, L]]), W(3, L, [1;2, L, [2, L; 2, L, b]]), W(3, L, [3,L; 2, L, b]),

W(3, L, [[1;2,L];2,L]), W(4, L, [2, L, b;2, L, b]), W(3, L, [1;2, L] ),
Y(3, L; 2, L; 1; [1;3, L]; 1; 1), Y (3, L; 2, I; 1;2, L; 1;3, L), Y (3, L; 2, L; 2, I; 1; 1;2, I, b),

Y(3,L; 2, L, b; 1; 2, L, b; 1; 1), Y (3, I;2, L, b; 2, L; 1; 1; 2, L), Y'(4, L; 3, L; 2, L; 2, L; 1; 1),
Y(2, L; 1; 1; 1; 1; [2, L; 2, L]), Y (2, I,; 1; 1; 1; 1; 2, L, [1;3, L]), Y (2, L; 2, L; 1; [1;2, L];2, L; 1),
Y(2, L, b; 1; 1; 1; 1; [1;3, L]), Y(2, L, b; 2, L; 1; 1;2, L, b; 1), Y(3, L, [1;2, L]; 2, L; 1;2, L; 1; 1),
Y (2, L, [1;3, L]; 2, I; 1; 1;2, L; 1), X(1;1; 1; 1; 2, L; 2, L; 2, I; 2, L, b),

X(3,L; 2, I; 1; 2, L; 1; 1; 1; 1), X(2, L; 1; 1; 1; 1; 1; 2, L; 2, L, b),

X(2, L; 1; 1; 1;3,L;1;2,L;2, L), X(2, L;2, L; 1; 1;1;2,L;1;2,L),
H(3, L; 2, L; 1; 1; 2, L; 1; 1;2, L; 1), H (2, L; 1;2, L; 1; 1; 1; 1; 1; 2, L, b),

H(2, I; 1;2, L; 3, L; 1; 1; 1; 1;2, L ), H (2, L; 1;2, L, b; 1; 1; 1; 1; 1;2, L),
H(2, L; 3, L; 2, L; 1; 1; 1; 1; 1;2, L), H(2, L; 2, I;2, L; 1; 1;2, L; 2, L; 1; 1),
L(1;2, I; 1; 2, I; 1; 2, L; 1; 1; 1; 1), I (2, I; 1; 1; 1; 2, L; 1; 1; 1; 1; 1),
I (2, L; 1; 2, L; 1; 1; 2, L; 1; 1; 1; 1). (B8)
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APPENDIX C: SQUARE-LATTICE RESULTS FOR FINITE 1V

We list in the present appendix the values of the quantities defined in Sec. VIII without further comments. The
definition of these quantities and the range of validity of the results presented here is discussed in Sec. VIII:

4 5 6 17+ 13N
Ao ——1 —4z+ 4z —4z + 12z —28z + 4z ¹—1

7 13 + 22 N —11 N 8 101 —158 N2 + 81 N 9
—243 + 358 N —227 N+ 12z — +4z +4z

(N2 —1)' (N2 —1) (N2 —1)'
2444 —6391N' + 7193N' —3577 N'+ 505 N'

+ 4z"
(N2 —4) (N2 —1)'

+ 4z (—23568+ 89928N —154753N + 145 700N
1—74058N + 17674N —1571N ) (¹—4) (N2 —1)

+ 4 z (59 312 —227 352 N + 401 499 N —379 396 N
1+ 189036N —43842 N + 3821 N )

(N2 —4)' (N2 —1)'
+ 4 z (—145 008 + 560 056 N —1 018 759 N + 986 360 N

1—519366 N + 128 954 N —12 235 N )
(N2 —4)' (N2 —1)'

+ 4 z (3 296 016 —16 590 056 N + 38 621 009 N
—50952462 N + 40255375 N —18 791 194N + 4822 317N

1—617438N + 29153N ) (¹—9) (N2 —4) (¹—1)
+ 4 z (—73 339 344 + 453 776 040 N —1 300 249 437 N

+ 2195554892N —2367482622N + 1669383326N —759240644N
+ 212 701 682 N —34 650 066 N + 2 929 064 N —98 283 N )

1
X 6+O '"

(N2 —9)' (N2 —4)' (N2 —1)'

6 N2+ 1 7 13 —22N2+ 11N4
Ag ——z+z +7z +4z +3z

(N' —1)
'

+ 4z
—284 —13N + 441 N —369N + 81N

(N2 —4) (N2 —1)'
+ z (24208 —76936N + 129833N —134180N + 76114N

1—19562N + 1819N )
(N2 —4)' (N2 —1)'

—3632 + 2616 N + 3565 N —8734 N + 7962 N —2821 N + 315N+ 8z
(N2 —4)' (N2 —1)'

+ z (148 848 —456 760 N + 879 351 N —922 184 N

+ 540230N' —146906N" + 14859N )
1

(¹—4) (N2 —1)
+ 4 z (—422 352 + 796 520 N —475 949 N —864 192 N

(Cl)

9 251 —294N2+ 243 N4+z'
(N2 —1)'

1+ 2055 327N —1703150N + 634345N —102496N + 5771 N ) (¹—9) (¹—4) (N2 —1)
+ z (75 941 712 —403 857 000 N + 1 114656 565 N

—1899839324N + 2 117909054N —1 584540590 N + 779 561 548 N
—235 498 610 N + 40 734 002 N —3 591 112N + 123 883 N )

1 6+0 z'(¹—9) (N —4) (¹—1)
(C2)
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9 1+8N~+ 2N4—4z
(Nz —1)

'

1+ 205 601 N + 831 342 N —468 499 N + 86 566 N —5155 N )—
(N& —9) (N& —4)' (N& —1)

'
+ 4 z" (—3984 —68 344 N' + 247 735 N' —387 636 N'

1+ 321005N' —97944N" —30420N" + 21362N" —2908N"), , + O(z"),
(N& —4)' (N& —1)

N +1 84+2N —3N4
Ago = —z +2z¹—1

+ zio + 4zii—212 —25 N' —355 N'+ 255 N' —57 N' —5 —100 N' + 137N' —12 N' —29 N'

(¹—4) (¹—1) (¹—1)

, 2608 —1944N'+ 195N'+ 1992N' —4278N'+ 2001Nio —250N"
(N~ —4)' (Nz —1)'

is 60 + 1485 Ã —1735 Ã + 520 Ã + 396 Ã —144 N+ 8z
(N& —4) (N~ —1)'

+ z (303 120 —666 632 N + 1 554 257 N —1 748 152 N

(C3)

+ 2zio
—9 —7N'+ 9N' —12N'

(N~ —1)'
64+ 54N'+ 100 N' —52 N' —121N'-+ 2z"

(N~ —1)'

8 N +1 9 1+8N +2N
A~ q

———2z —
&

—2z¹—1

+ 2z" -5 —112N'+ 155 N' —12 N

(N~ —1)'
60+ 1917N —1843N + 640N + 606N —204N

(¹—4) (¹—1)

+ 2 z (—7392+ 8144 Nz —55 774N'+ 92342 N' —35882 Ns

1—16 810 N + 10 745 N —1412N ) (¹—4) (N' —1)
+ 2 z (—4336 —96 968 N + 298 881 N —461 772 N

+ 413767N' —131684N" —48836 N" + 32296N" —4264N"), , + O(z"),
(N& —4)' (N& —1)'

(C4)

1+8N'+ 2N4 5+ 100N' —137N4+ 12N'+ 29N' 14N'+ 93N4+ 13N'+z + 2z"
2 (Nz —1) 2 (¹—1) (N~ —1)'

60 1485 N + 1735N 520 N 396 N + 144 N

(N& —4) (N& —1)'
11 —25N + 1585N —2366N + 714N + 241N+ 2zi4

(N& —1)'
+ z (4368 + 68 152 N —230 047 N + 463 796 N —576 029 N

+ 309400N" —21332N" —20786N" + 3612N"), , + O(z"),1

2 (N& -4)'(N& -1)' (C5)

2N +N 18N'+ 5N'+ 10N'
Ag g

——2z
~ +4z +4z

(N~ —1)' (N& —1)' (N~ —1)'
1+5N'+ 223N' —334N'+ 106N'+ 35Nio+4 14

(N' —1)
5+ 300 N' —255 N'+ 866 W' —1612N'+ 455 N" + 274 N"

+ 2z + O(z"),(¹—1)' (C6)
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12 4N + 33N + 5N6 14
—2+ 10N —241N + 362N —105N —37N"

A4p —— —z +z
2 (N& —1)' (N' —1)

'

is 1+2N + 39N + 296N6+ 28N—3Z +0 z
(N& —1)' (C7)

» 2N'+ 9N'+ N' „—1 —5N' —207N4+ SOON' —98NS —31N'P
12 + 14

(N& —1)' (N' —1)

I + 2N +69N + 360N + 32N
y6)—2z +g 16(¹—1)

(C8)

4N+Ny515N+32N+2N
44 — 2Z 3 2Z +0 z",(¹—1) (¹—1)

(C9)

1 + 2N + 39N + 296N + 28N
( y6)

4 (N' —1)' (C10)

15N + 32N + 2N
( yg)

2 (¹—1)
(C11)

1 —21N 6
—5+ 6N2 —4N 7 6+ 114N —155N

p,, = —1n z —2z —3z —2z +2z +2z +2'
5 (N' —1) (N& —1)' 7 (N& —1)'

8 22 —64N'+ 58N' —35N', —104 —1286N'+ 9748N' —15331N'+ 8810N' —1594N"+2z 3 +2z
(Nz —1)' 9 (¹—4) (N' —1)

—1600+ 8768 N' —14 596 N'+ 13482 N' —8645 N'+ 2500 N" —260 N»
+ 2z"

(N& —4)
'

(N& —1)'

+ 2 z (—864 —20 592 N + 266 170N —740 050 N

+ 869 302 N —508 486 N + 141 781 N —14 389 N )
1

11 P" —4)' (N& —1)'

+ 2 z (—23 392 + 184 400 N —571 030 N + 920 690 N

1—927373N +643901N —289681N +68171N —6577N ) z + O(z ), (C12)
3 (¹—4)' (N' —1)'

4 2 —3 N 6
—79 + 248 N —238 N

pg = —1n (2z) —z + z + z
12 (N& —1)'

8 908 —5299N + 12080N —13391N + 6844N —1088N+z'
8 (¹—4) (¹—1)

+ z (172 816 —1 265 528 N + 3 877 481 N —6 436 255 N

+ 6193060N —3331306N + 864838N —83926N ) q + O(z ),
1

80 (¹—4) (N' —1)
(C13)
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6
—195+ 199N 7 543 —1106N + 569N

~ = 1+4z+ 12z'+ 36z'+100z'+ 284z'+4z', + 4z'N' —1 (¹ 1

8 493 —1022 N + 537N 9 4067 —8550N + 4643N+ 12zs + 4z'
(N2 —1) (N& —1)

'

+ 4z" 44100 —149869N + 182355 N —90083N6+ 13323N
(N2 —4) (¹—1)

+ 4 z (481 168 —2 256 648 N + 4 239 673 N —4 010 564 N
1+ 1961034N —452890N + 38875 N ) (¹—4) (¹—1)

+ 4 z (1 299 728 —6 161 736 N + 11712 625 N
1—11228076N + 5568300N —1301614N + 112 879 N )

(N2 —4)' (N& —1)'
+ 4 z (3 526 000 —16 894 776 N + 32 535 287 N

1—31650616N + 15957638N —3784938N + 332699N ) (¹—4) (¹—1)
+ 4 z (85 479984 —509 240632 N + 1 277936 387N

—1 742 114314N + 1385 750 301 N —641889782 N + 163736431N
1—20 707322 1V + 976 227N ) (¹—9) (¹—4) (¹—1)

+4 z (2 078 977 104 —14 813458 920 N + 45 842 748 421 N
—80400 814 700 N + 87447748 126 N —60 663 055 822 N + 26 640 570 340 N
—7157578626N + 1112718466N —90043336N + 2904339N )

1 +O 16(¹—9) (¹—4) (¹—1)
(C14)

M~ = z- —4+ 3z+ 2z —4z, + 2z2 = —1 3 4 N + 1 5
—5 —4 N + 6 N

(N'-1)'
6 6+ 2N —5N 7

—32 —42N + 21N 8 184+ 98N —376N + 203N —37N+8z', +4z", + 8z'(¹—1)
'

(N2 —1)
'

(N —4) (¹—1)
'

9
—6576 —3656 N + 30629 N —32 810N + 14 735 N —3245 N + 275 N~

+ 2z (¹—4) (¹—1)
4016 + 4136 N —16 789 N + 15 608 N —7937N + 2257N —238 N+ 8zio

(N' —4) (N' —1)
+ 2 z (—34 560 —63 904 N + 148 416 N —142 210 N

1+ 74870 N —19631N + 1658 N )
(N2 —4) (1V2 —1)

+ 8 z (186048+ 87904 N —727 204 N + 1 149812N
1—1 175 339 1V + 716 157N —232 150 N + 34 766 N —1906 N ) (¹—9) (1V2 —4) (¹—1)

+ 2z (—14774400+ 8055072N + 58712088N
—170 052 698 N + 261 060 513N —232 073 848 N + 117200 494 N

1—33867953N + 5360045N —433255N + 13878N ) 2 + O(z ),
(N2 —9) (N2 —4) (¹—1)

(C15)
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8 14 —30N + 19N io 7 —16N + 12NF = 2Z2+ 2Z4+ 4Z6+ Zs
2 + 8Z10

(N2 —1) (N2 —1)

+ 2z (5952 —30144N + 63364N —67746N + 37500 N —9589N + 906N )
1

3 (¹—4) (¹—1)

+ 4z (4704 —25200N + 55366N —62068N + 36768N —10012N + 1009N )
1

(N2 —4)' (N2 —1)'
+ z (15 230 592 —119651 328 N + 409 792 072 N

—799817292N + 974422 200 N —760 569 676 N + 375 693 595 N
1—112460534N + 19258826N —1690814N + 58471N )

1 2 (¹—9) (¹—4) (¹—1)
+ 8 z (237 447 936 —2 045 848 320 N + 7 796 836 128 N

—17299894 704 N + 24 693 730 379 N —23648 019056 N + 15 403 609 647 N
—6 787736 700 N + 1995934 103N —381 749 639 N + 45 159907N

1—2974083N + 82898 N ) 2 4 s + O(z ).
3 (N2 —9)' (N' —4)' (N' —1)

(C16)

APPENDIX D: THE GAUSSIAN MODEL ON
THE HONEYCOMB LATTICE

(*,u). = (l-, !~3-).,
(2:, y) = (-, m + 1, i v 3n) o. ,

(D1a)

(Dlb)

where m and n are integer numbers satisfying the condi-
tions 0 & m & L1, 0 & n & 2I2, and m+ n is even. The
total number of lattice points is 2L1xL2, the number of
links is 3L1xL2, and the number of plaquettes is L1xL2.

The Gnite-lattice Fourier transform is consistently de-
fined by

G, (p) = ) e'"'*G, (T)
x even

and similarly for G (p); the set of momenta is

(D2)

o, q3 Li'~j L2j (D3)

with m and n integers, and 0 & m & L1, 0 & n & I2.
In a random walk model where walks of length v are

weighted by a factor P, it is easy to establish from the
recursion relations the relationships

There are a few subtleties in the analysis of models on
the honeycomb lattice that are best illustrated by con-
sidering a simple Gaussian model of random walks. The
essential point is related to the fact that lattice sites are
not all related by a translation group: Only points at an
even distance (in the number of lattice links) are related
by such a symmetry. As a consequence, it is convenient
to define even and odd fields P„P,according to the par-
ity of the corresponding lattice sites with respect to an
arbitrarily chosen origin, and even and odd correlation
functions G, = (P,P, ) = (P P ), G = (P,P ) = (P P, ).

Let us represent the Cartesian coordinates of the (fi-
nite, periodic) lattice sites by

where G, (p) and G (p) are the Fourier transform of
G, (x) and G (x), respectively. As a consequence, we
obtain the even momentum-space Green's functions in
the form

G.(p)
1

1 —P 1+4cos —~3p2+ 4cos 2~3pg cos 2pi

(D5)

The critical value of P is easily found to be P, =
and as a consequence we find the massless lattice (even)
propagator

&.(p)
9

8 —4cos 2~3p2 + 4cos 2~3p2 cos 2pi
2

+0 2p
(D6)

The odd propagator is simply

A~(p) = se'"' 1+2cos 2~3p2 e '"'~ A, (p). (D7)

The structure of the propagator in the Gaussian model
ofFers an important indication about the possibility of
exponentiation in wall-wall correlations. Let us indeed
recall that exponentiation corresponds to a simple struc-
ture

1
A —Bcosy

in the corresponding propagator. Let us now observe
that Eq. (D5) implies

G, (p) = Pe '"' 1+ 2cos 2+3p2 e '"'~ G (p) + 1,

(D4a)

G (p) = Pe'~' 1+2cos ~~3p2 e '"'~ G, (p), (D4b)
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G, (pg, 0) = 1

1 —P [5 + 4 cos 2py
(D9)

G.(0,p, ) + G.(0,p, ) = (D«0)
1

1 —P 1+2cos z~3p2

G' '(*) =).G.(* ~)

G2"'(*) = ).IG.(~ ~)+ G-(* ~)j.

(D«1)

(D«2)

We have therefore the possibility of defining two diferent
exponentiated "wall-wall" correlation functions: i.e. ,

symmetry of the honeycomb lattice, we may easily rec-
ognize that the above correlations can be referred to di-
rections differing by a vr/6 angle, and this is the maximal
violation of the full rotational symmetry one can find
on this kind of lattice. Therefore the ratio of the two
diferent correlation lengths one may define is an opti-
mal measurement of the violation of rotational invari-
ance in the model under examination, in analogy with
the side/diagonal mass ratio of the square lattice.

AP PENDIX E: HONEY COMB-LATTICE
R.ESULTS FOK FINITE 1V

Even in more general models, in the strong-coupling
domain, for a suKciently large lattice distance exponen-
tiation @rill hold for the correlation functions Gz (x) and

G2 (x). If vre take into account the discrete rotational
I

We list in the present appendix the values of the quan-
tities defined in Sec. IX without further comments. The
definition of these quantities presented here is discussed
in Sec. IX:

6
—14+ 46N2 —41N 8 9 —27N + 35N —37N+ '

6 (¹—1) 4 (¹—1)
—194+ 1136N' —2539 N'+ 2546 N' —1174N'

20 (N2 —«)'

+ z (—6208 + 49 952 N —175 780 N + 360 896 N —469 546 N

+ 395 168 N —205 477 N + 56 246 N —6169N )
1

24 (¹—4) (¹—1)
+ z (—204800+ 2013696N —8684352N + 21407856N

—33518156N + 34888595N —24526859N + 11475 108N
1—3 337 802 N + 545 557 1V —39 943 N )

56 (¹—4) (¹—1)
+ z (—253 184 + 2 885 888 N —14 879 968 N + 46 028 112N

—95 149021 N + 138 282 732 N —144 193790 N + 108442 897N
—58 120 117N + 21 234 008 N —4 926 461 N + 646 061 N —36 361 N )

1
X +0 z",

8 (¹—4) (¹—1)
(El)

2 3 4 i 5 6 1 + 11 N 2

p2 ———~3 —ln z —z + —z ——z ——z ——z —z3 2 3 4 5 6 (N2 1)

7
—4+ N —18N4 8 11 —81N2+ N + 29N 9 2+ 12N + 24N —11N

7 (¹—1) 8 (N2 —1) 9 (1V2 —1)
19 277N + 127N 319N ji 34 + 26 N 622 N + 587N 452 N

10 (¹—1) 11(¹—1)
—132 + ]045 N2 —1813N + 2158 N —558 Ns —115N 0 —69 N+ z

4 (¹—4) (N2 —1)
+ z (—1472 + 5408 N—24 716 N + 48

'
156N —97 577 N

+ 118419N —6591«N + 183181V —26141V )
1

13 (N2 —4) (N2 —1)
+ z (5568 —91344N + 3932041V —964687N + 11685701V

1—845 302 1V + 432 359 1V —133335 N + 18 275 N —885 N )
7 (1Vz —4) (¹—1)
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+ z (—25 024 + 122 896 N —380 772 N + 569 163N —1 634 619N

+ 3326040N —3347466N + 1923822N —642978N + 116764N —7576N )
1

X
i5 (N~ —4)' (Nz —i)'

+ z (43 712 —656 912 N + 3 472 772 N —10 632 331N

+ 18 690 504 N —20 221 284 N + 15 125 616N —8 770 834 N + 4 069 272 N

1—1 342 540 N" ~ 260 364 N" —24 083N"), , ~ 0 (z"),
i6 (N& —4)' (N& —i)' (E2)

~
—28+ 29N ~ 36 —74N ~ 39N

X = 1+3z+ 6z2+12z3+ 24z4+ 48z5+ 90z6+174z7+12z8 +18z9¹—1 (N~ 1)~

+ 6z
—203 + 625 N —649 N + 232 N 388 —1592 N + 2469 N —1725 N + 469 N+6z

(N& —1)' (Nz —i)'
~~ 736 —3056 N + 4802 N —3407N + 943N+ 6z (N'- 1)'

1398 —5850 N + 9318N —6743 N + 1922 N~ 6z"
(N& —i)'

—10 520 g 47 078 N —82 728 N ~ 70 812 N —28 891 N ~ 3951N~
~ 6z"—

(N' —4) (¹—1)
+ 6 z (79 712 —380 208 N + 730 934 N —716 200 N + 372 088 N —91 009 N + 8228 N )

1
X

(N& —4)' (N~ —i)'
+ 6 z (600 192 —3 641 312 N + 9 388 472 N —13344 618 N

+ 11337 734 N —5 813 592 N + 1 719475 N —267 280 N + 16 906 N )
1

(N& —4)' (N& —i)'
+ 6z (4531200 —33355776N + 107774336 N

—200 423 616N + 236 373 604 N —183407604 N + 93 969 088 N"
1—31 097 639 N + 6 341 524 N —722 188 N + 35 215 N )

(N& —4)' (N~ —i)'
+ 6z (—8505600+ 71553024N —268314976N

+ 590 267 696 N —843 497 305 N + 818 280 951 N —546 354 607 N

+ 249 146769N —75461014N + 14404142N —1562 138N + 73433N )
1

(¹—4) (¹—1)
+ 6 z (16021 504 —151615488 N + 647 496 704 N

—1646428032N + 2769093400N —3234820688N + 2679887383N
—1 577573 745 N + 650 694030 N —182224525 N + 32 769 509 N

1—3399903N + 154769N )
(N& —4)' (N& —i)'

+ 6 z (—270 452 736 + 2 603 295 744 N —11339 998 976 N

~ 29 517395456 N' —51057737736N' ~ 61725 236 828 N" —53 378 649 928 N"
+ 33 218 024 089 N —14 765 553 520 N + 4 594 385 593 N —966 784 918N

1
+ 129788872 N —9932849N + 325065 N ) q ~ + O(z ),

(N& —9) (N& —4)' (N& —i)' (E3)
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, N'+1, —7 —10N'+5N'
3 (¹—1)„—3 —7N~ + 4N4 + N6

9
—12 —20N~ + 29N6 —6N

+ 8z" +8z
(N& —1)' 3 (N& —1)'

„12—6N'+ 15 N'+ 8N' —11N' » —82 —34N'+ 165 N' —247 N'+ 36N'
+ 8z +8z

(N~ —1)' 3 (N& —1)'

+ 8z" —160 —432 N'+ 698 N' —409 N' —2 N' —18N"
(N& —4) (N& —1)'

1776 12392N + 3665N + 1850N 1811N 666N + 73N+ 8z
3 (N& —4)' (N& —1)'

+ 8z (3328+ 9920N + 237601V —414521V + 12242N

+ 5969N —5077N + 657N —5N )
1

(¹—4) (¹—1)
+ Sz (—114432+ 400128N —1536160N + 1733488N

—323935 N' —602 516N" + 449683 N" —124964 N" + 5895 N"
1+ 1675N" —75 N")

3 (N& —4)' (N& —1)'
+ Sz (—91136+441856N —1078144N + 768256N

+ 450812 N —1054246 N + 839 396 N —464465 N + 194981N
1—54 586 N + 9491 N —690 N )

(N& —4)' (Nz —1)'
+ 8z (

—425728+ 1766144N —1985440N —5221520 N

+ 17290 561N' —24613836N" + 24266712 N" —17725 908 N"
+ 9 035 120 N —2 989 557 N + 594 069 N —63 766 N + 2193N )

1

3 (Nz —4) (¹—1)
+ Sz (—1661184+3794944N + 7844000N

—54955 728 N + 119244695 N —171667137N + 175 851 305 N
—120836371N + 53853632 N —15 114634N + 2 512 157N

1—229837N" + 9716N" —526N"), , + O(z"),(¹—9) (N~ —4) (N~ —1)

4 18N + 32N —27N + 18NE = -', z'+z'+3z" +z"
2 (¹—1)

3 —16N'+ 32N4 —29N'+ 19Ns
+ 6z"

(N& —1)'
+ z (49920 —268032 N + 595744N —7320801V

+ 536 515 N —239 924 N + 65 162 N —10 174 N + 829 N )
1

3 (N& —4)' (N& —1)'
+ 3 z (92 —890 N + 3756 N —9052 N + 13 836 N

1—140231V + 9380 1V —3690 1V + 720 N )
2 (N& —1)'

+ 3 z (36 864 —368 640 N+1 666 560 1V —'4 505 344 N
+ 8 111248 N —10 267 152 N + 9 373 736 N —6 230 112N

+ 30110241V —1020866N + 227573N —30248N + 1918N )
1

(¹—4) (¹—1)
+ z (7 215 630 336 —96 566 722 560 1V + 592 839 316 224 N
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—2 214 635 962 752 N + 5 639 017965 384 N —10 385 973 650 808 N
+ 14 322 131449 584 N —15 072 994 434 276 N + 12 212 762 091 344 N
—7627059006688N&8 + 3656946091 530N~ —1335009872497N ~

+ 366 664 198 242 N —74 601 540 139N + 11013 519 148 N —1 144 634 371 N

+ 79672354N —3373733N + 68030N )
1

4 (¹—9) (N' —4) (¹—1)
+ 3 z (—275 712 + 3 201 536 N —17022 176 N

+ 54 825 776 N —119171333N + 184 722 213N —210 428 660 N"
+ 178 609 366 N —112928 266 N~~ + 52 388 456 N~ —17 133329 N

+ 3699171N —474540N + 29132N ) 4 s + O(z ).1

(Nz —4)' (Nz —1)' (E5)
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