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Strong-coupling analysis of large-1V two-dimensional latt1ce chiral models
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N = oo two-dimensional chiral models on the square and honeycomb lattices are investigated
by a strong-coupling analysis. The strong-coupling expansion turns out to be predictive for the
evaluation of continuum physical quantities, to the point of showing asymptotic scaling. Indeed in
the strong-coupling region a quite large range of P values exists where the fundamental mass agrees,
within about 5% on the square lattice and about 10% on the honeycomb lattice, with the continuum
predictions in the energy scheme.

PACS number(s): 11.15.Ha, 11.15.Me, 11.15.Pg, 75.10.Hk

I. INTRODUCTION

have shown the existence of a scaling region, where con-
tinuum predictions for dimensionless ratios of physical
quantities are substantially verified [1—3]. The scaling
region begins at relatively small values of the correlation
length well within the expected region of convergence of
strong-coupling expansion. Moreover, by performing a
variable change [4] from the temperature T to

SN
T~ —— E,

¹

—1
(2)

where E is the internal energy, one can find agreement
in the whole scaling region between the measured mass
scale and the asymptotic scaling prediction, within few
percent [2].

As a matter of fact, this may be considered as evidence
for asymptotic scaling within the strong-coupling regime,
motivating a test of scaling and asymptotic scaling by
strong-coupling computations. As a by-product, strong-
coupling series can be analyzed to investigate the critical
behavior of the N = oo theory, where Monte Carlo data
seem to indicate the existence of a phase transition at
finite P.

Reference [5] was devoted to a complete presentation of
our strong-coupling calculations performed by means of
the character expansion. We calculated strong-coupling
series for several quantities on the square and honeycomb
lattices. On the ordinary square lattice, we calculated the
&ee energy up to 0 (@is) and the fundainental Green's
function

G(T) = —Re Tr(U(T)U(O)~))
1

(3)

up to 0 (P ). For chiral inodels on the honeycomb lat-
tice, defined by the nearest-neighbor action, longer series

Recent numerical studies of lattice two-dimensional
SU(N) x SU(N) principal chiral models, with the stan-
dard nearest-neighbor interaction

1
SL, = 2NP) —Re Tr [U(x) Ut(2:+p)], P =

were obtained: the &ee energy up to 0 (P2s) and G(x) up
to 0 (P2 ). Lattice chiral models on square and honey-
comb lattices are expected to belong to the same class of
universality with respect to the continuum limit. As we
will see &om the strong-coupling analysis, even at finite
P large-N chiral models on the honeycomb lattices show
a pattern very similar to that observed on the square
lattice.

In this paper, which represents the logical continua-
tion of Ref. [5], we analyze the N = oo strong-coupling
series presented there and the results are compared with
the continuum limit predictions and Monte Carlo simu-
lations. The main result of our strong-coupling analysis
of two-dimensional N = oo chiral models on the square
and honeycomb lattices is the identification of a scaling
region where known continuum results are reproduced
with good accuracy, and asymptotic predictions are sub-
stantially satisfied in the energy scheme.

II. STRONG-COUPLING EVIDENCE OF A
LARGE-N PHASE TRANSITION

Numerical simulations at large N of SU(N) and U(N)
lattice chiral models show evidence of a phase transition
at N = oo. Indeed sharper and sharper peaks in the
specific heat

1 dE
NdT

are observed with increasing N, suggesting a divergent
large-% limit at a finite P [2]. By extrapolating to N =
oo the positions of the specific heat peaks, we obtained
a rather precise estimate of the critical coupling: P
0.3057(3). Details of our Monte Carlo simulations and
their analysis can be found in Ref. [6].

In order to investigate the above issue, we analyze the
N = oo strong-coupling series by employing the integral
approximant technique [7—9], which is especially recom-
mended in the case of a small critical exponent. The in-
tegral approximant method consists of representing the
power series under study by the integral of a linear difFer-
ential equation. In our analysis we considered the integral
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approximants obtained &om a first-order linear differen-
tial equation

A(x) Ix —xoI ~ + B(x), (6)

where A(x) and B(x) are regular in the neighborhood of
xo, and

P~(*o)
Qi(zo)

Given an M order series, I, K, and J must satisfy the
condition L+ K+ J+ 2 & M.

Let us analyze the N = oo strong-coupling series of
the specific heat, which is even in P:

P C = 1+6x+30x + 266x + 2160x + 19932x
+183638 x + 1 754 130x + 16 911192 xs

+O (z'), (8)

where x = P2. In Table I we report the first singularity in
the real axis and the corresponding exponent for different
values of L, K, and J. The results are quite stable,
leading to a critical behavior of the specific heat typical
of a second-order phase transition:

Qr, (z)f'(x)+Pg (z) f(x)+Rg(z) = 0 (z +~+~+2),

(5)

where Ql,„, P~, and Bz are, respectively, L, K, and J or-
der polynomials (we fix Ql. o ——1). These approxiinants
are singular at the zeros xo of QL, (x), and behave as

The errors are just indicative. They are the variance of
the results in Table I after discarding the two furthest
values &om the corresponding average; they should give
an idea of the spread of the results coming &om differ-
ent approximants. Notice that the strong-coupling de-
termination of P, is in agreement with its estimate from
numerical simulations at large ¹

As a further check of the above resummation proce-
dure, Fig. 1 compares, in the region P ( P„SU(N) and
U(N) Monte Carlo data of the specific heat at large N
[N = 21, 30 for SU(N) and N = 15, 21 for U(N)] with the
determinations coming &om the resummed and the plain
strong-coupling series (8). We recall that SU(N) and
U(N) inodels should have the same large-N limit. Monte
Carlo data of C appear to approach, for growing N, the
determination &om the resummed strong-coupling series.
As expected &om simple considerations on the finite-N
corrections to the N = oo strong-coupling series, U(N)
models converge faster than SU(N) models to the N = oo
limit in the strong-coupling region.

Monte Carlo data at large N seem to indicate that
all physical quantities, such as the magnetic suscepti-
bility g—:g G(x) and the second-moment mass M&
[MG = 1/(G and yQ—:4 g x G(x)], are well-behaved
functions of the internal energy even at N = oo [2].
Therefore, as a consequence of the specific-heat diver-
gence, y and M& should have a singular behavior with
respect to P. We indeed expect

x G
IP P

dp dp

From Table I we estimate

(9)
in the neighborhood of P, . Notice that a behavior such
as Eq. (11) leads to a nonanalytical zero of the P function
pr, (T) at p„

P = 0.3058(3),
a = 0.23(3). (10)

pl(T) - Ip —p. I (12)

TABLE I. Resummation of the strong-coupling series of
the specific heat. We analyze the series of P | expressed in
terms of P [cf. Eq. (8)] for which M = 8. We report the first
singularity in the real axis, Po = ~xo, and the corresponding
exponent versus L, K, and J.

po

+ SU(21)
0.8 — i SU(30)

0.6

2
2
2
2
2
3
3

3
4
4
4
5
5
6

0.30598
0.30566
0.30586
0.30563
0.30569
0.30697
0.30591
0.30568
0.30619
0.30508
0.30475
0.30570
0.30562
0.30588
0.30564

0.252
0.227
0.245
0.228
0.228
0.280
0.250
0.228
0.277
0.183
0.166
0.233
0.222
0.241
0.225

0.4

0.2

0.0
0.280

I

0.285
I

0.290 0.295
I

0.300 0.305

FIG. 1. Specific heat vs P. The dashed and solid lines rep-
resent the plain strong-coupling series and its resummation.
The estimate of the critical P is indicated by vertical dotted
lines. When error bars are not visible, they are smaller than
the symbol size.
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around P„explaining the observed behavior with respect
to P of the large-% Monte Carlo data for the fundamental
mass [2].

In order to check Eq. (11),we analyzed the correspond-
ing strong-coupling series by a modified. integral approx-

imant scheme forcing the approximant to have a singu-
larity at P 0.3058, obtaining biased estimates of the
exponent in Eq. (11). In this modified scheme the values
of L, K, and J in Eq. (5) must be chosen according to
the condition L+ K+ J+ 1 & M. We analyze the series

ding = 4+8P+ 28P + 48P + 204P + 440P + 1740P + 3744P + 15148P + 35048P

+140980P + 327600P + 1323612P + 3 149 112P + 12727908P + 0 (P ), (13)

and

din M2

d
= —4 —10P —28P —74P —224P —598P —1936P —5282P —17560P

—49 170P —162 144P —464426P —1 549 656P —4459 234P + 0 (P ) . (14)

In Table II we report the range of the exponent varia-
tions when varying the zero in the interval 0.3055—0.3061.
These results are quite consistent with the exponent o. ob-
tained in the analysis of the specific-heat strong-coupling
series, supporting the relations (ll) and therefore (12).
Such resummations of the series (13) and (14) provide
also improved N = oo strong-coupling estimates of y
and (G. When performing an unbiased analysis of the
series (13) and (14), that is, without forcing the approx-
imants to have a zero at a fixed P, the singularity and
the corresponding exponent turn out to be less stable;
more terms in the series would be necessary to have a
satisfactory analysis independent of that of the specific
heat.

In Fig. 2 we compare our strong-coupling calculations
of y with Monte Carlo data of SU(N) and U(K) chi-
ral models at large ¹ In the strong-coupling region the
SU(N} and U(/t/} data appear clearly to approach the
same N —+ oo limit, which turns out to be very well re-
produced by the improved strong-coupling estimate ob-
tained by integrating the resummed series of ding/dP
(using L = 5, K = 4, and J = 4; see Table II). As Monte
Carlo data show, the large-N convergence around the
transition point is much slower, especially in the weak-
coupling domain.

TABLE II. Analysis of the series of d ln y/dP and
dlnPM&/dP. For some set of L, K, and j we report the
range of values of p corresponding to the range of zero values
0.3055—0.3061.

III. SCALING AND ASYMPTOTIC SCALING

~ SU(9)
i $U(15)

20 — + $U(21)i $U(30)
o U(9)

U(15)
o U(21)X 15

0

0

In spite of the existence of a phase transition at N =
oo, Monte Carlo data at large Ã showed scaling and
approximate asymptotic scaling (in the energy scheme)
even for P smaller than the peak of the specific heat [2].
The stability of this pattern suggests an efFective decou-
pling of the modes responsible for the phase transition
&om those determining the physical continuum limit, and
therefore that evidence of scaling and asymptotic scaling
could be provided by the large-% strong-coupling expan-
sion.

The on-shell fundamental mass M can be extracted
&om the long-distance behavior of the correlation func-
tion in the fundamental channel G(z) or from the imagi-
nary pole of its Fourier transform. We considered two es-
timators of M, p„and pg, deGned &om the long-distance
behavior of wall-wall correlation functions constructed
with G(x), respectively, along the sides and the diago-

d ln y/dP

d Iu(PM~) /dP

0.20—0.24
0.28—0.31
0.23—0.27
0.22—0.26
0.22—0.26
0.23—0.27
0.23—0.26
0.26—0.30
0.07—0.12
0.10-0.15

10

5 I I I

0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315

FIG. 2. Magnetic susceptibility vs P. The dashed aud
solid lines represent the plain strong-coupling series and the
result coming from the resummation of the series (13), re-
spectively. The estimate of the critical P is indicated by the
vertical dotted lines.
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nals of the lattice. An alternative mass MG. is defined
from the inverse second moment of G(x). Unlike the on-
shell mass M, MG. is an oK-shell quantity; it is related
to the zero momentum of the Fourier transform of G(2:),
indeed G(p) i M&2 + p at small momentum.

The quantities p„pp, and M& allow one to perform
tests of scaling based on rotational invariance at distances
d ) ( = I/p„checking p, /pg 1, and on the stability
of dimensionless physical quantities, looking at the ratio
p,, /MG. We should say that these tests concern the long-
distance physics of chiral models.

Monte Carlo data at relatively large N showed that,
within statistical errors of few per mille, the above scal-
ing requirements are verified already at ( (G 2, well
withiii the strong-coupling region. Indeed in SU(N) lat-
tice chiral models and for sufBciently large N, the posi-
tion of the specific heat peak turns out to be quite stable
with respect to the correlation length: (&~' 2.8 for
N & 6, leading also to the expectation that at the large-

N critical point (& 2.8 [2].
In Ref. [5] the strong-coupling series corresponding to

the above-mentioned quantities have been calculated, in
particular M& up to 0 (P ), M, = 2(cosh p,, —1) up to
0 (Pii), and Mq ——4(cosh pg/~2 —1) up to 0 (Pi ).

In Fig. 3 we plot the ratio p, /p~ vs the correlation
length (G = I/M~ as obtained &om our strong-coupling
series. The N = oo strong-coupling curve confirms the
large-N Monte Carlo result p, /pg 1 within a few per
mille at ( 2.

Figure 4 shows the ratio p, /MG, vs $~. Notice the
stability of the curve for a large region of values of (~ and
the good agreement (well within l%%uo) with the continuum
large-N value extrapolated by Monte Carlo data, which
is M/MG = 0.991(1) [2].

In order to test asymptotic scaling we perform the
variable change indicated in Eq. (2), evaluating the en-

ergy &om its strong-coupling series. The two-loop renor-
malization group and a Bethe ansatz evaluation of the
mass/A-parameter ratio [10] lead to the following large-
N asymptotic scaling prediction for the on-shell funda-
mental mass in the /3E scheme:

1.0

0.9

0,7

0.6

0.5
0.0 0.5 1.0 1.5

I

2.0 2.5 3.0

FIG. 4. p, /M@ vs (o = 1/Mo. The dashed lines repre-
sent the continuum limit result from Monte Carlo data.

M —= BaA~2)(Pa),

R@ =16 Bxp (
—),

A@,2l (PE) = /87rPz exp( —8irPE),

~~ (15)8E
In Fig. 5 the strong-coupling estimates of p, /A@ 21 and
M~/Aa qi are plotted vs P@, for a region of coupling cor-
responding to correlation lengths 1.5 ( (~ ( 3. (We
recall that MG differs from M by about I%%uo in the con-
tinuum limit. ) The agreement with the exact continuum
prediction is within about 5%%uo in the whole region. No-
tice also that both curves go smoothly through the value
of P@ corresponding to the specific-heat singularity P„
which is Pa 0.220.(c)

The strong-coupling curves in Fig. 5 were obtained
&om the plain series of the energy and respectively of
M, and M&. In the case of MG. , we also determined
MG/A@ 2~ evaluating the energy and MG by integrating
the resummed series, respectively, of the specific heat and
of dlnPM&/dP. The resulting curve changes very little
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0, 19 0.20
I
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l
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FIG. 3. p, /pg vs (~ = 1/MG. .
FIG. 5. Asymptotic scaling test by using strong-coupling

estimates. The dotted line represents the exact result (15).
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&om that derived &om the plain series; the difFerence be-
tween the two curves would not be visible in Fig. 5. This
indicates once more that the change of variable P -+ Pa
washes out the singularity in P when considering physical
quantities.

IV. CHIRAL MODELS ON THE HONEYCOMB
LATTICE

On the honeycomb lattice we consider the nearest-
neighbor action, which can be written as a sum over all
links of the honeycomb lattice:

Si, = 2NP —) Re Tr [Ui Ut] U E SU(N),
links

(16)

where l, r indicate the sites at the ends of each link. As on
the square lattice, a lattice space a, which represents the
lattice length unit, is defined to be the length of a link.
The volume of an hexagon is vg = 3~3/2. Straightfor-
ward calculations show that the correct continuum limit
is obtained identifying

(17)

A. Large-N phase transition

where x = P . The integral approximant analysis of
the above series, whose results are reported in Table III,
lead. s again to a second-order-type critical behavior with
the following estimates of the critical P and exponent n:

On the honeycomb lattice we have calculated the N =
oo strong-coupling series of the specific heat, which is
even in P, up to 26th order:

P C = 1+ 10x + 90x + 396x + 728x + 9120x
+28 186x + 136800 x + 886 116x&0

+3129380x + 18935800x + 0 (x ),
(18)

P, = 0.4339(1),
o. = 0.17(1). (19)

B. Scaling

On the hexagonal lattice the maximal violation of full
rotational symmetry occurs for directions difFering by a
vr/6 angle, and therefore, taking into account its discrete
rotational symmetry, also by a vr/2 angle. So a good test
of rotation invariance is provided by the ratio between
masses extracted &om the long-distance behaviors of a
couple of orthogonal wall-wall correlation functions con-
structed with G(x).

In Ref. [5] we defined two orthogonal wall-wall correla-

tion functions Gi (x) and Gz (x), with the correspond-
ing masses pq and p,2, which should both reproduce the
on-shell fundamental mass M in the continuum limit. In
order to extract pi and pz we evaluated the 0 (P ) series

of exp( —3@i/2) and the 0 (P ) series of exp( —i/3p2/2).
Figure 6 shows the ratio pi/p2 vs (~ = 1/M~. As ex-

pected &om the better rotational symmetry of the honey-
comb lattice, rotation invariance is set earlier than for the
square lattice: Already at a correlation length (~ 0.5
pi/p2 - 1 within 1%.

In Fig. 7 we plot the ratio pi/MG vs (~. The approach

Notice that this estimate of the exponent o. is very close
to that of the square lattice. The uncertainty in both
estimates cannot really exclude the fact that they are
equal, which would be an indication of universality.

Also in this context we analyzed. the strong-coupling
series of the logarithmic derivative of the magnetic sus-
ceptibility y and PM& by the modified integral approxi-
mant method which forces the existence of a zero at P, .
In Table IV we report the range of the exponent varia-
tions when varying the zero in the interval 0.4338—0.4340.
As for the square lattice, the results in Table IV are con-
sistent with a divergence characterized by the specific-
heat exponent [cf. Eq. (11)],supporting the existence of
a nonanalytical zero of the P function at P, .

TABLE III. Resummation of the 24th-order strong-
coupling series of the speci6c heat for the honeycomb lattice.
We analyze the series of P C expressed in terms of P [cf.
Eq. (18)] for which M = 12. We report the first singularity
in the real axis, Po = ~xp, and the corresponding exponent
versus L, K, and J.

TABLE IV. Analysis of the series of d ln y/dP (19th order)
and din PMo/dP (18th order) for the honeycomb lattice. For
some set of I, K, and J we report the range of values of p
corresponding to the range of zero values 0.4338—0.4340.

po

0.43386
0.43389
0.43393
0.43398
0.43381
0.43387
0.43415
0.43397
0.43495
0.43312

0.162
0.165
0.167
0.171
0.161
0.163
0.185
0.171
0.240
0.101

d ln ~/dP

d in(PM~) /dP

0.15—0.16
0.14—0.15
0.14—0.15
0.15—0.16
0.30—0.30
0.15—0.16
0.21—0.22
0.22—0.23
0.21-0.22
0.17-0.18
0.22—0.24
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1.05 6~3N 1—
NT. (21)

0.95

0.85

0.80

The other important ingredient is the mass/A-
parameter ratio in the honeycomb lattice regularization,
which requires the calculation of the ratio between the
A parameter of the modified minimal subtraction (MS)
renormalization scheme AMS and that of the honey-
comb lattice regularization Ag, given that the (on-shell)
mass/A-parameter ratio in the MS scheme is known [10].

Prom a one-loop calculation we obtained

0.75
0.0 0.5 1.0

1

1.5
I

2.0
I

2.5 3.0 (22)

FIG. 6. y, q/y, 2 vs (o = 1/Mo for the honeycomb lattice.

to the continuum limit value seems to be substantially
equivalent to that observed on the square lattice, but
then for (G & 1.5 the curve becomes unstable. Such an
instability should be cured by an extension of the series.

The ratio between Ah ~, the A parameter of the energy
scheme, and Ah, is easily obtained &om the two-loop term
of the internal energy:

Ag ( N2 —2

As z E N 3~3)
= exp /—

Then the N = oo asymptotic scaling prediction in the
energy scheme is

C. Asymptotic scaling

The asymptotic scaling test is again best performed
in the energy scheme. This requires weak-coupling cal-
culations, which present some subtleties on the honey-
comb lattice. This is essentially due to the fact that,
unlike square and triangular lattices, lattice sites are not
characterized by a group of translations. Details on our
weak-coupling calculations are given in the Appendix.

We calculated the internal energy (per link) up to two
loops, 6nding

The energy scheme consists in defining a new tempera-
ture T~ proportional to the energy

M = Rg @Az, 2i(pE)
2~ t' ~

Ri,z =8 —exp
~(3 3j

Aa, 2i(Pa) = /8~Pa exp( —8~Pa),
1

6~3Z

Figure 8 shows the ratios pi/A@ 2i and M~/Aa 2i vs
Pa (corresponding to correlation lengths 1 & (G & 2.5),
as obtained &om the corresponding strong-coupling se-
ries. Again there is good agreement with the continuum
prediction, especially in the region corresponding to cor-
relation length $G. & 2, where the agreement is within

40

30

1.0—

0.9
20

0.7

10 ~1 E,21

MG/A „
MG/AE „„,

0.6—
0
0.13

I

0.14
I

0.15
I

0.16
i

0.17 0,18 0.19

0.5
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 8. Asymptotic scaling test for the honeycomb lat-
tice by using strong-coupling estimates. The dotted line rep-
resents the exact result (24). The solid line corresponding
to the ratio Mo/Az, z was constructed by resumming the in-
volved strong-coupling series.

FIG. 7. pz/Mo vs t'o = 1/Mo for the honeycomb lattice.
The dashed lines represent the continuum limit result from
Monte Carlo data.
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lo%%uo. The curve corresponding to MG is more stable,
and it changes little when calculated resumming the in-
volved series.

where x~, x„ indicate the sites at the ends of each link.
Rewriting the field P(x) in terms of two fields P (x ) and
P+(x+) as described above, and performing the Fourier
transform (A2) we obtain

APPENDIX: WEAK COUPLING EXPANSION
ON THE HONEYCOMB LATTICE

On the honeycomb lattice the sites cannot be asso-
ciated with a group of translation. This causes a few
subtleties in the analysis of models on such a lattice.

The sites x of a finite periodic hexagonal lattice can be
represented in Cartesian coordinates by

where

, ~ ~ ) [&-(—&)&-(p)+0+( p)4—+(p)

( &-)&—+(p) H( &) ——&+( p) 0—(p)H-(p)]

(A6)

x(li, l2, ls) = li

lg ——1, ..., Lg,

&1
rli + l2 rl2 + 4 I

—
~
0

~
~)

l2 ——1, ..., I2, l3 ———1, 1,

H(p) = e '"' — 1+ 2e* ~ cos

From (A6) we derive the propagators

(A7)

3 ~3)
2 2 )

g2
—— 0, 3 (A1) (&-(k)&-(~)) =(&+(k)&+(~)) = « „~k

~~+., o
~3

4+(i) = vh, ).e'""4~(x+),

) -"* ~.(w,
vhLgL2

p

(A2)

where vh = 3v 3/2 is the volume of an hexagon, and the
set of momenta is

2~
p = mopy+

Lg
mg 1

&
e ~ ~ ) L]

(2xi=
i

—,o I,

27r
m2p2,

2

m2 1 ) ~ ~ ~
y

Notice that

- -=2~ 27r P1
p x= l,m, + I,m, +l3—.

1 2
2' (A4)

To begin with, let us discuss the simple Gaussian mod-
els on the honeycomb lattice, whose action can be written
as

S~ =
2 ):[&(xi) —&(x-)]'

links
(A5)

We set a = 1, where the lattice space a is the length of
a link. The total number of hexagons on the lattice is
LqL2, while the sites are 2I qL2. The coordinate l3 can
be interpreted as the parity of the corresponding lattice
site: Sites with the same parity are connected by an even
number of links.

Notice that each of the two sublattices identified by
x (li, l2)

—= x(li, l2, —1) and x+(li, l2) = x(li, l2, 1) forms
a triangular lattice. Each link of the honeycomb lattice
connects sites belonging to difFerent sublattices. Trian-
gular lattices have a more symmetric structure, in that
their sites are characterized by a group of translations. It
is then convenient to rewrite a field P(x)—:P(li, l2, ls) in
terms of two new fields P (x ) = P(x ) and P+(x+) =
P(x+) defined, respectively, on the sublattices x and
x+. A finite lattice Fourier transform can be consistently
defined as

~3H(k)
(As)

where

(&+(x+)& (x )) —(&--(x--)&-(x-)) = —3„.
1

(A10)

The nearest-neighbor action of chiral models on the
honeycomb lattice is

Si, = — ) 2Re Tr [U) UJ], U g SU(N),
~3

links

(A11)

where l, r indicate the sites at the ends of each link. The
perturbative expansion is performed by setting

U=e', A=) T A (A12)

[T are the generators of the SU(K) group and A are
—1 real fields], and expanding U in powers of A. The

action Sp, becomes

S ) Tr(Ai —A„) + —Tr(Ai —A )
links

——Tr(Ai —A~) (A, —A„) + 0 (A ) . (A13)

The change of variables (A12) requires the introduction
of an additional term in the action

S = —) T A,'. +O(A').
sites

(A14)

Then following the recipe illustrated in the Gaussian ex-

8
A(k) = — 2 —cos k2 cos —ki + cos k2

9 2 ( 2 2

(Ag)

When x+ and x are the ends of the same link, i.e.,
~x+ —x

~

= 1, one can easily prove that
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ample, we rewrite the field A (x, ) in terms of two new
fields A (x ) and A+(x+), whose propagators can easily
be derived from those of the Gaussian models; cf. (AS).
We are now ready to perform weak-coupling calculations.

Given the &ee energy per site,

1
E(S)=,ln f dU(e) exp( —Se),

B

(A15)

where n, is the number of sites, the internal energy (per
link) can be obtained by

G& (t, x, p) = Z& {T,ap) G(T, z, a

T = ZM'(T, ay, ) t, (A24)

where the extremes of integration are chosen to cover
the appropriate Brillouin zone, which can be determined
&om the finite lattice moinenta (A3).

The next step consists in determining the renormal-
ized functions ZiMs(T, ap) and Zgs(T, ap) that satisfy
the equations

1 dI' (P)
3 dP

(A16)

The internal energy up to two loops is given by Eq. (20).
In order to evaluate the ratio between the A parameters

of the MS renormalization scheme and the honeycomb-
lattice regularization, we calculated the correlation func-
tion

GIr (t, zp = 2e ~
) = 1+0(t ),

Gn
l

t, —=1
l
= —1+0(t )

p 5 N —1 t
('p, ) 2N p2

(A25)

1
G(»*+ —y+) = N(Re T [U(z+)U(y+)'])

In z space we obtained [neglecting 0(a) terms]

(A17)
Then by imposing Eqs. (A24) we obtain

where t and G&s(t, x, p) are, respectively, the coupling
and the correlation function renormalized in the MS
scheme. In the Ms renormalization scheme we have [2]

G(T, x, a) = 1 + T F(a/z) + 0 (T ),
N2 —1

2N
where

(A18) Zi (T, ap) = 1 + T —(ln ap + d) + 0 (T ),N
8m'

(A26)

1 a
Il(a/e) = —ln ——pn —la 2) .2' x

(A19)

In p space

G(T, p, a) = —1T N2 —2

2N p2 4N
1+. T

l
D(ap) +

3 3)

where

N2 —2 2'
d = —21n2—

3 3
(A27)

The constaiit d determines the ratio AMs/Ah. , indeed,

where

+0 (T'), (A20) AMs d (N 2 2vr
!

M' = e " = 4exp
l 3 3) (A28)

1
D(ap) = —(ln ap —2 ln 2) . (A21)2'

The above results required, in addition to the relation
(A10), the calculation of the integrals

dk, ~ dk, e'"* —1

2vr . 27r A (k)3 ~3

= F (a/z) + 0 (a/x), (A22)

dki m~ dk2 A(p) —A(k) —A(k+ p)2vr, 2~ b, (k)&(k+ p)

= 2D(ap) + 0 (ap), (A23)

f dkq ~3 dk2 1

2' n 2n Q(k) + m2 (I + ~')

3,&
-'~'

r
l

1+ —m'!
! 1+ —m'

I

2vr ( 8 ) ( 8 )

x Z !1+-m'!
4 r & 8 r

) —1/2

x
I
1+ —m'

)
(A29)

For the interested reader we mention that Eqs. (A22)
and (A23) may be derived from the exact result
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