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The large-N saddle-point equations for the principal chiral models defined on a (d —1)-dimensional
simplex are derived from the external 6eld problem for unitary integrals. The saddle-point equations
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with special attention to the critical domain, which is found to correspond to P, = 1/d for all d.
Related models (chiral chains) are discussed and large-N solutions are analyzed.
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I. INTRODUCTION

The 1/N expansion of matrix-valued field theories is
probably the most important nonperturbative and non-
numerical theoretical tool presently available in the study
of such models as non-Abelian gauge theories and two-
dimensional quantum gravity. A resolution of the above-
mentioned models in the large-N limit would be the start-
ing point for many analytical developments. In particu-
lar when a lattice formulation is involved one must con-
sider different possibilities in the search for the contin-
uum limit; for the case of asymptotically free theories one
must explore the limit of vanishing coupling g = 0 (triv-
ial fixed point) while keeping a physical mass scale fixed,
while in the case of quantum gravity one must search
for a nontrivial fixed point g, and reach the limit with
a specie. c power-law dependence on N of g —g, which
is known as "double scaling limit" [1—3]. Therefore it
is useful to achieve a full knowledge of the coupling de-
pendence of such models, from extreme weak coupling to
strong coupling, in ord.er to explore those regions that
may turn out to be physically most interesting.

As a matter of fact, notwithstanding many recent ef-
forts toward an understanding of the possible properties
of large-% solutions to nontrivial quantum Geld theories,
our present analytical knowledge is limited to a small
number of few-matrix systems. This number is even
smaller if we restrict our attention to the case of unitary
matrix fields, which is especially relevant to the prob-
lem of lattice @CD. To the best of our knowledge, the
only solved examples are Gross-Witten's single-link prob-
lem [4] and its generalizations, the external field prob-
lem 5, 6], and L = 3, 4 chiral chains [7, 8].

We stress that extending the number of solved few-
matrix systems is not at all a pointless exercise. Indeed
apart from purely theoretical informations that might be
achieved, not only does every few-matrix system have a
reinterpretation, via the double scaling limit, as some dif-
ferent kind of matter coupled to two-dimensional quan-
tum gravity, but also every few-matrix system involving

unitary matrices can be reinterpreted as the generating
functional for a class of integrals over unitary groups, and
these integrals in turn are the essential missing ingredi-
ent in the context of a complete algorithmization of the
strong coupling expansion of many interesting models [9].

Following Ref. [9], we may introduce the notion of
a "superskeleton, " that is, a graph whose vertices are
joined by at most one link (simple graph). As has been
shown, knowledge of all the group integrals involved in
the strong-coupling expansion of a lattice model with
nearest-neighbor interactions de6ned on such a graph
provides sufFicient information for the algorithmic recon-
struction of the strong coupling series for a model enjoy-
ing the same global symmetry and defined on an arbi-
trary lattice.

These were basic motivations for us to begin the study
of the class of lattice chiral models which we termed "sim-
plicial chiral models" [10]. In particular we focused on
principal chiral models, with a global U(N) x U(N) sym-
metry, defined on a (d —1)-dimensional simplex formed
by connecting d vertices by d(d —1)/2 links, and explored
specifically the large-N limit of such models, whose rele-
vance we have just been discussing.

Our fundamental result is the reduction of the above
problem to that of solving a single inhomogeneous in-
tegral equation for the eigenvalue distribution of a sin-
gle Hermitian semipositive definite matrix. Although we
could not find. a closed-form solution to this equation for
arbitrary d, we were able to solve it in several interesting
special cases, and we set up a systematic numerical ap-
proach to the solutions that led us to a conjecture about
the location of the critical surface as a function of d.
We have also studied in detail the related topic of chi-
ral chains, their strong-coupling expansion, and critical
behavior. As a result of these analyses, we are confident
that the critical surface is defined by P = 1/d for all d.

Moreover, by treating d as a continuous parameter,
there are two distinct regions. For small d, 0 & d ( 4, the
models exhibit the third-order Gross-Witten transition.
Indeed for d = 1, 2, 3 they coincide exactly with the chiral
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chains studied earlier by Brower, Rossi, and Tan [7]. In
this region, criticality is related to that of O(N) spin
models on random surfaces, as discussed by Gaudin and
Kostov [ll]. For d ) 4, however, there is a first-order
transition ending at the "upper critical" dimensions d =
4, which we scrutinize in some detail.

This paper is organized as follows.
In Sec. II we set up our formalism for a simplicial chiral

model and derive the large-N effective action and a rep-
resentation for the internal energy. We begin in Sec. II8
by illustrating the formalism for the simpler case of vec-
tor O(N) spin models on a simplicial lattice, deriving
the closed-form large-N solution for arbitrary values of
d and studying its properties. Section IIC gives the
large-N effective action for the simplicial chiral model
and Sec. IID gives the saddle-point equation (large-N
Schwinger-Dyson equation) for the eigenvalue distribu-
tion, discussing its features and converting it into a stan-
dard inhomogeneous Fredholm equation of the second
kind.

In Sec. III we analyze the solvable examples. We begin
with integer values of d & 4 (which correspond to L & 4
chiral chains), followed in Sec. III B by a detailed discus-
sion of the d = 4 case, including features of the weak-
and strong-coupling expansions and the asymptotic ex-
pansion around the critical point P, = 1/4. We present
in Sec. IIIC the exact result for the limit d m oo and
develop in Sec. IIID a treatment based on the 1/d ex-
pansion.

In Sec. IV we solve the models at criticality for ar-
bitrary 0 & d & 4 and sketch the peculiar features of
the critical behavior when d & 4. Also in Sec. IVB
we present numerical methods based on the Gaussian
integration techniques for d & 4 on the critical surface
P, = 1/d.

Some technical extensions are included in the appen-
dices. Appendix A is devoted to a discussion of the
double-scaling limit of critical chiral chains I. & 4; Ap-
pendix B extends the discussion of chiral chains to I & 4
by an analysis of strong-coupling expansion.

II. SIMPLICIAL CHIRAL MODELS

A (d —1) dimensional simplex is formed by connecting
in a fully symmetric way d vertices by d(d —1)/2 links.
I et us assign a U(N) matrix to each vertex. The parti-
tion function for principal chiral models on a simplicial
lattice is obtained by integrating over unitary N x N

matrices with a normalized invariant Haar measure:

Zg(P, N)

dU; exp & NP ) Tr U, U~+ U~U,~
) . (1)

Thus the d-matrix simplicial model has an underlying
permutation symmetry instead of the cyclic symmetry of
the d-matrix chiral chains. For d = 1, 2, and 3 these two
symmetries and the associated models are equivalent. We
shall explore the U(N) x U(N) symmetry of the system
and, in particular, study its critical behavior in the large-
N limit.

For this purpose, it is sufFicient to study the bulk "ther-
modynamic" properties, e.g. , the &ee-energy density, in-
ternal energy, and specific heat, which are respectively
given by

1S,(P, N) =, lnZ„(P, N),

1 DI"g(P, N)
2 BP

20'(, N)
0 (2)

We focus in this paper on computing the free energy and
finding the critical point P, for all values of the parameter
d in the large N-limit. We find that there is a sequence of
critical theories with P, = 1/d, which exhibit third-order
Gross-Witten singularities for d & 4 and a first-order
transition for d & 4. Special attention will be paid to the
marginal dimension d = 4. Scaling exponents and Gnite-
size (or double scaling) properties will be presented in
some special cases, but a thorough investigation for all d
is beyond the scope of this paper.

A. External Beld method

Because of the permutation symmetry of the vertices,
simplicial chiral models can be reformulated in terms of
a Lagrange multiplier Geld which decouples the original
degrees of freedom. The resulting effective theory is very
reminiscent of the mean field approximation to standard
lattice models, but in contrast with the mean field this
reformulation is exact.

We therefore replace the direct interaction between
unitary matrices with the coupling to an auxiliary field,
which in this case is a complex N x N matrix, A, intro-
duced in the following representation of the identity:

yd~exp( —mPT (x —g,'. , v) (~& —P,'. , v,') )
f dA e p(xNP Tr [AAt]j—

Again by exchanging the order of integrations and representing the partition function in the form Zg = Zg/Zo, we
may obtain

d

z, (p, m) = jda ji=1
dUiexp N Tr —AALU+A U, +A~ U; —d

'e

(4)



3232 RICHARD C. BROWER et al. 53

Zg(P, N) = dB exp — TrB'Bt + N dF(BBt)N
4

—N Pd (6)

where B replaces 2/A.
A Grst crucial point in our analysis is the observation

that the integrand in Eq. (6) is a function of the eigen-
values x; of the Hermitian semipositive definite matrix
BBt. Moreover Morris [12] has shown that, when inte-
grating over complex matrices, a proper parametrization
may oBer in specific cases, like ours, the possibility of per-
forming the "angular" integrations exactly and reducing
the problem to that of integrating over the N variables
x;. Referring to Morris' paper for a proof of the angular
integration, we apply it to our Eq. (6), thus obtaining,
again up to irrelevant numerical factors,

Zg(P, N) = dx'
N

(x, —x~. ) exp —— x,
4 \ 4 4

+N dF(x;) —N Pd

By performing the single-link external Geld integral, we
may introduce the auxiliary function

F(BBt) = ln dU exp —Tr BUt + UBt1

¹ 2

(5)

and reexpress Zd, up to an irrelevant multiplicative fac-
tor, in the form

Upon substituting this identity into Eq. (8) and inverting
the order of the integrations, we may then represent the
partition function by Zg = Zq/Zo, where

Zg(P, N) = ds; h(s; —1) exp — v
NP

P('
+NPv ~ ) s;

&,=i

N
2

It is now possible to perform the decoupled constrained
integrations. To this end we may define the auxiliary
function

F~(z ) = —ln dsb(s —1) exp Ns z,

—ln
~

—pl+ 4z2+ —
~

. (12)
i, 2 2)

As a consequence for large N we have the following rep-
resentation of Zd.

N z2
Zg(P, N) = dz exp ————d gl + 4z2 —1

2 P

where z = z ~ z. This function is known explicitly for all
values of N and admits a large-N limit [14]:

fN) (Nz)'
FN(z ) = —lnI'

( I Iiv/2 i(Nz)N q2) g 2 )
Ql + 4z2 —1

1
Nmoa 2

The second crucial observation concerns the function
F(x,). It is known exactly for all U(N) groups [7], while
integral representations exist for SU(N) groups [13],and
it takes on a relatively simple form in the large-N limit.
Before proceeding further, we shall first provide an even
simpler illustrative example whose large-% solution can
be obtained fairly straightforwardly.

—ln~ —vl+4z'+ — i+Pd I. (13)
2))

The large Nvalue -of the integral in Eq. (13) may be
obtained by a saddle-point estimate. After some simple
manipulations, the saddle-point equation may be reduced
to

B. Pedagogical example: simplicial spin models
1 ——= — 1 —gl + 4z2

Z G

P 2
(14)

Consider instead of our simplicial chiral models, an
example of an O(N) symmetric nonlinear model defined
on a simplex. The same basic methods used for the chiral
models are easily illustrated in this much simpler context.

The partition function is obtained by integrating over
the N —1 independent components of d vectors:

Zg(P, N) =
d d

ds,. 8(s; —1) exp NP ) s;. s,

The efFective field is a single, unconstrained N-
component vector z, which again can be introduced as
a Lagrange multiplier field via an identity,

J' dz exp[—
—,'NP(z —P, , s;)']

J' dz exp( —2NPz z)

The solution of this equation is

z =P 1 ——+. P—+. — (1 —Pd) +4P . (15)
2

2 2 2

By taking the logarithmic derivative of the partition func-
tion with respect to P, we obtain an expression for the
internal energy (per unit link) U& of simplicial spin mod-
els in the large-N limit:

d(d —1) 1 (z2 1)
Vg = —

/

——d ——
/2 i O' PJ

g(1 —Pd) +4P —1
d Pd —1 1

2 2P 2P

(16)
We may check many special cases of this result, and
in particular we may notice that the right-hand side of
Eq. (16) is zero when d = 1, while when d = 2
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Ug ——
1

Ql + 4P2 —1
2

(17)

consistently with the single-link model result.
Finally let us notice that in the large-d limit, as a triv-

ial consequence of the structure of the model, the solution
we found coincides with the mean field solution, which
is exact in this limit. It is worth observing that, while
Eq. (16) is formally correct for all values of P, in order
to recover the standard strong and weak coupling expan-
sions of the solution we must separately consider the two
different regimes P ( P, and P ) P„where for all d we
obtain P, = 1/d.

C. Large-lV limit

Zg m exp[ —Sg(x, )], (25)

and we can also extract the internal energy per unit link
by taking a logarithmic derivative of Zp with respect to
P which leaves us with the relationship,

This equation, supplemented with the condition xi & 0
and with the constraint r = 0 (weak coupling) or Eq. (20)
(strong coupling), is the fundamental saddle-point equa-
tion of principal chiral models on a simplicial lattice. It is
the starting point of most of the developments presented
in the following sections.

We recall that, once Eq. (24) is solved, knowledge of
the saddle-point value of the eigenvalues xi allows the
large-N evaluation of Zg via the relationship

Returning to simplicial chiral models, we are again in-
terested in the large-N limit. For the free-energy func-
tion I" (x;) resulting from a one-link integral over a U(N)
matrix, the limiting form can be extracted by solving
the Schwinger-Dyson equations and written in a simple
closed form [5, 6]:

d(d —1)U= ) x; —d ——.1 -- 1
4P' '

P
2

D. Saddle-point equation

(26)

1 1E(x) = —) gr+x, —

). (gr+x, +gr+z, ) r 3
2 ) 4 4

We must distinguish two diferent phases, a weak-
coupling regime where r = 0 and

1 1
N)- ~z; (19)

It is important for future developments to observe that
Eq. (20) also leads to the condition

BI (x;, r)
Bp

(21)

It is completely legitimate to apply the above results to
a saddle-point evaluation of the large-N limit of the in-
tegral appearing in Eq. (7). To this end we may define
an effective action

Sd = —) x; —N dF(z;) —) ln(x; x, )+N Pd, — .

(22)

and a strong-coupling regime where r is dynamically de-
termined by the condition,

1 1

gr+ x;

In order to study Eq. (24) we shall start by applying
well-established techniques, and in particular by intro-
ducing an eigenvalue density function. It is however con-
venient first to introduce a new variable zi whose formal
definition is

z; = v'r g z;, (27)

subject to the condition 0 ( ~r ( z, . We may assume
that the eigenvalue variable xi lies in a single interval
[z, xi,], 0 ( z ( xb In term. s of the new variable z;,
one has z, a[a, b] where a = gr + x, b = gr + xs and

0(yr(a(b (28)

(29)

For weak coupling, r = 0, and we expect in general a =
~x ) 0. For strong coupling, one expects x = 0 so
that a = ~r g 0.

We shall be interested in the weak-strong transition as
one varies d and P. In a third-order transition, typical of
large-N transition previously studied, a, = ~r, = 0. In
a first-order transition, which we will encounter for d & 4,
a, = ~r, g 0 when approached from the strong-coupling
regime.

Let us denote the large-N eigenvalue density by p(z);
it vanishes outside the interval [a, b]. We may now turn
Eq. (23) into the following integral equation,

and derive a saddle-point equation

1 BSg 1 BF 2

NBx; 4P Bx, N -x; —x,
2g2

= 0. (23)

The function p(z), and therefore also the extremes a and
6 of the integration region, are thus determined dynami-
cally. In particular the normalization condition

Very simple manipulations, including the use of Eq. (21),
lead to a reformulation of Eq. (23), which can be turned
into the relationship

gr+x; 1 . (4 —d)gr+x, +dgr+x,
a =

2P N xi xii i'
(24)

dz'p(z') = 1
a

must be satisfied.
In addition to the positivity requirement, p(z) ) 0 over

the interval [a, b], . the desired solution to Eq. (29) must
also satisfy either the weak-coupling inequality, Eq. (19)
or the strong-coupling constraint, Eq. (20). In the large-
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K limit, Eq. (19) becomes

diP( )&1
z' (31)

R(z) =
4p
z

4p

d d —2, p(z')
2 2 z+z'

d —2
f( z).

2 2
whereas Eq. (20) becomes

dz' = 1.p(z')
zl (32)

It follows that R(z) is itself an analytic function of z, with
a cut on the negative real axis in the interval [ b,——a].

Let us now notice that the normalization condition im-
plies

The determination of the transition point P, and of the
critical behavior around this value is one of the interest-
ing physical problems concerning this model.

Equation (29) has a somewhat unconventional form
when compared to other integral equations, because of
the special structure of its kernel. We may however per-
form a few manipulations in order to obtain a more famil-
iar relationship. Our starting point is the introduction of
an analytic function of z, by the definition

b

f(z) -=f . , dz'.

1
f(z)

)z)moo z

As a consequence in the same limit we obtain

z d d —2
R(z) +

4P 2 2z

and in turn

1
p(z) = —[R(z) —f (z)]

Z7r

1 fz d d —4i f'1)
-+ —.

I

——+
I

+ OI —,
Ii~ q4P 2 2z y gz') (38)

f (z + ie) = R(z) ~ iver p(z), (34)

when z E [a, b], and it is easy to recognize that

By construction, the analyticity domain of f(z) is the
complex z plane with the exception of a cut on the pos-
itive real axis in the interval [a, b]. The discontinuity on
the cut Inay be parametrized by writing

This equation can in principle be used in order to deter-
mine relationships between the constants a and 6 in place
of the normalization condition.

We must now distinguish between weak- and strong-
coupling regimes. In both cases, by exploiting analyticity
properties of the function f(z) and defining appropriate
auxiliary functions, it is relatively easy to reduce Eq. (29)
to the forms

g(b —z)(z —a) 1
p(z) =

7r 4p

d —2 dy p(y)
- y + ' V'(b + y)(y + a)

for P) P„

z 6 —z 1
p(z) =-

7r z —a 4P
d —2 dy y+ a p(y)

2 y+z y+b y
for P&P, . (4o)

The values of a and b as functions of P are determined by
enforcing the asymptotic condition (38). Equations (39)—
(40) are inhomogeneous Fredholm equations of the sec-
ond kind. It is therefore, in principle, possible to ap-
ply standard methods of (approximate) resolution by ex-
pressing the kernels in terms of appropriate orthonormal
sets of eigenfunctions.

The weak- and strong-coupling constraints, Eq. (19)
and Eq. (20), can be expressed in terms of the analytic
function f (z) as f (0) ) —1 and f (0) = —1 respectively.
Alternatively, writing f(z) = R(z) —ivrp(z) and analyt-
ically continuing this expression outside of the interval
[a, b], Eqs. (19) and (20) can also be expressed as

-ip(o) = o, (42)

respectively. Note that Eq. (40) is parameterized so that
the strong-coupling constraint (42) is automatically sat-
isfied. The transition point P, can be determined ap-
proaching kom the weak-coupling regime by enforcing
the equality p(0) = 0. We shall return to a general dis-
cussion of this criticality in Sec. IV.

A final comment concerns the explicit evaluation of Zg.'
Instead of directly substituting p(z) in the expression of
the partition function, it is conveinent to apply Eq. (26)
in the form

b

d(d —1) U = dz' p(z')(z' —r) —d ——,
a-ip(0) ) o (41)

and perform an integration with respect to P to recover
the &ee energy.
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III. EXACT LARGE-N SOLUTIONS the weak- and strong-coupling solutions:

Here we present the solutions at K = oo as a function
of d. They can be broken into three classes for d ( 4, d =
4, and d & 4, respectively. For d & 4, they are equivalent
to chiral chain models with L ( 4 studied earlier [7], all
of which exhibit the third-order Gross-Witten transition
at p, . For d ) 4 there is a first-order transition, which
ends exactly at d = 4, consequently the end point at
d = 4 is of special interest.

A. Solutions for d ( 4

As we mentioned in the introduction, when d is integer
and less than 4 simplicial chiral models are only reformu-
lations of trivial or already solved models. It is however
quite instructive to consider even these examples in our
new language. Let us begin with the only apparently
trivial case d = 0. Obviously Zp ——1, however, Zp is non-
trivial and we need to know its value in order to compute
Zg. As a matter of fact Eq. (6) already implies that, up
to a constant,

Zo oc exp N lnP. (44)

We would like, as a consistency check, to derive this re-
sult &om the saddle-point equation. A straightforward
manipulation of Eq. (29) leads to

(45)

This equation is solved by

z 62 —z2
p(z) =

4~P gz2 —a' ' (46)

dz /16P —(z2 —a2)
p(z)dz =

8vrP vrz2 —a2

1 dx
/16P —x,

8m x (47)

and the physical solution is unique and leads by a trivial
integration, to Eq. (44).

Because of our definitions Zg ——1, Zy = Zp. The eigen-
value distribution p(z) however is the generating function
for the moments of the linear combination of a complex
and a unitary matrix, and these moments can be highly
nontrivial, even if the complex matrix itself has a Gaus-
sian probability distribution, as a consequence of the av-
eraging over unitary matrices. As a matter of fact we
were not able to solve explicitly the saddle-point equa-
tion associated with the d = 1 models, even though the
solution probably has reasonably simple mathematical
properties.

Let us now turn to the d = 2 case. As a straightforward
application of Eqs. (39)—(40), we immediately find both

with the only constraint b —a = 16P. However by
keeping in mind that only the combination x = z —a2 is
physically meaningful because of Eq. (27), we recognize
that

1 I p-(. — p)'
4vr p

1
for P) —,

z 1+6P —z
p. (z) =

4vrP z —1+ 2P

1
for P & —.

2
(49)

For the strong-coupling region, r = (1 —2P) 2.
It is easy to recognize that the d = 2 model corresponds

to the Gross-Witten single-link problem, which in turn is
equivalent to large-N QCD2 with Wilson action on the
lattice [4]. The properties of this model are well known,
and in particular it is known that P, = 1/2, consistent
with Eqs. (48-49). Another consistency check is easily
made by applying Eq. (43) and verifying that the known
expressions for U2 are reproduced.

Finally let us comment about the d = 3 case. This
model in its original formulation is completely equivalent
to the three-link chiral chain studied in Refs. [7, 8]. We
therefore know that it must possess a third-order phase
transition at the critical value P, = 1/3. However, as we
already observed, our reformulation leads to exploring
quite diferent classes of correlation functions and there
is no obvious relationship between old and new results
apart from bulk thermodynamical properties. Again we
have no analytical solution for the d = 3 model equation,
whose known properties stand as a benchmark for future
at tempts.

B. Solution at d = 4

Turning to d = 4 leads us to a new situation, where we
are no longer guided by known results, since the three-
dimensional simplex (tetrahedron) is distinct from the
solved four-link chain. Actually it would be instructive
and convenient to embed both models in a more gen-
eral case interpolating between them and including many
more interesting situations. We are studying the most
general four-site system with bilinear interactions of four
unitary matrices, which turns out to be reducible to an
interacting two-complex matrix system. A separate pa-
per will be devoted to a discussion of this system. Here
we only discuss the solutions of the saddle-point equation
obtained from Eq. (29) in the d = 4 case:z, z'p(z')—1= dz

8P z2 zi2 ' (50)

f-(*) = , p (x')vx'

and

In order to solve this equation, let us separately con-
sider the weak- and the strong-coupling regimes, while
changing variables for convenience to x = z and defin-
ing the distribution p(x) by p(z) dz = p(x) dx. The spe-
cial structure of Eq. (50) makes it convenient to follow a
special procedure not directly related to Eqs. (39)—(40)
derived for the general case.

In the weak-coupling phase, we define the functions
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g-(*) = &-(z)
Q(z —b')(x —a')

subject to the normalization constraint

(52)
1

g (*)
f~/ —woo x

We then find

(63)

Q2

dx' p (x') = 1.
Q 2

(53)
1 x —a 1 dy 1 y+a

g, (z) =
Sp~T T —b' Sap f T+y ~y y+ p

The functions f (x) and g(x) are real analytic, with a
cut along the interval [a, b ] on the real axis. On this
interval the relationship

and

(64)

Re f (x)Img (zowie) = ~
(x —a') (b' —x)

holds, while analyticity and Eq. (50) imply

(54) P .(z) = 1 dy x(b2 —x)(y+ a2)
8vr2p ~ x+ y y(b2 + y)(x —a2)

65

The boundary condition (63) leads to the relationship

g (x) =
Q(z —b2) (x —a2)

where

Q2

dx'Img, (x'+ ie) = vr,
+2

(66)

dy . (55)8~P p x+y g(y+b )(y+a )

1 X —GIm gs(z + ze)
8P x b2 —x (67)

However Eqs. (51)—(52) imply that

Im f (z+ ie)

1 Iy
8vr2P o x+ y

(b —x)(x —a )
(b' + y)(y + a') (56)

As a consequence one obtains that
Q2

dx'g (z') = 2 dx'Img (x') = 0
Q2

around [a, b ]; that is,

(58)

In order to determine a and b we may use Eq. (53)
and the observation that in the complex x plane when
/z[ m oo

g-(z) ~ O
I

—
I
.

lb'
z2

All the integrals appearing in Eqs. (56), (59), (65),
and (66) are elliptic integrals. It is therefore possible to
reexpress both the weak- and the strong-coupling results
in terms of known functions. In particular it is convenient
to reexpress everything in terms of "natural" rescaled
variables, by defining

Q2k= 1 ——, (68)

Z2
1 ——

) (69)

8P Qk2 —(2

and setting P(()d( = p(z)dz. It is not too difficult to
eliminate completely the parameters a and b in favor of
k by making use of Eqs. (59) and (66) respectively. As a
consequence we obtain the weak-coupling expression

Q2

V'(b' —*')(*' —a') (59) -gk2 —q2 gl —q211((2, k), (70)

In strong coupling we adopt a similar strategy by defining and the strong-coupling counterpart

and

�

$2 dx' p, (x')
&~ x —x'

g. (z) = & (z)

[E(k) —(1 —k2)K(k)] Qk2 —(2

—gk2 —(2gl —(211(q', k),

with the constraint

f

�/2

p, (x )dx' = 1,
a2

and the boundary condition

(62)

where K, E, II are the elliptic integrals of the first, second
and third kind respectively, and the domain of ( is the
interval [0, k], 0 & k & l.

Obviously, in order for the problem to be completely
solved, one must try expressing k as a function of P. This
is achieved in principle by enforcing the normalization
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condition, which takes the form

p(&)d& = l.
0

(72)

and as a consequence

k' 4 2 1 2 1
p p ln —ln —+ —ln —+—

4 k k 2 k
(so)

By symbolically writing

p(&) = »(& k) (73)

in agreement with Eqs. (70) and (71), it is actually pos-
sible to express all results as functions of k by the rela-
tionship

1

Jo d(D(g, k)
(74)

In practice this form of our results is suKcient for both
numerical evaluation and asymptotic expansions, not to
mention the possibility of exploring the region around
criticality. Criticality is characterized by the limit k —+ 1,
where simple mathematical properties of elliptic integrals
allow us to show that both weak- and strong-coupling
results lead to P, = 1/4 and

therefore O' P—P, apart from logarithms. By properly
applying Eq. (43) we may also extract the result

U
k' —+0

vr' —6 + O(k12 ln' k')
9

(sl)

and by simple manipulations, from the specific heat re-
lationship

2 t9U
(82)

we may obtain near criticality

'+3
I -+o 36 , +OI

12 ln(4/k')
(s3)

A similar analysis can be performed in strong coupling
near criticality,

p, (() = (ln 1+(
(75)

In order to obtain the usual weak- and strong-coupling
expansion of physical quantities, like the internal energy,
as power series in 1/P and P, respectively, one must con-
sider in turn the k + 0 limit and the expansion in powers
of k. Obviously the diferent structure of p(() in the two
phases will lead to difFerent expressions. In particular we
have the asymptotic behaviors

4
p, (() = 4P 1+k"

~

ln —,+ —
~
+ O(k")k' 2)

x (ln +k'
i

ln —,+ —
i

1+(,2 f 4 1)
1 — ( k' 2) 1—

+O(k' )

where again k' = 1 —k + 0, and

(s4)

2
P

I.-+0 k4 , +O(1),
2

(76) k" 4
P. —/3 = ln —ln ———ln ———

4 k& ki 2 kI (85)

k4
P. :—+ —+ O(ks),

I ~o 16 32
(77) We then find

'+3
C, (86)+OI12 ln(4/k')

and it is conceptually straightforward to obtain power
series expansions in the powers of k for such quantities
as the internal energy and to convert them into standard
weak and strong coupling series.

The expansion around the critical point P, = 1/4,
k = 1, is slightly subtler because the expansion of el-
liptic integrals around k = 1 is asymptotic. However
by exploiting a few known or previously derived results,
we have managed to obtain the following relationships,
holding in weak coupling near criticality:

4
p (() =4P 1 —k'

~

ln ———
~

+. O(k' )k' 2y

1+( , ( 4
x I,'1n —k'

~

ln —,——
1 —( ( k' 2) 1 —t,

'2

The strong- and weak-coupling expressions of C near crit-
icality show that the critical behavior around P, =

4 cor-
responds to a limiting case of a third-order phase transi-
tion with critical exponent of the specific heat

(87)o. =0
near the boundary with weak second-order critical behav-
ior. Notice that in terms of double scaling limit o. = 0
would correspond to a central charge c = 1.

For the interested readers we mention that in the
derivation of Eqs. (78) and (84) we made use of the fol-
lowing formula (which appeared with some misprints in
Ref. [15]:

+O(k"), (7s)

where k' = 1 —k2 -+ 0. From Eq. (74) we then obtain

1 f 4 ( 1 —g) k'2
II((, k) =

~

ln —„,+ —ln

4
x

~

—1+(1+( )ln —+(lnk' 1+() ' (88)

4 2 1 2
4P 1 + k' ln —ln —+ —ln —+-

k' k' 2 k' 2
(79) for the asymptotic expansion of the elliptic integral of

the third kind II((2, k) in the region k' = gl —k2 ~ 0.
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C. The d = oo solution

1'vv'hile at present we are not aware of any general
method to get an analytic solution of the saddle-point
equation (29) for arbitrary d, the d -+ oo limit provides
another interesting instance in which the equation is solv-
able.

It is easy to show that for larger and larger values of
d the distribution p(z) becomes narrower and narrower,
with a width decreasing like d / and a peak value z
which can easily be determined by replacing in Eq. (29)

p(z) -+ 8(z —z), (89)
and obtaining the large-N, large-d equation

2P

' —d=—d —2

2z (90)

A consistent solution is obtained by assuming the limit
to be taken at a fixed value of Pd, in which case

( 1 )
z +pd 1+ 1 — ~k

l Pd)
(91)

with the obvious restriction Pd ) 1 (weak-coupling
phase). When Pd ( 1 one must recognize that the saddle-
point condition, when correctly applied to the original
expression for the efFective action Eq. (22) in the large-
d limit, unambiguously leads to the prediction z + 1
r ~ 1 (strong-coupling phase).

The most interesting features of this result follow:
The large-d prediction for the location of the critical

point, p, ~ 1/d, ainazingly enough, seems to be satisfied
for all values of d.

There is complete equivalence with the mean field so-
lution of infinite-volume principal chiral models on a D-
dimensional hypercubic lattice such that D = d/2 [16]
where we may observe that this last relationship enforces
the constraint that corresponding models have the same
coordination number.

It is easy to compute the large-d expression for the
internal energy in the weak coupling,

1 2 1 1 1 1

4(Pd) 2 2 2 Pd 4Pd
'

At criticality, the weak-coupling value of U is —,while4 l

the strong-coupling value is U = 0. Therefore the large-
N, large-d prediction for the nature of criticality is that
of a first-order phase transition. It is however important
to notice that the large-d prediction for the specific heat
in the weak-coupling phase,

ical approximation scheme which turns out to be quite
efFicient at least in the weak-coupling domain away from
criticality. The essential ingredient for both of these de-
velopments is the observation that by substituting the
definition of f(z), Eq. (33), into Eq. (29) we obtain the
functional equation:

—d = 2Re f(z) + (d —2)f(—z), (94)

subject to the following constraints: (a) Eq. (94) is sat-
isfied in the interval [a, b], with a and b dynamically de-
termined; (b) f(z) is real analytic outside the interval
[a, b]; (c) the asymptotic behavior of f (z) when ~z~ ~ oo
is f(z) + 1/z.

Let us now define

&(&) = f(z+ &) (95)

where z is a constant whose value lies in the interval
[a, b] and will be dynamically determined. Substituting
the definition (95) into Eq. (94), we obtain

—d + = 2Re P(() + (d —2)P(—2z —(). (96)

Postponing the discussion of the numerical approxima-
tion scheme, let us illustrate here the procedure for a
systematic 1/d expansion of Eq. (96). We introduce the
following ansatz for the function P(():

d( —ci( —c2, (98)

inclucling the point ( = 0. Moreover we require Q(0) =
R(0) = 0 and the boundary condition

&(c) „, (99)

These requirements fix the constants z, ci, and c2 dy-
namically, which in turn determine a and b. Finally we
assume all functions and constants to be expandable in

1.9

1.7

1.5

d=2
d=3
d=4
d=inf

y(() = dq(()
~

1 — 1 ——' —
~
+R((), (97)d( d(2 j

and assume the functions Q((), R(() to be real analytic
in the interval between the roots of the polynomial

dC = — +11 1
4 /1 —1/Pd

(93)

shows a divergence at the phase transition, with no indi-
cation for the existence of a metastable phase.

It is interesting to compare the specific heat behavior
for d = 2, 3, 4, oo. In Fig. 1 we plotted dC vs P = dP.

dc

1.3

0.9

0.7

0.5

0.3

/I

JI
I

/
/

/

/i

D. The 1/d expansion

The large-d result may also be the starting point for a
systematic 1/d expansion of Eq. (29), and for a numer-

-0.1
0.0 0.2 0.4 0.6 0.8

I

1.0
dP

1.2
I

1.4 1.6 1.8 2.0

FIG. 1. dC vs dP for the d = 2, 3, 4, oo simplicial models.
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1/d, with nonvanishing leading order.
As an illustration let us find the solution to first non-

trivial order. All leading order quantities will be indepen-
dent of d and labeled by a subscript 0. After an expansion
of Eq. (97) in powers of 1/d we obtain

4(4) = -Q. (&) I

—+ —,I+R.(4)+& I

—
I

1

&'r «) (100)

By imposing the asymptotic boundary conditions we
have the stricter condition (forced by analyticity of Qp,
Rp)

1 fc, c, ) =1-Qp(&) I

—+ —,
I
+ Rp(C) = —.

&'r (101)

zp+( 1

2Pd
(103)

where we always assume the large-d limit to be taken
while keeping Pd finite. Substituting the condition
Qp(0) = 0 into Eq. (103) we may solve it in the form

1

2Pd Zp

1

2 2 (104)

Qp(C) =
I

1 —
I
+3 ) 1

2zp ( 4zp ) 4zp 2zp + (
while the implementation of Eq. (101) fixes

(105)

C2 = 4zp
(106)

and in conclusion we may also write

('-:- )
8 1—Zp 4»

(107)

I et us notice that the leading order is completely deter-
mined in terms of the parameter zp, which in turn is fixed
through Eq. (104) to take the value

( 1 I
zp ——z=Pdl 1+ 1— (108)

Hence we recognize that z is nothing but a generalization
of the mean field parameter which (roughly speaking)
describes the center of the eigenvalue distribution, while

the width of the distribution itself is 0 1 d as one

may easily see by studying the roots of the polynomial
under the square root sign.

The eigenvalue distribution itself may be recovered (or-

As a consequence we may also predict the 0 (&) asymp-
totic behavior

(&) ~ -+ d, I c, + —
I

+ O
I

—„, I
. (102)

1 1 1 t c21 t'1)
d4' 0 ) «')

Now by substituting the above results into Eq. (96) we
obtain, after expansion in powers of 1/d,

der by order in 1/d) by the relationship

dQ(z —z) C2 ci
~(z) = — —+ —(z —z) —(z —z)'

vr(z —z) d d
(109)

and it is not too diFicult to check that the large-d limit
of Eq. (109) may be taken and the result is

2 C2
p(z) -+ lim —— ——(z —zp)2 = 8(z —zp),

d~oo 7l C2

(110)

as expected. We have worked out higher orders of the
1/d expansion.

The ansatz (97) can also be used as a starting point for
numerical approximations. For instance, with the preci-
sion of about leap, one can quickly verify numerically the
conjecture that P, = 1/d.

IV. SIMPLICIAL MODELS AT CRITICALITY

We would like to be able to understand. in more detail
the behavior of the critical properties as a function of d.
Equation (29), to the best of our knowledge, does not
lend itself to an exact treatment for arbitrary values of P
and d. However, on the critical surface for weak-strong
transition, we find that it is possible to turn Eqs. (39)—
(40) into a homogeneous (eigenvalue) equation. For d (
4, this eigenvalue problem can be solved analytically. For
d & 4, the problem can be solved numerically with great
precision.

It is also worth pointing out that at criticality for
d ( 4, Eq. (29) can be solved by applying a method
of Gaudin and Kostov for the study of O(%) spins on
random surfaces. There is in fact an exact mapping of
our weak-coupling critical saddle-point equation to that
of Ref. ill], with d = n + 2. However, for d ) 4, the
Gaudin-Kostov's solution become pathological. In con-
trast, for simplicial models, we find that a consistent so-
lution exists for d ) 4.

The determination of P, can be achieved by consider-
ing Eq. (39) in the limit when the equality in the weak-
coupling constraint, Eq. (41), is reached. On the weak-
coupling side of criticality the condition p(0) = 0 implies

ga.b.
1

4.
' dy ~.(y)

y Q(b. +y)(y+ a, )
= 0.

c.(y)
y+ z Q(b, + y)y

(113)

(111)
There are two possible solutions, (i) a = 0, and (ii)
a, $0, with

—= 2(d —2) — . (112)1= ' dy C.(y)
p. y V'(b. + y)(y + a.)

If Eq. (111) is solved by a, = 0 at P = P„Eqs. (39) and
(40) both reduce to

g(b. —z)z
pc z

4p,
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U() U()
6

4p2
p (z')r, d

d(d —1) 4(d —1)

and as a consequence a first-order phase transition is ob-
served. -

This indeed applies for 0 & d & 4, and we shall find
an explicit solution of Eq. (113), which agrees with a
result previously found by Gaudin and Kostov [11]. In
particular, we find that P = 1/d for 0 & d & 4.

When d ) 4, Eq. (111) must be solved with a ) 0.
Substituting Eq. (112) into Eqs. (39)—(40), one arrives at
a homogeneous equation

~p (z) =zV (l' z)(z a )

x "" P ( ), (114)
y(y+z) g(t. +y)(y+ .)

where A = 2vr/(d —2). Eq. (114) can be solved numeri-
cally with great accuracy. Surprisingly, the relationship
P, = 1/d was found to be satisfied within machine preci-
sion. The essential feature of the solution for d ) 4 is the
strong-coupling relationship r = a, g 0, while in weak
coupling necessarily r = 0. Since p, (z) is the same on
both sides of the transition, at criticality one finds, from
Eq. (43),

natural extension to the region 0 & w & 1. With this
extension, one finds that, over the positive axis, 0 & w &
OG)

f(~) = —f(~ '). (119)

Let us next treat Eq. (120) as an eigenvalue problem,
and consider the ansatz where f (u) = c[at —w ]. Using
the technique of contour-integration, it is easy to ver-
ify that this indeed is an eigenvector with eigenvalue

m/ cos pro. Since A = 2vr/(d —2), it follows that
d = 4cos2(pro/2). With 0 & d & 4, one has 0 real and
0 & P & 1, which allows a solution where p, (z) is positive
definite.

Using the normalization condition for p together with
the criticality condition I dz'/z'p, (z') = 1, we can fix
the normalization constant c = (1/pro)cos(ere/2) and the
end point b, = (2/0)tan(mo/2) . One then obtains

It is then straightforward to verify that this extension
can also be made for the right-hand side of Eq. (118) so
that it becomes

(~1/2 ~—1/2) ~ d~l(~11/2 ~/ —1/2)
( ) —

2 (
, + )( , + ,

)
( ) .

(120)

A. Critical solution for 0 & d & 4
cos(7ro/2) sinhou

pc z
pro/2 coshu ' (121)

When 0 & d & 4, Eq. (29) at criticality can be solved
by assuming that a = 0, as suggested by our analytic
results discussed in Sec. III. Let us therefore focus on
Eq. (113). This equation on the first sight suggests that
p(z) would vanish at z = 0 as ~z. However, it is easy
to verify that, upon substituting this behavior into the
right-hand side of the equation, this square-root behavior
is in fact inconsistent. Based on our earlier exact analytic
solutions, we assume that p, (z) vanishes at z = 0 faster
the ~z; it follows that the square-bracket in Eq. (113)
must also vanish at z = 0. As a consequence, we have

da f((u)P. ~2t. o 1 + (d
(122)

where e" = w and 0 & u & oo. One can show that
Eq. (121) reproduces the known critical solution when
d = 2 and 4. When substituted into the critical equa-
tion at d = 3, Eq. (121) is numerically found to be a
satisfactory solution.

To determine the critical value P„we can reexpress
Eq. (116) in terms of f(w) as

—= 2(d —2)
1

/3.

dy p (y)
y'/' v'b +y'

and we again arrive at a homogeneous equation

(116)

Again, by an contour integration, one arrives at the re-
markable result

1 1
4cos2 (mo/2) d

p-(y)
y + z y'/2 gb. + y

(117) B. Criticality for d & 4

Note that this homogeneous equation connects smoothly
with that appropriate for d ) 4, Eq. (114), with a, = 0.

It is convenient to change the variable from z to w,
tv+ w = 2b, /z. In solving for w in terms of z, we shall
choose the branch 1 & w & oo so that Eq. (117) becomes

The solution discussed above does not apply to the case
d ) 4 because the analytic continuation of Eq. (121) for
the critical density would no longer be positive-definite
in the interval [0, b, ]; we must choose the alternative,
a g 0. We have previously seen, with a, g 0, how the
criticality condition for P„Eq. (112), and the homoge-
neous integral equation for p„Eq. (114),can be obtained,
approaching from the weak-coupling regime, by enforc-
ing the condition p(0) = 0 with r = 0. It is instructive
to see how these equations can be similarly derived from
the strong-coupling regime.

Starting with Eq. (40), one is working within the
strong-coupling regime where the constraint, Eq. (20), is

I 1/2 I 1/2)—
(CaP + M) ((d + GJ )

f ~Af(~) = (cu'/ —(u '/
)

(118)

where f (w) = —(w + u 1)p (z).
Although f (w) is originally defined only for the interval

1 & w & oo, the right-hand side of Eq. (118) provides a
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H (,)
~.(z)

zV/(b —z)(z —a)
(124)

With A = 27r/(d —2), the integral equation (114), the
constraints (30)—(32), and the equation which determines
P, Eq. (112), become

AH, (z) = dy v/(6 —y) (y —a)
- y+ ' v'(b+ y) (y+ a)

(125)

automatically satisfied with a = ~r g 0. It can be shown
that the criticality condition, Eq. (112), corresponds to a
situation where a zero of p(z) enters at z = a. That is, as
one increases P beyond P„ the positivity of p(z) would
be violated, thus terminating the validity of the strong-
coupling solution. As mentioned earlier, with Eq. (112),
the strong-coupling equation, Eq. (40), again leads to
Eq. (114). As a consequence, for d & 4, when one ap-
proaches P, from the strong-coupling regime, one finds
that a, = ~r, g 0 and a first-order phase transition oc-
curs. The solution to Eq. (114), on the critical point,
subject to Eq. (30) and Eq. (32), can be found numeri-
cally. In order to have a better behaved kernel when d is
close to 4 we define a new function H:

1 3

(132)

d(H, (() v/1 —(2 =
~

and the equation for P is

1 = b(d —2)(1—r)P.
d( H, (()

(( + 3+K
) (( + 1+3tc

)

(134)

The solution to Eq. (131) can be found up to an overall
constant C (assuming that A is a nondegenerate eigen-
value). This constant and the upper bound b of the
support of p can be computed using the constraints
Eq. (132), Eq. (133). Let us denote an eigenfunction
of (131) by H, . Then H, which is the function that is
positive in [

—1, 1] and satisfies the constraints, (132) and

(133), is related to H, by H, = CH, If we n. ow define

dz H, (z) z v/b —y) (y —a) = 1, (126)
d&H. (&) I

&+
I v 1 —&' (135)

dz H, (z) vtb —y)(y —a) = 1, (127)

I2 =

then

d( H, (() v/1 —(2 (136)

= 2(d —2) dz H, (z)
V/(b —z)(z —a)

V (~ + z)(z + a)
(128)

I2 2

I1 1 —K
(137)

The solution of the integral equation (125) can be done
numerically by discretizing the kernel. After the dis-
cretization, the problem is reduced to an eigenvalue prob-
lem of a real nonsymmetric matrix. There are several
ways to discretize the kernel. Any rule of numerical inte-
gration is a discretization rule for the kernel. It is known
that for integral equations the best discretization rules
are the Gauss quadrature rules [17]. There are several
Gauss quadrature rules. We used the simplest possible:
the Gauss-Chebyshev rule. All these rules require map-
ping the integration interval to [

—1, 1]. Thus we perform
the following change of variables:

or

b —a a+6z=
2 2

2 a+bz-
b —a b —a

(129)

(130)

AH (C) = ((+(+2 +-—1 + + 1 (&+ i+".)(&+ ',+'„")

where r = a/b The constrai. nts take the form

(131)

Under this change of variables the integral equation be-
comes

I2
1 (138)

From the above formulas it is obvious that one can
fix r. , solve Eq. (131), and then find the eigenvalue A

which has a positive definite eigenfunction. Because the
problem is well defined one expects that there exists only
one such function. This expectation is confirmed by the
numerical results. It turns out that the eigenfunction
with the largest eigenvalue is the one which is positive
definite in [

—1, 1]. The nth eigenfunction has n —1 zeros
in [

—1, 1]. Thus for a given r one computes b(r), a(r),
A(K), p, (r), d(r) = 2~A(K) '+ 2.

Using the above numerical method we have computed
a„b, with great precision for d in the interval (4.4,250).
Combining the numerical results with the analytical ones
for d & 4, a and b are plotted in Fig. 2 as functions of
1/d for d & 2. The functions a, (d), b, (d) are continuous
functions of d at d = 4.

Several interesting features now emerge from an analy-
sis of this data. On the one hand we can fit the functions
a, (d), b, (d) with great accuracy as power series of d —4
around d = 4 and they agree with the corresponding
weak-coupling expressions up to very high orders. On
the other hand, if one does a careful extrapolation of
a„b, to d = 4 a new feature is seen (Fig. 3). The upper
limit, 6 (d), extrapolates linearly in d —4 to 7r, consis-
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a.
b

C

a +b
2

a~b~ =

2 21+ + 6 20 48
d4

8 40 128
d3 d4 d5

118 42 + 4 ~ ~

d
12 40
d

694 1112
d7 ds

92
d7

328

(139)

(140)

0
0.0 0.1 0.2 0.3

1/0
0/4 0.5

FIG. 2. a, and b, vs 1/d. The crosses mark the points
corresponding to d = 4.

The last integer term in both equations is uncertain.
Furthermore from the numerical computation of P, for

d ) 4, we can see that the d ( 4 result P, = 1/d still holds
above the critical point. We performed the numerical
calculations in double precision and we saw no deviation
at all from the 1/d law. The deviation of ~P, —1/d~ from
zero is determined to be less than 10 for d in the
interval (4.4, 250).

10

-1
10

F

10

10

10

10

10

I

10
d-4

10

FIG. 3. Log-log plot of a, and m —6 vs d —4.

tent with analyticity in the d —4 series expansion. The
data alone determines the intercept b, (4) to be vr to an
accuracy of 10 . When one examines the lower limit
a, it also approaches zero as d approaches 4. However it
does not go to zero as a simple power. The more we im-
proved our data near d = 4 the higher the effective power
became. It appears that a may have an essential singu-
larity at d = 4 vanishing faster than any power. Since
the discontinuity of the internal energy on the first-order
line is given by da /[4(d —1)], this is pertinent to the
critical properties at the end of the first-order transition.
The log-log plots of a, (d) and 7r —b, (d) in Fig. 3 clearly
support these observations.

In Fig. 2 we have also been helped by an expansion
of the functions (a, + b, )/2 and a,b, in powers of 1/d.
The coefIicients of this expansion have been determined
by best fits on the numerical results and found to be
consistent with integer numbers within the precision of
our determination. This result is also consistent with the
results of the 1/d expansion. In particular we found

V. SUMMARY AND CONCLUSION

The 1/K expansion of matrix models has recently been
used as a discrete representation for summing over ran-
dom surfaces and, through the "double-scaling" limit, for
studying low-dimensional string theories. Even more im-
portantly, the large-N expansion has provided us with
a scheme for addressing nonperturbative issues in non-
Abelian gauge theories. For instance, many qualitative
features of @CD, e.g. , confinement, the OZI rule, etc,
can best be understood in a large-% setting.

However, quantitative progress in these directions has
been slow due partly to the technical diKculties associ-
ated with the large number of independent "loop" vari-
ables in this limit. Nevertheless, it has been possible
to gain useful insights into various interesting situations
by utilizing as guides solvable models involving a small
number of matrices, e.g. , models involving two Hermitian
matrices. Much less is known for models involving uni-
tary matrices. Our current work not only adds to the list
of solvable models in this category but also introduces
new techniques for addressing matrix model studies in
the large-N limit.

In this paper, we have studied the large-N structure of
simplicial chiral models defined on a (d —1)-dimensional
simplex as one varies d and the coupling P. By exploring
the global U(K) x U(N) symmetry and by introducing an
auxiliary complex matrix field, we are able to reduce the
problem to that of solving for the eigenvalue distribution
of a single Hermitian semi-positive-definite matrix in the
large-N limit. In addition to providing exact large-N
solutions for several specific values of d, we are able to
identify and solve the strong-weak criticality problem for
all values of d, 0 & d & oo.

For 0 & d & 4, analytic solutions for p can be found.
Interestingly we find that criticality occurs precisely at
P = 1/d, as suggested by our previous studies [10]. We
find that the transition is third order. For 4 & d & oo,
criticality can also be studied by solving a homogeneous
integral equation. However, we are only able to carry
this out numerically. Within numerical accuracy, we have
shown that criticality again takes place at P, = 1/d, but
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with a first-order transition.
Since we are able to reduce a (d —1)-dimensional sim-

plicial chiral model to a model involving a single complex
matrix, with d entering as a parameter in the efI'ective ac-
tion, the large-N limit can thus be solved by finding a
density function for the eigenvalue distribution. Unlike
usual matrix models where all eigenvalues lie in a single
connected band in the large-N limit, this model efFec-
tively involves two bands, a "right-band" where A, & 0
and a "left-band" where A~ & 0. However, unlike other
two-band problems [18], the distribution over these two
bands are correlated. This new feature presents a chal-
lenge that cannot be handled by a conventional large-N
treatment.

Our key result is the reduction of the above problem
to that of solving a single inhomogeneous integral equa-
tion for the eigenvalue distribution of a single Hermitian
semipositive definite matrix. Although we could not find
a closed form solution to this equation for arbitrary d, we
are able to solve it in several interesting special cases and
we set up a systematic numerical approach to the solu-
tions. We have found that the critical surface is defined
by P, = 1/d for all d.

For small d, 0 & d & 4, the models exhibit the third-
order Gross-Witten transition. Indeed for d = 1, 2, 3 they
coincide exactly with the chiral chains studied earlier by
Brower, Rossi, and Tan [7]. In this region, criticality is
related to that of O(N) spin models on random surfaces,
as discussed by Gaudin and Kostov [11]. For d ) 4,
however, there is a first-order transition ending at the
"upper critical" dimensions d = 4. It therefore appears
that, from the perspective of the double-scaling limit,
the most interesting situation corresponds to 0 & d & 4.
We have found that the point d = 4, having a logarith-
mic singularity, corresponds to a = 0. In the language
of the double-scaling limit, this corresponds to having a
vanishing "string susceptibility", n = p,&„.„g ——0, where
C,t„„s (P —P, ) ~"""&, which formally correspond to
that resulted &om a c = 1 CFT theory. This calls for
further studies around d = 4 which can provide further
insight into possible diferent mechanisms for generating
c = 1 physics. One way is to vary d near d = 4. Another
approach is to stay at d = 4, and embellish the model
by relaxing the "permutation symmetry" of the original
d = 4 simplicial chiral model. This will be presented in
a subsequent publication.

Note added. After completion of this work we became
aware of Ref. [19], where an equation generalizing our
Eq. (29) to the case when the left-hand side is an ar-
bitrary polynomial in z is, in principle (albeit not very
explicitly), solved in the interval —2 ( n ( 2, corre-
sponding to our 0 & d & 4. Unfortunately it is not clear
if the procedure would be valid for d & 4, because of the
difFerent constraints to be satisfied. Our model should
also be formally related to the q-state Potts models on
random lattices (with q replaced by d), cf., e.g. , Ref. [20],
and references therein.
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APPENDIX A: CRITICAL PROPERTIES OF
CHIRAL CHAINS FOR L = 2, 3, 4, oo

Chiral chain models are defined by the partition func-
tion

L

zr, (p, x) =f i=1

L

dU; exp NP ) Tr(U;U, t+~

+U, U, +g) (A1)

with Ui = Ui+L, . Free-energy density, internal energy,
and specific heat are given by

Fl, (p, N) = 1
ln ZL, (p, N),

18I' (P, N)
2 BP

2 OUI, (p, N)
0 (A2)

When L ~ oo, ZL, can be reduced to the partition
function of the Gross-Witten single-link problem [4]:

Z= dUexp N Tr U+Ut (A3)

thus sharing the same thermodynamic properties. The
free-energy density at N = oo, E = ~, ln Z, is piecewise
analytic with a third-order transition at P = P, = 1/2
between the strong-coupling and weak-coupling domains.
The large-N limit of the specific heat is

pz

1
C

for P (P„
for P) P, . (A4)

ImP(N) oc N (A5)

The behavior of C around P, can be characterized by
a specific-heat critical exponent n = —1. It is worth not-
ing that an analysis of the double-scaling limit, N + oo
and P -+ P„allows the determination of the correlation
length critical exponent, v = 3/2 [21, 22], and that n
and v satisfy a hyperscaling relationship associated with
a two-dimensional critical phenomenon, 2v = 2 —a. This
fact is related to the equivalence of the double-scaling
limit with the continuum limit of a two-dimensional grav-
ity model with central charge c = —2.

It has been shown that in the context of single-matrix.
models the parameter N plays a role quite analogous to
the volume in ordinary systems, and the double-scaling
limit turns out to be very similar to finite-size scaling
in a two-dimensional critical phenomenon [23, 24]. As a
manifestation of this fact, it has been observed that, in
the Gross-Witten single-link problem, (i) the asymptotic
approach of the complex Z(N, P) zeroes closest to P„
P(N) toward the real axis occurs at a rate determined
by the correlation length exponent [25]:
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and, (ii) for sufficiently large N the position of the peak
of the specific heat, P~, i, (N), behaves as [26]

(~) 7t 12

32+ 8

Ã2

16 ln(4/b)
(A14)

Pp, i, (N) —P, oc N (A6)

We recall that in ordinary critical behaviors 6nite size
scaling leads to relations of the type (A5) —(A6) with N
replaced by the size of the system.

The L = 2 chiral chain again corresponds to a Gross-
Witten model with P replaced by 2P, thus obtaining P, =
1/4 and the same critical exponents.

Solutions of the models with L = 3, 4 have been found
in Ref. [7]. The results we present in the following, with-
out details on the derivations, are easily obtainable from
the analysis of Ref. [7].

We recall that the chiral chain with L = 3 is equivalent
to the simplicial model with d = 3. In this case P, = 1/3
and the phase transition is still third order. In the weak-
coupling region, P & P„ the N = oo specific heat is given
by

2
U4~'l = 2p — + 2p

8 1— (A15)

with ( implicitly defined by the equation

s (II 1 —(I) = 1. (A16)

Since ( = 0 at P„we expand Eq. (A16) around ( = 0,
obtaining

(A17)

Consequently, (2 P, —P apart &om logarithms and

when P -+ P+
A similar analysis can be performed in strong coupling,

where the internal energy can be written as

~." =P'+ — P'I l+—(), 1,( 15 f 1)
6pr E») (A7) d(

dP

16
(A18)

Therefore close to P„ We then obtain, when P ~ P, ,

(s)
32 8

Ã2

16 ln(4/g)
(A19)

Similarly, in the strong-coupling region P & P„and close
to

(A9)

U,'"' = 2P — ' —2Pb',
8P

where b is implicitly determined by the equation

(A10)

Then the strong- and weak-coupling expressions of C3
show that the critical point P, = 1/3 is third order and
n = —1/2.

For L = 4 the study of the critical behavior around
P, = vr/8 is shghtly subtler. In the weak-coupling domain
the N = oo internal energy can be expressed as

A comparison of Eqs. (A14) and (A19) leads to the
conclusion that the phase transition is again third order
with a critical exponent o. = 0 . The critical exponent v
could then be determined by using the two-dimensional
hyperscaling relationship, obtaining v = 1. This value
of v was confirmed by a numerical Monte Carlo study of
the scaling of the specific-heat peak position at finite N;
we indeed observed a behavior like Eq. (A6) compatible
with v = 1 within a few percent of uncertainty.

In Fig. 4 we plot the specific heat vs P for L
2, 3, 4, oo. In conclusion we have seen that L = 2, 3, 4, oo
have a third-order phase transition at increasing criti-
cal values P, = 4, s, s, 2, with sPecific-heat critical ex-
ponents n = —1, —1/2, 0,—1, respectively. Notice the

E (II I —P) —PIl (gl —b') = 1. (All)

(A12)

(This equation comes from the normalization of the
eigenvalue distribution p(0) introduced in Ref. [7].) Since
b = 0 at P = 7r/8, in order to study the critical behavior
close to P, we expand Eq. (All) around 8 = 0, obtaining
the relation e

0.5

0.4

0.2

L=2
L=3
L=4
L=inf

and therefore b2 P —P apart from logarithms. Fur-
thermore we have

0.1

0.0 I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

db' 16
dP 7r ln(4/b)

We then obtain for the specific heat

(A13)
FIG. 4. Specific heat vs P for the L = 2, 3, 4, oo chiral

chain models.
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behavior of o. with respect to L, which is increasing for
L = 2, 3, 4, reaching the limit of a third-order critical be-
havior, but then in the large-I limit it returns to o. = —1.

APPENDIX B: STRONG COUPLING
EXPANSION OF CHIRAL CHAIN MODELS

Strong-coupling series of the free-energy density of chi-
ral chain models are best generated by means of the char-
acter expansion, which leads to the result

FL (P) = F(&) + FI (P) (B1)

where F(P) is the free energy of the single unitary matrix
model [F(P) = (1/N2) ln Z and Z is given by Eq. (A3)],
and

Fl. = 1n) d(„) z( )(P)~,
(~)

(B2)

P( )
denotes the sum over all irreducible representat, ions

of U(N), d(„) and z( )(P) are the corresponding dimen-
sions and character coeKcients. The calculation of' the
strong-coupling series of FI, (P) is greatly simplified in the
large-N limit, due to the relationships [9]

F(P) =P'+ O(P'"+') (B3)

z()(P) =z(,)P" + 0(P ), (B4)

where z( ) is independent of P and n is the order of the
representation (r). Explicit expressions of d(, ) and z( )
are given in Ref. [9]. Notice that the large-% strong-
coupling expansion of FL, (P) is actually a series in P

FL, = ) c(n, L)P" ('B5)

Eg also represents the generating functional for the "po-
tentials" W(n, L) introduced in Ref. [9]; in the context
of the strong-coupling expansion of more general models,
indeed the following relationship holds:

W(n, L) = —c(n, L).
I
2

(B6)

It is important to recall that the large-N character coef-
ficients have jumps and singularities at P =

2 [27], and
therefore the relevant region for a strong-coupling char-
acter expansion is P & ~ .

We have analyzed the strong-coupling series of chiral
chain models in order to investigate their large-N critical
behaviors for L ) 4. Given the simple behavior of the
large-N limit of F(P), we considered only the contribu-
tions from F(P), thus working with series in P . We gen-
erated about 15 terms for each L ( 10 and analyzed, as
series in P+, the specific heat derivative, which diverges
at the critical point in a third phase transition. We em-
ployed the integral approximant technique [28—30], which
at present seems to be one of the most powerful meth-
ods of resummation. In particular we considered integral
approximants obtained from erst-order linear difI'erential
equations.

I et us begin with the results obtained for the known
cases I = 3, 4. For L = 3 already 15 terms in the series
(in P ) sufBce to get P, = s and n = —

2 with a precision
of about 10 and 10 respectively. However it is worth
noticing that in the analysis of the speci6c heat deriva-
tive we found spurious nondiverging singularities on the
positive real axis for P & P .

Concerning the L = 4 case, it is known that the in-
tegral approximant resummation analysis cannot repro-
duce an a = 0 singularity type [29] and therefore it is
not really suitable to this case. Anyway, we obtained a
good determination of P, ; we found —up to about 10
and a rather stable but wrong exponent, o. —0.18,
which should somehow simulate the logarithmic correc-
tions found in Appendix A, given that they cannot be
generated by the difI'erential equation solution. Again,
we found spurious nondiverging singularities for P & P, .

The strong-coupling analysis starts giving new infor-
mation when L ) 4. Due to the persistent presence of
spurious singularities, guided by the L = 3, 4 analysis,
in all cases we considered the first diverging singularity
on the positive real axis as an estimate of the true crit-
ical point. For L = 5 we obtained quite stable results:
P, 0.43756 and n —0.17. We should say that the
L = 4 analysis suggests some caution in accepting this es-
timate of o. ; it could still be a masked o. = 0 . The analy-
sis of I = 6 series gave a rather stable estimate of the crit-
ical point P, 0.4737, but unstable exponents (although
negative and small). Similar results were found for L ) 7:

0.504 for L = 7, 0.526 for L = 8, 0.57 for L = 10.
Notice that, unlike the L & 6 cases, these values cannot
be considered as an estimate of the critical point. They
are indeed larger than 2, which is out of the region where
a strong-coupling analysis can be predictive, and there-
fore something else must happen earlier, which breaks
the validity of the strong-coupling expansion. An ex-
ample of this phenomenon comes from the Gross-Witten
single-link model (recovered when L m oo), where the
strong-coupling expansion of the N = oo free energy
leads to an analytical function not having singularity at
all, F(P) = P; thus P, =

2 cannot be determined from
a strong-coupling analysis.

Of course we cannot consider this analysis satisfactory,
but from it we may hint at a possible scenario. For
L & 6, which is when the estimate of P, coming from
the above strong-coupling analysis is smaller than 2 and

therefore acceptable, the term F(P) in Eq. (Bl) should
be the one relevant for the critical properties, determin-
ing the critical points and giving n g —1 (maybe n = 0
as in the L = 4 case). For L ) 7 the critical point may
not be a singular point in strong or weak coupling, but
just the point where weak-coupling and strong-coupling
curves meet each other. This would cause a softer phase
transition with o. = —1, as for the Gross-Witten single-
link problem. We expect P & 2 also for L & 7.

This scenario would be consistent with the analysis
of Green and Samuel [31], who studied the behavior of
the link determinant (i.e. , (detU, U, +i)) to determine the
critical points. The values of P we found for L = 5, 6
are consistent with their estimates.
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