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Strong-coupling analysis of two-dimensional O„N… s models with N>3
on square, triangular, and honeycomb lattices
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Recently generated long strong-coupling series for the two-point Green’s functions of asymptotically
O(N) lattice s models are analyzed, focusing on the evaluation of dimensionless renormalization-gr
invariant ratios of physical quantities and applying resummation techniques to series in the inverse tempe
b and in the energyE. Square, triangular, and honeycomb lattices are considered, as a test of universalit
in order to estimate systematic errors. Large-N solutions are carefully studied in order to establish benchmar
for series coefficients and resummations. Scaling and universality are verified. All invariant ratios related
large-distance properties of the two-point functions vary monotonically withN, departing from their large-N
values only by a few per mille even down toN53. @S0556-2821~96!00414-6#

PACS number~s!: 11.15.Me, 11.10 Kk, 11.15 Pg, 75.10 Hk
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I. INTRODUCTION

The properties of physical systems in the vicinity of
critical point, such as critical exponents and amplitude rat
can be extracted by a variety of methods, ranging from ex
solutions to Monte Carlo simulations.

In the absence of exact results, one of the most succe
approaches is based on the investigation of the stro
coupling series expansion, which enjoys the property o
finite radius of convergence, often~but not necessarily! co-
inciding with the extent of the high-temperature phase. M
generally, when no singular points occur on the real axis
the complex coupling plane, it is possible to exploit stron
coupling results even beyond the convergence radius by
lytic continuations, which are based on appropriate resu
mation methods. Extending the length of the strong-coup
series and improving the accuracy of the resummations
therefore, the two most compelling tasks within this a
proach to the study of the behavior of systems in the crit
region.

As part of an extended program of strong-coupling cal
lations we have recently computed an extended series ex
sion of all nontrivial two-point Green’s functions

G~x!5^sW~0!•sW~x!& ~1!

for the nearest-neighbor lattice formulation of tw
dimensional O(N) s models on the square, triangular, a
honeycomb lattices, respectively up to 21st, 15th, and 3
order in the strong-coupling expansion parameterb. A com-
plete presentation of our strong-coupling computations
O(N) s models in two and three dimensions will appear in
forthcoming paper. A preliminary report of our calculatio
can be found in Ref.@1#.

The relevance of a better understanding of tw
dimensional~2D! O(N) s models cannot be overestimate
They appear in condensed matter literature as proto
models for critical phenomena that are essentially restric
to two-dimensional layers, including some instances of hi
Tc superconductivity. Moreover, they can be employed
model field theories sharing some of the most peculiar f
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tures of four-dimensional gauge theories, such as asymptoti
freedom and spontaneous mass generation. This last stat
ment must, however, be qualified, since the above-mentione
properties, according to common lore, are possessed only b
those~2D! O(N) models such thatN.2.

We focus here on these asymptotically free models, ana
lyzing their strong-coupling expansion in order to extract
information that may be relevant to the description of their
continuum limit (b→`), assumingbc5` to be the only
singularity on the real axis. This hypothesis is favored by all
numerical evidence as well as by the successful application
of the extrapolation techniques that we shall discuss in the
present paper. The analysis of our strong-coupling series fo
models withN<2 is presented in Ref.@2#.

It is obviously quite hard to imagine that strong-coupling
techniques may be really accurate in describing the divergen
behavior of such quantities as the correlation length and the
magnetic susceptibility. Nevertheless, as our calculations
will explicitly confirm, the strong-coupling analysis may
provide quite accurate continuum-limit estimates when ap-
plied directly to dimensionless, renormalization-group-
invariant ratios of physical quantities. Two basic ideas will
make this statement more convincing.

~i! For any dimensionless, renormalization-group-
invariant ratioR(b), whenb is sufficiently large we may
expect a behavior

R~b!2R*;
1

j2~b!
, ~2!

whereR* is the fixed point~continuum! value andj is the
~diverging! correlation length. Hence a reasonable estimate
of R* may be obtained at the values ofb corresponding to
large but finite correlation lengths, where the function
R(b) flattens. This is essentially the same idea underlying
Monte Carlo studies of asymptotically free theories, based on
the identification of the so-called scaling region.

~ii ! On physical grounds, it is understandable thatb is not
necessarily the most convenient variable to parametrize phe
1782 © 1996 The American Physical Society
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nomena occurring aroundb5`. An interesting alternative is
based on the observation that the strong-coupling series
the internal energy,

E5b1O~b3!, ~3!

may be inverted to giveb as a series inE. This series may
be substituted into other strong-coupling expansions, obta
ing expressions for physical quantities as power series
E. It might now be easier to reach the continuum limit, sinc
it now occurs at a finite value of the expansion variable, i.
E→1.

We hope to convince the reader that, by exploiting the
ideas, state-of-the-art strong-coupling calculations can
made at least as accurate as the best Monte Carlo simulat
presently available, when applied to dimensionle
renormalization-group-invariant quantities.

We must stress that the analysis of the strong-coupl
series calculated on different lattices offers a possibility
testing universality, and, on the other hand, once universa
is assumed, it represents a further check for possible syst
atic errors and allows their quantitative estimate; this es
mate is usually a difficult task in strong-coupling extrapol
tion methods such as those based on Pade´ approximants and
their generalizations.

Our physical intuition of the behavior of O(N) models is
strongly guided by our knowledge of their large-N behavior,
and by the evidence of a very weak dependence onN of the
dimensionless ratios. In order to extend our understanding
those lattices that have not till now received a systema
treatment, and also in order to establish a benchmark for
strong-coupling analysis, we decided to start our presenta
with a detailed comparative study of the large-N limit of
various lattices, in the nearest-neighbor formulation. To t
best of our knowledge, only the large-N solution on the
square lattice was already known explicitly@3#.

The paper is organized as follows.
In Sec. II we present the large-N limit solution of O(N)

s models on the square, triangular, and honeycomb lattic
in the nearest-neighbor formulation, calculating seve
physical quantities and showing explicitly the expected un
versality properties. The triangular- and honeycomb-latti
results are original, and possess some intrinsic reasons
interest. However, readers willing to focus on square-latti
results are advised to jump to Sec. III after reading Secs. I
and II B, where the notation is fixed.

Section III is devoted to a detailed analysis of the ava
able strong-coupling series ofG(x) and other physical quan-
tities on the square, triangular, and honeycomb lattices. M
of the results we shall show there concern theN53 model.
The basic motivation for this choice lies in the observatio
that all dependence onN is monotonic between 3 and̀;
hence the discussion of higher-N results would be only a
boring repetition of the considerations presented here. T
reader not interested in the analysis of triangular and hon
comb lattices may skip most of the discussion, by focusi
on Sec. III B, where further definitions are introduced an
the square-lattice series are analyzed, and on Sec. II
where all conclusions are drawn.

Appendixes A and B provide the derivation and the tec
nical details of the large-N calculations on the triangular and
of
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honeycomb lattices, respectively. We present as well the cal-
culation of theL parameters. Appendix C is a study of the
complex-temperature singularities of theN5` partition
functions on the triangular and honeycomb lattices. In Ap-
pendixes D, E, and F we present, for selected values ofN,
the strong-coupling series of some relevant quantities on the
square, triangular, and honeycomb lattices, respectively.

II. THE LARGE- N LIMIT OF LATTICE O „N… s MODELS

A. The large-N saddle point equation

The nearest-neighbor lattice formulations on square, trian-
gular, and honeycomb lattices are defined by the action

SL52Nb(
links

sWxl•s
W
xr
, sWx•sWx51, ~4!

where sW is an N-component vector, the sum is performed
over all links of the lattice, andxl ,xr indicate the sites at the
ends of each link. The coordination number isc54,6,3, re-
spectively, for the square, triangular, and honeycomb lattice.
The lattice spacinga, which represents the length unit, is
defined to be the length of a link. The volume per site is then
vs51,A3/2, and 3A3/4 ~in unit of a2), respectively, for the
square, triangular, and honeycomb lattice.

Straightforward calculations show that the correct con-
tinuum limit of O(N) s models,

S5
N

2tE d2x]msW~x!•]msW~x!, sW~x!•sW~x!51, ~5!

is obtained by identifying

t5
1

b
,
1

A3b
,
A3
b
, ~6!

respectively, for the square, triangular, and honeycomb lat-
tice. Notice that

l[tb5
4vs
c

~7!

is the distance between nearest-neighbor sites of the dua
lattice in units of the lattice spacinga.

When the number of field componentsN per site goes to
infinity, one can use a saddle point equation to evaluate the
partition function. Replacing the constraintsWx

251 by a Fou-
rier integral over a conjugate variableax , we write the par-
tition function as

Z}E )
x
dsWxd~sWx

221!expSNb(
links

sWxl•s
W
xr D

}E )
x
dfxdaxexpFNS (

x
i
ax

2
~12fx

2!

2
b

2(links ~fxl
2fxr

!2D G . ~8!

Integrating out thef variables we arrive at the expression
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Z}E daxexpFN2 S (
x
iax2TrlnRD G , ~9!

where

Rxy52
1

t
Dxy1 iaxdxy , ~10!

andDxy is a generalized Laplacian operator, such that

l(
links

~fxl
2fxr

!252(
x,y

fxDxyfy . ~11!

The large-N limit solution is obtained from the variationa
equation with respect toax . Looking for a translation-
invariant solution we set

iax5
vs
t
z. ~12!

The matrixR then becomes

Rxy5
1

t
@2Dxy1zvsdxy#, ~13!

and the saddle point equation is written as

15 lim
Ns→`

1

Ns
TrR21, ~14!

whereNs is the number of sites.
The large-N fundamental two-point Green’s function

obtained by

G~x2y!5Rxy
21 . ~15!

In order to calculate the trace ofR21, the easiest proce
dure consists in Fourier transforming the operatorR. Such a
transformation is straightforward on lattices, such as squ
and triangular lattices, whose sites are related by a transla
group, and in these cases it yields the diagonalization of
matrix Rxy . The honeycomb lattice, not possessing a f
translation symmetry, presents some complications. In
case a partial diagonalization ofRxy can be achieved follow-
ing the procedure outlined in Ref.@4#.

B. The square lattice

Turning to the momentum space, the variational equa
becomes

1

t
5b5E

2p

p d2k

~2p!2
1

k̂21z
5

1

2p
rs~z!K„rs~z!…, ~16!

where

rs~z!5S 11
1

4
zD 21

, ~17!

andK is the complete integral of the first kind.
Let us define the moments ofG(x),
l
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-
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m2 j[(
x

~x2! jG~x!. ~18!

Straightforward calculations lead to the results

x[m05
t

z
, ~19!

jG
2[MG

22[
m2

4x
5
1

z
, ~20!

u[
m2
2

xm4
5
1

4 S 11
z

16D
21

. ~21!

Notice that in the large-N limit the renormalization constant
of the fundamental field isZ5t. u is a renormalization-
group-invariant quantity.

The mass gap should be extracted from the long-distanc
behavior of the two-point Green’s function, which is also
related to the imaginary momentum singularity of the Fou
rier transform ofG(x). In the absence of a strict rotation
invariance, one actually may define different estimators o
the mass gap having the same continuum limit. On th
square lattice one may considerms andmd obtained, respec-
tively, by the equations

G̃21~p15 ims ,p250!50,

G̃21S p15 i
md

A2
,p25 i

md

A2D 50. ~22!

ms andmd determine, respectively, the long-distance behav
ior of the side and diagonal wall-wall correlations con-
structed withG(x). In generalized Gaussian models, such a
the large-N limit of O(N) models, it turns out convenient to
define the quantities

Ms
252~coshms21!,

Md
254S coshmd

A2
21D . ~23!

In the continuum limit

Ms

ms
,
Md

md
→1; ~24!

thereforeMs andMd may also be used as estimators of the
mass gap.

In the large-N limit,

Ms
25Md

25z5MG
2 . ~25!

The rotational invariance ofG(x) at large distance,
d@j, is checked by the ratiosms /md . Using the above re-
sults one can evaluate the scaling violation terms:



g

t

-

c
t

n

-

-
r

54 1785STRONG-COUPLING ANALYSIS OF TWO-DIMENSIONAL O(N) . . .
ms

md
5

ln~ 1
2Az1A11 1

4 z!

A2ln@~1/2A2!Az1A11 1
8 z#

512
1

48
z1

71

23 040
z21O~z3!. ~26!

Another test of scaling is provided by the ratio

ms

MG
5

2

Az
lnSAz2 1A11

z

4D 512
1

24
z1

3

640
z21O~z3!.

~27!

The internal energy can be easily calculated, obtainin

E[^sWx•sWx1m&5Rx,x1m
21 512

1

4b
1
z

4
. ~28!

Therefore

1

2(m ^~sWx1m2sWx!
2&5

1

2b
2
z

2
, ~29!

where the term proportional toz is related to the condensa
T of the trace of the energy-momentum tensor@5#

b~ t !

2t2
]msW~x!•]msW~x!. ~30!

In the large-N limit,

b~ t !52
1

2p
t2; ~31!

therefore, from expression~28! we deduce

T

MG
2 5

1

4p
. ~32!

Another interesting quantity which can be evaluated in
large-N limit is the zero-momentum four-point renormalize
coupling constant, defined by

gr52
x4

x2jG
2 ~33!

where

x45 (
x,y,z

^sW0•sWxsWy•sWz&c . ~34!

gr is zero in the large-N limit, where the theory is Gaussian
like and thusx450. Its value in the continuum limit,

gr*5
8p

N
1OS 1N2D , ~35!

can also be evaluated in the large-N expansion of the con
tinuum formulation of the O(N) models@6#. On the square
lattice, by using the saddle point equation we find
e

the
d

-

Ngr522
] lnz

]b
, ~36!

which can be made more explicit by writing

Ngr54p
11rs

rsE~rs!
58pF11

z

8 S ln z321 2D1O~z2!G ,
~37!

whereE is an elliptic function.
All the above results can be expressed as functions ofb

by solving the saddle point equation. Concerning asymptoti
scaling, and therefore solving the saddle point equation a
largeb, one finds

MG.4A2expS 2
2p

t D . ~38!

The analytic structure of the various observables has bee
investigated in Ref.@7#. The complex-b singularities are
square-root branch points; indeed quantities such asx and
jG
2 behave as

A~b!1B~b!Ab2bs ~39!

around a singular pointbs , whereA(b) andB(b) are regu-
lar in the neighborhood ofbs . The singularities closest to
the origin are located atb̄50.321 62(616 i ). Such singu-
larities determine the convergence radius of the strong
coupling expansion, which is thereforeb r50.454 84, corre-
sponding to a correlation lengthjG53.171 60.

C. The triangular lattice

On the triangular lattice, using the results of Appendix A,
the saddle point equation can be written as

1

t
5A3b5E

2p

p dk1
2p E

22p/A3

2p/A3 dk2
2p

1

D~k!1z
~40!

where

D~k!54F12
1

3 S cosk112cos
k1
2
cos

A3k2
2 D G ~41!

and the momentum integration is performed over the Bril
louin zone corresponding to a triangular lattice. By rathe
straightforward calculations~making use also of some of the
formulas of Ref.@8#! the saddle point equation can be written
as

1

t
5A3b5

1

2p S 11
z

6D
21/4

r t~z!K„r t~z!…, ~42!

where

r t~z!5S 11
z

6D
1/4F121

z

8
1
1

2 S 11
z

6D
1/2G21/2

3F521
3z

8
2
3

2 S 11
z

6D
1/2G21/2

. ~43!
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Using the results of Appendix A one can find

x5
t

vsz
5

2

3bz
, ~44!

jG
2[MG

225
1

z
, ~45!

u[
m2
2

xm4
5
1

4 S 11
z

16D
21

. ~46!

An estimator of the mass gapm t can be extracted from the
long-distance behavior of the wall-wall correlation function
defined in Eq.~A7!; indeed, forx@1,

Gt
~w!~x!}e2m tx. ~47!

In the large-N limit one finds

Mt
2[

8

3 S coshA32 m t21D 5z5MG
2 . ~48!

A test of scaling is provided by the ratio

m t

MG
5

2

A3z
arccoshF11

3

8
zG512

1

32
z1

9

10 240
z21O~z3!,

~49!

where scaling violations are of the same order as those fou
on the square lattice for the corresponding quantity; cf. Eq
~27!.

The internal energy is given by the expression

E5^sWxl•s
W
xr

&512
1

6b
1
z

4
, ~50!

leading again to the result~32! for the condensate of the trace
of the energy-momentum tensor, in agreement with unive
sality.

We calculatedgr on the triangular lattice, finding the ex-
pression@in the derivation we made use of the saddle poin
equation~40!#

Ngr52
2

A3
] lnz

]b
, ~51!

which can be written in a more explicit form using Eq.~42!:

Ngr54pS 11
1

6
zD 1/41z FE~r t!

12r t
2

]r t
]z

2
1

24S 11
1

6
zD 21

r tK~r t!G21

58pF11
z

8 S ln z481
11

6 D 1O~z2!G , ~52!

where the continuum value ofNgr , obtained forz→0, is in
agreement with the results~35! and ~37!.

In the weak-coupling regiont→0 the saddle point equa-
tion leads to the asymptotic scaling formula
nd
.

r-

t

MG.4A3expS 2
2p

t D . ~53!

Equations~38! and ~53! are in agreement with the large-N
limit of the ratio of theL parameters of the square and
triangular lattice formulations calculated in Appendix A@cf.
Eq. ~A13!# using perturbation theory.

We have investigated the analytic structure in the com
plex b plane. Details of such study are presented in Appen
dix C. As on the square lattice, the singularities are square
root branch points. Those closest to the origin are placed
b̄50.206 7116 i 0.181 627, leading to a convergence radius
for the strong-coupling expansionb r50.275 169, which cor-
responds to a correlation lengthjG52.989 25.

D. The honeycomb lattice

The analysis of models defined on the honeycomb lattic
presents a few subtleties caused by the fact that, unlik
square and triangular lattices, not all sites are related by
translation, not allowing a straightforward definition of a
Fourier transform. Nevertheless, observing that sites at eve
distance in the number of lattice links form triangular lat-
tices, one can define a Fourier-like transformation that pa
tially diagonalizes the Gaussian propagator~up to 232 ma-
trices! @4#. In this section we present the relevant results
some details of their derivation are reported in Appendix B

Using the expression ofR21 of Eq. ~B4! we write the
saddle point equation in the form

1

t
5

b

A3
5E

22p/3

2p/3 dk1
2p E

2p/A3

p/A3 dk2
2p

11 1
4 z

D~k!1z~11 1
8 z!

~54!

where

D~k!5
8

9 F22cos
A3
2
k2S cos32 k11cos

A3
2
k2D G , ~55!

and integrating over the momentum we arrive at

1

t
5

b

A3
5

1

2p S 11
z

4D
1/2

rh~z!K„rh~z!…, ~56!

where

rh~z!5S 11
z

4D
1/2S 11

3z

8 D 23/2S 11
z

8D
21/2

. ~57!

From Eq.~B4! we also derive

x5
t

vsz
5

4

3bz
, ~58!

jG
2[MG

225
1

z
, ~59!

u5
1

4 S 11
z

16D
21

. ~60!
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The two orthogonal wall-wall correlation function
Gv
(w)(x) andGh

(w)(x) defined in Eqs.~B6! and ~B7! allow
one to define two estimators of the mass gap from their lo
distance behavior:

Gv
~w!~x!}e2mvx,

Gh
~w!~x!}e2mhx, ~61!

wherex is the distance between the two walls in units of t
lattice spacing. In the continuum limitmv5mh and they both
reproduce the physical mass propagating in the fundame
channel. As on the square and triangular lattices, it is con
nient to define the quantities

M v
25

8

9 S cosh3mv

2
21D ,

Mh
25

8

3 S coshA3mh

2
21D , ~62!

which, in the continuum limit, are also estimators of t
mass gap. In the large-N limit one finds

M v
25zS 11

z

8D ,
Mh

25z. ~63!

Notice that in the continuum large-N limit the result

M

MG
51, ~64!

whereM is any mass-gap estimator, is found for all latti
formulations considered.

On the honeycomb lattice the maximal violation of fu
rotational symmetry occurs for directions differing by
p/6 angle, and therefore, taking into account its discrete
tational symmetry, also by ap/2 angle. So a good test o
rotation invariance ofG(x) at large distance is provided b
the ratiomv /mh :

mv

mh
5
arccosh@11 9

8 z~11 1
8 z!#

A3arccosh@11 3
8 z#

511
1

640
z21O~z3!.

~65!

As expected from the better rotational symmetry of the h
eycomb lattice, rotation invariance is set earlier than for
square lattice; indeed, theO(z) scaling violation is absent.

A test of scaling is provided by the ratio

mh

MG
5

2

A3z
arccoshF11

3

8
zG512

1

32
z1

9

10 240
z21O~z3!,

~66!

where scaling violations are of the same order as those fo
on the square lattice for the corresponding quantity; cf.
~27!.

The internal energy is given by
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E512
1

3b
1
z

4
512

1

3b
1
MG

2

4
, ~67!

where the term proportional toMG
2 again verifies universal-

ity.
In the weak-coupling regiont→0 the saddle point equa-

tion leads to the asymptotic scaling formula

MG.4expS 2
2p

t D . ~68!

Equations~38! and ~68! are in agreement with the large-N
limit of the ratio of theL parameters of the square and
triangular lattice formulations calculated in Appendix B@cf.
Eq. ~B12!#, using perturbation theory.

In Fig. 1 we compare asymptotic scaling from the various
lattices considered, plotting the ratio betweenMG and the
corresponding asymptotic formula@cf. Eqs. ~38!, ~53!, and
~68!#. Notice that in the large-N limit corrections to asymp-
totic scaling areO(MG

2 ), in that correctionsO(1/lnMG) are
suppressed by a factor 1/N.

We have investigated the analytic structure in the
complex-temperature plane of theN5` model on the hon-
eycomb lattice~details are reported in Appendix C!. As on
the square and triangular lattices, singularities are squar
root branch points, and those closest to the origin are place
on the imaginary axis atb̄56 i0.362 095. The convergence
radius for the strong-coupling expansion is associated with
quite small correlation length:jG51.000 02.

III. CONTINUUM RESULTS FROM STRONG COUPLING

A. Analysis of the series

In this section we analyze the strong-coupling series o
some of the physical quantities which can be extracted from
the two-point fundamental Green’s function. We especially
consider dimensionless renormalization-group-invariant ra
tios, whose value in the scaling region, i.e., their asymptoti
value for b→`, concerns the continuum physics. Some

FIG. 1. The large-N limit of the ratio betweenMG and the
corresponding weak-coupling asymptotic formulas for the square
triangular, and honeycomb lattices.
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strong-coupling series for selected values ofN are reported
in Appendixes D, E, and F, respectively, for the square, t
angular, and honeycomb lattices. The series in the energy
obtained by inverting the strong-coupling series of the e
ergy E5b1O(b3) and substituting into the original serie
in b.

Our analysis of the series of dimensionles
renormalization-group-invariant ratios of physical quantitie
such as those defined in the previous section, is based
Padéapproximant~PA! techniques. For a review on the re
summation techniques, see Ref.@9#.

PA’s are expected to converge well to meromorphic an
lytic functions. More flexibility is achieved by applying the
PA analysis to the logarithmic derivative~Dln-PA analysis!,
and therefore enlarging the class of functions which can
reproduced to those having branch-point singularities. T
accuracy and the convergence of the PA’s depend on h
well the function considered, or its logarithmic derivative
can be reproduced by a meromorphic analytic function, a
may change when considering different representations
the same quantity. By comparing the results from differe
series representations of the same quantity one may ch
for possible systematic errors in the resummation proced
employed.

In our analysis we constructed@ l /m# PA’s and Dln-PA’s
of both the series inb and in the energy.l andm are the
orders of the polynomials, respectively, at the numerator a
at the denominator of the ratio forming the@ l /m# PA of the
series at hand, or of its logarithmic derivative~Dln-PA!.
While @ l /m# PA’s directly provide the quantity at hand, in a
Dln-PA analysis one gets an@ l /m# approximant by recon-
structing the original quantity from the@ l /m# PA of its loga-
rithmic derivative, i.e., a @ l /m# Dln-PA of the series
A(x)5( i50

` aix
i is obtained from

Al /m~x!5a0expS E
0

x

dx8Dlnl /mA~x8! D , ~69!

where Dlnl /mA(x) indicates the@ l /m# PA of the logarithmic
derivative ofA(x).
ri-
are
n-
s

s
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We recall that an@ l /m# PA usesn5 l1m terms of the
series, while an@ l /m# Dln-PA requiresn5 l1m11 terms.
Continuum estimates are then obtained by evaluating the
proximants of the energy series atE51, and those of theb
series at a value ofb corresponding to a reasonably larg
correlation length.

As final estimates we take the average of the results fro
the quasidiagonal~i.e., with l.m) PA’s using all available
terms of the series. The errors we will display are just indic
tive, and give an idea of the spread of the results comi
from different PA’s. They are the square root of the varianc
around the estimate of the results, using also quasidiago
PA’s constructed from shorter series. Such errors do not
ways provide a reliable estimate of the uncertainty, whic
may be underestimated especially when the structure of
function~or of its logarithmic derivative! is not well approxi-
mated by a meromorphic analytic function. In such cases
more reliable estimate of the real uncertainty should com
from the comparison of results from the analysis of differe
series representing the same quantity, which in general
not expected to have the same analytic structure.

In the remainder of this section we present the main r
sults obtained from our strong-coupling analysis. Most
them will concern theN53 case.

B. The square lattice

On the square lattice we have calculated the two-po
Green’s function up toO(b21), from which we have ex-
tracted strong-coupling series of the quantitiesE, x, jG

2 ,
u, Ms

2 , andMd
2 , already introduced in Sec. II B, and of the

ratiosr[Ms
2/M d

2 ands[Ms
2/MG

2 . Some of the above series
for selected values ofN are reported in Appendix D. Our
strong-coupling series represent a considerable extension
the 14th order calculations of Ref.@10#, performed by means
of a linked cluster expansion, which have been reelabora
and analyzed in Ref.@11#. We also mention recent works
where the linked cluster expansion technique has been f
ther developed and calculations of series up to 18th ord
@12# and 19th order@13# for d52,3,4 have been announced
es
TABLE I. Summary of the large-N calculations in O(N) s models on the square, triangular, and honeycomb lattices. All quantiti
appearing in this table have been defined in Sec. II.

Square Triangular Honeycomb

c 4 6 3
vs 1 A3/2 3A3/4
t 4vs /cb 4vs /cb 4vs /cb
x 4/cbz 4/cbz 4/cbz
MG

2 z z z
u 1

4 S11
1

16
zD 21 1

4 S 11
1

16
zD 21 1

4 S 11
1

16
zD 21

E
121/(cb)1

1
4
z 121/(cb)1

1
4
z 121/(cb)1

1
4
z

M2 Ms
2[2@coshms21#5z

Mt
2[

8
3
(cosh(A3m t/2)21)5z Mh

2[
8
3

@cosh(A3mh/2)21#5z
Md

2[4@cosh(md /A2)21#5z
Mv

2[
8

9 FcoshS 32mvD21G5zS 11
1

8
zD

LMS /LL 4A2 4A3 4
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TABLE II. For various values ofN we report the singularity closest to the origin on the square, triangul
and honeycomb lattices, as obtained by a Dln-PA analysis of the strong-coupling series ofx (b̄x) and jG

2

(b̄j), and the corresponding convergence radius of the strong-coupling expansionb r . The errors we display
are related to the spread of the results coming from different quasidiagonal@ l /m# Dln-PA’s using all avail-
able terms of the series, or a few less, while the difference betweenb̄x and b̄j should give an idea of the
systematic error in the procedure.

Lattice N b̄ x b̄ j
b r

Square 3 0.590(1)6 i 0.156(1) 0.586(1)6 i 0.157(1) 0.61
4 0.557(10)6 i 0.226(4) 0.555(5)6 i 0.225(5) 0.60
8 0.467(4)6 i 0.298(3) 0.467(3)6 i 0.293(1) 0.55
` 0.321621 . . . (16 i ) 0.321621 . . . (16 i ) 0.454841 . . .

Triangular 3 0.3582(2)6 i 0.085(1) 0.357(1)6 i 0.089(4) 0.37
4 0.343(1)6 i 0.121(1) 0.341(2)6 i 0.124(2) 0.36
8 0.2901(1)6 i 0.1654(1) 0.283(4)6 i 0.163(4) 0.33
` 0.206711 . . .6 i 0.181627 . . . 0.206711 . . .6 i 0.181627 . . . 0.275169 . . .

Honeycomb 3 6 i 0.459(1) 6 i 0.461(1) 0.46
4 6 i 0.4444(1) 6 i 0.445(2) 0.44
8 6 i 0.4161(1) 6 i 0.4169(2) 0.42
` 6 i 0.362095 . . . 6 i 0.362095 . . . 0.362095 . . .
e

-

In order to investigate the analytic structure in th
complex-b plane we have performed a study of the sing
larities of the Dln-PA’s of the strong-coupling series ofx
and jG

2 . As expected by asymptotic freedom, no indicati
of the presence of a critical point at a finite real value ofb
emerges from the strong-coupling analysis ofN>3 models,
confirming earlier strong-coupling studies@11#. The singu-
larities closest to the origin emerging from the Dln-P
analysis ofx andjG

2 are located at a pair of complex conju
gate points, rather close to the real axis in theN53 case
~where b̄.0.596 i0.16) and moving, on increasingN, to-
ward theN5` limiting points b̄50.321 62(16 i ). In Table
II such singularities are reported for some values ofN. The
singularity closest to the origin determines the converge
radius of the corresponding strong-coupling series. For
ample, for N53 the strong-coupling convergence radi
turns out to beb r.0.61, which corresponds to a quite larg
correlation lengthj.65. We recall that the partition function
on the square lattice has the symmetryb→2b, which must
also be realized in the locations of its complex singulariti

By rotation invariance the ratior[Ms
2/Md

2 should go to 1
in the continuum limit. Therefore the analysis of such a ra
should be considered as a test of the procedure employe
e
u-

on

A
-

nce
ex-
us
e

es.

tio
d to

estimate continuum physical quantities. In the large-N limit
r51 at all values ofb. This is not true anymore at finite
N, where the strong-coupling series ofMs

2 andMd
2 differ

from each other, as shown in Appendix D. FromG(x) up to
O(b21) we could calculate the ratior up to O(b14). The
results of our analysis of the series ofr for N53 are sum-
marized in Table III. There we report the values of the PA’s
and Dln-PA’s of theE series atE51, and those of theb
series atb50.55, which corresponds to a reasonably larg
correlation lengthj.25. We considered PA’s and Dln-PA’s
with l1m>11 andm> l>5. The most precise determina-
tions of r * , the value ofr at the continuum limit, come from
Dln-PA’s, whose final estimates arer *51.0000(12) from
theE approximants, andr *51.0002(6) from theb approxi-
mants~atb50.55). The precision of these results is remark
able.

For all N>3 the violation of rotation invariance in the
large-distance behavior ofG(x), monitored by the ratio
ms /md , turns out quantitatively very close to that atN5`
when considered as a function ofjG ~in a plot theN53
curve of ms /md versus jG as obtained from the strong-
coupling analysis would be hardly distinguishable from the
exactN5` one!. ms /md is 1 within about 1 per mille al-
ready atj.4.
2

TABLE III. Analysis of the 14th order strong-coupling series ofr[Ms
2/Md

2 for N53 on the square
lattice, expressed in powers ofE andb. The first two lines report the values of the@ l /m# PA’s and Dln-PA’s
~DLPA’s! atE51. The last two lines report the values of@ l /m# PA’s and Dln-PA’s atb50.55 correspond-
ing to j.25. We show data for PA’s and Dln-PA’s withl1m>11 andm> l>5. Asterisks mark defective
PA’s, i.e., PA’s with spurious singularities close to the real axis forE&1 in the energy series case, or for
b&0.55 in theb series case.

5/6 6/6 5/7 6/7 5/8 7/7 6/8 5/9

E51 PA * 0.9965 0.9967 0.9955 1.0126 0.9980 1.0007 1.0120
DLPA 1.0002 1.0011 1.0023 1.0005 0.9995

b50.55 PA 0.9986 0.9996 1.0015 1.0007 1.0010 1.0007 1.0007 1.001
DLPA 0.9996 1.0007 0.9993 1.0006 0.9999
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TABLE IV. Analysis of the 16th order strong-coupling series ofs[Ms
2/MG

2 for N53 on the square lattice. The first two lines report th
values of the@ l /m# PA’s and Dln-PA’s atE51. The last two lines report the values of@ l /m# PA’s and Dln-PA’s atb50.55. We show data
for PA’s and Dln-PA’s withl1m>13 andm> l>5. Asterisks mark defective PA’s.

6/7 5/8 7/7 6/8 5/9 7/8 6/9 5/10 8/8 7/9 6/10 5/11

E51 PA 0.9947 0.9938 0.9941 0.9942 * 0.9944 1.0020 * 0.9961 1.0028 1.0028 *
DLPA 0.9941 0.9971 * 0.9992 0.9978 0.9951 0.9973 0.9984

b50.55 PA * 0.9971 0.9972 0.9974 * 0.9976 0.9988 0.9998 0.9980 1.0023 0.9996 0.9
DLPA 0.9971 0.9980 0.9974 0.9992 0.9985 0.9977 0.9982 0.9976
t

d,

e

Calculating a few more components ofG(x) at larger
orders@i.e., those involved in the wall-wall correlation func
tion at distances 6 and 7, respectively, up toO(b22) and
O(b23)#, we computed the ratio

s[
Ms

2

MG
2 ~70!

up toO(b16), by applying the technique described in Ref
@14,15#. We recall that atN5` we found s51 indepen-
dently ofb. No exact results are known about the continuu
limit s* of the ratios, except for its large-N limit: s*51.
Both large-N and Monte Carlo estimates indicate a valu
very close to 1. From a 1/N expansion@16,17#:

s*512
0.006 450

N
1OS 1N2D . ~71!

Monte Carlo simulations atN53 @18# gaves50.9988(16)
at b51.7/350.5666 . . . (j.35), and s50.9982(18) at
b50.6 (j.65), leading to the estimates*50.9985(12).

In Table IV we report, forN53, the values of PA’s and
Dln-PA’s of the energy andb series ofs, respectively, at
E51 and atb50.55. We considered PA’s and Dln-PA’s
with l1m>13 andm> l>5. Combining PA and Dln-PA
results, our final estimates ares*50.998(3) from theE ap-
proximants, ands*50.998(1) from theb approximants
evaluated atb50.55, in full agreement with the estimate
from the 1/N expansion and Monte Carlo simulations. Wit
increasingN, the central estimate ofs* tends to be closer to
1.

The scaling-violation pattern of the quantityms /MG for
N53 is similar to the pattern forN5` @cf. Eq. ~27!#; i.e., it
is stable within a few per mille forj*5.
-

s.

m

e

s
h

Another dimensionless renormalization-group-invarian
quantity we have considered isu[m2

2/(xm4), whose large-
N limit has been calculated in the previous section@cf. Eq.
~21!#. At finite N its continuum limitu* is not known. From
the expression of the self-energy calculated up toO(1/N),
@16,17,19# one can obtain

u*5
1

4 F12
0.006 198

N
1OS 1N2D G . ~72!

It is interesting to notice that theO(1/N) correction in Eqs.
~71! and ~72! is very small.

At N53 the analysis of theO(b21) strong-coupling series
of u detected a simple pole close to the origin at
b0520.085 545 for theb series, and atE0520.086 418
for the energy series, corresponding toMG

2 5216.000,
which, within the precision of our strong-coupling estimate,
is also the location of the pole in the correspondingN5`
expression~21!. Being a simple pole, this singularity can be
perfectly reproduced by a standard PA analysis, and, indee
we found PA’s to be slightly more stable than Dln-PA’s in
the analysis ofu. The results concerningN53, reported in
Table V ~for PA’s with l1m>16 andm> l>8), lead to the
estimatesu*50.2498(6) from the energy analysis, and
u*50.2499(5) from theb analysis~atb50.55). The agree-
ment with the large-N formula ~72! is satisfactory. In Fig. 2
the curveu(E) as obtained from the@10/10# PA and the
exact curveu(E) atN5` @cf. Eq. ~21!# are plotted, showing
almost no differences.

In Table VI we give a summary of the determinations of
r * , s* , andu* from PA’s and Dln-PA’s of the energy and
b series.

We mention that we also tried to analyze series in th
variable
TABLE V. Analysis of the 20th order strong-coupling series ofE21u(E) and b21u(b), where
u[m2

2/(xm4), for N53 on the square lattice. The first two lines report the values ofu as obtained from the
@ l /m# PA’s and Dln-PA’s atE51. The last two lines report the values ofu from @ l /m# PA’s and Dln-PA’s
atb50.55. The analysis detected a pole atE0520.086 418 in the energy series, and atb0520.085 545 in
the b series, corresponding toMG

2 5216.000. We show data for PA’s and Dln-PA’s withl1m>16 and
m> l>8. Asterisks mark defective approximants.

8/8 8/9 9/9 9/10 8/11 10/10 9/11 8/12

E51 PA 0.2491 0.2502 0.2495 0.2488 0.2491 0.2495 0.2504 0.2496
DLPA 0.2497 0.2524 0.2510 0.2486 0.2492

b50.55 PA 0.2493 0.2496 0.2488 0.2496 0.2500 * 0.2495 0.2503
DLPA 0.2493 0.2495 0.2491 0.2498 0.2500
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z5
I N/2~Nb!

I N/221~Nb!
, ~73!

which is the character coefficient of the fundamental rep
sentation. As for theE series, the continuum limit should be
reached at a finite valuez→1, and estimates ofr * , s* , and
u* may be obtained by evaluating the approximants of t
correspondingz series atz51. We obtained results much
less precise than those from the analysis of theE series.
Maybe because of the thermodynamical meaning of the
ternal energy, resummations by PA’s and Dln-PA’s of th
E series turn out much more effective, providing rather pr
cise results even at the continuum limitE51.

The strong-coupling approach turns out to be less effe
tive for the purpose of checking asymptotic scaling. In Tab
VII, we compare, forN53, 4, and 8,jG as obtained from the
plain 21st order series ofjG

2 and from its Dln-PA’s with
some Monte Carlo results available in the literature. Resu

FIG. 2. u[m2
2/(xm4) versusE for N53 ~as obtained by the

@10/10# PA! andN5` ~exact!, on the square lattice.

TABLE VI. In this table we summarize our strong-coupling
results forN53, giving the estimates ofr * , s* , andu* from the
PA and Dln-PA analyses of both the energy andb-series ofr , s,
and u. For all lattices considered the values ofb where theb
approximants have been evaluated correspond to a correla
lengthj*20.

r * s* u*

Square E51 PA 1.004~8! 1.000~5! 0.2498~6!

DLPA 1.0000~12! 0.997~2! 0.249~2!

b50.55 PA 1.0009~6! 1.000~2! 0.2499~6!

DLPA 1.0002~6! 0.9978~8! 0.2499~5!

Triangular E51 PA 1.000~4! 0.2497~15!
DLPA 0.997~3! 0.248~2!

b50.33 PA 0.9985~13! 0.2504~3!

DLPA 0.9980~9! 0.2499~4!

Honeycomb E51 PA 1.01~4! 0.999~4! 0.250~2!

DLPA 0.991~13! 0.999~3! 0.247~2!

b50.85 PA 1.001~2! 0.9987~5! 0.2490~3!

DLPA 1.0009~8! 0.9987~5! 0.2491~3!
re-

he

in-
e
e-

c-
le

m-

mation by integral approximants@20# provides results sub-
stantially equivalent to those of Dln-PA’s. ForN53 Dln-
PA’s follow Monte Carlo data reasonably well up to about
the convergence radiusb r.0.6 of the strong-coupling ex-
pansion, but they fail beyondb r . On the other hand, it is
well known that forN53 the asymptotic scaling regime is
set at largerb values@21#. More sophisticated analyses can
be found in Refs.@11,22#, but they do not seem to lead to a
conclusive result about the asymptotic freedom prediction in
the O~3! s model. At largerN, the convergence radius de-
creases, but on the other hand the asymptotic scaling regim
should be reached earlier. AtN54 andN58 the 21st order
plain series ofjG

2 provides already quite good estimates of
jG within the convergence radius when compared with
Monte Carlo results. Again, Pade´-type resummation fails for
b.b r . We mention that atN54 the convergence radius
b r.0.60 corresponds tojG.25, and atN58 b r.0.55 cor-
responds tojG.8.

In order to check asymptotic scaling we consider the ratio
Ls /L2l , whereLs is the effectiveL parameter which can
be extracted by

Ls[S Ls

M DM5
M

Rs
, ~74!

whereM is an estimator of the mass gap,Rs is the mass-L
parameter ratio in the square lattice nearest-neighbor formu
lation @23#,

Rs5RMS3S LMS

Ls
D

5S 8eD
1/~N22! 1

G„111/~N22!…
A32expF p

2~N22!G ,
~75!

tion

TABLE VII. The strong-coupling estimates ofjG are compared
with the available Monte Carlo results on the square lattice for
various values ofN. The strong-coupling estimates ofjG come
from the plain series ofjG

2 , and from ~@9/10#,@8/11#,@9/9#,@8/10#!
Dln-PA’s of b21jG

2 . The N53,4,8 Monte Carlo~MC! data are
taken, respectively, from Refs.@28,29#, and@24#. The asterisk indi-
cates that the number concernsjexp, and notjG .

N b Plain series Dln-PA’s MC

3 1.4/3 6.567 6.869~1! 6.90~1!*
0.5 9.939 11.036~4! 11.05~1!*
1.6/3 15.429 18.90~2! 19.00~2!*
1.7/3 24.300 33.9~1! 34.44~6!*
0.6 38.459 61.0~4! 64.7~3!*

4 0.45 4.665 4.672~1! 4.67~1!

0.5 7.845 7.87~1! 7.83~1!

0.55 13.879 13.88~5! 13.99~3!

0.575 18.701 18.6~2! 18.91~5!

0.6 25.329 24.8~4! 25.5~2!

8 0.5 5.432 5.459~1! 5.461~5!*
0.525 6.584 6.651~1!

0.55 7.981 8.139~2!

0.575 9.659 10.01~1! 9.884~13!*
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where MS denotes the modified minimal substractio
scheme andL2l is the corresponding two-loop formula

L2l5S 2pN

N22
b D 1/~N22!

expS 2
2pN

N22
b D . ~76!

The ratioLs /L2l should go to 1 in the continuum limit,
according to asymptotic scaling. The available series
MG

2 are longer than any series of the mass-gap estimato
therefore, neglecting the very small difference betweenMG
andM @we have seen that forN>3 (MG2M )/M&1023 in
the continuum limit#, for which formula~75! holds, we use
MG as estimator ofM . In Fig. 3 we plotLs /L2l for various
values ofN, N53,4,8, and for comparison the exact curv
for N5`. As already noted in Ref.@24# by a Monte Carlo
study, forN53,4 atj.10 the asymptotic scaling regime is
still far away ~about 50% off atN53 and 15% atN54),
while for N58 it is verified forj*4 within a few percent.
Notice also that the convergence radiusb r.0.55 corre-
sponds to j.8. Anyway, with increasingN curves of
Ls /L2l clearly approach the exactN5` limit.

C. The triangular lattice

On the triangular lattice we have calculated the two-poi
Green’s function up toO(b15), from which we have ex-
tracted strong-coupling series of the quantitiesE, x, jG

2 ,

FIG. 3. Asymptotic scaling test from the strong-coupling dete
minations of jG

2 on the square lattice. We show curves o
Ls /L2l , defined by Eqs.~75! and ~76!, for N53,4,8, and for
N5` ~exact!.
n

of
rs;

e

nt

u, andMt
2 , already introduced in Sec. II C, and of the ratios

s[Mt
2/MG

2 . Some of the above series forN53 are reported
in Appendix E.

Like O(N) s models on the square lattice, no indication
of the presence of a critical point at a finite real value ofb
emerges from the strong-coupling analysis forN>3. By a
Dln-PA analysis of theO(b15) strong-coupling series ofx
andjG

2 at N53, we found that the singularity closest to the
origin is b̄.0.3586 i0.085, giving rise to a convergence ra-
diusb r.0.37 which should correspond to a rather large cor
relation length:jG.70. On increasingN, such singularities
move toward theirN5` limit b̄50.206 7116 i 0.181 627.
Some details of this analysis are given in Table II.

In our analysis of dimensionless quantities we considered
as on the square lattice, the series both in the energy and
b. The estimates concerning the continuum limit are ob
tained by evaluating the approximants of the energy series
E51, and those of theb series at ab associated with a
reasonably large correlation length. ForN53 we chose
b50.33, whose corresponding correlation length should b
j.22, according to a strong-coupling estimate.

Calculating a few more components ofG(x) at larger
orders@i.e., those involved in the wall-wall correlation func-
tion at distanceA3/235 up toO(b16)#, we computed the
ratio s[Mt

2/MG
2 up toO(b11) @14,15#. ForN53 the analy-

sis of the strong-coupling series ofs ~some details are given
in Table VIII! leads to the estimates*50.998(3) from the
energy approach, ands*50.998(1) evaluating the approxi-
mants atb50.33 ~we considered PA’s and Dln-PA’s with
l1m>8 andm> l>4). Such results are in perfect agree-
ment with those found for the square lattice.

PA’s and Dln-PA’s~with l1m>11 andm> l>5) of the
strong-coupling series ofu expressed in terms of the energy,
evaluated atE51, lead to the estimateu*50.249(1) at
N53. The analysis of the series inb gives
u*50.2502(4). Again universality is satisfied.

A summary of the results on the triangular lattice can be
found in Table VI.

As on the square lattice we checked asymptotic scaling b
looking at the ratioL t /L2l , whereL t is the effectiveL
parameter on the triangular lattice, defined in analogy with
Eq. ~74!. In addition to the formulas concerning asymptotic
scaling given for the square lattice case@cf. Eqs.~74!-~76!#,
we need here theL-parameter ratioL t /Ls calculated in Ap-
pendix A, @cfr. Eq. ~A13!#. We again usedMG as approxi-
mate estimator of the mass gapM . Figure 4 shows curves of
L t /L2l for various values ofN, N53,4,8, and for compari-
son the exact curve forN5`. Such results are similar to

r-
f

TABLE VIII. Analysis of the 11th order strong-coupling series ofs[Mt
2/MG

2 for N53 on the triangular
lattice. The first two lines report the values of the@ l /m# PA’s and Dln-PA’s atE51. The last two lines report
the values of@ l /m# PA’s and Dln-PA’s atb50.33 corresponding toj.22. Asterisks mark defective PA’s.

4/4 4/5 5/5 4/6 5/6 4/7

E51 PA 0.9993 0.9972 1.0005 0.9927 0.9954 1.0039
DLPA 0.9963 1.0014 0.9948 *

b50.33 PA 0.9993 0.9989 1.0005 0.9969 0.9974 0.9995
DLPA 0.9987 * 0.9972 0.9975
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those found on the square lattice: forN53,4 the asymptotic
scaling regime is still far away atjG.10, but it is verified
within a few percent atN58, where the correlation length
corresponding to the strong-coupling convergence radius
j.8.

D. The honeycomb lattice

On the honeycomb lattice we have calculated the tw
point Green’s function up toO(b30), from which we ex-
tracted strong-coupling series of the quantitiesE, x, jG

2 ,
u, M v

2 , andMh
2 , already introduced in Sec. II D, and of th

ratiosr[M v
2/Mh

2 ands[Mh
2/MG

2 . Some of the above series
for N53 are reported in Appendix F.

At N53 a Dln-PA analysis of theO(b30) strong-
coupling series ofx andjG

2 detected two couples of complex
conjugate singularities, one on the imaginary axis
b̄.6 i0.460, quite close to the origin, and the other
b̄.0.936 i0.29. The singularity on the imaginary axis lead
to a rather small convergence radius in terms of correlat
length; indeed, atb.0.46 we estimatej.2.6. AtN54 we
found b̄.6 i0.444, andb̄.0.886 i0.41. At largerN the
singularities closest to the origin converge toward th
N5` valueb̄56 i 0.362 095. Notice that, as on the squa
lattice, the partition function on the honeycomb lattice enjo
the symmetryb→2b.

FIG. 4. Asymptotic scaling test from the strong-coupling dete
minations of jG

2 on the triangular lattice. Curves ofL t /L2l for
N53,4,8 and forN5` ~exact! are shown vsjG .
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Again we analyzed the series both in the energy and i
b. The estimates concerning the continuum limit are ob
tained by evaluating the approximants of the energy series
E51, and those of theb series atb50.85 for theN53
case, which should correspond toj.22.

By rotation invariance the ratior[Mh
2/M v

2 should go to 1
in the continuum limit. FromG(x) up to O(b30) we ex-
tracted the ratior up toO(b20). Again, PA’s and Dln-PA’s
of the energy series evaluated atE51 and of theb series
evaluated atb50.85 ~some details are given in Table X!
give the correct result in the continuum limit: respectively
r *51.00(1) and r *51.001(1) atN53 ~we considered
PA’s and Dln-PA’s withl1m>16 andm> l>7).

Calculating a few more components ofG(x) at larger
orders@i.e., those involved inGh

(w)(x), defined in Eq.~B7!,
at distancesx5A3/239 andx5A3/2310, respectively, at
O(b34) andO(b35)#, we computed the ratios[Mh

2/MG
2 up

to O(b25) @14,15#. For N53 the analysis of the strong-
coupling series ofs givess*50.999(3) from theE approxi-
mants ands*50.9987(5) from theb approximants evalu-
ated atb50.85 ~some details are given in Table XI!, in
agreement with the result found on the other lattices. W
considered PA’s and Dln-Pa’s withl1m>22 and
m> l>10.

The analysis of the energy series ofu confirms universal-
ity: PA’s and Dln-PA’s~with l<m, l1m>26, l>12) of the
energy series evaluated atE51 give u*50.249(3), and
those of theb series atb50.85 andu*50.2491(3). As for
the square lattice, the curveu(E) obtained from the PA’s at
N53 and the exact curveu(E) at N5` @cf. Eq. ~60!#,
would be hardly distinguishable if plotted together.

As noted above, the convergence radiusb r is small in
terms of the correlation length for all values ofN: it goes
from j.1.0 atN5` to j.2.6 atN53. Nevertheless, in this
case Dln-PA resummations seem to give reasonable es
mates ofjG even beyondb r ~apparently up to about the next
singularity closest to the origin!. In Fig. 5 we show curves of
Lh /L2l , whereLh is the effectiveL parameter on the hon-
eycomb lattice, for various values ofN, N53,4,8, and for
comparison the exact curve forN5`. The necessary ratio of
L parameters has been calculated in Appendix B@cf. Eqs.
~B11! and ~B12!#.

E. Conclusions

We have shown that quite accurate continuum limit esti
mates of dimensionless renormalization-group-invarian

r-
7

2

TABLE IX. Analysis of the 14th order strong-coupling series ofE21u(E) and b21u(b), where
u[m2

2/(xm4), for N53 on the triangular lattice. The first two lines report the values ofu as obtained from
the @ l /m# PA’s and Dln-PA’s atE51. The last two lines report the values ofu from @ l /m# PA’s and
Dln-PA’s atb50.33 corresponding toj.22. A pole has been detected atE0520.050 655, corresponding
to MG

2 5216.000. Asterisks mark defective PA’s.

5/6 6/6 5/7 6/7 5/8 7/7 6/8 5/9

E51 PA 0.2442 0.2502 0.2533 0.2483 0.2492 0.2494 0.2500 0.249
DLPA 0.2433 0.2521 0.2502 0.2477 0.2491

b50.33 PA 0.2521 0.2500 0.2500 0.2502 0.2502 0.2504 0.2505 0.250
DLPA 0.2496 0.2494 0.2494 0.2496 0.2502
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TABLE X. Analysis of the 19th order strong-coupling series ofr /b, wherer[Mh
2/M v

2 , for N53 on the
honeycomb lattice, expressed in powers ofE andb. The first two lines report the values of the@ l /m# PA’s
and Dln-PA’s atE51. The last two lines report the values of@ l /m# PA’s and Dln-PA’s atb50.85 corre-
sponding toj.22. Asterisks mark defective PA’s, i.e., PA’s with spurious singularities close to the real axi
for E&1 in the energy series case, or forb&0.85 in theb series case.

8/8 7/9 8/9 7/10 9/9 8/10 7/11 9/10 8/11 7/12

E51 PA 1.070 0.963 1.006 1.035 * 0.981 1.035 0.980 0.980 1.080
DLPA 1.007 0.996 0.977 1.010 0.993 0.989 *

b50.85 PA 1.0039 * 1.0020 1.0031 * 0.9988 * 0.9996 0.9997 1.0024
DLPA 1.0006 0.9992 1.0019 1.0009 1.0009 1.0014 1.0005
t

t
D

u

n

e
a

c
i

n
quantities, such ass andu @cfr. Eqs.~70! and ~21!#, can be
obtained by analyzing their strong-coupling series and app
ing resummation techniques both in the inverse tempera
variableb and in the energy variableE. In particular, in
order to get continuum estimates from the analysis of
energy series, we evaluated the corresponding PA’s and
PA’s at E51, i.e., at the continuum limit. This idea ha
already been applied to the calculation of the continu
limit of the zero-momentum four-point couplinggr , obtain-
ing accurate results@6#. These results look very promising i
view of a possible application of such strong-coupling ana
sis to four-dimensional gauge theories.

The summary in Table VI of ourN53 strong-coupling
results for the continuum valuesr * , s* , and u* , for all
lattices we have considered, shows that universality is v
fied within a precision of a few per mille, leading to the fin
estimatess*.0.9985 andu*.0.2495 with an uncertainty of
about 1 per mille. The comparison with the exactN5` re-
sults,s*51 andu*51/4, shows that quantities likes* and
u* , which describe the small-momentum universal behav
of G̃(p) in the continuum limit, change very little and ap
parently monotonically fromN53 toN5`, suggesting that
at N53 G̃(p) is essentially Gaussian at small momentum

Let us make this statement more precise. In the criti
region one can expand the dimensionless renormalizat
group-invariant function

L~p2/MG
2 ![

G̃~0!

G̃~p!
~77!

aroundy[p2/MG
2 50, writing

L~y!511y1 l ~y!,

l ~y!5(
i52

`

ciy
i . ~78!
ly-
ure

he
ln-
s
m

ly-

ri-
l

ior
-

.
al
on-

l (y) parametrizes the difference from a generalized Gaussia
propagator. One can easily relate the coefficientsci of the
expansion ~78! to dimensionless renormalization-group-
invariant ratios involving the momentsm2 j of G(x).

It is worth observing that

u*5
1

4~12c2!
. ~79!

In the large-N limit the functionl (y) is depressed by a factor
1/N. Moreover, the coefficients of its low-momentum expan-
sion are very small. They can be derived from the 1/N ex-
pansion of the self-energy@16,17,19#. In the leading order in
the 1/N expansion one finds

c2.2
0.006 198 16 . . .

N
,

c3.
0.000 238 45 . . .

N
,

c4.2
0.000 013 44 . . .

N
,

c5.
0.000 000 90 . . .

N
, ~80!

etc. For sufficiently largeN we then expect

ci!c2!1 for i>3. ~81!

As a consequence, since the zero ofL(y) closest to the ori-
gin is y052s* , the value ofs* is substantially fixed by the
term proportional to (p2)2 in the inverse propagator, through
the approximate relation

s*21.c2.4u*21. ~82!
9

TABLE XI. Analysis of the 25th order strong-coupling series ofs[Mh
2/MG

2 for N53 on the honeycomb
lattice. The first two lines report the values of the@ l /m# PA’s and Dln-PA’s atE51. The last two lines report
the values of@ l /m# PA’s and Dln-PA’s atb50.85 corresponding toj.22. Asterisks mark defective PA’s.

11/11 10/12 11/12 10/13 12/12 11/13 10/14 12/13 11/14 10/15

E51 PA 0.9956 1.0001 1.0052 0.9983 * * * * * *
DLPA * 0.9964 0.9994 0.9963 1.0023 * 0.9972

b50.85 PA 0.9978 0.9984 0.9983 0.9982 * 0.9983 0.9991 0.9982 0.9989 0.998
DLPA 0.9989 0.9982 * 0.9982 * 0.9992 0.9983
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Indeed, in the large-N limit one finds, from Eqs.~71! and
~72!,

s*24u*5
20.000 252

N
1OS 1N2D , ~83!

where the coefficient of the 1/N term is much smaller than
those ofs* andu* .

From this large-N analysis one expects that even
N53 the functionl (y) will be small in a relatively large
region aroundy50. This is confirmed by the strong-couplin
estimate of u* , which, using Eq. ~79!, leads to
c2.20.002. Furthermore, the comparison of the estima
of s* andu* shows thats*24u*.0 within the precision of
our analysis, consistently with Eq.~81!. It is interesting to
note that similar results have been obtained for the mo
with N<2, and in particular for the Ising model, i.e., fo
N51, where the strong-coupling analysis turns out to
very precise@2#.

We can conclude that the two-point Green’s function
all N>3 is almost Gaussian in a large region arou
p250, i.e., up2/MG

2 u&1, and the small corrections to Gaus
ian behavior are essentially determined by the (p2)2 term in
the expansion of the inverse propagator.

Differences from Gaussian behavior will become imp
tant at sufficiently large momenta, as predicted by sim
weak-coupling calculations supplemented by
renormalization-group resummation. Indeed, the asympt
behavior ofG(x) for x!1/M ~whereM is the mass gap!
turns out to be

G~x!;S ln 1

xM D g1 /b0

,
g1

b0
5
N21

N22
; ~84!

b0 andg1 are the first coefficients of theb function and of
the anomalous dimension of the fundamental fieldsW, respec-
tively. Let us recall that a free Gaussian Green’s funct
behaves like ln(1/x). Important differences are present
other Green’s functions even at small momentum, as sh
in the analysis of the four-point zero-momentum renorm

FIG. 5. Asymptotic scaling test from the strong-coupling det
minations ofjG

2 on the honeycomb lattice. Curves ofLh /L2l for
N53,4,8 and forN5` ~exact! are shown vsjG .
at
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ized coupling, whose definition involves the zero-momentum
four-point correlation function~34! @6#. However, monoto-
nicity in N seems to be a persistent feature.

Our strong-coupling calculations allow also a check of
asymptotic scaling for a relatively large range of correlation
lengths. For all lattices considered, the ratio between the e
fective L parameter extracted from the mass gap and its
two-loop approximationL/L2l , when considered as a func-
tion of jG , shows similar patterns with changingN. Con-
firming earlier Monte Carlo studies, large discrepancies from
asymptotic scaling are observed forN53 in the range of
correlation lengths we could reliably investigate, i.e.,
j&50. At N58 and for all lattices considered, asymptotic
scaling within a few percent is verified forj*4, and on
increasing N the ratio L/L2l smoothly approaches its
N5` limit.
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APPENDIX A: THE TRIANGULAR LATTICE

The sitesxW of a finite periodic triangular lattice can be
represented in Cartesian coordinates by

xW~ l 1 ,l 2!5 l 1hW 11 l 2hW 2 ,

l 151, . . . ,L1 , l 251, . . . ,L2 ,

hW 15~1,0!, hW 25S 12 ,A32 D . ~A1!

We seta51, where the lattice spacea is the length of a link.
The total number of sites, links, and triangles is, respectively
Ns5L1L2 , Nl53Ns , andNt52Ns . Taking into account pe-
riodic boundary conditions, a finite lattice Fourier transform
can be defined by

f~kW !5(
xW
eik

W
•xWf~xW !,

f~xW !5
1

vsNs
(
kW
eik

W
•xWf~kW !, ~A2!

wherevs5A3/2 is the volume per site, and the set of mo-
menta is

kW~m1 ,m2!5
2p

L1
m1rW 11

2p

L2
m2rW 2 ,

m151, . . . ,L1 , m251, . . . ,L2 ,

rW 15S 1,2 1

A3D , rW 25S 0, 2A3D . ~A3!

Notice that

er-
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kW•xW5
2p

L1
m1l 11

2p

L2
m2l 2 . ~A4!

To begin with, let us discuss the Gaussian model on th
triangular lattice, which is defined by the action

SG5
k

2(links ~fxl
2fxr

!2 ~A5!

wherexl and xr indicate the sites at the ends of each link
Performing the Fourier transform~A2! one derives the
propagator

^f~k!f~q!&5
vs

A3k

1

D~k!
dk1q,0 ,

D~k!54F12
1

3 S cosk112cos
k1
2
cos

A3k2
2 D G . ~A6!

From these formulas one can easily obtain the large-N limit,
since the model becomes Gaussian forN→`.

In the massive Gaussian model one may define an exp
nentiated wall-wall correlation function by

Gt
~w!SA32 l 2D 5(

l1
G~ l 1hW 11 l 2hW 2!. ~A7!

In the O(N) s models, in order to evaluate the ratio be
tween theL parameter of theMS renormalization scheme
and the triangular nearest-neighbor lattice regularization, w
calculated the correlation functionG(x) in perturbation
theory. In thex space we obtained@neglectingO(a2) terms#

G~x!511
N21

N
tF~a/x!1O~ t2!,

F~a/x!5
1

2p S lnax2g
E
2 ln22

1

2
ln3D . ~A8!

In the p space,

G̃~k!5
N21

N

t

k2 F11
t

N S D~ak!1
1

2A3D 1O~ t2!G ,
D~ak!5

1

2p S lnak22ln22
1

2
ln3D . ~A9!

The above results required the calculation of the integral

E
2p

p dk1
2p E

22p/A3

2p/A3 dk2
2p

eikx21

D~k!
5F~a/x!1O~a/x!,

E
2p

p dk1
2p E

22p/A3

2p/A3 dk2
2p

D~q!2D~k!2D~k1q!

D~k!D~k1q!

52D~aq!1O~aq!, ~A10!

where the extremes of integration are chosen to cover t
appropriate Brillouin zone, which can be determined from
the finite lattice momenta~A3!.
e

.

o-

-

e

he

Comparing the above results with the two-point Green’s
function renormalized in theMS scheme,

GMS~xm52e2g
E!511O~ t r

2!,

G̃MSS km 51D5
N21

N

tr
k2

@11O~ t r
2!#, ~A11!

and following a standard procedure, one can determine the
ratio of theL parameters:

LMS

L t
54A3expS p

~N22!

1

A3D , ~A12!

whereL t is theL parameter of the O(N) s models on the
triangular lattice. Furthermore, comparing with the Green’s
function calculated on the square lattice@25# one can also
derive

Ls

L t
5A3

2
expF p

N22 S 1

A3
2
1

2D G , ~A13!

whereLs is theL parameter on the square lattice.

APPENDIX B: THE HONEYCOMB LATTICE

The sitesxW of a finite periodic honeycomb lattice can be
represented in Cartesian coordinates by

xW5xW81phW p ,

xW85 l 1hW 11 l 2hW 2 ,

l 151, . . . ,L1 , l 251, . . . ,L2 , p50,1,

hW 15S 32 ,A32 D , hW 25~0,A3!, hW p5~1,0!. ~B1!

We seta51, where the lattice spacea is the length of a link.
The total number of sites, links, and hexagons is, respec-
tively, Ns52L1L2 , Nl53L1L2 , andNh5L1L2 . The coor-
dinatep can be interpreted as the parity of the corresponding
lattice site: sites with the same parity are connected by an
even number of links.

The two sublattices identified byxW 1( l 1 ,l 2)[xW ( l 1 ,l 2,0)
and xW 2( l 1 ,l 2)[xW ( l 1 ,l 2,1) form a triangular lattice. Each
link of the honeycomb lattice connects sites belonging to
different sublattices. Triangular lattices have a more sym-
metric structure, in that their sites are characterized by a
group of translations. It is then convenient to rewrite a field
f(xW )[f( l 1 ,l 2 ,p) in terms of two new fields
f1(xW 1)[f(xW 1) and f2(xW 2)[f(xW 2) defined, respec-
tively, on the sublatticesxW 1 and xW 2 . Taking into account
periodic boundary conditions, a finite lattice Fourier trans-
form can be consistently defined@4#:

f6~kW !5vh(
xW6

eik
W
•xW6f6~xW 6!,
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f6~xW 6!5
1

vhL1L2
(
kW
e2 ikW•xW6f6~kW !, ~B2!

wherevh53A3/2 is the volume of a hexagon, and the set
momenta is

kW5
2p

L1
m1rW 11

2p

L2
m2rW 2 ,

m151, . . . ,L1 , m251, . . . ,L2 ,

rW 15S 23,0D , rW 25S 2
1

3
,
1

A3D . ~B3!

Using the results reported in Ref.@4# one can find the
following expression for the matrixR21 @cf. Eq. ~13!#:

R21~xW ;yW !5R21~xW8,px ;yW 8,py!

5
t

vsNs
(
kW
eik

W
•~xW82yW8!

1

D~k!1z~11 1
8 z!

3S 11 1
4 z e2 ik1H~k!*

eik1H~k! 11 1
4 z D ~B4!

where

D~k!5
8

9 F22cos
A3
2
k2S cos32 k11cos

A3
2
k2D G ,

H~k!5e2 ik1
1

3 S 112ei3k1/2cos
A3
2
k2D . ~B5!

In the large-N limit R21(x;y) represents the two-poin
Green’s function.

In Ref. @14#, guided by the analysis of the Gaussian mod
on the honeycomb lattice, two wall-wall correlation fun
tions were defined:

Gv
~w!~ 3

2 l 1!5(
l2

G~ l 1hW 11 l 2hW 2!, ~B6!

with the sum running over sites of positive parity forming
vertical line,

Gh
~w!~ 1

2A3l !5(
l2 ,p

G@~ l22l 2!hW 11 l 2hW 21phW p#, ~B7!

where the sum is performed over all sites having the sa
coordinatex2 . Gv

(w)(x) andGh
(w)(x) allow the definition of

two estimators of the mass gap,mv and mh , whose ratio
must go to 1 in the continuum limit by rotation invarianc
On the honeycomb lattice the maximal violation of full rot
tional symmetry occurs for directions differing by ap/6
angle, and therefore, taking into account its discrete ro
tional symmetry, also by ap/2 angle. So a good test o
rotation invariance is provided by the ratio between mas
of

t

el
c-

a

me

e.
a-

ta-
f
ses

extracted from the long-distance behaviors of two orthogon
wall-wall correlation functions constructed withG(x), such
asmv /mh .

In the O(N) s models, in order to evaluate the ratio be
tween theL parameters of theMS renormalization scheme
and the honeycomb nearest-neighbor lattice regularizatio
We calculated, in perturbation theory, the correlation func
tion

G~x12y1!5^sWx1
•sWy1

&. ~B8!

In the x space we obtained@neglectingO(a2) terms#

G~x!511
N21

N
tF~a/x!1O~ t2!,

F~a/x!5
1

2p S lnax2g
E
2 ln2D . ~B9!

In the p space

G̃~k!5
N21

N

t

k2 F11
t

N S D~ak!1
1

3A3D 1O~ t2!G ,
D~ak!5

1

2p
~ lnak22ln2!. ~B10!

The relevant formulas required by the above calculations c
be found in Ref.@4#.

Comparing the above results with the two-point Green
function renormalized in theMS scheme@cf. Eq.~A11!#, one
can obtain the ratio ofL parameters:

LMS

Lh
54 expS p

N22

2

3A3D ~B11!

whereLh is theL parameter of the honeycomb lattice, and
also

Lh

Ls
5A2expF p

N22 S 122
2

3A3D G . ~B12!

We also give a few orders of the perturbative expansio
of the internal energy

E512
N21

N

t

3A3
2
N21

N2

t2

54
1O~ t3!. ~B13!

APPENDIX C: COMPLEX-TEMPERATURE
SINGULARITIES AT N5` ON THE TRIANGULAR

AND HONEYCOMB LATTICES
In this appendix we will compute the complex-

temperature singularities for theN5` model on the various
lattices we considered. We will follow closely the analysis o
Ref. @7# for the square lattice. TheN5` solution is written
in all cases in terms of a variablew related to the inverse
temperatureb by the gap equation, which has the generi
form
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b5h~w!r~w!K„r~w!…[b~w! ~C1!

for suitable analytic functionsh(w) and r(w) and variable
w, which will be defined below. HereK(w) is the complete
elliptic integral of the first kind. In general,b(w) will be
defined on the complex plane with suitable cuts. For
purpose of computing the singularities of the inverse fun
tion w(b) we will be forced to considerb(w) on its Rie-
mann surfaceR. Moreover, our discussion will be only loca
and thus we will determine all singularities which appear
the Riemann surface ofw(b). Notice that not all of them
will necessarily appear in the principal sheet ofw(b).

Let us now consider a pointw0PR and letb05b(w0).
To studyw(b) in the neighborhood ofb0 let us expand
b(w) aroundw0 . If b8(w0) is different from zero, then
w(b) is obviously analytic in the neighborhood ofb0 and
admits an expansion of the form

w5w01
1

b8~w0!
~b2b0!1O„~b2b0!

2
…. ~C2!

Instead, ifb8(w0)50, b0 is a singular point. Indeed, letk be
the smallest integer such thatb(k)(w0)Þ0. Then in the
neighborhood ofb0 we have

w5w01S k!

b~k!~w0!
D 1/k~b2b0!

1/k1O„~b2b0!
2/k
…,

~C3!

and thereforeb0 is akth-root singular point ofw(b). Thus,
in order to determine the singularities ofw(b), we must
determine the zeros ofb8(w) on the Riemann surface of th
functionb(w).

In addition to the expansion inb we will be interested in
expanding our observables in terms of the energyE. We
want thus to study the singularities of the various obse
ables when expressed in terms ofE. In practice, we must
study the functionsw(E) andb(E).

For all lattices we consider we have

E5
a

b
1e~w!5

a

b~w!
1e~w! ~C4!

wherea is a constant ande(w) an analytic function. We will
verify in each specific case that the zeros ofb(w) do not give
rise to any singularity. Then by an argument complete
analogous to the one given forw(b), the singularities of
w(E) are determined by the zeros ofdE/dw over the Rie-
mann surface of the functionE(w), which, because of the
fact thate(w) is a simple rational function ofw, coincides
with the Riemann surface ofb(w).

Finally, let us discussb(E). Of course, locally we can
rewrite it as b„w(E)…. We shall show thatdb/dw and
dE/dw never vanish at the same point. Then it is simple
convince oneself that the singularities ofb(E) coincide with
those ofw(E).

1. Analytic structure of the complete elliptic integral K„w…

The analytic properties of the functionK(w) are well
known ~cf., e.g., Refs.@26,27#!. First of all,K(w) is really a
the
c-

l
in

e

rv-

ly

to

function of w2; indeed, it has a representation in terms o
hypergeometric functions as@8,27#

K~w!5
p

22F1S 12 , 12 ;1;w2D . ~C5!

From this representation one may see thatK(w) is analytic
in thew2 plane cut along the real axis from 1 to infinity. We
want now to discuss the extension ofK(w) to its Riemann
surface. First of all, let us introduce theu function

u3~vut!5 (
m52`

`

ep i ~m2t12mv !. ~C6!

u3(vut) is an entire function oft andv for Imt.0. More-
over, it satisfies the properties~cf. Ref. @26#, Chap. 5!

u3~vut12!5u3~vut!, ~C7!

u3~v/tu21/t!5A2 i tep iv2/tu3~vut!. ~C8!

In terms ofu3(vut) we define the modular function

l~t!5ep i t
u3
4~2t/2ut!

u3
4~0ut!

~C9!

which is also an entire function oft for Imt.0. The func-
tion l(t) has several important properties~cf. Ref. @26#,
Chap. 7!.

~i! Consider the groupG2 of transformations

t85
at1b

ct1d
~C10!

with

M[S a b

c dD PSL~2,Z!, S a b

c dD [S 1 0

0 1Dmod 2.

~C11!

The function l(t) is invariant under G2 , i.e.,
l(t)5l(t8). Let us notice thatG2 is generated by the trans-
formations

t85t12, ~C12!

t85
t

2t11
. ~C13!

~ii ! LetD be the domain of the complex plane bounded by
the lines Ret561 and the circlesut61/2u51/2, including
the boundaries with Ret,0. Then for every t8 with
Imt8.0 there exists a uniquetPD and a transformation
~C10! connectingt and t8. ThusD is the fundamental do-
mainof the groupG2 .

~iii ! If c is a complex number different from 0 and 1, the
equationl(t)5c has one and only one solution inD. More-
over,l(x1 i`)50 for realx.

Using the functionl(t) we obtain a complete parametri-
zation of the Riemann surface ofK(w). Indeed, because of
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the last property, we can perform the change of variab
w25l(t), tPD; then it can be shown that@27#

K„Al~t!…5
p

2
u3
2~0ut!. ~C14!

The complete Riemann surface is then obtained by lett
t vary in the whole upper complex plane. Notice that sin
u3(0ut) never vanishes for Imt.0, the analytic extension of
K(w) is always nonzero.

We want now to express the analytic extension ofK(w)
on every Riemann sheet in terms of functions defined on
principal sheet. This will allow us to go back usingw2 as
fundamental variable. This is easily accomplished using
second property ofl(t). Indeed, ift8 is a generic point with
positive imaginary part, there exists a uniquetPD such that
~C10! holds for suitable integersa, b, c, andd satisfying
Eq. ~C11!. Thus

u3
2~0ut8!5u3

2S 0U at1b

ct1dD . ~C15!

To compute the right-hand side~RHS!, let us notice that the
transformations~C10! are generated by Eqs.~C12! and
~C13!. Then, using Eq.~C7! and

u3
2S 0U t

62t11D5u3
2~0ut!62iu3

2~0u21/t!, ~C16!

which can be derived from Eqs.~C7! and~C8!, we get easily,
by induction,

u3
2~0ut8!5s@du3

2~0ut!1 icu3
2~0u21/t!#, ~C17!

wheres assumes the values61. The presence of this sign is
due to the fact that the matrix in Eq.~C11! which corre-
sponds to the transformation~C10! is defined up to a sign. If
we define

T1[S 1 2

0 1D , T2[S 1 0

2 1D , ~C18!

and fix the signs inM so thatM is a product ofT1 andT2
and their inverses only, thens51. Finally, using
l(21/t)512l(t) which easily follows from Eq.~C8!, we
get

p

2
u3
2~0ut8!5s@dK~w!1 icK~A12w2!# ~C19!

with w25l(t8). As we shall see, the signs plays no role in
the subsequent discussion.

We have thus reached the following result@7#: the Rie-
mann surface ofK(w) is obtained by considering matrice
M generating transformations belonging toG2: asM is de-
fined modulo a sign we can always assumed.0. Then each
sheet of the Riemann surface is labeled by the pair (d,c) of
one row.@We write (d,c) instead of (c,d) to use the same
notation as in Ref.@7#.# The extensionK (d,c)(w) on this
sheet is given by

s@dK~w!1 icK~A12w2!# ~C20!
les

ing
ce

the

the

s

wheres is a sign depending onM .
Finally, let us notice thatK(Az*)5K(Az)* so that

K (d,c)(Az*)5K (d,2c)(Az)* . This observation will allow us
to consider only the cased,c.0.

2. Location of the singularities

The singularities ofw(b) on the square lattice have been
studied in Ref.@7#. Here we will restrict our attention to the
case of triangular and honeycomb lattices. Let us first sim
plify the expressions~42! and~56! by introducing new vari-
ables

w5S 11
z

6D
1/2

on the triangular lattice, ~C21!

w5S 11
z

4Don the honeycomb lattice. ~C22!

Then

b5
1

2p

1

A3w
rK~r!on the triangular lattice,~C23!

b5
1

2p
A3wrK~r!on the honeycomb lattice,~C24!

where, for both lattices,

r5
4Aw

~3w21!3/2~w11!1/2
. ~C25!

The gap equation has an important property: as

r~2w!25
r~w!2

r~w!221
~C26!

and the elliptic integral satisfies the property
K( iz/A12z2)5A12z2K(z), we can immediately derive
thatb(2w)56b(w) where the upper~lower! sign refers to
the triangular~honeycomb! lattice.

Let us now discuss the Riemann surface ofb(w). As r2 is
a meromorphic function with two poles in thew plane for
w51/2 andw521, we can apply the discussion of the pre-
vious paragraph. We must then consider the prefactor i
front, which contains a square root with two branching
points and which has thus a double-sheeted Riemann surfa
The Riemann surface is then labeled by two integers (d,c) as
we discussed in the previous paragraph, and a signs which
specifies the sheet of the Riemann surface of the prefacto
Thus we have

bs,d,c5s
1

2p

1

A3w
rK ~d,c!~r!on the triangular lattice,

~C27!

bs,d,c5s
1

2p
A3wrK ~d,c!~r!on the honeycomb lattice.

~C28!
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TABLE XII. Analysis of the 29th order strong-coupling series ofE21u(E) and b21u(b), where
u[m2

2/(xm4), for N53 on the honeycomb lattice. The first two lines report the values ofu as obtained from
the @ l /m# PA’s and Dln-PA’s atE51. The last two lines report the values ofu from @ l /m# PA’s and
Dln-PA’s atb50.85 corresponding toj.22. A pole has been detected atE0520.114 04, corresponding to
MG

2 5216.000. Asterisks mark defective PA’s.

13/13 13/14 12/15 14/14 13/15 12/16 14/15 13/16 12/17

E51 PA 0.2511 0.2484 0.2498 * * * 0.2482 0.2495 0.2526
DLPA 0.2465 0.2469 0.2485 0.2467 0.2467 *

b50.85 PA 0.2490 0.2490 0.2490 0.2489 0.2482 0.2488 0.2489 0.2490 0.24
DLPA 0.2493 0.2494 0.2488 * * *
e

n
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To identify the singularities we must then find the zeros
the complex plane of

dbs,d,c

dw
52

sr

4pw

1

~3w!61/2F6K ~d,c!~r!

1E~d,c!~r!
~3w21!2

~3w11!~w21!G , ~C29!

where the upper~lower! sign refers to the triangular~honey-
comb! lattice and

E~d,c!~w!5dE~w!1 ic@K~A12w2!2E~A12w2!#.
~C30!

The zeros of Eq.~C29! have been studied numerically as
Ref. @7#. In Table XIII we report the solutions with positiv
real and imaginary parts we have found for the lowest val
of (d,c). We have verified that in all casesd2bs,d,c /dw

2

Þ0 at the singularity: thus all points are square-root bra
points. Notice that ifb is a singularity2b and6b* are
also singularities. Our results are somewhat different fr
those of Ref.@7# on the square lattice. Indeed, in our case
in

in

ues

ch

om
we

have found more than one zero with Reb.0 and Imb.0 on
each sheet. The principal sheet is an exception, as it is free
singularity for the triangular lattice, while it contains a pai
of purely imaginary singularities for the honeycomb lattice
We stress that our search for zeros of Eq.~C29! has been
done numerically and thus we cannot exclude the possibil
that some zeros have been overlooked. However, we are c
fident that at least in the regionubu,2 our list is exhaustive
for the values of (d,c) we have examined.

To check the value of the zero with lowestubu we can
compare with a direct determination of the singularity from
an analysis of the high-temperature series ofx by Dln-PA’s
or first order inhomogeneous integral approximants~IA’s !.
In Table XIV we report the results of such an analysis. The
numbers are in very good agreement with the exact resu
although the spread of the Dln-PA’s largely underestimat
the true error. This is probably due to the fact that Dln-PA
are unable to reconstruct the exact singularity. Indeed,
b→bsing we havex5x01x1(b2bsing)

1/21•••: as x0Þ0
this behavior can be reproduced by IA’s but not by Dln
PA’s.

Let us also notice that for the triangular lattice only th
singularities with positive real part appear in our analysis.
e

TABLE XIII. Singularities in the complexb plane for the triangular and honeycomb lattices atN5`

with positive real and imaginary parts for the lowest values of (d,c). The singularity on the real axis for th
honeycomb lattice (b50.627 168) does not appear on the principal sheet ofw(b) as the corresponding
w-value is 0.962 998i .

(d,c) Triangular Honeycomb

(1,0) 0.3620955333i
(1,62) 0.2067111 0.181628i 0.4826961 0.628020i

0.6856691 0.749077i 0.4497721 0.583632i
0.627168

(3,64) 0.2406921 0.486530i 0.5660201 1.476842i
0.5641181 0.203430i 0.9460321 1.663513i
1.4691371 2.118380i 1.2375261 0.266631i

(5,66) 0.2603621 0.780732i 0.6274951 2.353352i
0.9207741 0.210433i 1.4135471 2.691806i
2.2449641 3.482094i 1.8363471 0.535158i

(5,68) 0.6624281 0.858005i 1.5022521 2.655737i
0.9802841 0.576976i 1.9072101 2.926524i
2.8470751 3.621622i 2.0224901 1.997953i

2.5003241 0.265750i
(7,68) 0.2741721 1.072281i 0.6698171 3.225087i

1.7631901 0.911108i 1.8816461 3.718975i
3.0193121 4.844833i 2.4321181 0.804519i
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TABLE XIV. For N5` we report the zeros closest to the origin as obtained by an analysis of th
strong-coupling series ofx by Dln-PA’s and IA’s. We consider the series at 15th and 30th order on th
triangular lattice, and 30th and 60th order on the honeycomb lattice.gs is the exponent corresponding to the
singularitybs in the IA analysis@20# ~its exact value isgs521/2). The Dln-PA analysis does not provide
stable estimates ofgs . The values we quote are average and maximum spread of the Dln-PA’s@m/n# with
5<m<9 ~series with 15 terms!, 12<m<17 ~30 terms!, and 27<m<32 ~60 terms!; for the IA we use in all
cases six quasidiagonal approximants.

Lattice n bs ~Dln-PA! bs ~IA ! gs ~IA !

Triangular 15 0.214(4)6 i0.1838(2) 0.206(1)6 i0.1811(6) 0.54(7)7 i 0.07(6)
30 0.2084(2)6 i0.1821(2) 0.206712(1)6 i0.181628(1) 20.4997(4)7 i 0.0001(2)

Honeycomb 30 6 i0.3648(8) 6 i0.36211(3) 20.50(2)7 i 0.001(6)
60 6 i0.36270(4) 6 i0.3620955327(5) 20.500001(1)7 i0.000001(1)
al
With series with 30 terms or more it is also possible to g
an estimate of a second singularity. For the triangular lat
the series with 30 terms has a second singularity
b520.698(6)6 i0.776(5), which corresponds to the sec
ond point in the sheet withd51 andc52. For the honey-
comb lattice we get60.449(13)6 i0.610(17)~30 terms! and
60.4504(7)6 i0.5909(25) ~60 terms!. The IA’s are less
stable and the 30-term series do not yield any result. With
terms on the honeycomb lattice we g
60.449(3)6 i0.585(2), which is in perfect agreement with
the exact result.

As well as considering the series inb we have also con-
sidered series with the energyE as variable. In this case we
must consider the zeros ofdE/dw. Explicitly, for the three
lattices we have~for the square lattice we takew5rs):

dE

dw
5

1

4b2

db

dw
2

1

w2 , square lattice, ~C31!

dE

dw
5

1

6b2

db

dw
13w, triangular lattice, ~C32!

dE

dw
5

1

3b2

db

dw
11, honeycomb lattice. ~C33!

It is evident from these formulas thatdE/dwÞ0 where
db/dw50. Thus, as we said at the beginning of this appe
dix, the analysis ofdE/dw provides all singularities of
w(E) andb(E). We get for the nearest singularities:

E560.330 261 131 671i , square lattice,

E520.290 013 856 190

60.138 180 553 789i , triangular lattice,

E560.303 078 379 027

60.402 035 415 796i , honeycomb lattice.

For the square and honeycomb lattices the singularity
pears on the principal sheet ofE(w) while for the triangular
lattice it belongs to the sheet with (d,c)5(1,2).

From the position of the singularities we can now com
pute the convergence radius of the high-temperature se
on the real axis. In terms of the correlation length, we fi
that the series converge up tojconv where
et
tice
at
-

60
et

n-

ap-

-
ries
nd

~1! square lattice:b series, jconv53.171 60;E series,
jconv51.384 03,

~2! triangular lattice:b series,jconv52.989 25;E series:
jconv51.667 06,

~3! honeycomb lattice:b series,jconv51.000 02;E series:
jconv52.434 50.

The series converge thus in a very smallb disk: however
PA’s and IA’s are quite successful in providing good esti-
mates in a larger domain of theb plane: indeed, for the
square~triangular, honeycomb! lattice, series with 21~15,30!
terms give estimates which differ from the exact result by
less than 1% tillj'10 ~5,15!.

3. Conformal transformations

Once the singularities are known one can use a conform
transformation to get rid of the nearest ones~cf., e.g. @9#,!
and thus accelerate the convergence of the approximants.

Let us first consider the triangular lattice which has two
singularities located at b5re6 iu with
r50.275 169 111 05,u50.720 896 055. As in Ref.@7# we
consider a transformation of the form

b5rw@11P~w!Q~w!1mQ~w!2# ~C34!

whereQ(w)5122wcosu1w2 is a polynomial which van-
ishes forw5e6 iu. P(w) is determined by requiring that
db/dw50 for w5e6 iu. The simplest polynomial with this
property is given by

P~w!52
1

2sin2u
~cos2u2wcosu!. ~C35!

We will also consider a second possibility given by

b5rwF12
1

4 S cos4usin22u
2
cot2u

sin2u
w2D ~122w2cos2u1w4!

1m~122w2cos2u1w4!2G . ~C36!

This transformation would also work if we had four singu-
larities atb56re6 iu. It is easy to see that foru5p/4 it
reduces to the transformation used in@7# for the square lat-
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tice. For the honeycomb lattice the nearest singularities
b56 ir with r50.362 095 533 3. We can thus use E
~C34! with u5p/2: i.e.,

b5rwF11
1

2
~11w2!1m~11w2!2G . ~C37!

In all casesm is a free parameter which can be used
optimize the transformation.

In order to compare the series with and without conform
transformation we have compared the results for the m
netic susceptibility for series with 15 and 30 terms on t
triangular lattice and honeycomb lattice, respectively.

For the triangular lattice we have considered the@6/7#,
@7/6#, @6/8#, @7/7#, and@8/6# Dln-PA’s. For the series with-
out conformal transformation we have found that all PA
have singularities on the real axis or with a small imagina
part (Imb&0.2) with 0.4&Reb&0.6. Excluding only the
PA with the nearest singularity (@6/7# for which
bsing.0.414), we find that the estimates agree within 1%
b'0.33 (j55.31) where we getx557.69(56)~this value is
the average of the estimates of the various PA’s, while
error is the maximum difference between two differe
PA’s!, which must be compared with the exact valu
x556.9837. Let us now consider the series obtained fr
the conformal transformation~C34!. The results are now
much more stable: atb50.33 the series withm50 gives
x556.978(25) while form50.5 we getx556.9804(24).
The estimates of the series withm50 agree within 1% till
b50.46 (j521.58), where we getx5672(6) ~exact value
x5674.86) , while for the casem50.5 the same is true till
b50.61 (j5110.27). In this last case, however, the fluctu
tions of the approximants are not a good estimate of
error: indeed, we getx512 861~126! to be compared with
the exact valuex513 290. The estimates agree within 1
with the exact result only tillb50.56 (j564.00).

Let us now consider the second transformation. The D
PA’s for m50 do not have any singularity on the real ax
for b,3 and their estimates are extremely stable. For
value we have considered before,b50.33, they give
x556.9808(5), which is in excellent agreement with th
exact value although the error bar is clearly underestima
The five different PA’s agree within 1% tillb50.72
(j5365.05), where the estimate isx5110 200~1100! to be
compared with the exact valuex5123 387. Again, the error
bar is underestimated and the true error is 11%. Indeed,
estimate from the PA’s agrees with the exact value with
1% only till b50.53 (j546.18).
are
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If we use the series withmÞ0 the stability of the PA’s
decreases and singularities on the real axis begin to appe
near the origin. Form50.1, the PA’s are still reasonably
stable and we get, forb50.33, x557.03(6). The PA’s
agree within 1% till b50.41 (j512.55), where we get
x5257.9(2.4), to be compared with the estimate with
m50, x5255.83(2), and theexact valuex5256.02.

An analogous analysis can be done for the honeycom
lattice. In this case we have considered the@14/14#,
@13/16#, @14/15#, @15/14#, and@16/13# Dln-PA’s, excluding
in each case those having a singularity on the positive re
axis with b,3. We find that PA’s of the standard series
agree within 1% till b51.15 (j516.23), where
x5303.2(2.8) to be compared with the exact resul
x5305.53. The conformally transformed PA’s give instead
x5305.14(69) form50 and x5305.84(63) form50.3.
The conformally transformed PA’s agree within 1% till
b51.35 (j533.50), where we getx51100(15) form50
and 1114(12) form50.3. This should be compared with the
exact valuex51108.13 and with the estimate from the stan
dard seriesx51073(47).

From this analysis it emerges that the conformal transfo
mation is extremely useful, especially for the triangular lat
tice, where one gets results which are better by a factor
10–100. Of course, the interesting problem would be to gen
eralize the method to finite values ofN. There are two prob-
lems here. First of all, the exact location of the singularitie
is not known. Moreover the exact nature of the singularity
must also be determined from the series. The first problem
probably not a very serious one: indeed if we redo the analy
sis we have presented using the values of the zeros obtain
from a Dln-PA analysis of the series itself, the results ar
essentially unchanged. The really serious problem~at least
for low values ofN) is the nature of the singularity: indeed,
the transformations we have considered apply only t
square-root branch points. If the singularity is different new
transformations must be used.

APPENDIX D: STRONG-COUPLING SERIES ON THE
SQUARE LATTICE

A complete presentation of our strong-coupling series i
beyond the scope of the present paper. A forthcoming pu
lication will include all the relevant ‘‘raw’’ series. In order to
enable the interested readers to perform their own analys
we present here just the series for the internal energyE, the
magnetic susceptibilityx, the three mass scalesMG

2 , Ms
2 ,

and Md
2 , and the renormalization-group-invariant quantity

u, on the square lattice, for the most interesting values o
N, i.e.,N53,4,8. The following appendixes will be devoted
to the triangular and honeycomb lattice.
1. N53

E5b1 7
5b32 24

35b52 3439
875 b72 21872

1925 b92 2876163636
153278125b

111 236181936
21896875b

131 9960909191551
65143203125b151 2128364407641312

4665255546875 b17

1 34746325087320066964
36692234876171875b191 42007349682504569392

54800091048828125b211O~b23!, ~D1a!
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x5114b112b21 168
5 b31 428

5 b41 1448
7 b51 84144

175 b61 942864
875 b71 2055588

875 b81 6845144
1375 b91 3478216992

336875 b101 643017322016
30655625 b11

1 915294455744
21896875 b121 12550612712128

153278125 b131 120892276630256
766390625 b141 3896992088570128

13028640625 b151 50948877169965252
91200484375 b161 5670666438003413208

5513483828125 b17

1 6224368647227625667744
3335657716015625 b181 612580053518389456455744

183461174380859375 b191 1080648046932437417271696
183461174380859375 b201 43219200109596671558015312

4219607010759765625 b211O~b22!,

~D1b!

MG
2 5b21241 18

5 b1 638
175b

32 32
25b42 212

875b
52 8256

875 b61 2392562
336875b72 893248

30625 b81 67614504
13934375b

91 1315441408
11790625 b102 305969023608

766390625 b11

1 515730116144
766390625 b122 129453356216124

456002421875 b132 38248494356608
26823671875 b141 15923896875925326898

3335657716015625 b152 102727516154055776
25080133203125 b16

2 11977717369812123408
1467689395046875 b171 872009509667914065856

26208739197265625 b182 12129265223066172243071804
274274455699384765625 b191O~b20!, ~D1c!

Ms
25b21241 18

5 b1 638
175b

32 32
25b42 772

875b
52 912

175b
62 1730018

336875b72 790736
153125b

82 226737372
13934375b

91 1892118016
58953125 b102 280950072668

3831953125 b11

1 642095551792
3831953125 b122 451334756421336

2280012109375b
131 1890027233038144

4694142578125 b142 269818891521799734
1282945275390625b

151O~b16!, ~D1d!

Md
25b21241 18

5 b1 122
35 b32 4086

875 b52 16737807
1684375b72 18994322761

1532781250b
91 21507562283

3831953125b
111 7336555515481743

79800423828125b
131O~b15!, ~D1e!

u54b248b21 2808
5 b32 32832

5 b41 2686616
35 b52 157029504

175 b61 9178202064
875 b72 107291190016

875 b81 13796318675224
9625 b92 5644659282845824

336875 b10

1 30023104630997669536
153278125 b112 31905781361056472448

13934375 b121 315591420176616436544
11790625 b132 239797700666526161503744

766390625 b14

1 238270573588813562802881872
65143203125 b152 19497320035839102967394487936

456002421875 b161 333113044056059312586697767112
666465078125 b17

2 19489567025124572887718011335312384
3335657716015625 b181 2506117021969764882798368740582197376

36692234876171875 b192 146479827799664519145353950407208628096
183461174380859375 b20

1 39383302102402718602571807022847349864016
4219607010759765625 b211O~b22!. ~D1f!

2. N54

E5b1 4
3b32 4

3b52 28
5 b72 472

45 b92 344
945b

111 256324
2835 b131 12150256

42525 b151 18845248
91125 b172 68510312996

63149625 b192 339976954532
63149625 b211O~b23!,

~D2a!

x5114b112b21 100
3 b3184b41 596

3 b51 1348
3 b61 14564

15 b71 91132
45 b81 549332

135 b91 213868
27 b101 8483180

567 b111 77643788
2835 b12

1 138079108
2835 b131 3569641036

42525 b141 17867938876
127575 b151 1066237156

4725 b161 74408983028
212625 b171 992250411932

1913625 b181 45911479386812
63149625 b19

1 11971698881708
12629925 b201 69463206903148

63149625 b211O~b22!, ~D2b!

MG
2 5b21241 11

3 b1 34
9 b32 4

3b42 224
135b

52 80
9 b61 4

81b72 544
45 b82 58150

1701 b91 75032
405 b102 7465004

18225 b111 20575936
42525 b121 204232808

382725 b13

2 359904856
127575 b141 34575314246

5740875 b152 938720152
382725 b162 3116875126738

189448875 b171 47791394648
1148175 b182 128064328183586

3978426375 b191O~b20!, ~D2c!

Ms
25b21241 11

3 b1 34
9 b32 4

3b42 314
135b

52 14
3 b62 836

81 b71 404
405b

82 215318
8505 b91 4700

81 b102 443038
6075 b111 24410738

127575 b122 24732128
382725 b13

1 139715614
1148175 b141 3172203256

5740875 b151O~b16!, ~D2d!

Md
25b21241 11

3 b1 65
18b32 3341

540 b52 6781
540 b72 1026007

136080b91 76323223
2041200b111 6716460083

36741600 b131O~b15!, ~D2e!

u54b248b21 1684
3 b326560b41 229940

3 b52 2686576
3 b61 52315868

5 b72 1833750976
15 b81 192827317268

135 b92 2252963987728
135 b10

1 61420977655724
315 b112 2152899064881952

945 b121 3593447617956212
135 b132 1469484644425188368

4725 b141 7358240125587547636
2025 b15

2 1805422873668489252736
42525 b161 316414144175527075263484

637875 b172 11090798958461896523514928
1913625 b181 475138205142448133881786892

7016625 b19

2 49962959062246660123963410208
63149625 b201 583759338332900106172953943052

63149625 b211O~b22!. ~D2f!

3. N58

E5b1 6
5b32 38

15b52 19924
2625 b71 908

525b
91 103032376

1771875 b111 284005868
1771875 b132 801343307824

3410859375 b152 74654425999556
30697734375 b172 5113078463377748

1995352734375 b19

1 1298678765126787388
69837345703125 b211O~b22!, ~D3a!
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x5114b112b21 164
5 b31 404

5 b41 548
3 b51 9708

25 b61 2023244
2625 b71 1258836

875 b81 6597628
2625 b91 160511644

39375 b101 433554844
70875 b11

1 4869604484
590625 b121 17075166692

1771875 b131 180200884868
20671875 b141 407707485308

136434375 b152 18904178053196
2046515625 b162 861976694991428

30697734375 b172 2351633289032404
51162890625 b18

2 421417265877650188
9976763671875 b191O~b20!, ~D3b!

MG
2 5b21241 19

5 b1 298
75 b32 28

25b42 5254
875 b52 2128

375 b62 654656
39375 b71 98032

5625 b82 95888554
1771875b91 5421752

28125 b102 1465956704
20671875 b11

2 2887857152
8859375 b121 21729605024744

10232578125 b132 3782033297144
930234375 b141 354224260413706

153488671875 b151 72788687225944
7308984375 b162 204193924410409426

4655823046875 b17

1 40434518800599992
767443359375 b181 7755263425304938826

241744658203125 b191O~b20!, ~D3c!

Ms
25b21241 19

5 b1 298
75 b32 28

25b42 5744
875 b52 182

75 b62 853316
39375 b71 343772

28125 b82 25597438
1771875b91 10063732

140625 b101 7958412578
103359375b

11

1 637810442
44296875b

121 24367739089468
51162890625 b132 22983973787546

23255859375 b141 828277050985928
767443359375 b151O~b16!, ~D3d!

Md
25b21241 19

5 b1 23
6 b32 101219

10500 b52 1598337
87500 b71 3042153439

141750000b
91 716944244341

4961250000 b111 668912806018181
2728687500000b

131O~b15!, ~D3e!

u54b248b21 2804
5 b32 32736

5 b41 1146292
15 b52 22299088

25 b61 27328827644
2625 b72 106327225472

875 b81 1241049893108
875 b92 72427584678352

4375 b10

1 48910909763139412
253125 b112 190295816674721312

84375 b121 46643731943589538628
1771875 b132 2117208265068678482704

6890625 b141 83213961927741336432836
23203125 b15

2 142777012206408305834115008
3410859375 b161 14998421484199502791600778428

30697734375 b172 291768940616590173820050993776
51162890625 b18

1 132815395692009950946195947516884
1995352734375 b192 861233015742221409021216372394912

1108529296875 b201 211098292286114752398400491787924004
23279115234375 b211O~b22!.

~D3f!

APPENDIX E: STRONG-COUPLING SERIES ON THE TRIANGULAR LATTICE

We present here the series for the internal energyE, the magnetic susceptibilityx, the two mass scalesMG
2 andMt

2 , and
the renormalization-group-invariant quantityu, on the triangular lattice, forN53,4,8.

1. N53

E5b12b21 17
5 b314b41 132

175b
52 352

25 b62 53833
875 b72 246072

1225 b82 38879794
67375 b92 6397316

4375 b102 8815166536
2786875 b112 63896967072

11790625 b12

2 81729013664
15640625 b131 23710274924992

2360483125 b141 415243711166548533
5016026640625 b151O~b16!, ~E1a!

x5116b130b21 672
5 b31 2802

5 b41 388452
175 b51 1478784

175 b61 3891432
125 b71 683113506

6125 b81 131380789212
336875 b91 449739783516

336875 b10

1 12494938177056
2786875 b111 90716274919896

6131125 b121 36820597127739144
766390625 b131 9067857431725940688

59012078125 b141 2430225926454897621936
5016026640625 b151O~b16!,

~E1b!

MG
2 5 2

3b21241 56
15b1 32

5 b21 4552
525 b31 2176

525 b42 40312
2625 b52 288944

3675 b62 13545688
67375 b72 372621008

1010625 b82 338341556368
459834375 b92 33053110624

18393375 b10

2 5766016722184
2299171875 b111 279009107673392

59012078125 b121 72472337922926768
2149725703125 b131O~b14!, ~E1c!

Mt
25 2

3b21241 56
15b1 32

5 b21 4496
525 b31 11944

2625 b42 13836
875 b52 6627032

91875 b62 337042602
1684375 b72 1079483686

2358125 b82 408531412013
459834375 b9

2 3031149364472
2299171875 b101O~b11!, ~E1d!

u56b2108b21 9552
5 b3233840b41 104891592

175 b52 371571936
35 b61 164533949256

875 b72 20399809562064
6125 b81 2838986498807112

48125 b9

2 50284702987803792
48125 b101 405247036983420442416

21896875 b112 50244722315696297988096
153278125 b121 4449723414146572825129368

766390625 b13

2 866958410946002558379625488
8430296875 b141 1827333381636135987619199322672

1003205328125 b151O~b16!. ~E1e!

2.N54

E5b12b21 10
3 b31 10

3 b42 8
3b52 238

9 b62 4312
45 b72 12316

45 b82 30212
45 b92 60434

45 b102 1579292
945 b111 24363404

14175 b121 869521126
42525 b13

1 3674593642
42525 b141 34840110848

127575 b151O~b16!, ~E2a!

x5116b130b21134b31554b412162b51 24166
3 b61 144242

5 b71 1496254
15 b81 15035566

45 b91 3260594
3 b101 361103026

105 b11

1 50064022798
4725 b121 450734165906

14175 b131 439170936682
4725 b141 11246618825102

42525 b151O~b16!, ~E2b!
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MG
2 5 2

3b21241 34
9 b1 20

3 b21 248
27 b31 32

9 b42 9268
405 b52 14024

135 b62 323204
1215 b72 198104

405 b82 19703848
25515 b92 45897388

42525 b101 357801536
382725 b11

1 2167022524
127575 b121 83057677936

1148175 b131O~b14!, ~E2c!

Mt
25 2

3b21241 34
9 b1 20

3 b21 245
27 b31 107

27 b42 18581
810 b52 40037

405 b62 324218
1215 b72 2772953

4860 b82 189804947
204120 b92 493593379

765450 b101O~b11!,
~E2d!

u56b2108b211910b3233828b41599078b5210609380b61 2818307806
15 b72 49910910532

15 b81 2651696611738
45 b9

2 46960305901996
45 b101 17464545810431714

945 b112 220920665969769296
675 b121 82160433528738212702

14175 b132 1455022824164792634328
14175 b14

1 5153554644036578704006
2835 b151O~b16!. ~E2e!

3. N58

E5b12b21 10
3 b31 10

3 b42 8
3b52 238

9 b62 4312
45 b72 12316

45 b82 30212
45 b92 60434

45 b102 1579292
945 b111 24363404

14175 b121 869521126
42525 b13

1 3674593642
42525 b141 34840110848

127575 b151O~b16!, ~E3a!

x5116b130b21134b31554b412162b51 24166
3 b61 144242

5 b71 1496254
15 b81 15035566

45 b91 3260594
3 b101 361103026

105 b11

1 50064022798
4725 b121 450734165906

14175 b131 439170936682
4725 b141 11246618825102

42525 b151O~b16!, ~E3b!

MG
2 5 2

3b21241 34
9 b1 20

3 b21 248
27 b31 32

9 b42 9268
405 b52 14024

135 b62 323204
1215 b72 198104

405 b82 19703848
25515 b92 45897388

42525 b101 357801536
382725 b11

1 2167022524
127575 b121 83057677936

1148175 b131O~b14!, ~E3c!

Mt
25 2

3b21241 34
9 b1 20

3 b21 245
27 b31 107

27 b42 18581
810 b52 40037

405 b62 324218
1215 b72 2772953

4860 b82 189804947
204120 b92 493593379

765450 b101O~b11!,
~E3d!

u56b2108b211910b3233828b41599078b5210609380b61 2818307806
15 b72 49910910532

15 b81 2651696611738
45 b9

2 46960305901996
45 b101 17464545810431714

945 b112 220920665969769296
675 b121 82160433528738212702

14175 b132 1455022824164792634328
14175 b14

1 5153554644036578704006
2835 b151O~b16!. ~E3e!

APPENDIX F: STRONG-COUPLING SERIES ON THE HONEYCOMB LATTICE

We present here the series for the internal energyE, the magnetic susceptibilityx, the three mass scalesMG
2 , M v

2 , and
Mh

2 , and the renormalization-group-invariant quantityu, on the honeycomb lattice, forN53,4,8.

1. N53

E5b2 3
5b31 88

35b52 1761
175 b71 14902

385 b92 3439769596
21896875 b111 2045078768

3128125 b132 5158924941321
1861234375 b151 28899507590512836

2425932884375 b17

2 172552140904013898254
3335657716015625 b191 415753493847105514488

1835409748046875 b212 871596813626516225704857972
872691449952587890625 b231 297323210393498586435793176

67130111534814453125 b25

2 93896946096105935045256448288
4757152640718994140625 b271 6327983006511909061486897651308648928

71634557740672624383232421875 b291O~b31!, ~F1a!

x5113b16b21 51
5 b31 84

5 b41 978
35 b51 7128

175 b61 345
7 b71 12018

175 b81 239238
1925 b91 52831068

336875 b101 1370148342
21896875 b111 36519432

398125 b12

1 2120228676
3128125 b131 81696113448

109484375 b142 4005762392397
2605728125 b152 5554706676084

3648019375 b161 522250407043193142
60648322109375 b171 28557036836995675104

3335657716015625 b18

2 84308531983195740042
2382612654296875 b192 568341711070335425448

16678288580078125 b201 60997222972929327707388
383600637341796875 b211 26213984562109070694215784

174538289990517578125 b22

2 32254495435296445139757114
45931128944873046875 b232 43715635286204172906375312

67130111534814453125 b241 546580409405561136704024484
174538289990517578125 b251 2495378933349261313782223032

872691449952587890625 b26

2 682220109367777429732601484621372
48718000193603218994140625 b272 728104326241248730928651925895608

57712092537037659423828125 b281 562809908853468932757594137982353385288
8954319717584078047904052734375 b29

1 8519985565279875808402224146574969010656
152223435198929326814368896484375 b301O~b31!, ~F1b!
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MG
2 5 4

3b21241 52
15b2 316

175b
31 5472

875 b52 64
25b62 19122724

1010625b71 47808
4375 b81 1316732616

21896875 b92 7823616
153125b102 472105313248

2299171875 b11

1 1973349088
8421875 b121 46661184606992

65143203125 b132 26076544910176
26823671875 b142 1783696991213198452

667131543203125 b151 3724145632458848
938828515625 b161 5630519133419621984

526682797265625 b17

2 14678226956585492416
877804662109375 b182 23307722455628565130807096

523614869971552734375 b191 131635204541138381824
1796123385546875 b201 14931213920583922857376688

79335586359326171875 b21

2 12490315953001109355570208
37943106519677734375 b222 268173518152038112779584900384

335986208231746337890625 b231 1303640079018735894344620352
872691449952587890625 b24

1 38043748942433272601810917870624
11242615429293050537109375 b252 35163452856807151015094953488864

5174187606768893603515625 b262 32741212467941707889297214938863984773664
2283351527983939902215533447265625 b27

1 1538444172762671916055304195595321312
49801555715150600933837890625 b281O~b29!, ~F1c!

M v
25 2

9b222 38
451 1418

1575b
21 2804

7875b
42 4877702

3031875b
61 83484008

21896875b
82 510322072076

34487578125b
101 241521726513358

4104021796875b
122 35557059082336258372

150104597220703125b
14

1 3656759742100547860823
3752614930517578125b

161O~b18!, ~F1d!

Mh
25 4

3b21241 52
15b2 316

175b
31 15296

2625 b52 64
125b

62 6651852
336875b71 1088

4375b
81 4502031416

65690625 b92 203936
459375b

102 192671527632
766390625 b111 1013665088

294765625b
12

1 1306699165544048
1368007265625 b132 1577414046048

134118359375b
142 187249702135322630044

50034865740234375 b151 27983550800928
670591796875b161 197406026102200399712

13167069931640625 b17

2 561057571773872512
4389023310546875b

182 9420235976547662005883368
154004373521044921875 b191 17183199427949180266496

43780507522705078125b
201 3314631986901973406398391696

13090371749288818359375 b21

2 1688528041491767277609504
1328008728188720703125b

222 5344697433752690539376157188912
5039793123476195068359375 b231 710002489923384145123709548576

176392759321666827392578125b
241O~b25!, ~F1e!

u53b227b21 1176
5 b32 10233

5 b41 623418
35 b52 27129006

175 b61 9444396
7 b72 82196703

7 b81 983643153048
9625 b92 299630551162554

336875 b10

1 169503983781937692
21896875 b112 1475232154782748902

21896875 b121 987637288715664984
1684375 b132 50792385588434618148

9953125 b141 82664811252077369258388
1861234375 b15

2 35253092409175923838220943
91200484375 b161 15694806775998694225868699994

4665255546875 b172 1993179427702306936700632573158
68074647265625 b18

1 170001570169775679767297711329632
667131543203125 b192 7397813830453458326408000754198846

3335657716015625 b201 7404260658028457836903051615667215212
383600637341796875 b21

2 1172825899888916586985509963759764004972
6981531599620703125 b221 1275921695053691221896293444849460211245084

872691449952587890625 b23

2 1586377139730021695207597717642888690409438
124670207136083984375 b241 96646235832092490263933098748637598311624744

872691449952587890625 b25

2 221351162997126072386711604146938113185602308
229655644724365234375 b261 408671731065098636806177681425625771659960813158664

48718000193603218994140625 b27

2 273870833487071174807420156540338331788208519364045012
3751286014907447862548828125 b281 5689559760891835362935463361457661566503603613628700393824

8954319717584078047904052734375 b29

2 4208991513353764866716270905427277208225624532617948200865512
761117175994646634071844482421 b301O~b31!. ~F1f!

2. N54

E5b2 2
3b31 8

3b52 512
45 b71 6254

135 b92 112352
567 b111 495496

567 b132 501611216
127575 b151 11453817058

637875 b172 748041961864
9021375 b191 4879081930372

12629925 b21

2 468805978966751344
258597714375 b231 5164375543360356758

603394666875 b252 3308377214206458689408
81458280028125 b271 5256059401974658161694

27152760009375 b291O~b31!, ~F2a!

x5113b16b2110b3116b4126b51 110
3 b61 598

15 b71 752
15 b81 4492

45 b91 1114
9 b102 21976

945 b112 18344
315 b121 622724

945 b13

1 11892428
14175 b142 102416012

42525 b152 19192244
6075 b161 10289936

875 b171 9473001266
637875 b182 1147872224624

21049875 b192 285404814608
4209975 b201 5401807541912

21049875 b21

1 138663144738428
442047375 b222 14938117796303512

12314176875 b232 126027986916733444
86199238125 b241 386190762389548268

67043851875 b251 1379265161509279622
201131555625 b26

2 745692645593229011368
27152760009375 b272 878237978318189566412

27152760009375 b281 3567754536639184909436
27152760009375 b291 1783902695490692741638

11636897146875 b301O~b31!, ~F2b!

MG
2 5 4

3b21241 32
9 b2 56

27b31 2944
405 b52 8

3b62 30136
1215 b71 376

27 b81 2169952
25515 b92 27872

405 b102 17364176
54675 b111 139568

405 b121 1403817608
1148175 b13

2 206305088
127575 b142 12041211784

2460375 b151 44783968
6075 b161 2327367655528

113669325 b172 5538622408
164025 b182 1056805727795792

11935279125 b191 2704092978728
17222625 b20

1 909455600757890632
2327379429375 b212 4903884524065528

6630710625 b222 85272481476107112904
48874968016875 b231 19055775959948008

5425126875 b241 821836927190253245168
104732074321875 b25

2 7802995733962068568
465475885875 b262 15607345431297974660104

439874712151875 b271 19608530438150678273776
244374840084375 b281O~b29!, ~F2c!

M v
25 2

9b222 22
271 8

9b21 494
1215b

42 8284
3645b

61 161257
25515 b82 3197867

127575b101 40478257
382725 b122 23351747878

51667875 b141 2016622630922
1023023925 b161O~b18!,

~F2d!
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Mh
25 4

3b21241 32
9 b2 56

27b31 2764
405 b52 16

27b62 30376
1215 b71 64

81b81 2357776
25515 b92 184

135b
102 19782236

54675 b111 76984
10935b

121 1686885896
1148175 b13

2 2132936
76545 b142 5039762128

820125 b151 76496944
688905 b161 2987093529676

113669325 b172 22231013972
51667875 b182 50559997058744

442047375 b191 775676060228
465010875 b20

1 391764598151298668
775793143125 b212 512747827960696

76726794375 b222 110242538271813248108
48874968016875 b231 43888147443715136

1611262681875 b241O~b25!, ~F2e!

u53b227b21235b322043b4117765b52154479b61 20149303
15 b72 58403373

5 b81 4570670527
45 b92 13248238489

15 b10

1 7257685461779
945 b112 4207327698821

63 b121 548778458844239
945 b132 3408540645268981

675 b141 1867275863842718053
42525 b152 51546286924640369

135 b16

1 235318541138701614541
70875 b172 6138706350282887902919

212625 b181 5284592580750019875772771
21049875 b192 5105854777719427773522979

2338875 b20

1 399586148153799097820463863
21049875 b212 24322483746219174453342441067

147349125 b221 123726647366907086076547668505151
86199238125 b23

2 71725146330946050495871958406491
5746615875 b241 21829256518148380793466834521759833

201131555625 b252 569455321970865221978936851386596153
603394666875 b26

1 222828956715504343457272488503713477607
27152760009375 b272 13181163564610119027733292785978467713

184712653125 b281 16848860749534433639413131084425510515541
27152760009375 b29

2 775190057499031799755350461405515599727
143665396875 b301O~b31!. ~F2f!

3. N58

E5b2 4
5b31 46

15b52 7552
525 b71 2302

35 b92 555317288
1771875 b111 2746333288

1771875 b132 1785780786208
227390625 b151 49727658484666

1227909375 b172 422283776631137752
1995352734375 b19

1 26014686098048746528
23279115234375 b212 151047237869123839244528

25383189111328125 b231 10528747447001620271543026
329981458447265625 b252 54722318647021454789447096

318009342041015625 b27

1 141254571303908072786177902882
151461489427294921875 b291O~b31!, ~F3a!

x5113b16b21 48
5 b31 72

5 b41 112
5 b51 746

25 b61 170
7 b71 3392

175 b81 2392
35 b91 1330922

13125 b102 12052904
84375 b112 38292976

118125 b12

1 509694772
590625 b131 35255323868

20671875 b142 201482297164
45478125 b152 1185431950796

136434375 b161 33950985399928
1461796875 b171 2298488652590486

51162890625 b18

2 409115403009898784
3325587890625 b192 781623089480829248

3325587890625 b201 2184027254831875996
3325587890625 b211 185758308159909008476

149651455078125 b222 35281258231914454156624
9999438134765625 b23

2 726617483139164562921284
109993819482421875 b241 2395898361931558337852

125707222265625 b251 556037939109294945044734
15713402783203125 b262 4835166268399659267621472288

46747373280029296875 b27

2 763751109137093877154435748
4006917709716796875 b281 711299012158799734199117996536

1262179078560791015625 b291 100262522489076708186582427306586
97187789049180908203125 b301O~b31!, ~F3b!

MG
2 5 4

3b21241 56
15b2 608

225b
31 8544

875 b52 56
25b62 690104

16875 b71 30632
1875 b81 895240544

5315625 b92 2698048
28125 b102 15337773008

20671875 b111 78233152
140625 b12

1 15033061154264
4385390625 b132 46357786976

14765625 b142 1502465010829864
92093203125 b151 11492930412128

664453125 b161 1111624153887072856
13967469140625 b172 3450172284172424

36544921875 b18

2 3734860553852716409584
9428041669921875 b191 8295415887259675624

16116310546875 b201 1982675233173138163625048
989944375341796875 b212 309125247582087653324456

109993819482421875 b22

2 16910028827683018859169992
1649907292236328125 b231 1691096970202616702325224

109993819482421875 b241 66840015065786580503988075712
1262179078560791015625 b252 46345645264745356443888008

549969097412109375 b26

2 1206164175984894430511591451154792
4373450507213140869140625 b271 57262390753050551283591565888

123743046917724609375 b281O~b29!, ~F3c!

M v
25 2

9b222 34
451 568

675b
21 13784

23625b
42 69604

16875b
61 241041191

15946875b
82 185964672997

2790703125 b101 1392084587186
4385390625 b122 10666554935618557

6906990234375 b14

1 120272997266688239927
15713402783203125 b161O~b18!, ~F3d!

Mh
25 4

3b21241 56
15b2 608

225b
31 24652

2625 b52 224
375b

62 673136
16875 b71 10976

5625 b81 899887928
5315625 b92 480088

84375 b102 5216665892
6890625 b111 53139224

2109375b12

1 15464225123456
4385390625 b132 8888980504

73828125 b142 38922396533024104
2302330078125 b151 5789142673744

9966796875 b161 32467756338289108
391904296875 b172 3641291779914748

1279072265625 b18

2 19467809813152568040512
47140208349609375 b191 85327706507419012316

6043616455078125 b201 10330548206236154611036876
4949721876708984375 b212 117133256340256981616728

1649907292236328125 b22

2 8000075417927232351906676
749957860107421875 b231 1656430217477736394276208

4583075811767578125 b241O~b25!, ~F3e!
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u53b227b21 1173
5 b32 10179

5 b41 88357
5 b52 3834927

25 b61 9320831
7 b72 404542143

35 b81 87789657841
875 b92 3810245382897

4375 b10

1 4465049407354747
590625 b112 4306488725191523

65625 b121 336438262155902647
590625 b132 3785726352066159219

765625 b141 9759896773518266783449
227390625 b15

2 28239924187021013712337
75796875 b161 33093054294196142797506511

10232578125 b172 1612013627927391682265393
57421875 b181 162079960512817503825568623029

665117578125 b19

2 14211295974908998829041938103
6718359375 b201 427441298299484525828261030140363

23279115234375 b212 25240543508916505408741986975703
158361328125 b22

1 152179939416162537931621662918853279261
109993819482421875 b232 146775799365247069031550755820556182991

12221535498046875 b241 11466649049267256355352323832429180274931
109993819482421875 b25

2 55297254904420195051495336139745677825041
61107677490234375 b261 367201599583278031923778483847484819042846311

46747373280029296875 b27

2 1062485144503393173493863633401017982717619013
15582457760009765625 b281 57465089834508188027065801793670434250632397031

97090698350830078125 b29

2 277399209545717425078049048151477437693717560565633
53993216138433837890625 b301O~b31!. ~F3f!
,
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