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In the context of four-dimensional SN) gauge theories, we study the spectrum of the confining strings. We
compute, for the S6) gauge theory formulated on a lattice, the three independent string tensiorfated
to sources wittZy chargek=1,2,3, using Monte Carlo simulations. Our results, whose uncertainty is approxi-
mately 2% fork=2 and 4% fork=3, are consistent with the sine formua /o = sink#/N)/sin(s/N) for the
ratio betweeno,, and the standard string tension and show deviations from the Casimir scaling. The sine
formula is known to emerge in supersymmetric 8)(gauge theories and in M theory. We comment on an
analogous behavior exhibited by two-dimensional B SU(N) chiral models.
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Quantum chromodynamics is a non-Abelian gauge theory As pointed out in Ref[6], it is interesting to compare the
based on the gauge group 8U The mechanisms underly- k-string tension ratios
ing many of its fundamental properties, such as confinement,
chiral symmetry, topological effects and the axial anomaly, R(k N)=ﬂ
are under active investigation; they are being studied by dif- g
ferent approaches, including numerical simulations of the
theory formulated on the lattice, several models of thein different theories. The idea is that such ratios may reveal a
vacuum, as well as some recent proposals derived from Mniversal behavior within a large class of models character-
theory and the AdS conformal field theot@FT) correspon- ized by SUN) symmetry, such as SB) gauge theories and
dence. Many features of QCD can be better understood btheir supersymmetric extensions. It has been noted that stable
extending the study to SB() gauge theories witlN larger  k strings are related to the totally antisymmetric representa-
than three and in particular by examining the laNyémit. tions of rankk, and that in various realizations of supersym-

Four-dimensional gauge theories exhibit confinement; i.emetric SUN) gauge theorieR(k,N) satisfies the sine for-
static sources in the fundamental representation develop raula R(k,N)=S(k,N) where
linear potential characterized by a string tension As
pointed out in many studies, it is important to investigate the
behavior of the system in the presence of static sources in
representations higher than the fundamental one. This may
provide useful hints on the mechanism responsible for conR(k,N) has been computed for th&=2 supersymmetric
finement, helping to identify the most appropriate models ofSU(N) gauge theory softly broken t&/=1 [7,8], obtaining
the QCD vacuum and to select among the various confineEq. (2). The same result is found also in the context of M
ment hypotheses. Among the latter, the so-called Casimitheory, and extended to the case of large breaking of\the
scaling hypothesis for the potential between heavy-quark=2 supersymmetric theor}8]. An interesting question is
sources in different representations has attracted much intewhether the sine formula holds in nonsupersymmetric
est(see e.g. the recent publicatiofis-5)). SU(N) gauge theories. The M-theory approach to nonsuper-

SU(N) gauge theories confine by means of chromoelecsymmetric QCD, although it is still at a rather speculative
tric flux tubes carrying a charge in the cenfgy of the gauge  stage, suggests that it may be[9¢8]. However, as discussed
group. A chromoelectric source of chargewith respect to in Refs.[8,6], corrections from various sources cannot be
Zy is confined by & string with string tensiotr, (c1=0is  excluded, so that this prediction cannot be considered robust.
the string tension related to the fundamental represenjation  Another interesting and suggestive hypothesis is that the
If o«<ko, then a string with chargleis stable against decay k-string tension ratio satisfies the so-called Casimir scaling
to k strings of charge one. Charge conjugation implkgs law [10], i.e. R(k,N)=C(k,N) where
=opn_k- Therefore SB) has only one independent string
tension determining the large distance behavior of the poten- _ k(N=K)
tial for k# 0. One must consider larger valuesMfto look C(kN)= N—1
for distinctk strings.

@

_sin(ka/N)

S(k,N _sin(TN)'

@

)

is the ratio between the values of the quadratic Casimir op-
erators in the rank-antisymmetric and in the fundamental
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two static charges in different representations, as shown by TABLE I. MC results for thek-string tensions.
perturbation theory up to two loop42]. Interest in Casimir :
scaling was recently revivegd—5J; it has been triggered by 7 Lattice aVo oalo os3lo
pumerlcal studies of S@3) lattice gauge theor%&], which 0.342 &% 20 0.31516) 1.652) 1.913)
indicate that Monte Carlo data for the potential between
i ; . : 1% 24 0.32398) 1.663) 1.91(9)

charges in different representations are consistent with Cao- 344 1324 0.297 1792 1955
simir scaling up to a relatively large distaneges 1 fm. 0.348 16% 20 0'25335) 1‘73(3) 2'05(11)

The Casimir scaling law holds exactly in two-dimensional ™ ng -25346) 733) 0810
QCD. In higher dimensions no strong arguments exist in 12°x 24 0.253%6) 1.7%4) 2.0611)
favor of a mechanism preserving Casimir scaling across th@-350 1224 0.23806) 1.723) 1.959)

roughening transition, from strong to weak coupling; nor9-354 1224 0.21085) 1.733) 2.046)
from small distancgessentially perturbative, characterized
by a Coulombic potentialto large distancécharacterized by
a string tension for sources carryirfy, charge. We have
shown explicitly[13] that Casimir scaling does not survive
the next-to-leading order calculation of the ratRg,N) in
the strong-coupling lattice Hamiltonian approach.

It is interesting to note that the sine formud emerges
also in the context of the two-dimensional U< SU(N)
chiral models. As amply discussed in the literat(see e.g.,
Refs.[14,15 and references thergind-dimensional chiral

In this work we further investigate the spectrum of the
string states. We present results from Monte CAMC)
simulations of the four-dimensional $& lattice gauge
theory using the Wilson formulation. Fdd=6 there are two
nontrivial k-string tensions besides the fundamental one, thus
providing a stringent test of the various ideas discussed
above. We anticipate here our final results for the two inde-
pendentk-string tension ratios:

models and #-dimensional lattice gauge theories manifest R(2,6)=1.72+0.03, (4)
deep analogies in the continuum and on the lattice. Indeed,
one may establish the following correspondence table for the R(3,6)=1.99+0.07. (5)
lattice formulations:
Chiral Models Gauge Models They are both consistent with the predictions of the sine
. ) formula(2), which areS(2,6)=1.72 ... andS(3,6)=2, re-
site, link link, plaguette spectively. On the other hand, our results show deviations
loop surface from Casimir scaling; the predictions in this cas(2,6)
length area =1.6 andC(3,6)=1.8, are off by approximately four and
massM string tensiono three error bars, respectively.
two-point correlation Wilson loop In our simulations we employed the Cabibbo-Marinari al-

gorithm [19] to upgrade SU{) matrices by updating their

One may also add to this table the bound state madgesf ~ SU(2) subgroupgwe selected 15 subgroupdhis was done
chiral models and thi-string tensionsr, of gauge theories. by alternating microcanonical over-relaxation and heat-bath
In particular, in the casd=1 the relation is exact, and one Steps, typically in a 4:1 ratio. Table | contains some informa-
can prove that Casimir scaling holds for the masses of thgon on our MC runs: The coupling value$20] y
bound states. In analogy to four-dimensional 8Ygauge = B/(2N?), lattice sizes, and the results for tketring ten-
theories, in two-dimensional SM() X SU(N) chiral models ~ sions. The number of sweeps per run was typically above
the Casimir scaling law holds for the strong-coupling limit of 500k, and measurements were taken every 10—-20 sweeps.
the corresponding lattice Hamiltoniafisut it is not satisfied The values ofy were chosen to lie beyond the first order
by the correctionsand for the small-distance behavior of the phase transition which occurs in the Wilson formulation of
correlation functions related to different representations. OfBU(N) gauge theories foN sufficiently large(see e.g. Refs.
the other hand, the exa& matrix [16], derived using the [21,13)). In order to determine the valug, where the first
existence of an infinite number of conservation laws ancbrder transition occurs, we performed simulations starting
Bethe-ansatz methods, dictates that all bound states belongftem hot and cold configurations to display hysteresis, and
the rankk antisymmetric representations and satisfy the sindrom mixed-phase configurations, obtaining the estimgate
formula, M= M sin(a/N)/sin(w/N), whereM, is the mass =0.33894). We used asymmetric latticed ¢x T) with a
of the k-particle bound state. The question arises again: dog@rger time size. For some values pfwe performed simu-
this result extend to four-dimensional SUY gauge theories? lations for two lattice sizes, to check for finite size effects.

This issue can be investigated numerically using the latThe lattice sized were chosen so thdt\/c=2.5, and for
tice formulation of SUN) gauge theories. Recent numerical most of themL \Jo~3. This requirement ensures that finite
results forR(2,N), obtained forN=4,5[17,18, show that size effects ork-string ratios are negligible, as can be seen
R(2,N)<2; thus,o,<20, indicating that flux tubes attract by comparison of the results for different sizé&see also
each other. However, the error estimatesR{2,N) do not Refs.[17]). Further confirmation comes from preliminary re-
allow any exclusion of the two above-mentioned hypothesessults (=200k sweepson a 16x 32 for y=0.350.
Indeed the sine and Casimir formulas give numerically close In our simulations we have also measured the topological
predictions fork=2, so that high accuracy is necessary tochargeQ by a cooling technique. A severe form of critical
distinguish them. slowing down is observed in this case: The autocorrelation
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time 7o for Q appears to increase exponentiallyg
xexp(c/ot?) with c~2.4. As a consequence, the run for the - 1
largest value ofy considered,y=0.354, did not correctly
sampleQ, presumably because it was not sufficiently long
(=~300k sweeps This dramatic effect was not observed in
the correlations used to determine tkestring tensions(a 16
blocking analysis did not show significant time correlations
. . c/c | .
in measurements taken every 10—20 swgeqgygesting an 2
approximate decoupling between the topological and nonto- 14 .
pological modes. This suggestion is also supported by the
fact that string tension results for=0.354, extracted from a - sine formula
simulation which did not sample correctfy, turn out to be o Casimir scaling 7
in agreement with those for smaller, for which Q was S .
sampled correctly. We note incidentally that this phenom- L
enon has already been observed in simulations of two- Bo0 0.02 0.04 0.06 0.08 0.10 0.12
dimensional CF~* models[22]. io

The k-string tensions are extracted from the large time
behavior of correlators of strings in the antisymmetric repre- FIG. 1. The scaling rati®(2,6) as a function oé®o-.

sentations, closed through periodic boundary conditises
e.g. Refs[23,17): =3 respectively, together with the sine formy® and the

Casimir scaling predictions. The ratiR(2,6) shows good
B ] ] scaling for y=0.344. Scaling deviations are observed only
C'(t)_xgz P00 Ix [ P(x1.%2;1)]) ©®  for y=0.342, and this may be due to the vicinity of the phase
transition. The data foly=0.344 are consistent with a con-
where P(xy,Xz;t) =11, Us(X1,X2.X3;t), U(x;t) are the stant, thus we do not attempt to fit the dependence of our

usual link variables, ang, is the character of the represen- résult on the lattice spacing Our final value forR(2,6) is
tationr. In particular,y;[P]=Tr P for the fundamental rep- ©btained by combining the results qat=0.348(for the larg-

.
A
o
ey
HH
\

resentation, and est lattice andy=0.350. The error we report is given by the
typical error of each single point. Of course, this estimate
Xk—2[P1=Tr P?—(TrP)?, (7)  assumes that the scaling corrections are small and negligible

for a0=0.05. The data for smalley, and in particular the

Xk=3[P]=2TrP3—=3TrP?TrP+(TrP)3 (8)  one for y=0.344, are essentially used to check this fact.
They suggest that the scaling corrections are at most of the
for the antisymmetric representations of rakk2 andk  same size of the error we report. MC runs at the largest value

=3, respectively. of v, i.e. y=0.354, show the aforementioned decoupling of
These correlators decay exponentially as exp{t) the string tensions from the topological degrees of freedom;
wherem, is the mass of the lightest state in the correspondhowever, given the poor sampling of the topological charge
ing representation. Forlaloop of sizeL, thek-string tension  in those runs, we do not include them in the final estimate of

is obtained using the relatidr23] the string tension ratio. Similar comments apply to the
R(3,6) ratio.
a
m=ol =3 9 ——————1—————
241 -
The last term in Eq(9) is conjectured to be a universal ' )
) o . - . 221 .
correction, and it is related to the universal critical behavior | |
of the flux excitations described by a free bosonic string D N i _____ & ______________
[24,23. In order to improve the efficiency of the measure- 6./o I } k) }_ _
ments we used smearing and blocking proceddses e.g. 3 s
Refs.[25]) to construct new operators with a better overlap L ]
with the lightest state. The masseg were obtained by fit- 1.6 =
ting the time dependence of the correlations. The fitting - 1
range is the source of systematic error; we have checked the 141 --  sine formula .
all reasonable choices of this range yield consistent result: T e Casimir scaling 1
within the quoted errors. More details on the Monte Carlo 121 7
simulations and the analysis of the data will be reported else: | o]

L L L | L L L |
where[13]. 1900 0.04 0.08 0.12

The results for the ratioR(2,6) andR(3,6) are presented aZG
in Table I, and plotted in Figs. 1 and 2 versafsr to eviden-
tiate possible scaling corrections for the cdse2 andk FIG. 2. The scaling rati®(3,6) as a function oé%c.
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We have also explored correlators in the symmetricput a stringent bound on the size of the possible corrections.
rank-2 representation, finding no evidence for stable boun®n the other hand, our results show a clear evidence of de-
states, in accordance with general arguments and with th@ations from the Casimir scaling. This fact should be rel-
spectrum of chiral models. evant for the recent debate on confinement models, such as

Our final estimates have been reported in Edsand(5).  those discussed in RefElL,2,5. However, Casimir scaling
They show deviations from Casimir scalif2g]. It is worth- ~ may still be considered as a reasonable approximation, since
while to emphasize that such corrections are to be expectethe largest deviations we observed were about 10%.
as mentioned previously. This fact is further confirmed by One last remark regards the larjebehavior of the sine
the computation of the ratio /o to O(g~®) in the strong-  formula: S(k,2) =k+ O(1/N?). In this respect the sine for-
coupling expansion of the lattice Hamiltonian formulation of mula is peculiar because there areanpriori reasons for the
d-dimensional SUY) gauge theories. We obtain¢di3] k-string tension ratio to be even inNL/ The same observa-
tion applies to the two-dimensional SNYXSU(N) chiral
Tk _ 14 v (10 models, but there we know that the sine formula holds and it

comes from the structure of tf&matrix, which is essentially

o N—1 (g°N)*
] o . determined by the existence of an infinite number of conser-
where f(k,N) is explicity k dependent. In particular yation laws.

f(2,N)=6/N-+O(1/N?).

In conclusion, we claim that our numerical results for the We thank M. Campostrini, K. Konishi, S. Lelli, B. Lucini,
four-dimensional S(b) gauge theory are consistent with the M. Maggiore, A. Pelissetto, and M. Teper for useful and
sine formula and the universality hypothesis that is behind itinteresting discussions, and M. Davini for his indispensable

o K(N—K) (d—2)f(k,N)

Of course, they do not prove that it holds exactly. But theytechnical support.
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