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k-string tensions in SU„N… gauge theories
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In the context of four-dimensional SU(N) gauge theories, we study the spectrum of the confining strings. We
compute, for the SU~6! gauge theory formulated on a lattice, the three independent string tensionssk related
to sources withZN chargek51,2,3, using Monte Carlo simulations. Our results, whose uncertainty is approxi-
mately 2% fork52 and 4% fork53, are consistent with the sine formulask /s5sin(kp/N)/sin(p/N) for the
ratio betweensk and the standard string tensions, and show deviations from the Casimir scaling. The sine
formula is known to emerge in supersymmetric SU(N) gauge theories and in M theory. We comment on an
analogous behavior exhibited by two-dimensional SU(N)3SU(N) chiral models.
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Quantum chromodynamics is a non-Abelian gauge the
based on the gauge group SU~3!. The mechanisms underly
ing many of its fundamental properties, such as confinem
chiral symmetry, topological effects and the axial anoma
are under active investigation; they are being studied by
ferent approaches, including numerical simulations of
theory formulated on the lattice, several models of
vacuum, as well as some recent proposals derived from
theory and the AdS conformal field theory~CFT! correspon-
dence. Many features of QCD can be better understood
extending the study to SU(N) gauge theories withN larger
than three and in particular by examining the large-N limit.

Four-dimensional gauge theories exhibit confinement;
static sources in the fundamental representation develo
linear potential characterized by a string tensions. As
pointed out in many studies, it is important to investigate
behavior of the system in the presence of static source
representations higher than the fundamental one. This
provide useful hints on the mechanism responsible for c
finement, helping to identify the most appropriate models
the QCD vacuum and to select among the various confi
ment hypotheses. Among the latter, the so-called Cas
scaling hypothesis for the potential between heavy-qu
sources in different representations has attracted much i
est ~see e.g. the recent publications@1–5#!.

SU(N) gauge theories confine by means of chromoel
tric flux tubes carrying a charge in the centerZN of the gauge
group. A chromoelectric source of chargek with respect to
ZN is confined by ak string with string tensionsk ~s1[s is
the string tension related to the fundamental representat!.
If sk,ks, then a string with chargek is stable against deca
to k strings of charge one. Charge conjugation impliessk
5sN2k . Therefore SU~3! has only one independent strin
tension determining the large distance behavior of the po
tial for kÞ0. One must consider larger values ofN to look
for distinct k strings.
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As pointed out in Ref.@6#, it is interesting to compare the
k-string tension ratios

R~k,N![
sk

s
~1!

in different theories. The idea is that such ratios may reve
universal behavior within a large class of models charac
ized by SU(N) symmetry, such as SU(N) gauge theories and
their supersymmetric extensions. It has been noted that st
k strings are related to the totally antisymmetric represen
tions of rankk, and that in various realizations of supersym
metric SU(N) gauge theoriesR(k,N) satisfies the sine for-
mula R(k,N)5S(k,N) where

S~k,N![
sin~kp/N!

sin~p/N!
. ~2!

R(k,N) has been computed for theN52 supersymmetric
SU(N) gauge theory softly broken toN51 @7,8#, obtaining
Eq. ~2!. The same result is found also in the context of
theory, and extended to the case of large breaking of thN
52 supersymmetric theory@8#. An interesting question is
whether the sine formula holds in nonsupersymme
SU(N) gauge theories. The M-theory approach to nonsup
symmetric QCD, although it is still at a rather speculati
stage, suggests that it may be so@9,8#. However, as discusse
in Refs. @8,6#, corrections from various sources cannot
excluded, so that this prediction cannot be considered rob

Another interesting and suggestive hypothesis is that
k-string tension ratio satisfies the so-called Casimir sca
law @10#, i.e. R(k,N)5C(k,N) where

C~k,N![
k~N2k!

N21
~3!

is the ratio between the values of the quadratic Casimir
erators in the rank-k antisymmetric and in the fundament
representations. The Casimir ratio is satisfied on the
hand by the strong-coupling limit of the lattice Hamiltonia
formulation of SU(N) gauge theories@11#, and on the other
hand by the small-distance behavior of the potential betw
©2001 The American Physical Society01-1
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two static charges in different representations, as shown
perturbation theory up to two loops@12#. Interest in Casimir
scaling was recently revived@1–5#; it has been triggered by
numerical studies of SU~3! lattice gauge theory@3,4#, which
indicate that Monte Carlo data for the potential betwe
charges in different representations are consistent with
simir scaling up to a relatively large distance,r'1 fm.

The Casimir scaling law holds exactly in two-dimension
QCD. In higher dimensions no strong arguments exist
favor of a mechanism preserving Casimir scaling across
roughening transition, from strong to weak coupling; n
from small distance~essentially perturbative, characterize
by a Coulombic potential! to large distance~characterized by
a string tension for sources carryingZN charge!. We have
shown explicitly@13# that Casimir scaling does not surviv
the next-to-leading order calculation of the ratiosR(k,N) in
the strong-coupling lattice Hamiltonian approach.

It is interesting to note that the sine formula~2! emerges
also in the context of the two-dimensional SU(N)3SU(N)
chiral models. As amply discussed in the literature~see e.g.,
Refs. @14,15# and references therein!, d-dimensional chiral
models and 2d-dimensional lattice gauge theories manife
deep analogies in the continuum and on the lattice. Inde
one may establish the following correspondence table for
lattice formulations:

Chiral Models Gauge Models

site, link link, plaquette
loop surface

length area
massM string tensions

two-point correlation Wilson loop

One may also add to this table the bound state massesMk of
chiral models and thek-string tensionssk of gauge theories
In particular, in the cased51 the relation is exact, and on
can prove that Casimir scaling holds for the masses of
bound states. In analogy to four-dimensional SU(N) gauge
theories, in two-dimensional SU(N)3SU(N) chiral models
the Casimir scaling law holds for the strong-coupling limit
the corresponding lattice Hamiltonians~but it is not satisfied
by the corrections! and for the small-distance behavior of th
correlation functions related to different representations.
the other hand, the exactS matrix @16#, derived using the
existence of an infinite number of conservation laws a
Bethe-ansatz methods, dictates that all bound states belo
the rank-k antisymmetric representations and satisfy the s
formula, Mk5M sin(kp/N)/sin(p/N), whereMk is the mass
of thek-particle bound state. The question arises again: d
this result extend to four-dimensional SU(N) gauge theories?

This issue can be investigated numerically using the
tice formulation of SU(N) gauge theories. Recent numeric
results forR(2,N), obtained forN54,5 @17,18#, show that
R(2,N),2; thus,s2,2s, indicating that flux tubes attrac
each other. However, the error estimates onR(2,N) do not
allow any exclusion of the two above-mentioned hypothes
Indeed the sine and Casimir formulas give numerically cl
predictions fork52, so that high accuracy is necessary
distinguish them.
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In this work we further investigate the spectrum of t
string states. We present results from Monte Carlo~MC!
simulations of the four-dimensional SU~6! lattice gauge
theory using the Wilson formulation. ForN56 there are two
nontrivial k-string tensions besides the fundamental one, t
providing a stringent test of the various ideas discus
above. We anticipate here our final results for the two in
pendentk-string tension ratios:

R~2,6!51.7260.03, ~4!

R~3,6!51.9960.07. ~5!

They are both consistent with the predictions of the s
formula ~2!, which areS(2,6)51.732 . . . andS(3,6)52, re-
spectively. On the other hand, our results show deviati
from Casimir scaling; the predictions in this case,C(2,6)
51.6 andC(3,6)51.8, are off by approximately four an
three error bars, respectively.

In our simulations we employed the Cabibbo-Marinari
gorithm @19# to upgrade SU(N) matrices by updating thei
SU~2! subgroups~we selected 15 subgroups!. This was done
by alternating microcanonical over-relaxation and heat-b
steps, typically in a 4:1 ratio. Table I contains some inform
tion on our MC runs: The coupling values@20# g
[b/(2N2), lattice sizes, and the results for thek-string ten-
sions. The number of sweeps per run was typically ab
500k, and measurements were taken every 10–20 swe
The values ofg were chosen to lie beyond the first ord
phase transition which occurs in the Wilson formulation
SU(N) gauge theories forN sufficiently large~see e.g. Refs.
@21,13#!. In order to determine the valuegc where the first
order transition occurs, we performed simulations start
from hot and cold configurations to display hysteresis, a
from mixed-phase configurations, obtaining the estimategc
50.3389(4). We used asymmetric lattices (L33T) with a
larger time size. For some values ofg we performed simu-
lations for two lattice sizes, to check for finite size effec
The lattice sizesL were chosen so thatLAs*2.5, and for
most of themLAs'3. This requirement ensures that fini
size effects onk-string ratios are negligible, as can be se
by comparison of the results for different sizes~see also
Refs.@17#!. Further confirmation comes from preliminary re
sults ~'200k sweeps! on a 163332 for g50.350.

In our simulations we have also measured the topolog
chargeQ by a cooling technique. A severe form of critica
slowing down is observed in this case: The autocorrelat

TABLE I. MC results for thek-string tensions.

g Lattice aAs s2 /s s3 /s

0.342 83320 0.3151~6! 1.65~2! 1.91~3!

123324 0.3239~8! 1.66~3! 1.91~9!

0.344 123324 0.2973~5! 1.73~2! 1.95~5!

0.348 103320 0.2534~6! 1.73~3! 2.08~10!

123324 0.2535~6! 1.71~4! 2.06~11!

0.350 123324 0.2380~6! 1.72~3! 1.95~9!

0.354 123324 0.2103~5! 1.73~3! 2.04~6!
1-2
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time tQ for Q appears to increase exponentially,tQ

}exp(c/s1/2) with c'2.4. As a consequence, the run for t
largest value ofg considered,g50.354, did not correctly
sampleQ, presumably because it was not sufficiently lo
~'300k sweeps!. This dramatic effect was not observed
the correlations used to determine thek-string tensions~a
blocking analysis did not show significant time correlatio
in measurements taken every 10–20 sweeps!, suggesting an
approximate decoupling between the topological and no
pological modes. This suggestion is also supported by
fact that string tension results forg50.354, extracted from a
simulation which did not sample correctlyQ, turn out to be
in agreement with those for smallerg, for which Q was
sampled correctly. We note incidentally that this pheno
enon has already been observed in simulations of t
dimensional CPN21 models@22#.

The k-string tensions are extracted from the large tim
behavior of correlators of strings in the antisymmetric rep
sentations, closed through periodic boundary conditions~see
e.g. Refs.@23,17#!:

Cr~ t !5 (
x1 ,x2

^x r@P~0;0!#x r@P~x1 ,x2 ;t !#& ~6!

where P(x1 ,x2 ;t)5Px3
U3(x1 ,x2 ,x3 ;t), U(x;t) are the

usual link variables, andx r is the character of the represe
tation r. In particular,x f@P#5Tr P for the fundamental rep
resentation, and

xk52@P#5Tr P22~Tr P!2, ~7!

xk53@P#52Tr P323Tr P2Tr P1~Tr P!3 ~8!

for the antisymmetric representations of rankk52 and k
53, respectively.

These correlators decay exponentially as exp(2mk t)
wheremk is the mass of the lightest state in the correspo
ing representation. For ak-loop of sizeL, thek-string tension
is obtained using the relation@23#

mk5skL2
p

3L
. ~9!

The last term in Eq.~9! is conjectured to be a universa
correction, and it is related to the universal critical behav
of the flux excitations described by a free bosonic str
@24,23#. In order to improve the efficiency of the measur
ments we used smearing and blocking procedures~see e.g.
Refs. @25#! to construct new operators with a better overl
with the lightest state. The massesmk were obtained by fit-
ting the time dependence of the correlations. The fitt
range is the source of systematic error; we have checked
all reasonable choices of this range yield consistent res
within the quoted errors. More details on the Monte Ca
simulations and the analysis of the data will be reported e
where@13#.

The results for the ratiosR(2,6) andR(3,6) are presented
in Table I, and plotted in Figs. 1 and 2 versusa2s to eviden-
tiate possible scaling corrections for the casek52 and k
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53 respectively, together with the sine formula~2! and the
Casimir scaling predictions. The ratioR(2,6) shows good
scaling forg>0.344. Scaling deviations are observed on
for g50.342, and this may be due to the vicinity of the pha
transition. The data forg>0.344 are consistent with a con
stant, thus we do not attempt to fit the dependence of
result on the lattice spacinga. Our final value forR(2,6) is
obtained by combining the results atg50.348~for the larg-
est lattice! andg50.350. The error we report is given by th
typical error of each single point. Of course, this estim
assumes that the scaling corrections are small and neglig
for a2s.0.05. The data for smallerg, and in particular the
one for g50.344, are essentially used to check this fa
They suggest that the scaling corrections are at most of
same size of the error we report. MC runs at the largest va
of g, i.e. g50.354, show the aforementioned decoupling
the string tensions from the topological degrees of freedo
however, given the poor sampling of the topological cha
in those runs, we do not include them in the final estimate
the string tension ratio. Similar comments apply to t
R(3,6) ratio.

FIG. 1. The scaling ratioR(2,6) as a function ofa2s.

FIG. 2. The scaling ratioR(3,6) as a function ofa2s.
1-3
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We have also explored correlators in the symme
rank-2 representation, finding no evidence for stable bo
states, in accordance with general arguments and with
spectrum of chiral models.

Our final estimates have been reported in Eqs.~4! and~5!.
They show deviations from Casimir scaling@26#. It is worth-
while to emphasize that such corrections are to be expec
as mentioned previously. This fact is further confirmed
the computation of the ratiosk /s to O(g28) in the strong-
coupling expansion of the lattice Hamiltonian formulation
d-dimensional SU(N) gauge theories. We obtained@13#

sk

s
5

k~N2k!

N21 F11
~d22! f ~k,N!

~g2N!4 1...G ~10!

where f (k,N) is explicitly k dependent. In particula
f (2,N)56/N1O(1/N2).

In conclusion, we claim that our numerical results for t
four-dimensional SU~6! gauge theory are consistent with th
sine formula and the universality hypothesis that is behind
Of course, they do not prove that it holds exactly. But th
D

s

ri

tt.
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put a stringent bound on the size of the possible correctio
On the other hand, our results show a clear evidence of
viations from the Casimir scaling. This fact should be r
evant for the recent debate on confinement models, suc
those discussed in Refs.@1,2,5#. However, Casimir scaling
may still be considered as a reasonable approximation, s
the largest deviations we observed were about 10%.

One last remark regards the large-N behavior of the sine
formula: S(k,`)5k1O(1/N2). In this respect the sine for
mula is peculiar because there are noa priori reasons for the
k-string tension ratio to be even in 1/N. The same observa
tion applies to the two-dimensional SU(N)3SU(N) chiral
models, but there we know that the sine formula holds an
comes from the structure of theSmatrix, which is essentially
determined by the existence of an infinite number of cons
vation laws.

We thank M. Campostrini, K. Konishi, S. Lelli, B. Lucini
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interesting discussions, and M. Davini for his indispensa
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