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We study the large-N scaling behavior of the θ dependence of the ground-state energy density EðθÞ of
four-dimensional (4D) SUðNÞ gauge theories and two-dimensional (2D) CPN−1 models, where θ is the
parameter associated with the Lagrangian topological term. We consider its θ expansion around θ ¼ 0,
EðθÞ − Eð0Þ ¼ 1

2
χθ2ð1þ b2θ2 þ b4θ4 þ…Þ, where χ is the topological susceptibility and b2n are

dimensionless coefficients. We focus on the first few coefficients b2n, which parametrize the deviation
from a simple Gaussian distribution of the topological charge at θ ¼ 0. We present a numerical analysis of
Monte Carlo simulations of 4D SUðNÞ lattice gauge theories for N ¼ 3, 4, 6 in the presence of an
imaginary θ term. The results provide a robust evidence of the large-N behavior predicted by standard
large-N scaling arguments, i.e. b2n ¼ OðN−2nÞ. In particular, we obtain b2 ¼ b̄2=N2 þOð1=N4Þ with
b̄2 ¼ −0.23ð3Þ. We also show that the large-N scaling scenario applies to 2D CPN−1 models as well, by an
analytical computation of the leading large-N θ dependence around θ ¼ 0.
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I. INTRODUCTION

Some of the most intriguing properties of 4D SUðNÞ
gauge theories are those related to the dependence on the θ
parameter associated with a topological term in the
(Euclidean) Lagrangian

Lθ ¼
1

4
Fa
μνðxÞFa

μνðxÞ − iθqðxÞ; ð1Þ

where qðxÞ is the topological charge density,

qðxÞ ¼ g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ: ð2Þ

The dependence on θ vanishes perturbatively; therefore, it
is intrinsically nonperturbative [1–3].
The recent renewed activity in the study of the topo-

logical properties of gauge field theories, and of θ depend-
ence in particular, has been triggered by two different
motivations. From the purely theoretical point of view θ-
related topics naturally appear in such disparate conceptual
frameworks as the semiclassical methods [4–10], the
expansion in the number of colors [11–18], the holographic
approach [19–22] and the lattice discretization (see, e.g.,
[23] for a review of the main results). From the phenom-
enological point of view, the nontrivial θ dependence is
related to the breaking of the axial UAð1Þ symmetry and
related issues of the hadronic phenomenology [24–26],
such as the η0 mass. Moreover, it is related to the axion

physics (see, e.g., [27] for a recent review), put forward to
provide a solution of the strong CP problem [28–31], i.e. to
explain the fact that the experimental value of θ is
compatible with zero, with a very small bound jθj ≲
10−10 from neutron electric dipole measurements [32].
Axions are also natural dark matter candidates [33–35] and,
given the absence of supersymmetry signals from accel-
erator experiments, this is becoming one of the most
theoretically appealing possibilities.
The ground-state energy density of 4D SUðNÞ gauge

theories is an even function of θ. It is expected to be
analytic at θ ¼ 0; thus, it can be expanded in the form

EðθÞ − Eð0Þ ¼ 1

2
χθ2ð1þ b2θ2 þ b4θ4 þ…Þ; ð3Þ

where χ is the topological susceptibility and the dimension-
less coefficients b2n parametrize the nonquadratic part of
the θ dependence. They are related to the cumulants of
the topological charge distribution at θ ¼ 0; in particular
b2n quantify the deviations from a simple Gaussian dis-
tribution. Standard large-N arguments predict the large-N
behavior [11,19,23]

χðNÞ ¼ χ̄ þOðN−2Þ; ð4Þ

b2nðNÞ ¼ b̄2nN−2n þOðN−2n−2Þ: ð5Þ

Since χ and b2n cannot be computed analytically, these
large-N scaling relations can be only tested numerically.
Earlier studies have mainly focused on the investigation

of the large-N scaling of the topological susceptibility,
reporting a good agreement with the corresponding large-N
expectations (see, e.g., [36–38]). Instead, the numerical
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determination of the higher-order coefficients of the θ
expansion turns out to be a difficult numerical challenge.
Most efforts have been dedicated to the SUð3Þ case
[37,39–43], reaching a precision corresponding to a relative
error below 10% only recently [43]. Some higher-N results
were reported in Ref. [37], presenting a first attempt to
investigate the large-N scaling of b2; the numerical
precision that could be reached was however quite limited,
with a signal for SUð4Þ at two standard deviations from
zero and only an upper bound for SUð6Þ.
In order to further support the evidence of the large-N

scaling scenario beyond the quadratic term of the expan-
sion of the ground-state energy density (3), we investigate
the scaling of the higher-order terms, in particular those
associated with b2 and b4. From the computational point
of view, the most convenient method to perform such
an investigation exploits Monte Carlo simulations of
SUðNÞ gauge theories in the presence of an imaginary
θ angle, which are not plagued by the sign problem. Their
analysis allows us to obtain accurate estimates of the
coefficients of the expansion around θ ¼ 0. Analogous
methods based on computations at imaginary values of θ
have been already employed in some numerical studies of
the SUð3Þ gauge theory [41,43–46] and CPN−1 models
[47–49].
The 2D CPN−1 models share with 4D SUðNÞ gauge

theories many physically interesting properties, like asymp-
totic freedom, dynamical mass generation, confinement,
instantons and θ dependence; moreover their large-N
expansion can be studied by analytical methods [13–18].
As a consequence they are an attractive laboratory to test
theoretical ideas that might turn out to be applicable to
QCD. An expansion of the form Eq. (3) applies also to the θ
dependence of 2D CPN−1 models. Similarly to 4D SUðNÞ
gauge theories, large-N scaling arguments predict the large-
N behavior χ ≈ cN−1 and b2n ≈ b̄2nN−2n. These large-N
scaling behaviors are confirmed by explicit analytical
computations; see [13–15,17,50]. In this paper, following
the approach introduced in [51], we present a systematic
and easily automated way of computing the leading large-N
terms of b2n.
The paper is organized as follows. In Sec. II we present

the results obtained for the case of the 4D SUðNÞ gauge
theories: first we discuss the numerical setup used and the
reasons for some specific algorithmic choices adopted, and
then we present the physical results obtained. In Sec. III the
case of the 2D CPN−1 models is discussed and a determi-
nation of the leading-order large-N expansion for the
coefficients b2n is presented. Finally, in Sec. IV, we draw
our conclusions. In Appendixes some technical details are
examined regarding a comparison between smoothing
algorithms in SUð6Þ (Appendix A) and an attempt to
reduce the autocorrelation time using a parallel tempering
algorithm (Appendix B). Tables of numerical data are
reported in Appendix C.

II. LARGE N IN 4D SUðNÞ GAUGE THEORIES

A. Numerical setup

The traditional procedure that has been used in the past
to compute the coefficients entering Eq. (3) consists in
relating them to the fluctuations of the topological charge
Q≡ R

qðxÞddx at θ ¼ 0. The first few coefficients of the
expansion can indeed be written as (see, e.g., [23])

χ ¼ hQ2iθ¼0

V
; ð6Þ

b2 ¼ −
hQ4iθ¼0 − 3hQ2i2θ¼0

12hQ2iθ¼0

; ð7Þ

b4 ¼
½hQ6i − 15hQ2ihQ4i þ 30hQ2i3�θ¼0

360hQ2iθ¼0

; ð8Þ

etc., where V is the 4D volume and all the averages are
computed using the action with θ ¼ 0. While this method is
obviously correct from the theoretical point of view, it is
numerically inefficient for the determination of the b2n
coefficients. Indeed fluctuation observables are not self-
averaging [52] and, in order to keep a constant signal to
noise ratio, one has to dramatically increase the statistics of
the simulations when increasing the volume (see, e.g., [43]
for a numerical example). As a consequence it is extremely
difficult to keep finite size effects under control and to
extract the infinite-volume limit.
To avoid this problem, one can introduce a source term in

the action, which allows us to better investigate the
response of the system. This can be achieved by performing
numerical simulations at imaginary values of the θ angle,
θ≡ −iθI, in order to maintain the positivity of the path
integral measure and avoid a sign problem, and studying for
example the behavior of hQiθI as a function of θI. It is
indeed easy to verify that [41]

hQiθI
V

¼ χθIð1 − 2b2θ2I þ 3b4θ4I þ…Þ: ð9Þ

Also higher cumulants of the topological charge distribu-
tion [for which relations analogous to Eq. (9) exist] can be
used for this purpose; however, the numerical precision
quickly degrades for higher cumulants. Nevertheless, since
the computation of these higher cumulants does not require
any additional CPU time, the optimal strategy seems to be
to perform a common fit to a few of the lowest cumulants of
the topological charge [43] (of course by taking into
account the correlation between them).
After this general introduction to motivate the computa-

tional strategy adopted, we describe the details of the
discretization setup. For the SUð3Þ case we use results
already reported in the literature, while new simulations are
performed for the SUð4Þ and SUð6Þ cases. The lattice
action used in the sampling of the gauge configurations is
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S½U� ¼ SW ½U� − θLQL½U�; ð10Þ
where SW ½U� is the standard Wilson plaquette action [53]
and QL ¼ P

xqLðxÞ. For the topological charge density we
adopt the discretization [54,55]

qLðxÞ ¼ −
1

29π2
X�4

μνρσ¼�1

~ϵμνρσTrðΠμνðxÞΠρσðxÞÞ; ð11Þ

where Πμν is the plaquette, ~ϵμνρσ coincides with the usual
Levi-Civita tensor for positive entries and it is extended to
negative ones by ~ϵμνρσ ¼ −~ϵð−μÞνρσ and complete antisym-
metry. The discretization Eq. (11) of the topological charge
density makes the total action in Eq. (10) linear in each
gauge link, thus enabling the adoption of standard efficient
update algorithms, like heat bath and overrelaxation, a fact
of paramount importance, since we have to deal with the
strong critical slowing down of the topological modes [37].
A practical complication is due to the fact that the

discretization of the topological charge density induces a
finite renormalization of qðxÞ [56] and thus of θ. Denoting
this renormalization constant by Z, we thus have

θI ¼ ZθL; ð12Þ
where θL is the numerical value that is used in the actual
simulation. Two different strategies can be used to cope
with this complication: in one caseZ is computed separately
and Eq. (9) can then be directly used (see [41] for more
details). Another possibility consists in rewriting Eq. (9),
and the analogous equations for the higher cumulants,
directly in terms of θL, in such a way that by performing
a common fit to the cumulants it is possible to evaluate both
Z and the parameters appearing in Eq. (3) (see [43] for more
details). In our numerical workwe adopt the second strategy,
that turns out to be slightlymore efficient from the numerical
point of view. All results that we present are obtained by
analyzing the θI dependence of the first four cumulants of
the topological charge distribution.
In order to avoid the appearance of further renormalization

factors, the topological charge is measured on smoothed
configurations. The smoothing procedure adopted uses the
standard cooling technique [57–61], which is the computa-
tionally cheapest procedure (especially for large values ofN).
Cooling is implemented à la Cabibbo-Marinari, using the
NðN − 1Þ=2 diagonal SUð2Þ subgroups of SUðNÞ, and we
follow [37] in defining themeasured topological chargeQ by

Q ¼ roundðαQsmooth
L Þ; ð13Þ

where roundðxÞ is the integer closest to x and the coefficient α
is the value that minimizes

hðαQsmooth
L − round½αQsmooth

L �Þ2i: ð14Þ
This procedure is introduced inorder to avoid the necessity for
prolonged cooling, and in fact we observe no significant

differences in the results obtained by using a number of
cooling steps between 5 and 25, while more than 100 cooling
stepswould beneeded to reach a plateau using justQL instead
of theQ defined by Eq. (13). At finite lattice spacing, the two
definitions (rounded versus nonrounded) can lead to different
results corresponding to different lattice artifacts; however, it
has been shown that the same continuum limit is reached in
the two cases [43]. The results thatwe present in the following
are obtained using 15 cooling steps and the definition ofQ in
Eq. (13). We also mention that the results of this cooling
procedure are compatible with those of other approaches
proposed in the literature; see [23,62–65] and Appendix A.
Seven θL values are typically used in the simulations,

going from θL ¼ 0 to θL ¼ 12 with steps ΔθL ¼ 2; when
expressed in term of the renormalized parameter θI ¼ ZθL
this range of θL values corresponds (for the couplings used
in this work) to θI ≲ 1.8. We verify that this range of values
is large enough to give a clear signal but not so large to
introduce systematic errors. The results of all tests per-
formed using a smaller interval of θL values give perfectly
compatible results.
For the update we use a combination of standard heat-bath

[66,67] and overrelaxation [68] algorithms, implemented à la
Cabibbo-Marinari [69] using all the NðN − 1Þ=2 diagonal
SUð2Þ subgroups of SUðNÞ. The topological charge is
evaluated every ten update steps, one update step being
composed of a heat-bath and five overrelaxation updates for
all the links of the lattice, updated in a mixed checkerboard
and lexicographic order. The total statistic acquired for each
coupling value is typically of Oð106Þ measures.

B. Numerical results

In order to apply the analytic continuation method in an
actual computation, it is necessary to truncate the expan-
sion in Eq. (9) [or, which is the same, in Eq. (3)] in order to
fit the numerical data. We actually perform a global fit to
the first four cumulants which, when rewritten in terms of
θL, read

hQi
V

¼ χZθLð1 − 2b2Z2θ2L þ 3b4Z4θ4L þ…Þ;
hQ2ic
V

¼ χð1 − 6b2Z2θ2L þ 15b4Z4θ4L þ…Þ;
hQ3ic
V

¼ χð−12b2ZθL þ 60b4Z3θ3L þ…Þ;
hQ4ic
V

¼ χð−12b2 þ 180b4Z2θ2L þ…Þ: ð15Þ

An example of such a global fit, with a truncation including
up to Oðθ4LÞ terms in the ground-state energy density (i.e.
setting b4 ¼ 0), is reported in Fig. 1 for the case of the
SUð4Þ gauge theory.
To quantify the systematic error associated with this

procedure we consider two different truncations: in one
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case all the terms of Eq. (3) up toOðθ6Þ are retained (i.e. up
to b4), while in the other case a truncation up to Oðθ4Þ (i.e.
up to b2) is used. Both truncations nicely fit the numerical
data and the estimates of the coefficient b4 turn out to be
compatible with zero in all the cases. This is not surprising,
since even for SUð3Þ only upper bounds on jb4j exist (see,
e.g., [41,43]) and its value is expected to approach zero
very quickly as the number of colors is increased [see
Eq. (4)]. We verify that the values of Z, χ and b2 obtained
by using the two different truncations are perfectly com-
patible with each other, indicating that no sizable system-
atic error is introduced by the truncation procedure; see the
example in Fig. 2. For this reason we decide to use the
Oðθ4Þ truncation to estimate Z, χ and b2, while the Oðθ6Þ
truncation is obviously needed to obtain an upper bound for
jb4j. Possible further systematic errors are checked by
varying the fitted range of θL and verifying the stability of
the fit parameters.

Hypercubic lattices of size L
ffiffiffi
σ

p ≳ 3 are used in all
cases: they are expected to be large enough to provide the
infinite-volume limit within the typical errors of our
simulations (see, e.g., [37]). This is explicitly verified in
some test cases: for example the SUð6Þ simulations at
coupling β ¼ 24.500 were replicated on lattices of size
L=a ¼ 8, 10, 12 and for the coupling β ¼ 24.845 on
lattices with L=a ¼ 10, 12, 16; in all cases no statistically
significant volume dependence is observed; see Figs. 3
and 4. The possibility of using such large lattices in the
determination of b2 and higher cumulants is a consequence
of the numerical setup adopted, with simulations performed
at imaginary θ values.
Before starting to discuss our main subject, namely the

determination of b2 and its large-N behavior, we show that

0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12
θL

0

2×10–5

4×10–5

6×10–5

8×10–5

0.0001
〈Q〉c /V
〈Q2〉c /V
〈Q3〉c /V
〈Q4〉c /V

FIG. 1. An example of the global fit procedure, with a
truncation including Oðθ4LÞ terms: data refer to the 144 lattice
at coupling β ¼ 11.008 for the SUð4Þ gauge theory. Continuous
lines are the result of a combined fit of the first four cumulants.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

a2σ

-0.0125

-0.01

-0.0075

-0.005

-0.0025

0

b 2

O(θ4)
O(θ6)

FIG. 2. Comparison of the results obtained for b2 in SUð6Þ
using different truncations of Eq. (3).
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4 χ
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FIG. 3. Dependence of χ (in lattice units) on the lattice size.
From top to bottom results are displayed for SUð3Þ at coupling
β ¼ 6.2 (from [43]), SUð4Þ at β ¼ 11.104 and SUð6Þ at
β ¼ 24.500. Horizontal dashed lines are the results of fits to
constant and are plotted in order to better appreciate the absence
of statistically significant deviations.

-0.03

-0.025

-0.02

-0.015

b 2

-0.025

-0.02

-0.015

b 2

2.5 3 3.5 4 4.5

L√
_
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-0.012

-0.01

-0.008

b 2
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(3
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(4
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SU
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)

FIG. 4. Dependence of b2 on the lattice size. From top to
bottom results are displayed for SUð3Þ at coupling β ¼ 6.2 (from
[43]), SUð4Þ at β ¼ 11.104 and SUð6Þ at β ¼ 24.500. Horizontal
dashed lines are the results of fits to constant and are plotted in
order to better appreciate the absence of statistically significant
deviations.
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our data reproduce the well-known large-N scaling of χ=σ2.
For SUð3Þ we use results already available in the literature
(those reported in Table 1 of [41]) and for the scale setting
in the SUð4Þ and SUð6Þ cases we used the determination of
the string tension reported in [70]. For SUð4Þ we observe
no improvement with respect to the old results of [37],
since the final error on χ=σ2 is dominated by the error on
the string tension. This is also the case for the final
continuum result in the SUð6Þ case; indeed, we obtained
χ=σ2jSUð6Þ ¼ 0.0230ð8Þ to be compared with the value
0.0236(10) reported in Ref. [37]—however, the continuum
extrapolation of the new results is much more solid, as
shown in Fig. 5.
The continuum values of χ=σ2 for N ¼ 3, 4 and 6 are

reported in Table I, their scaling with N is shown in Fig. 6
and the result of a linear fit in 1=N2 gives

χ=σ2jSUð∞Þ ¼ 0.0209ð11Þ; ð16Þ

which slightly improves the previous result of
Refs. [23,36–38]. Assuming the standard valueffiffiffi
σ

p ¼ 440 MeV, we obtain χ1=4SUð∞Þ ¼ 167ð2Þ MeV. As

noted before, the dominant source of error in χ=σ2 is the
error on the string tension. As a consequence, to improve
this result it would be enough to improve the precision of
the σ determination or to use different observables to set the

scale. Since our main interest in this work is the analysis of
the higher-order cumulants b2n, which are dimensionless,
we have not pursued this investigation any further.
In Fig. 7 the results obtained for b2 with N ¼ 3, 4, 6 are

shown as a function of the (square of the) lattice spacing.
The values of a2σ for the SUð3Þ data have been computed
using r0

ffiffiffi
σ

p ¼ 1.193ð10Þ from [71] to plot the b2 data from
[43] (where r0 was used to set the scale) together with the
new SUð4Þ and SUð6Þ data. For SUð4Þ, data are precise
enough to perform a linear fit in a2σ and check for the
systematics of the continuum extrapolation by varying the
fit range; in particular the final error reported in Table I
takes into account also fits obtained by excluding the data
corresponding to the coarsest and to the finest lattice
spacings. [For SUð3Þ we use the value obtained in [43],
where a similar analysis was performed.] For the case of
SUð6Þ we could not reach lattice spacings as small as the
ones used for SUð3Þ and SUð4Þ due to the dramatic
increase of the autocorrelation times of the topological

0 0.02 0.04 0.06 0.08 0.1 0.12

a2σ

0.01

0.015

0.02

0.025

0.03

χ/
σ2

this work
from 0204125

FIG. 5. Continuum limit of the dimensionless ratio χ=σ2 for
SUð6Þ gauge theory. The results obtained in this work are
compared with the determination of [37] (data have been slightly
shifted horizontally to improve the readability).

TABLE I. Continuum extrapolated values for three, four and
six colors. The value of χ=σ2 in SUð3Þ was computed using data
from [41], while for b2n we used the value reported in [43].

N χ=σ2 b2 b4

3 0.0289(13) −0.0216ð15Þ 0.0001(3)
4 0.0248(8) −0.0155ð20Þ −0.0003ð3Þ
6 0.0230(8) −0.0045ð15Þ −0.0001ð7Þ

0 1/62 1/42 1/32

1/N2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

χ/
σ2

FIG. 6. Scaling of the dimensionless ratio χ=σ2 with the number
of colors. The dashed line is the result of a best fit with a linear
functional dependence.

0 0.02 0.04 0.06 0.08 0.1 0.12

a2σ

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

b 2

SU(3)
SU(4)
SU(6)

FIG. 7. Dependence of the b2 values on the lattice spacing for
the case of three, four and six colors. See the main text for the
details of the fitting procedure.
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charge. To boost the sampling we tried using parallel
tempering switches between different θL simulations but
this did not result in a significant improvement (see
Appendix B for more details). As a consequence, the
analysis of the SUð6Þ results cannot be as statistically
accurate as those for SUð3Þ and SUð4Þ. In spite of this, a
clear trend can be seen in the SUð6Þ data shown in Fig. 7: b2
flattens for a2σ ≲ 0.1, which is the region in which also
SUð4Þ data show no significant dependence on the lattice
spacing, and we use the conservative estimate b2jSUð6Þ ¼
−0.0045ð15Þ, which is displayed in Fig. 7 by the horizontal
blue dashed lines. For both SUð4Þ and SUð6Þ we increased
significantly the precision of the b2 determination with
respect to results available in the literature: the previous
estimates were indeed b2jSUð4Þ ¼ −0.013ð7Þ and b2jSUð6Þ ¼
−0.01ð2Þ from [37], to be compared with the numbers
reported in Table I.
The estimates of b2 versus the number of colors are shown

in Fig. 8. They decrease with increasing N, strongly
supporting a vanishing large-N limit. Fitting the data to
the ansatz b2ðNÞ¼ c=Nκ we obtain κ ¼ 1.9ð3Þ, fully sup-
porting the 1=N2 scaling predicted by the large-N scaling
arguments.
We now analyze the data assuming the 1=N2 scaling.

Some fits are shown in Fig. 8. The leading form b2 ¼
b̄2=N2 of the expected N dependence is used with two
different fit ranges: in one case all the data are fitted, which
gives b̄2 ¼ −0.200ð12Þ (with χ2=dof ∼ 2.9=2), while in the
other case only data with N > 3 are used, obtaining b̄2 ¼
−0.23ð3Þ (with χ2=dof ∼ 1.9=1). These results are in
perfect agreement with those of the fit performed using
also the next-to-leading-order (NLO) correction, i.e. to

b2 ¼ b̄2=N2 þ b̄ð1Þ2 =N4, that gives b̄2 ¼ −0.23ð5Þ and

b̄ð1Þ2 ¼ 0.3ð5Þ (with χ2=dof ∼ 2.5=1), further indicating

the absence of significant NLO correction. As our final
estimate we report

b̄2 ¼ −0.23ð3Þ: ð17Þ

The previous estimate for this quantity in the literature was
b̄2 ¼ −0.21ð5Þ from [37]. It should be stressed that not
only the error of the final result gets reduced in the present
study, but also the whole analysis is now much more solid,
since the old result relied heavily on the SUð3Þ result.
Some estimates of the Oðθ6Þ coefficient b4 of the

ground-state energy density are shown in Fig. 9. To extract
a continuum value the same procedure adopted for b2 was
used also in this case: linear fits in a2 were performed and
consistency with the results obtained by discarding the
values of the coarsest and the finest lattice spacings was
verified. The final results are reported in Table I. As
previously anticipated, they are still compatible with zero.
Assuming the large-N scaling b4 ≃ b̄4=N4 for N ¼ 4, we
obtain the bound

jb̄4j ≲ 0.1: ð18Þ

Our results for the large-N coefficients b̄2n may be
compared with the analytical calculations by holographic
approaches [19–22]. In particular, a compatible (negative
sign) result for b̄2 is reported in Ref. [22].
Finally in Fig. 10 we present our determinations of the

renormalization factor Z for N ¼ 3, 4 and 6 and for the
various lattice spacings used [again SUð3Þ data come from
[43]]. It can be noted that all the data approximately
collapse on a common curve; i.e. Z at fixed lattice spacing
has a well-defined large-N limit. This behavior could have
been guessed by noting that the perturbative computation of
Z performed in [56] is in fact (up to subleading corrections)
an expansion in the ’t Hooft coupling g2N.
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FIG. 8. Scaling of b2 with the number of colors. Lines are result
of a best fit performed using the linear dependence expected from
large-N arguments (dashed line fitting all data, full line fitting
only those for N ¼ 4, 6) and adding also a quadratic contribution
(dotted-dashed line).
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III. LARGE N IN 2D CPN−1 MODELS

The 2D CPN−1 (Euclidean) Lagrangian in the presence
of a θ term is

Lθðz; z̄Þ ¼
N
2f

Dμz̄Dμzþ i
θ

2π
ϵμν∂μAν; ð19Þ

where z is an N-component complex vector satisfying
z̄z ¼ 1,Dμ ≡ ∂μ þ iAμ and Aμ ≡ iz̄∂μz. In order to analyze
the large-N behavior of the models one must introduce the
Lagrange multiplier fields λμ and α and perform a Gaussian
integration, thus obtaining the effective action

Seffðλμ; αÞ ¼ NTr ln½−DμDμ þ iα� − N
2f

Z
d2x½iα�

− i
θ

4π

Z
d2xϵμνFμν; ð20Þ

where now Dμ ≡ ∂μ þ iλμ and Fμν ≡ ∂μλν − ∂νλμ. The
multiplier fields become dynamical and in particular λμ
develops a massless pole, thus behaving as a bona fide
(Abelian) gauge field.
The functional evaluation of EðθÞ − Eð0Þ in the large-N

limit can now be performed starting from the computation
of the effective potential NVðA;BÞ as a function of the
constant vacuum expectation values AðBÞ≡ hiαi and
hFμνi ¼ ϵμνB. In Ref. [51] it has been shown that

VðA;B; θÞ ¼ 1

4π

�
−A ln

2B
m2

− 2B lnΓ
�
1

2
þ A
2B

�

þ B ln 2π − 2i
θ

N
B

�
; ð21Þ

where m2 ≡ AðB → 0Þ and Γ is the standard Gamma
function. It is now apparent that the natural expansion
parameter for the large-N evaluation of E is θ̄≡
θ=N [11,19].

To the purpose of evaluating EðθÞ one must then solve
the saddle point equations

∂V
∂A ¼ 0;

∂V
∂B ¼ 0: ð22Þ

The first equation may be employed in order to find the
function AðB2Þ, independent of θ, and to generate the
large-N effective Lagrangian for the gauge degrees of
freedom VλðB; θÞ≡ V½AðB2Þ; B; θ�.
The dependence on θ̄ of the large-N vacuum energy can

now be found immediately from the relationship

Eðθ̄Þ − Eð0Þ ¼ NVλ½Bðθ̄Þ; θ̄�; ð23Þ
where Bðθ̄Þ is the solution of the equation

∂Vλ

∂B ¼ 0: ð24Þ

One must appreciate that solving the last equation implies a
continuation from real to complex values of B, that can be
easily performed in the perturbative regime by observing
that VλðB; 0Þ admits an asymptotic expansion in the even
powers of B. Therefore it is possible to find a solution for
purely imaginary B in the form of a power series in the odd
powers of θ̄.
The first few terms of the expansion of Bðθ̄Þ are

Bðθ̄Þ ≈ 6im2θ̄

�
1 −

54

5
θ̄2 −

76014

175
θ̄4 þ…

�
; ð25Þ

where m2 ¼ Aðθ ¼ 0Þ is a square mass scale. Beside the
leading large-N behavior of the topological susceptibility
[13–15,17]

χ ≈
3m2

πN
; ð26Þ

we obtain the rescaled coefficients b̄2n ≡ limN→∞ N2nb2n
of the θ expansion of the ground-state energy density:

b̄2 ¼ −
27

5
;

b̄4 ¼ −
25338

175
;

b̄6 ¼ −
16198389

875
;

b̄8 ¼ −
1500696182646

336875
; ð27Þ

etc. These results for b2n extend those reported in Ref. [50]
(in particular they correct the value of b̄4).
An analysis of several higher-order coefficients shows

that they are all negative and grow very rapidly, as one
might have expected as a consequence of the nonanalytic
dependence of the effective Lagrangian on B already
observed in Ref. [51]. In turn this phenomenon can be
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FIG. 10. Dependence of the renormalization constant Z values
on the lattice spacing for the case of three, four and six colors.
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related to the fact that the full-fledged dependence on θ of
the vacuum energy for any finite value of N must exhibit a
2π periodicity which disappears in the large-N limit, thus
implying a noncommutativity of the expansions and a
vanishing radius of convergence in the variable θ̄≡ θ=N.
We finally mention that the large-N behavior (26) of the

topological susceptibility has been confirmed by numerical
results of lattice CPN−1 models [23,72–75]. Instead,
numerical results for the θ-expansion coefficients b2n have
never been obtained yet.

IV. CONCLUSIONS

We study the large-N scaling behavior of the θ depend-
ence of 4D SUðNÞ gauge theories and 2D CPN−1 models,
where θ is the parameter associated with the Lagrangian
topological term. In particular, we focus on the first few
coefficients b2n of the expansion (3) of their ground-state
energy EðθÞ beyond the quadratic approximation, which
parametrize the deviations from a simple Gaussian distri-
bution of the topological charge at θ ¼ 0.
We present a numerical analysis of Monte Carlo simu-

lations of 4D SUðNÞ lattice gauge theories for N ¼ 3, 4, 6
in the presence of an imaginary θ term. This method, based
on the analytic continuation of the θ dependence from
imaginary to real θ values, allows us to significantly
improve earlier determinations of the first few coefficients
b2n. The results provide a robust evidence of the large-N
behavior predicted by standard large-N scaling arguments,
i.e. b2n ¼ OðN−2nÞ. In particular, we obtain b2 ¼ b̄2=N2 þ
Oð1=N4Þ with b̄2 ¼ −0.23ð3Þ. The results for the next
coefficient b4 of the θ expansion (3) show that it is very
small, in agreement with the large-N prediction that
b4 ¼ OðN−4Þ. Assuming the large-N scaling b4 ≈ b̄4=N4,
we obtain the bound jb̄4j≲ 0.1.
An important issue concerns the consistency between the

θ=N dependence in the large-N limit and the 2π periodicity
related to the topological phaselike nature of θ. Indeed, the
large-N scaling behavior is apparently incompatible with
the periodicity condition EðθÞ ¼ Eðθ þ 2πÞ, which is a
consequence of the quantization of the topological charge,
as indicated by semiclassical arguments based on its
geometrical meaning for continuous field configurations
[4]. Indeed a regular function of θ̄ ¼ θ=N cannot be
invariant for θ → θ þ 2π, unless it is constant. A plausible
way out [11] is that the ground-state energy EðθÞ tends to a
multibranched function in the large-N limit, such as

EðθÞ − Eð0Þ ¼ N2MinkH

�
θ þ 2πk

N

�
; ð28Þ

whereH is a generic function. EðθÞ is then periodic in θ but
not regular everywhere. As a consequence, the physical
relevance of the large-N scaling of the θ dependence should
be only restricted to the power-law expansion (3) around

θ ¼ 0 and of analogous expansions of other observables,
thus to the N dependence of their coefficients.
Our results significantly strengthen the evidence of the

large-N scaling scenario of the θ dependence, extending it
beyond the Oðθ2Þ expansion. We note that the large-N
scaling of the θ expansion is not guaranteed. Indeed there are
some notable cases in which this does not apply. For
example this occurs in the high-temperature regime of 4D
SUðNÞ gauge theories: for high temperatures the dilute
instanton-gas approximation (DIGA) is expected to provide
reliable results and one gets (see, e.g., [4]) the result b2 ¼
−1=12 for any N value. While the DIGA approximation is
a priori expected to be valid only at asymptotically high
temperatures, the switch from the large-N behavior to the
instanton gas behavior occurs at the deconfinement tran-
sition temperature Tc [76].
The analytic continuation method that we used to

compute the θ dependence can be also exploited in
finite-temperature simulation, where it is typically even
more efficient.1 As an example of its application in finite-
temperature runs, Fig. 11 presents an updating of the results
presented in [76] regarding the change of θ dependence
across the deconfinement transition. While the results for
T > Tc were precise enough also in the original publica-
tion, the region below deconfinement is much more
difficult (see the discussion in [43]). By combining the
result for SUð3Þ obtained in [43] and the present ones for
SUð6Þ, in the left side of Fig. 11 we can now display
the continuum extrapolated zero temperature value of b2
for SUð6Þ and much more precise results for the finite-
temperature values of b2. These results confirm the results
of [76] to an higher accuracy: in the low-temperature phase

-0.05 0 0.05 0.1 0.15
t

-0.125

-0.1

-0.075

-0.05

-0.025

0

b
2

T=0, N=3

instanton gas

T=0, N=6
N=3, Lt=10
N=6, Lt=6

FIG. 11. Behavior of b2 across the deconfinement transition for
SUð3Þ and SUð6Þ [t is the reduced temperature defined by
t ¼ ðT − TcÞ=Tc]. The horizontal bands denote the zero temper-
ature values. Updated version of the figure originally
presented in [76].

1Some caution is only needed for temperatures slightly above
deconfinement, since the introduction of an imaginary θ term
increases the critical temperature [45,46].
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the θ-dependence properties, thus χ and b2n, appear almost
temperature independent, up to an abrupt change across the
finite-temperature deconfinement transition. Then, in the
high-temperature phase the θ dependence turns out to be
that predicted by DIGA, with b2n not depending on N.
Finally, this paper also reports a study of the large-N θ

dependence of the 2D CPN−1 models, whose leading
behavior can be computed analytically. The results confirm
the predicted large-N scaling behaviorb2n ≈ b̄2nN−2n for the
coefficients of the expansion of the ground-state energy
around θ ¼ 0.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Francesco
Bigazzi and Haris Panagopoulos. Numerical simulations
have been performed on the Galileo machine at CINECA
(under INFN project NPQCD), on the CSN4 cluster of the
Scientific Computing Center at INFN-PISA and on GRID
resources provided by INFN.

APPENDIX A: COOLING AND GRADIENT FLOW

It was shown in [62] that cooling and the gradient flow
with Wilson action give identical results for the topological
charge when the number of cooling steps nc is related to the
dimensionless flow time τ by the relation nc ¼ 3τ. This
relation was explicitly verified by simulation in SUð3Þ
gauge theory and it was later extended to improved gauge
actions [65]. During the early stages of this work we
numerically verified on a subsample of configurations that,
as theoretically expected, the same relation holds true also
in the SUð6Þ case. An example of the comparison between
the two methods is reported in Fig. 12, which displays some
generic features: in SUð6Þ the topological charge is much
more stable than in SUð3Þ, to reach a plateau of QL around
100 cooling steps are needed, for very prolonged smooth-
ing both cooling and gradient flow evolutions tunnel to the
topologically trivial configuration and the tunneling typi-
cally happens first for the gradient flow.

APPENDIX B: PARALLEL TEMPERING IN θ

Parallel tempering [77], also know as replica exchange
Monte Carlo, is the most widely used variant of the
simulated tempering algorithm [78] and was originally
introduced to speed up simulations of spin glasses. In this
Appendix we report the results of some tests performed to
investigate the effectiveness of parallel tempering to reduce
the autocorrelation of the topological charge in SUð6Þ.
Parallel tempering is typically used in systems with

complicated energy landscapes to reduce the autocorrelation
times. The original idea is to perform standard simulations at
various temperatures (with higher temperatures decorrelat-
ing faster than the lower ones) and once in a while try to
exchange the configurations at different temperatures with a
Metropolis-like step, that guarantees the detailed balance
and hence the stochastic exactness of the algorithms. In this
way the quickly decorrelating runs “feed” the slow ones and
autocorrelations are drastically reduced.
For the case of gauge theories the first natural choice

would be to use parallel tempering between runs at different
β values, with the runs at large values of β playing the role
of the slowly decorrelating ones. Although from a theo-
retical point of view this should work, one is faced with an
efficiency problem: in order for the exchanges to be
accepted with reasonable probability the β values have
to be close to each other, in fact closer and closer as the
volume is increased, thus making the algorithm not
convenient apart from extreme cases. See, e.g., Ref. [73]
for applications to the 2D CPN−1 models. This is the reason
why alternative procedures have been proposed to work
with different β values, that are closer in spirit to the idea of
multilevel simulations; see, e.g., [79].
Since we are using simulations at nonvanishing values of

the θ angle, an alternative possibility is to perform the switch
step of the parallel tempering between runs at different θL
values [41,80]. In this case there are no “fast” and “slow”
runs, but since the mean values of the topological charge are
different for different θL values, the switch step character-
istic of the parallel tempering is expected to effectively
increase the tunneling rate of the topological charge.
As a test bed for the parallel tempering in θL we used

SUð6Þ with coupling β ¼ 25.056 and θL values from −10
to 10 with ΔθL ¼ 2. Using the standard algorithm
described in Sec. II A the autocorrelation time of the square
of the topological charge is around 100 measures (with one
measure every ten updates) and we tried two different
exchange frequencies in the parallel tempering: in the run
denoted by run 1 an exchange was proposed every four
measures, while in run 2 it was proposed every 40
measures; in both the cases the proposed switch was
accepted with a probability of about 70%.
The autocorrelation times of Q2 for the different values

of θL and the various runs are shown in Fig. 13. As was to
be expected given the range of θL used in the parallel
tempering, small θL runs decorrelate faster than the ones
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FIG. 12. Comparison of cooling and gradient flow evolutions
for two SUð6Þ configurations.
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with large θL, and in all the cases an important decrease of
τQ2 is observed, that is more significant for the case of run
1, in which exchanges were proposed at higher rate than in
run 2. In the best case the autocorrelation time was reduced
by around an order of magnitude with respect to the
standard runs.
With respect to the single run at θL ¼ 0 this reduction of

τQ2 is however not sufficient to compensate for the CPU
time required to perform the update of the 11 replicas used
in the parallel tempering, since simulations at nonvanishing
θL values are about 2.5 more time consuming than
simulation at θL ¼ 0.

On the other hand, the idea of the method of analytic
continuation in θ for computing the b2n coefficients is
exactly to use several θL values anyway, so that one can still
hope to have an efficiency gain. This is however not the
case: the simulations performed at different θL values are
obviously correlated in the parallel tempering and, taking
this correlation into account, no gain is apparently obtained
by using the parallel tempering in the computation, e.g.,
of b2.
A possible explanation of this result (i.e. strong reduction

of the autocorrelation for the single θL run and strong
correlation between different θL runs) is the following.
While on average the lattice operator QL is obviously
related to the operator Q, the specific form of their UV
fluctuations can be different and are larger, in particular, for
QL. As a consequence, the Metropolis test for the exchange
of configurations, which is solely based on QL, could be
easier, but then not accompanied by a fast decorrelation of
the global topological content Q after the exchange, which
would proceed with a decorrelation time likely comparable
with the τQ2 of the standard simulation. If this interpretation
is correct, then the observed reduction of the autocorrela-
tion times at fixed θL is just a consequence of the
reshuffling of the configurations induced by the exchanges,
which are very frequent due to the largest UV fluctuations
of QL. The update of the global information contained in
the time histories at different θL values, which is the one
used in the global fit, suffers instead from the usual
autocorrelation problems.
One possibility, in order to improve the performance of

the parallel tempering algorithm, could be to adopt an

TABLE II. SUð4Þ data. String tension data from [70]. Autocorrelation times of the square of the topological charge are expressed in
unit of measurements (one measure every ten updates; see Sec. II A for more details on the update) and have been evaluated using the
blocking method.

β L=a a
ffiffiffi
σ

p
τQ2 Z a4χ χ=σ2 b2 b4

10.720 12 0.2959(14) 0.80(5) 0.09828(26) 2.296ð11Þ × 10−4 0.02995(58) −0.01628ð62Þ −0.00065ð26Þ
10.816 12 0.2642(7) 1.6(1) 0.11231(49) 1.4152ð72Þ × 10−4 0.02905(34) −0.01658ð79Þ 0.00022(26)
10.912 12 0.2368(6) 2.5(5) 0.12586(66) 8.971ð67Þ × 10−5 0.02853(36) −0.01617ð67Þ −0.00010ð14Þ
11.008 14 0.2160(8) 6.0(5) 0.13792(88) 6.044ð48Þ × 10−5 0.02776(47) −0.01526ð84Þ 0.00002(19)
11.104 16 0.1981(5) 14(1) 0.1518(14) 4.129ð62Þ × 10−5 0.02681(48) −0.0167ð11Þ −0.00020ð23Þ
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θL
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τ Q
2
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FIG. 13. Autocorrelation times (in units of measure) of the
square of the topological charge for the standard run and for the
two tests with parallel tempering. In run 1 an exchange was
proposed every four measures, while in run 2 it was proposed
every 40 measures.

TABLE III. SUð6Þ data. Most of the string tension data came from [70], these denoted by * from [84]. Autocorrelation times of the
square of the topological charge are expressed in unit of measurements (one measure every 10 updates, see Sec. II A for more details on
the update) and have been evaluated using the blocking method.

β L=a a
ffiffiffi
σ

p
τQ2 Z a4χ χ=σ2 b2 b4

24.500 12 0.3420(19)* 1.8(2) 0.08338(25) 3.870ð12Þ × 10−4 0.02828(63) −0.01030ð92Þ 0.00008(60)
24.624 10 0.3239(8) 4.2(3) 0.09386(54) 2.654ð13Þ × 10−4 0.02412(27) −0.0096ð10Þ 0.00011(31)
24.768 12 0.2973(5) 11(1) 0.10278(73) 1.856ð13Þ × 10−4 0.02375(23) −0.0056ð13Þ 0.00009(42)
24.845 12 0.2801(13)* 22(3) 0.10832(78) 1.545ð11Þ × 10−4 0.02509(50) −0.0049ð11Þ −0.00006ð32Þ
25.056 12 0.2534(6) 80(10) 0.11822(85) 9.770ð68Þ × 10−5 0.02370(28) −0.0047ð10Þ −0.00004ð23Þ
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improved discretization ofQL, e.g., a smeared definition of
the topological charge density, such as those considered in
Refs. [81,82]; this would require to abandon the heat-bath
and overrelaxation algorithms in favour of a hybrid
Monte Carlo approach [83]. However, it is not clear a priori
whether that would result in an improvement of the global
decorrelation properties, i.e. in a final net gain, or rather in a
deterioration of the autocorrelation time for the single

trajectory at fixed θL, because of the rarer configuration
reshuffling.

APPENDIX C: NUMERICAL DATA

In Tables II and III we report the data obtained for SUð4Þ
and SUð6Þ, respectively, at the different values of the
coupling studied, together with the values of the string
tension used in the analysis.
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