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Two-point correlation function of three-dimensional O„N… models:
The critical limit and anisotropy

Massimo Campostrini, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari
Dipartimento di Fisica dell’Universita` and INFN, I-56126 Pisa, Italy

~Received 9 May 1997; revised manuscript received 9 September 1997!

In three-dimensionalO(N) models, we investigate the low-momentum behavior of the two-point Green’s
functionG(x) in the critical region of the symmetric phase. We consider physical systems whose criticality is
characterized by a rotationally invariant fixed point. Several approaches are exploited, such as strong-coupling
expansion of latticeN-vector model, and 1/N expansion, field-theoretical methods within thef4 continuum
formulation. Non-Gaussian corrections to the universal low-momentum behavior ofG(x) are evaluated, and
found to be very small. In nonrotationally invariant physical systems withO(N)-invariant interactions, the
vanishing of the spatial anisotropy approaching the rotationally invariant fixed point is described by a critical
exponentr, which is universal and is related to the leading irrelevant operator breaking rotational invariance.
At N5` one findsr52. We show that, for all values ofN>0, r.2. @S1063-651X~98!03301-7#

PACS number~s!: 64.60.Fr, 05.70.Jk, 75.10.Hk, 75.40.Cx
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I. INTRODUCTION

Three-dimensionalO(N) models describe many impor
tant critical phenomena in nature. The statistical propertie
ferromagnetic materials are described by the caseN53,
where the Lagrangian field represents the magnetization.
helium superfluid transition, whose order parameter is
complex quantum amplitude of helium atoms, correspond
N52. The caseN51 ~i.e., Ising-like systems! describes
liquid-vapor transitions in classical fluids or critical bina
fluids, where the order parameter is the density.O(N) mod-
els in the limit N→0 describe the statistical properties
long polymers.

The critical behavior of the two-point correlation functio
G(x) of the order parameter is relevant in the description
critical scattering observed in many experiments, typica
neutron scattering in ferromagnetic materials, light and
rays in liquid-gas systems, etc. In Born’s approximation
cross sectionG f i for incoming particles~i.e., neutrons or
photons! of momentumpi and final outgoing momentumpf
is proportional to the componentk5pf2pi of the Fourier
transform ofG(x):

G f i}G̃~k5pf2pi !. ~1!

As a consequence of the critical behavior of the two-po
function G(x) at Tc ,

G̃~k!;
1

k22h
, ~2!

the cross section fork→0 ~forward scattering! diverges as
T→Tc . When strictly at criticality the relation~2! holds at
all momentum scales. In the vicinity of the critical poi
where the relevant correlation lengthj is large but finite, the
behavior ~2! occurs forL@k@1/j, where L is a generic
cutoff related to the microscopic structure of the statisti
system, for example, the inverse lattice spacing in the cas
571063-651X/98/57~1!/184~27!/$15.00
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lattice models. At low momentum,k!1/j, experiments
show thatG(x) is well approximated by a Gaussian beha
ior,

G̃~0!

G̃~k!
.11

k2

MG
2 , ~3!

whereMG;1/j is a mass scale defined at zero moment
~for a general discussion see, e.g., Ref.@1#!.

In this paper we will consider three-dimensional syste
with anO(N)-invariant Hamiltonian in the symmetric phas
where theO(N) symmetry is unbroken. We will study th
two-point correlation function of the order parameter, t
Lagrangian field, focusing mainly on its low-momentum b
havior. We will estimate the deviations from Eq.~3!. We will
focus on two quite different sources of deviations:

~i! Scaling corrections to Eq.~3!, depending on the ratio
k2/MG

2 , and reflecting the non-Gaussian nature of the fix
point.

~ii ! Nonrotationally invariant scaling violations, reflectin
a microscopic anisotropy in the space distribution of t
spins. This phenomenon may be relevant, for example, in
study of ferromagnetic materials, where the atoms lie on
sites of a lattice giving rise to a spatial anisotropy which m
be observed in neutron-scattering experiments. In these
tems the anisotropy vanishes in the critical limit, andG(x)
approaches a rotationally invariant form. It should be notic
that this phenomenon is different from the breakdown of
O(N) symmetry in the interaction, which has been wide
considered in the literature@2#.

In our study of the critical behavior of the two-point func
tion of the order parameterG(x) we will consider several
approaches. We analyze the strong-coupling expansion
G(x),

G~x![^sW~x!•sW~0!&, ~4!

for the lattice N-vector @O(N) nonlinear s] model with
nearest-neighbor interactions
184 © 1998 The American Physical Society
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SL52Nb (
links ^xy&

sWx•sWy , ~5!

which we have calculated up to 15th order on the sim
cubic lattice and 21st order on the diamond lattice. We a
perform a detailed study using the 1/N expansion, whose
results, beside clarifying physical mechanisms, are also
ful as benchmarks for the strong-coupling analysis. Mo
over we compute the first few nontrivial terms of thee ex-
pansion and of theg expansion~i.e., expansion in the four
point renormalized coupling at fixed dimensiond53) of the
two-point function for the correspondingf4 continuum for-
mulation ofO(N) models:

Lf45
1

2
]mf~x!]mf~x!1

1

2
m0

2f21
1

4!
g0~f2!2. ~6!

We recall that theN-vector model and thef4 model with the
same internal symmetryO(N) describe the same critical be
havior. By universality our study provides information on t
behavior of the physical systems mentioned above in
critical region of the high-temperature phase. A short rep
of our study can be found in Ref.@3#.

The first systematic study of the critical behavior ofG(x)
is due to Fisher and Aharony@1,4,5#. They computedG(x)
in the e expansion up to termsO(e2) @4# and in the large-N
expansion to order 1/N @5#; moreover some estimates of th
non-Gaussian corrections forN51 andN53 were derived
from strong-coupling series for various lattices@4,6#. Their
calculations confirmed experimental observations that n
Gaussian corrections are small in the low-momentum reg

In this paper we reconsider the problem of calculating
two-point functionG(x) in the low-momentum regime usin
the different approaches we mentioned above. We show
the low-momentum expansion aroundk250 of the scaling
two-point function provides a very good approximation in
relatively large range of momenta, up touku&3MG .

We compute the expansion of the scaling two-point fu
tion and of its low-momentum expansion up to four loop
O(g4), in fixed dimensiond53 and we extend the results o
Ref. @4# by calculating the next three-loop termO(e3). We
improve earlier strong-coupling calculations concerning
low-momentum expansion ofG(x). This is achieved essen
tially for two reasons: longer strong-coupling series a
available, and, more importantly, we consider improved
timators that allow more stable extrapolations to the criti
limit. The results of the various approaches are reason
consistent among each other: theg expansion and the analy
sis of the strong-coupling series provide in general the m
precise estimates, together with the 1/N expansion forN
*16. Thee expansion is somewhat worse but still cons
tent, perhaps because of the limited number of terms~one
term less than in theg expansion!.

We also discuss the spatial anisotropy inG(x) induced by
the lattice structure. For the class of systems we consi
G(x) becomes rotationally invariant at criticality: whe
b→bc , so thatMG→0, the anisotropic deviations vanish a
MG

r , wherer is a universal critical exponent. From a field
theoretical point of view, the spatial anisotropy is due
nonrotationally invariantO(N)-symmetric irrelevant opera
tors in the effective Hamiltonian, whose presence depe
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essentially on the symmetries of the physical system or
the lattice formulation. The exponentr is related to the criti-
cal effective dimension of the leading irrelevant opera
breaking rotational invariance. Ond-dimensional lattices
with cubic symmetry the leading operator has canonical
mensiond12. In the large-N limit, where the canonical di-
mensions determine the scaling properties, one findsr52
with very small O(1/N) corrections. A strong-coupling
analysis supported by a two-loope expansion and three-loo
g expansion computation indicate thatr remains close to its
canonical value for allN>0, with deviations of approxi-
mately 1% for small values ofN. It should be noted that the
exponentr, which controls the recovery of rotational invar
ance, is different fromv, the leading subleading exponen
since they are related to different irrelevant operators. T
means—and this may be of relevance for numeri
calculations—that the recovery of rotational invariance is u
related to the disappearance of the subleading correct
controlled byv: in practice, asr'2 while 0.8&v&1 @2,7#
(v.0.80 forN50,1,2,3), rotational invariance is recovere
long before the scaling region.

We also investigated the recovery of rotational invarian
in two-dimensional models. On the square lattice, forN51
~Ising model! andN>3, we show thatr52. This leads us to
conjecture thatr52 holds exactly for all two-dimensiona
models on the square lattice. Similarly we conjecture thar
54 ~r53) are the exact values of the exponents for
triangular ~honeycomb! lattice. A Monte Carlo and exact
enumeration study@8# for N50 on the square lattice is con
sistent with this conjecture. We should mention that our
sults on the spatial anisotropy are also relevant in
discussion of the linear response of the system in presenc
an external~anisotropic! field.

The paper is organized as follows: In Sec. II we fix t
notation and introduce a general parametrization ofG(x)
that includes the off-critical and nonspherical dependence
Sec. III we analyze the critical behavior ofG(x) at low
momentum. We present calculations based on various
proaches: 1/N expansion@up toO(1/N)], g expansion@up to
O(g4)], e expansion@up to O(e3)], and an analysis of the
strong-coupling expansion ofG(x) on the cubic and dia-
mond lattice. In Sec. IV the anisotropy ofG(x) is studied in
the critical region. We present large-N andO(1/N) calcula-
tions on various lattices, and a strong-coupling analysis
some nonspherical moments ofG(x) on cubic and diamond
lattices. Again, the analysis of the first nontrivial terms of t
g expansion and thee expansion is presented. Anisotropy
G(x) is also studied in two-dimensionalO(N) models. In
Appendix A we present some details of ourO(1/N) calcula-
tions. In Appendix B we present the 15th-order stron
coupling expansion of the two-point function on the cub
lattice for selected values ofN. In Appendix C we report the
21st-order strong-coupling series of the magnetic suscept
ity and of the second moment ofG(x) on the diamond lattice
for N51,2,3.

II. THE TWO-POINT GREEN’S FUNCTION

A. Hypercubic lattices

In this section we discuss the general behavior of the tw
point spin-spin correlation function in latticeO(N) models.
We consider a generic Hamiltonian defined on a hypercu
lattice,
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H52(
x,y

J~x2y!sWx•sWy , ~7!

where the sum runs over all lattice sites. Below we w
extend our analysis to other lattices. Let us define

k̄ 2~k!52@ J̃ ~k!2 J̃ ~0!#, ~8!

where J̃ (k) denotes the Fourier transform ofJ(x). In spite
of the notation, we are not assuming thatk̄ 2(k) is a sum of
the type(m f (km). We consider models for which, by a sui
able normalization of the inverse temperatureb,

k̄ 2~k!5k21O~k4!, ~9!

so that the critical limit is rotationally invariant. Moreove
we make the following assumptions:~1! The interactionJ(x)
is short ranged so thatk̄ 2 is continuous;~2! the function
J(x) ~and thus alsok̄ 2) is invariant under all the symmetrie
of the lattice; ~3! the interaction is ferromagnetic, so th
k̄ 250 only for k50 in the Brillouin zone.

Besides the leading~universal! rotationally invariant criti-
cal behavior, we are interested in understanding the effec
the lattice structure on the two-point function and the rec
ery of rotational invariance. For this reason, our analy
must take into account the irrelevant operators, which br
rotational invariance. It is natural to expandk̄ 2(k) in multi-
poles by writing

k̄ 2~k!5(
l 50

`

(
p51

pl

e2l
~p!~k2! Q2l

~p!~k!. ~10!

Here the functionsQ2l
(p)(k) are multipole combinations

which are invariant under the symmetries of the lattice. Th
expressions can be obtained from the fully symmetric tra
less tensors of rank 2l , T2l

a1•••a2l(k) @9,10#, by considering all
the cubic-invariant combinations, which can be obtained
setting equal an even number of indices larger than or e
to four and then summing over them. Odd-rank terms
absent in the expansion~10! because of the parity symmetr
x→2x. Moreover, there is no rank-two term, i.e.,Q2(k)
50, due to the discrete rotational symmetry of the latti
The summation overp in Eq. ~10! is due to the fact that, for
given l , there are in general many multipole combinatio
that are cubic invariant@11#. For notational simplicity, we
will suppress the explicit dependence onp in all the follow-
ing formulas, but the reader should remember that it is
derstood in the notation.

Let us give the explicit expressions ofQ2l
(p)(k) for the first

few values ofl . We setQ0(k)[1. For l 52 there is only one
invariant combination, i.e.,p251, which can be derived
from

T4
abgd~k!5kakbkgkd2

k2

~d14!
Permabgd~dabkgkd!

1
~k2!2

~d12!~d14!
Permabgd~dabdgd!, ~11!
l
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where Perma1 . . . an
(•••) indicates the sum of the nontrivia

permutations of its arguments. One then defines

Q4~k!5(
m

T4
mmmm5k42

3

d12
~k2!2, ~12!

where the notationkn[(mkm
n is used. Forl 53, p351 for all

d.2. From the rank-six tensorT6
mnabgd(k) one finds

Q6~k!5(
m

T6
mmmmmm~k!5k62

15k2k4

d18
1

30~k2!3

~d14!~d18!
.

~13!

In d52 it is easy to verify thatQ6(k)50 so thatp350. For
l 54 andd.3 two differentQ8

(p)(k) can be extracted from
the corresponding tensorT8

a1 •••a8: Q8
(1)(k)5(mT8

mmmmmmmm

andQ8
(2)(k)5(mnT8

mmmmnnnn . Whend52,3 the two combi-
nations are not independent. IndeedQ8

(2)52Q8
(1) so thatp4

51. Higher values ofl can be dealt with similarly.
In order to study the formal continuum limit of the Hami

tonian defined in Eq.~7!, we expande2l(k
2) in powers ofk2.

We write ~the sum over different multipoles with the sam
value of l being understood in the notation!

k̄ 2~k!5(
l 50

`

(
m50

`

e2l ,m ~k2!mQ2l~k!, ~14!

wheree0,0[0 ande0,1[1. Inserting back in Eq.~7! one sees
that Eq.~14! represents an expansion in terms of the irr
evant operators

O2l ,m~x!5sW~x!•hmQ2l~]!sW~x!, ~15!

whereh[(m]m
2 . The leading operator that breaks rotation

invariance is the four-derivative term

O4~x![O4,0~x!5sW~x!•Q4~]!sW~x!, ~16!

which has canonical dimensionsd12.
Let us now consider the Green’s function

G~x;b![^sW0•sWx&, ~17!

and its Fourier transformG̃(k;b). We define a zero-
momentum mass scaleMG(b) by

MG~b![
1

jG~b!
, ~18!

wherejG(b) is the second-moment correlation length

jG
2 ~b!5

1

2d

(xuxu2G~x;b!

(xG~x;b!
. ~19!

Since there is a one-to-one correspondence betweenMG(b)
and b, one may considerG̃(k;b) as a function ofMG(b)
instead ofb. Indeed, for the purpose of studying the critic
limit, it is natural to considerG̃(k;b) as a function ofk and
MG . In complete analogy to our discussion ofJ̃ (k), we
analyze the behavior ofG̃(k,MG) in terms of multipoles
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@again a sum over different multipole combinations with t
same value ofl is understood, see Eq.~10!#:

G̃21~k,MG!5(
l 50

`

g2l~y,MG!Q2l~k!, ~20!

wherey5k2/MG
2 . Notice thatQ2l(k)5Q2l(k/MG)MG

2l .
For the purpose of studying the universal properties of

critical limit of G(x), in which MG→0 keepingk/MG fixed,
it is important to understand the behavior of the functio
g2l(y,MG) when MG→0. The naive limit does not exist
However, as long as the contributions toG̃21(k,MG) are
originated by the insertion of individual~irrelevant! opera-
tors without any mixing among different operators with t
same symmetry properties, one can apply standard resu
renormalization theory. In this case one can establish s
universal properties. For a generic choice ofJ̃ (k) this holds
only for the functionsg0(y,MG) andg4(y,MG). Indeed for
higher values ofl there are mixings among different oper
tors that make the renormalization of the functio
g2l(y,MG) more complicated. Consider, for instance, t
casel 53 in the large-N limit, where the operators have ca
nonical dimensions. In this case terms proportional toQ4(k)
are depressed asMG

2 , while terms proportional toQ6(k) are
depressed asMG

4 . However, it is easy to see that the mul
pole decomposition ofQ4(k)2, which is also depressed a
MG

4 , contains a term of the formk2Q6(k). This means that
there are two operators contributing tog6(k,MG), O4,0(x)2,
andO6,0(x). An analogous argument applies to higher valu
of l . Notice that for the particular case ofl 53 the mixing
should disappear in the limity→0: thus for MG→0
g6(0,MG) can be directly related to the renormalizatio
properties of the operatorO6,0(x).

For l 50 and l 52 standard results of renormalizatio
theory show that, ifZ2l(MG)[g2l(0,MG), the following
limit exists:

lim
MG→0

g2l~y,MG!

Z2l~MG!
5ĝ2l~y!, ~21!

where ĝ2l(y) is a smooth function, which is normalized s
that ĝ2l(0)51. The functionĝ2l(y) is universal in the sens
that it is independent of the specific Hamiltonian.

The functionĝ4(y) can also be obtained by considerin
the linear response of the system to an external field poss
ing the corresponding symmetry properties. One consid
the one-particle irreducible two-point function with an inse
tion of a O2l ,0(x) operator at zero momentum, i.e.,

GO2l
~x,MG![E dz ^O2l ,0~z! sW~0!•sW~x!& irr ~22!

and the corresponding Fourier transformG̃O2l
(k,MG). Set-

ting

Z̄2l~MG![ lim
k→0

G̃O2l
~k,MG!

Q2l~k!
, ~23!

the following limit exists
e

s

in
e

s

ss-
rs

lim
MG→0

G̃O2l
~k,MG!

Z̄2l~MG!
5ĝ2l~y!Q2l~k!. ~24!

For l 52 the function defined by the previous equation co
cides with that defined in Eq.~21!; moreover forMG→0,
Z4(MG)/ Z̄4(MG) is a finite ~nonuniversal! constant, mean-
ing that both quantities have the same singular behavior
MG→0. For higher values ofl , formula ~24! still holds, but
there is no easy relation betweenĝ2l(y) and g2l(y,MG) as
defined in Eq.~20!, at least for generic Hamiltonians. Indee
at least in principle, one may consider specific forms ofJ̃ (k)
enjoying the property that all contributionsg2n(k,MG) with
0,n, l̄ vanish in the critical limit, for a given value ofl̄ .
In lattice quantum field theory this is essentially the spirit
Symanzik’s improvement program@14#. In this case formula
~21! is valid for l 5 l̄ and the corresponding functionĝ2l(y)
coincides with that defined by Eq.~24!.

The functionsĝ2l(y) defined in Eq.~24! have a regular
expansion iny aroundy50:

ĝ2l~y!511c2l ,1y1c2l ,2y
21•••. ~25!

c0,151 due to the definition of the second-moment corre
tion length.

The renormalization constantZ̄2l(MG) is instead nonuni-
versal. ForMG→0 it behaves as

Z̄2l~MG!' z̄2lMG
2h2l , ~26!

whereh2l is a critical exponent that depends only on the s
of the representation@i.e., it does not depend on the add
tional indexp which has always been understood in the n
tation, see Eq.~10!#, and z̄2l is a nonuniversal constant tha
depends on the lattice and on the Hamiltonian~and the ad-
ditional index p). An analogous expression is valid fo
Z4(MG) ~and forZ2 l̄ for the special Hamiltonians we hav
discussed before!: for MG→0 we haveZ4(MG)'z4MG

2h4 .
For l 50, as a consequence of our definitions,Z0(MG)
;MG

22h , whereh is the standard anomalous dimension
the field. More generallys2l[h2h2l is the anomalous di-
mension of the irrelevant operatorO2l ,0(x).

In two dimensions and forN>3 the renormalization con
stants diverge only logarithmically and thus we write forl
Þ0

Z̄2l~MG!' z̄2l~ ln MG!g2lF11OS 1

ln MG
D G . ~27!

The anomalous dimensionsg2l are universal while the pref
actor z̄2l depends on the details of the interaction.

We can now discuss the critical limit of Eq.~20!. Using
the previous formulas we can write forMG→0

G̃21~k,MG!

Z0~MG!
'ĝ0~y!1r.i.s.1

z4

z0
MG

21h2h4ĝ4~y!Q4~k/MG!

1•••, ~28!
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where r.i.s. indicates rotationally invariant subleading corr
tions and the dots stand for terms that vanish faster
MG→0. From Eq.~28! one immediately convinces onese
that the anisotropic effects inG(x) vanish forMG→0 asMG

r

wherer is a universal critical exponent given by

r521h2h4 . ~29!

We must notice that the exponentr is not related to the
exponentv, which characterizes the critical behavior of th
‘‘rotationally invariant subleading’’ terms that vanish a
MG

v , as they are connected to different~rotationally invari-
ant! irrelevant operators. Finally notice that the leading te
breaking rotational invariance is universal apart from a m
tiplicative constant, the factorz4 /z0.

Let us now consider the small-momentum limit in whic
y→0, keepingMG fixed. In this case one can write forl
50,2 ~or in the special case we have discussed above fl

50, l̄ )

g2l~y,MG!5 (
m50

`

u2l ,m~MG!ym. ~30!

By comparing this expansion with Eq.~25! and using Eq.
~21!, one recognizes that

Z2l~MG!5u2l ,0~MG!, ~31!

and

c2l ,m5 lim
MG→0

u2l ,m~MG!

u2l ,0~MG!
. ~32!

In the following sections we will use this formula to deriv
estimates forc2l ,m . Indeed the functionsu2l ,m(MG) can be
determined by computing dimensionless invariant ratios
moments ofG(x;b):

q2l ,m~b!5(
x

~x2!mQ2l~x!G~x;b!. ~33!

It is interesting to notice that the expansion~28! implies
some universality properties for some ratios ofq2l ,m . It is
easy to verify that

R4,m,n~b!5
q0,n~b!q4,m~b!

q0,m~b!q4,n~b!
~34!

is universal forT→Tc ; indeed the constantz4 /z0 drops out
in the ratio. Notice that this means not only thatR4,m,n does
not depend on the particular Hamiltonian, but also that i
independent of the lattice structure as long asO4,0(x) is the
leading operator breaking rotational invariance.

B. Other regular lattices

All the considerations of the previous subsection can
extended without changes to other lattices with cubic sy
metry, such as the bcc and the fcc lattices. For other Bra
lattices the same general formulas hold, but different mu
pole combinations will appear in the expansion, according
the symmetry of the lattice. In general a larger number
-
s

l-

f

s

e
-
is

i-
o
f

multipole combinations with given spin appear when cons
ering lattices with a lower symmetry. It is important to notic
that in order to have a rotationally invariant critical limit n
multipoleQl(k) with l 52 should appear in the expansion
the Hamiltonian. Thus our considerations apply directly on
to highly symmetric lattices with a tetrahedral or larger d
crete rotational group. Indeed, if the term associated w
Q2(k) appears in the multipole expansion of the Ham
tonian, and therefore ofG̃21(k,MG), the critical limit is not
rotationally invariant. However, it is always possible
eliminate such terms with an anisotropic change of the len
scales@12,13#. Thus one can apply our analysis also to th
case, provided one changes appropriately the physical m
ing of Q4(k).

As an example of a non-cubic-symmetric lattice let
consider the two-dimensional triangular lattice. It is invaria
under rotation ofp/3. The relevant multipoles are

T6l~k!5~2k2!3l cos~6lu!5 (
m50

3l S 6l
2mD ky

2m~ ikx!
6l 22m,

~35!

where we have setkx5ukucosu, ky5ukusinu, and we have
assumed one of the generators of the lattice to be paralle
the x axis. Thus in this case we write

k̄ 2~k!5(
l 50

`

T6l~k!e6l~k2!, ~36!

and a similar expression for the expansion of the two-po
function. For the triangular lattice the first operator th
breaks rotational invariance has dimensiond14. This is a
consequence of the fact that the triangular lattice has a la
symmetry group with respect to the square lattice. We de
moments corresponding toT6l(k) by

t6l ,m~b!5(
x

~x2!mT6l~x!G~x;b!. ~37!

The arguments given in the previous subsection can be
eralized to the triangular lattice in a straightforward wa
One derives an expansion of the form~28! with r541h
2h6, T6(k/MG) and ĝ6(y) substituting Q4(k/MG), and
ĝ4(y).

C. Non-Bravais lattices

Up to now we have considered regular~Bravais! lattices.
However, other important lattice structures are represen
by lattices with basis. Particular examples are the hon
comb lattice in two dimensions and the diamond lattice
three dimensions. These lattices are generically defined
the set of pointsxW such thatxW5xW81phW p and xW85( i l ihW i ,
wherehW p is the so-called basis vector joining the two poin
of the basis, andhW i are the generators of the underlyin
regular lattice. Herep50,1 andl iPZ. For the honeycomb
lattice hW i are the generators of a triangular lattice while f
the diamond latticehW i are the generators of a fcc lattice. Du
to the breaking of translational invariance one distinguis
between correlations between points with the same valu
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p ~i.e., points belonging to the same regular lattice! and
points with differentp. In general the componentsGpp8 of
the two-point correlation function can be written in the for

G00~x2y!5G11~x2y!5E dk

VB
eik~x2y!

1

D~k,MG!
~38!

and

G01~x2y!5G10~y2x!5E dk

VB
eik~x2y!

H~k,MG!

D~k,MG!
,

~39!

where the integrals are performed over the Brillouin zone
the corresponding underlying regular lattice,VB being its
volume.G11(x) and thereforeD(k,MG) have the symmetries
of the underlying regular lattice and thus can be expande
in the first subsection. On the other hand,H(k,MG) does not
have the symmetry of the regular lattice, but only the
duced symmetry of the full lattice. For the Gaussian mo
with nearest-neighbor interactions defined on the honeyco
and diamond lattices~and also on theird-dimensional gen-
eralization!, it is easy to realize that, whenMG→0,

D~k,MG!→d@12uH~k,0!u2#1MG
2 , ~40!

andD(k,MG) turns out to be the inverse propagator for t
Gaussian theory defined on the corresponding regular lat

Because of the reduced symmetry, additional multipo
that are not parity invariant appear in the expansion
H(k,MG). In the case of the honeycomb lattice the symm
try of the triangular lattice is reduced tou→u1 2p/3. As-
suming that one of the links leaving a site is parallel to thx
axis, one can write

H~k,MG!5(
l 50

`

T3l~k!h3l~y,MG!, ~41!

where we have extended the definition~35! to include odd
multipoles:

T3l~k!5~2k2!3l /2 cos~3lu!5 (
m50

3l /2 S 3l
2mD ky

2m~ ikx!
3l 22m.

~42!

The factor i in this equation ensures that the functio
h3l(y,MG) are real for alll .

For the diamond lattice one can write

H~k,MG!5(
l 50

`

(
p51

pl

Ql
~p!~k!hl

~p!~y,MG!, ~43!

whereQl
(p)(k) are multipoles constructed fromTl

a1 •••a l as in
the case of the cubic lattices. The only difference is that n
odd-spin operators are allowed, belonging to the class

Q2l 13~k!5 ik1k2k3Q2l~k!, ~44!

where we have assumed the natural orientation of the un
lying fcc lattice.

For these lattices, it is not straightforward to make cont
with the field-theoretical approach. The problem is writi
f

as

-
l
b

e.
s
f
-

w

er-

t

down operators in the effective Hamiltonian that break
parity symmetry. These operators must have an odd num
of derivatives, but, if they are bilinear in a real fieldf, they
give after integration only boundary terms. The solution
this apparent puzzle comes from the fact that the effec
Hamiltonian for models on lattices with basis is natura
written down in terms of two fields, defined on the two reg
lar sublattices.

As in the regular lattice case, we can associate to
breaking of the parity symmetry a universal exponentrp . In
principle it can be derived from the critical dimension of th
lower-dimensional operator breaking this symmetry. From
practical point of view it is simpler to consider moments
G(x). For the diamond lattice one definesrp from the be-
havior, for MG→0, of the odd momentsq3,m(b), i.e.,

q3,m~b!

q0,0~b!
;MG

2322m1rp . ~45!

The same formula applies to the honeycomb lattice with
obvious substitutions,q0,0→t0,0, q3,m→t3,m .

III. CRITICAL BEHAVIOR OF G„x…

AT LOW MOMENTUM

A. Parametrization of the spherical limit of G„x…

at low momentum

According to the discussion presented in the previous s
tion, in the critical limit multipole contributions are de
pressed by powers ofMG , hence forb→bc ,

G̃~0;b!

G̃~k;b!
→ĝ0~y!, ~46!

where, again,y5k2/MG
2 . As stated in Eq.~25!, ĝ0(y) can be

expanded in powers ofy aroundy50:

ĝ0~y!511y1(
i 52

`

ciy
i , ~47!

whereci[c0,i . For generalized Gaussian theoriesci50. As
discussed in Sec. II A the coefficientsci of the low-
momentum expansion ofĝ0(y) can be related to the critica
limit of appropriate dimensionless ratios of spherical m
mentsm2 j[q0,j or of the corresponding weighted momen

m̄2 j[
m2 j

m0
. ~48!

Introducing the quantities

v2 j5
1

2 j j ! ) i 50
j 21~d12i !

m̄2 jMG
2 j , ~49!

one may computeûi[u0,i /u0,0 @cf. Eq. ~30!# from the fol-
lowing combinations ofv2 j ,

û2512v4 , û35122v41v6 , ~50!
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etc. By definition, see Eqs.~32! and~47!, in the critical limit
ûi→ci .

Another important quantity that characterizes the lo
momentum behavior ofĝ0(y) is the critical limit of the ratio
M2/MG

2 ,

SM[ lim
b→bc

M2

MG
2 , ~51!

where M is the mass gap of the theory, that is the ma
determining the long-distance exponential behavior ofG(x).
The value ofSM is related to the negative zeroy0 of ĝ0(y),
which is closest to the origin byy052SM . The constantSM

is one in Gaussian models@i.e., whenĝ0(y)511y], as the
large-N limit of O(N) models.

Let us now consider the relation between the ze
momentum renormalization constant

ZG[xMG
2 5Z0

21MG
2 , ~52!

whereZ0 has been introduced in Eq.~21!, and the on-shell
renormalization constantZ, which is defined by

G̃~k!→
Z

M21k2 ~53!
e
f
t
r-

in
-

s

-

whenk→ iM . The mass gapM and the constantZ determine
the large-distance behavior ofG(x); indeed foruxu→`,

G~x!→
Z

2M S M

2puxu D ~d21!/2

e2M uxu. ~54!

The critical limit SZ of the ratioZG /Z is a universal quantity
given by

SZ5 lim
b→bc

ZG

Z
5

]

]y
ĝ0~y!uy5y0

. ~55!

In a Gaussian theoryZG5Z.

B. 1/N expansion

In the large-N limit the differenceĝ0(y)2(11y) is de-
pressed by a factor 1/N. It can be derived from the 1/N
expansion of the self-energy in the continuum formulatio
One finds@5,15#

ĝ0~y!511y1
1

N
f1~y!1OS 1

N2D , ~56!

where, ford53,
f1~y!5
2

pE0

`

dz
z

arctan~ 1
2 Az!

F 1

4Ayz
lnS y1z12Ayz11

y1z22Ayz11
D 2

1

z11
1

y~32z!

3~z11!3G . ~57!
d

in
-

A general discussion of theO(1/N) correction toĝ0(y) in d
dimensions is presented in Appendix A. The coefficientsci

of the low-momentum expansion ofĝ0(y) turn out to be very
small. Writing

ci5
ci

~1!

N
1OS 1

N2D , ~58!

one obtainsc2
(1)520.004 448 60,c3

(1)50.000 134 410,c4
(1)

520.000 006 5805,c5
(1)50.000 000 4003, etc. We hav

computedci
(1) up to i 525; a straightforward application o

the ratio method indicates that the convergence radius of
series( ici

(1)yi is yr.9. This is expected since the singula
ity closest to the origin should be the three-particle cutycut.
Assuming that no three-particle bound states exist, thenycut
529SM.29, in agreement with our findings.

For sufficiently largeN we then expect

ci!c2!1 for i>3. ~59!

As we shall see from the analysis of the strong-coupl
expansion ofG(x), the pattern~59! is verified also at low
values ofN.
he

g

We have also computedSM andSZ to O(1/N). Writing

S#511
S#

~1!

N
1OS 1

N2D , ~60!

one finds SM
(1)5f1(21)520.004 590 02, and

SZ
(1)5f18(21)50.009 328 94.

As expected from the relations~59! among the coeffi-
cientsci , a comparison with Eq.~58! shows that the non-
Gaussian corrections toSM andSZ are essentially determine
by the term proportional to (k2)2 in G̃21(k), through the
approximate relations

SM.11c2 , ~61!

SZ.122c2 , ~62!

with corrections ofO(c3).

C. g expansion in three dimensions

Another approach to the study of the critical behavior
the symmetric phase ofO(N) models is based on the so



d

hi

ap
A
.
o

a
r-

-

-

n-

57 191TWO-POINT CORRELATION FUNCTION OF THREE- . . .
called g expansion, the perturbative expansion at fixed
mensiond53 for the correspondingf4 continuum formula-
tion @16#. The perturbative series that are obtained in t
way are asymptotic; nonetheless accurate results can be
tained using a Borel transformation and a conformal m
ping, which take into account their large-order behavior.
general references on this method see, for instance, Refs@2#
and@17#. This technique has led to very precise estimates
the critical exponents.

Starting from the continuum action~6!, one renormalizes
the theory at zero momentum using the following renorm
ization conditions for the irreducible two- and four-point co
relation functions of the fieldf:

G~2!~p!ab5ZG
21GR

~2!~p! dab , ~63!
i-

s
ob-
-

s

f

l-

G~4!~0,0,0,0!abgd51ZG
22 g

3
MG dabgd , ~64!

where GR
(2)(p)5MG

2 1p21O(p4), and dabgd[dabdgd

1dagdbd1daddbg . When MG→0 the renormalized cou
pling constant is driven toward an infrared stable zerog* of
the b function b(g)[MG]g/]MGug0 ,L .

The universal functionĝ0(y) is related to the renormal

ized functionf (g,y)[MG
22GR

(2)(k) by ĝ0(y)5 f (g* ,y). We
computed the first three nontrivial orders of the no

Gaussian corrections toĝ0(y). A calculation up to four loops
gave
f ~g,y!511y1 ḡ2Zg
2ZG

N12

~N18!2 w2~y!1 ḡ3Zg
3ZG

3/2 N12

~N18!2 w3~y!1 ḡ4Zg
4ZG

2 N12

~N18!2 F ~N12!

~N18!2 w4,1~y!

1
~N216N120!

~N18!2 w4,2~y!1
~5N122!

~N18!2 w4,3~y!G1O~ ḡ5!, ~65!

where ḡ is the rescaled coupling@2# ḡ5(N18)g/48p, Zg is the renormalization constant of the coupling~defined byg0
5MGgZg)

Zg511 ḡ1F12
2~41N1190!

27~N18!2 G ḡ21O~ ḡ3!, ~66!

andZG is the zero-momentum renormalization of the field

ZG512
4~N12!

27~N18!2 ḡ21O~ ḡ3!. ~67!

A simple derivation of the two- and three-loop functionsw2(y) andw3(y) is presented in Appendix A@cf. Eqs.~A14!#. In
particular using the results of Refs.@18,19# one finds

w2~y!54 ln~11 1
9 y!124

arctan~Ay/3!

Ay
282

4

27
y. ~68!

We shall not report the expressions of the four-loop functionsw4,j (y) because they are not very illuminating.
The coefficients of the low-momentum expansion can be easily obtained from Eq.~66! by calculating the zero-momentum

derivatives of the functionswn, j (y). We write

ci5
N12

~N18!2 hi
~2! ḡ21

N12

~N18!2 ~2hi
~2!1hi

~3!! ḡ31
N12

~N18!2 H 2hi
~2!F12

8~7N132!

3~N18!2 G13hi
~3!1hi

~4,1!
~N12!

~N18!2

1hi
~4,2!

~N216N120!

~N18!2 1hi
~4,3!

~5N122!

~N18!2 J ḡ41O~ ḡ5!, ~69!
t
where we have introduced the coefficients

hi
~n, j !5

1

i !

di

dyi wn, j~y!uy50 . ~70!

In Table I we report the numerical values ofhi
(k, j ) for i<5.

The calculation ofSM andSZ to O( ḡ3) requires the values
of the functionsw2(y) andw3(y) and of their derivatives a
y521: w2(21)520.005 217 83, 2w2(21)1w3(21)5
20.000 282 71, w28(21)50.010 7349, and 2w28(21)
1w38(21)50.000 4490.

A comparison of theg expansions ofci , SM , and SZ
shows that the approximate relations~61! and ~62! are valid
for all values ofN and not only forN→` as shown in the
previous subsection.
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TABLE I. Numerical values of the coefficientshi
(n, j ) defined in Eq.~70!.

i hi
(2) hi

(3) hi
(4,1) hi

(4,2) hi
(4,3)

2 2
2

405 0.00949125 0.000765804 20.0134856 20.0345992
3 4

15309 20.000612784 20.00000341189 0.00102554 0.002534
4 2

1
59049 0.0000450060 20.00000233206 20.0000841861 20.00020327

5 4
3247695 20.0000035762 0.00000035769 0.0000072651 0.00002
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In order to get quantitative estimates, one must perfor
resummation of the series and then evaluate it at the fix

point value of the couplingḡ* . Although the terms of theg
expansion we have calculated are only three forci and two
for SM and SZ , we have tried to extract quantitative es
mates that take into account also the following facts:

~i! The g expansion is Borel summable@20# ~see also,
e.g., Refs.@2# and@17# for a discussion of this issue!, and the
singularity closest to the origin of the Borel transform~cor-

responding to the rescaled couplingḡ ) is known @21#: bs5
20.751 897 743(N18).

~ii ! The fixed point valueḡ* of ḡ has been accuratel
determined by analyzing a much longer expansion@to
O(g7)] of the correspondingb function @22–25#. Indepen-

dent and consistent estimates ofḡ* have been obtained b
other approaches, such as strong-coupling expansion o
tice N-vector model@26,27# ~for N51 see also Refs.@28–
31#!, and Monte Carlo lattice simulations~only data forN
51 are available@32–35#!.

We have followed the procedure described in Ref.@36#
~see also Ref.@2#!, where the perturbative expansion in pow

ers of ḡ is summed using a Borel transformation and a c
formal mapping, which takes into account its large-order
havior. Since theg series ofci , SM21, andSZ21 have the

form R( ḡ )5 ḡ2(k50ai ḡ
i , one may apply the resummatio

method either toR( ḡ ) or to R( ḡ )/ ḡ2. In Table III we
present results for both choices. In our calculations we u

the estimates ofḡ* obtained from the analysis of theb
function by @22,23,25#. They are reported in Table II. Fo
small values ofN slightly lower values ofḡ* were com-
puted in Ref.@37#, taking into account the possible nonan
a
d-

at-

-
-

d

-

lyticity of the b function at the critical point@24#. This dif-
ference is, however, too small to be quantitatively relevan
our calculations.

It is difficult to estimate the uncertainty of the result

Resummations ofR( ḡ ) are not very stable and indeed th
estimates show an upward trend with the order of the ser
roughly we expect an error&20% onci and SM for small
values ofN. As N increases the estimates become more p

cise. Resummations ofR( ḡ )/ ḡ2 appear instead much mor
stable: results with two terms essentially agree with the fi
estimates using three terms. In this case the error shoul
&5% on ci and SM for small values ofN and again it de-
creases asN increases. The final results are in good agr
ment with the estimates by other methods.

D. e expansion

The universal functionĝ0(y) can be computed perturba
tively in e542d using the continuumf4 theory @38#. The

leading order is simplyĝ0(y)511y. The first correction
appears at ordere2 and was computed by Fisher and Ah
rony @4#. We have extended the series, calculating theO(e3)
term, obtaining

ĝ0~y!511y1e2
N12

~N18!2F11e
6~3N114!

~N18!2 Gc2~y!

1e3
N12

~N18!2 c3~y!1O~e4!, ~71!

where
TABLE II. For several values ofN and for the cubic and diamond lattice, we report the values ofbc we

used in our strong-coupling calculations. We also report the fixed-point valueḡ* of the rescaled zero-
momentum four-point renormalized coupling, as obtained by field-theoretical methods.

N Cubic Diamond ḡ*

0 bc50.213492~1! @50# bc50.34737~1! @45# 1.421~8! @2#

1 bc50.2216544~3! @51# bc50.3697~1! 1.416~5! @2#

2 bc50.22710~1! @52# bc50.3845~2! 1.406~4! @2#

3 bc50.231012~12! @53# bc50.3951~2! 1.391~4! @2#

4 bc50.23398~2! @43# bc50.4027~2! 1.369 @25#

8 bc50.24084~3! @43# bc50.4200~2! 1.303 @25#

16 bc50.24587~6! bc50.4327~2! 1.207 @25#

32 bc50.2491~1! bc50.4401~1! 1.122 @25#

` bc50.252731 . . . @54# bc50.448220 . . . 1
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TABLE III. Estimates ofc2, c3, SM , andd1 as obtained by the analysis of the strong-coupling expansion ofG(x) on the cubic and
diamond lattice, from resummations of the availableg expansion ande expansion@in this case we give two numbers corresponding to
two choices: resummingR(x) or R(x)/x2], and from theO(1/N) calculation of 1/N expansion.

N 104c2 104c3 104(SM21) 104d1

0 Cubic 21~1! 0.12~1! 0~2! 1~1!

Diamond 21~1! 0.10~1! 0~1! 21.0~5!

g expansion 23.29,23.63 0.108, 0.102 22.95,23.50 21.31,21.60
e expansion 22.48,24.26 0.065, 0.114 22.55,24.38 21.10

1 Cubic 23.0~2! 0.10~1! 22.5~1.0! 21.7~5!

Diamond 23.0~2! 0.10~2! 22.3~4! 23~1!

g expansion 23.92,24.27 0.126, 0.120 23.50,24.12 21.59,21.89
e expansion 23.06,24.99 0.080, 0.134 23.14,25.13 21.31

Impr e expansion 22.80,23.64 0.060, 0.089 22.86,23.73
2 Cubic 23.9~2! 0.11~1! 23.5~1.0! 22.3~2!

Diamond 24.1~4! 0.10~2! 23.5~3! 23~1!

g expansion 24.22,24.54 0.133, 0.128 23.85,24.40 21.72,22.01
e expansion 23.39,25.29 0.089, 0.142 23.48,25.44 21.41

3 Cubic 24.1~1! 0.11~2! 24.1~4! 22.5~2!

Diamond 24.5~3! 0.11~3! 24.0~4! 22.6~3!

g expansion 24.29,24.58 0.134, 0.128 23.96,24.45 21.77,22.03
e expansion 23.56,24.55 0.094, 0.144 23.66,25.50 21.46

4 Cubic 24.1~2! 0.12~1! 24~1! 22.5~2!

Diamond 24.7~2! 0.10~2! 24.2~4! 22.5~5!

g expansion 24.21,24.46 0.130, 0.125 23.92,24.34 21.76,21.99
e expansion 23.64,25.28 0.096, 0.143 23.74,25.43 21.47

1/N expansion 211.12 0.336 211.48 25.12
8 Cubic 23.5~1! 0.09~2! 23.8~5! 22.1~2!

Diamond 24.0~1! 0.05~5! 23.8~4! 23~2!

g expansion 23.60,23.72 0.108, 0.103 23.44,23.68 21.55,21.68
e expansion 23.48,24.55 0.093, 0.124 23.58,24.68 21.38

1/N expansion 25.56 0.118 25.74 22.56
16 Cubic 22.4~1! 0.06~1! 22.8~2! 21.4~2!

Diamond 22.65~5! 0.05~3! 22.7~3! 21.2~8!

g expansion 22.46,22.49 0.072, 0.069 22.43,22.52 21.10,21.15
e expansion 22.73,23.19 0.074, 0.088 22.81,23.28 21.10

1/N expansion 22.78 0.084 22.87 21.28
32 Cubic 21.45~5! 0.04~1! 21.8~3! 20.7~2!

Diamond 21.50~5! 0.04~1! 21.7~3! 20.5~3!

g expansion 21.427,21.429 0.041, 0.040 21.45,21.48 20.66,20.67
e expansion 21.73,21.84 0.047, 0.052 21.78,21.90 20.75

1/N expansion 21.39 0.042 21.43 20.64
` 0 0 0 0
m

f

c2~y!52E
0

`Az~11 1
4 z! ln~A11 1

4 z1 1
2 Az!h~y,z!,

~72!

h~y,z!52
1

11z
1

y

~11z!3 1
1

2yz
~11y1z

2A112y12z1y222yz1z2!.

We do not report the explicit expression ofc3(y) because it
is not very illuminating. It can, however, be obtained fro
Eqs. ~A10!, ~A11!, and ~A13! of Appendix A, where we
show how to derive the functionsc2(y) andc3(y) from the
O(1/N) calculation ofĝ0(y) in d dimensions.
The coefficientsci to O(e3) can be derived from Eq.~71!
and the expansions ofc2(y) andc3(y) aroundy50:

c2~y!527.5202431023 y211.9193131024 y3

28.1420131026 y414.3914531027 y51O~y6!,

~73!

c3~y!51.8748131023 y222.5067431025 y3

12.4859831028 y415.1500431028 y51O~y6!.

~74!

The calculation ofSM andSZ to O(e3) requires the values o
c2(y) and c3(y) and of their derivatives aty521:
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c2(21)527.7207831023 and c28(21)51.5651231022,
c3(21)51.8998431023 and c38(21)523.824631023.
In Fig. 1 we plot the functionsc2(y) and c3(y) together
with their expansions~73! and ~74!. Notice the good agree
ment between the functionsc i(y) and their expansions up t
y.9, which is the theoretical convergence radius of the lo
momentum series.

In order to get quantitative estimates from the perturba
e expansion, one should first resum the series and then ev
ate the resulting expression ate51. Usually resummations
are performed assuming the Borel summability of thee se-
ries. A considerable improvement is obtained if one uses
knowledge of the singularity of the Borel transform@21#,
bs52(N18)/3. As in the analysis of theg expansion, we
have used the resummation procedure described in Ref.@36#.
Since thee series ofci , SM21 andSZ21, have the form
R(e)5e2(k50aie

i , we applied the resummation method
R(e) and toR(e)/e2. In Table III we present results for bot
choices. Since we use a series with only two terms the e
mates are not very precise as the large difference betwee
results obtained with the two methods indicates.

One can also try to get estimates for two-dimensio
O(N) models, i.e., fore52. By resumming the series o
c2(e) andSM(e), we findc2520.0010 andSM50.9989 for
N51, which must be compared with the exact results@39#
c2520.000 793 andSM50.999 196;c2520.0013 andSM
50.9987 forN53, to be compared with the strong-couplin
results @40# c2520.0012(2) andSM50.9987(2). In both
cases the agreement is satisfactory. Instead, when resum
the series divided bye2 the agreement is poorer. We fin
c2520.0026 andSM50.9973 forN51 andc2520.0028
andSM50.9971 forN53. A posteriori, it thus appears tha
the estimates obtained from the resummation of the comp
seriesR(e) are more reliable. This is confirmed by the thre
dimensional analysis where the estimates obtained by
sideringR(e) are those that are in better agreement with
strong-coupling andg-expansion estimates.

For quantities that are exactly known in two dimensio

FIG. 1. Plot of the functionsc2(y) andc3(y) ~full lines! and of
their low-momentum expansions up toO(y5) ~dashed lines!.
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one can modify thee series to obtain a new expansio
which gives the exact value fore52. In the case of the
two-dimensional Ising model, i.e.,N51, the coefficientsci
and SM have been calculated exactly@39#. So for N51 we
can improve the resummation of thee expansion by impos-
ing the exact result fore52 @41#. One writes

R~e!5R~e52!1~22e!R̄~e!, ~75!

and resums thee expansion ofR̄(e). In other words we use
as a zeroth-order approximation the linear interpolation oci
betweend52 and d54, and then we use thee series to
determine the deviations from the interpolation. As befo
one can also apply the same procedure toR(e)/e2. We report
the results obtained with both choices in Table III. They a
referred to as the ‘‘improved’’e expansion. The estimate
are in good agreement with the other results. Notice also
the large discrepancy between the two different resum
tions of the unconstrainede expansion is here significantl
reduced.

E. Strong-coupling analysis

In this subsection we evaluate some of the quantities
troduced in Sec. III A by analyzing the strong-coupling e
pansion of the two-point functionG(x) in the lattice
N-vector model with nearest-neighbor interactions.

By employing a characterlike approach@42#, we have cal-
culated the strong-coupling expansion ofG(x) up to 15th
order on the cubic lattice and 21st order on the diamo
lattice for the corresponding nearest-neighbor formulatio
In Appendix B we present the 15th-order strong-coupli
expansion ofG(x) on the cubic lattice for some values ofN.
In Appendix C we report the 21st-order strong-coupling
ries of the magnetic susceptibility and of the second mom
of G(x) on the diamond lattice forN51,2,3.

We mention that longer strong-coupling series, up to 2
order, of the lowest moments ofG(x) on the cubic and bcc
lattices have been recently calculated by a linked-cluster
pansion technique, and an updated analysis of the crit
exponentsg andn has been presented@43#. For N50 even
longer series have been calculated for various lattices@44–
46#.

In our strong-coupling analysis, we took special care
devising improved estimators for the physical quantitiesci
and SM , because better estimators can greatly improve
stability of the extrapolation to the critical point. Our sear
for optimal estimators was guided by the large-N limit of
lattice O(N) s models.

In the large-N limit of the N-vector model on the cubic
lattice the following exact relations hold in the high
temperature phase, i.e., forb,bc ,

û2
`~MG![û252

1

20
MG

2 ,
~76!

û3
`~MG![û35

1

840
MG

4 ,
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etc. ûi
` vanishes forT→Tc , i.e., for MG

2→0, leading to the
expected resultci50. Similarly on the diamond lattice on
obtains

û2
`~MG![û252

1

20
MG

2 ,

û3
`~MG![û35

1

7560
MG

4
11 3

4 MG
2

11 1
12 MG

2
, ~77!

etc.
We introduce the quantities

ū i[ûi2ûi
`~MG!, ~78!

whose limits forT→Tc are stillci . At N5` ū i are optimal
estimators ofci , indeedū i(b)5 ū i* 5ci50 for b,bc , i.e.,
off-critical corrections are absent. It turns out that the use
ū i , besides improving the estimates for large values ofN,
leads also to more precise estimates ofci at low values ofN.
Strong-coupling series ofū i can be easily obtained from th
strong-coupling expansion ofG(x). We note that for all val-
ues ofN and on the cubic lattice, while the series ofû2 (û3)
starts fromb21 (b22), the series ofū2 ( ū3) starts fromb4

(b6). A similar fact occurs also on the diamond lattice.
On the lattice, in the absence of a strict rotational inva

ance, one may actually define different estimators of
mass gap having the same critical limit. On the cubic latt
one may considerm obtained by the long-distance behavi
of the side wall-wall correlation constructed withG(x), or
equivalently the solution of the equationG̃21( im,0,0)50. In
view of a strong-coupling analysis, it is convenient to u
another estimator of the mass-gap derived fromm @48,6#:

Md
252~coshm21!, ~79!

which has an ordinary strong-coupling expansion (m has a
singular strong-coupling expansion, starting with2 ln b).
One can easily check thatMc /m→1 in the critical limit. A
similar quantityMd

2 can be defined on the diamond lattice,
shown in Appendix C@cf. Eq. ~C2!#.

In order to determine the coefficientsc2 and c3 of the
low-momentum expansion ofĝ0(y) and the mass ratioSM ,
we analyzed the strong-coupling series ofū2 and ū3 @de-
fined in Eq. ~78!#, and those of the ratiosM c

2/MG
2 and

Md
2/MG

2 respectively on the cubic and diamond lattice@47#.
In the analysis of a series of the formA5bm( i 50

naib
i ,

we constructed approximants to thenth-order seriesb2mA
5( i 50

n aib
i , and then derived the original quantity from

them. We considered various types of approximants suc
Padé~PA’s!, Dlog-Pade´ ~DPA’s!, and first-order inhomoge
neous integral approximants~IA’s ! @49#. In all cases we con-
sidered only quasidiagonal approximants. We then evalu
them at the critical pointbc in order to obtain an estimate o
the corresponding fixed-point value. For the cubic lattice a
most values ofN, bc is available in the literature from
strong-coupling and numerical Monte Carlo studies~see, for
example, Refs.@26,43,45,50–53#!. Whenbc was not known
f

-
e
e

e

as

ed

d

~as in the case of diamond lattice models forN.0), we
estimated it by performing an IA analysis of the stron
coupling series of the magnetic susceptibility. In our analy
errors due to the uncertainty on the value ofbc turned out to
be negligible. The values ofbc used in our calculations ar
reported in Table II.

In Table III we report our results. The reported estima
of c2, c3 , andSM summarize the results from all the analys
we performed, and the reported errors are a rough estima
the uncertainty. The final results are rather accurate tak
into account the smallness of the effect we are looking
Universality among the cubic and diamond lattices is in
cases well verified and gives further support to our final
timates. Our results are in good agreement with the estim
obtained from the other techniques. Only atN50 are there
small discrepancies.

Our strong-coupling analysis represents a substantial
provement with respect to earlier results reported in Ref.@6#
for the Ising model, and obtained by an analysis of t
strong-coupling series calculated in Refs.@1,55#: c25
25.5(1.5)31024, c350.05(2)31024 on the cubic lattice,
and c2527.1(1.5)31024 and c350.09(3)31024 on the
bcc lattice. Other strong-coupling results can be found
Ref. @48#. Our analysis achieves a considerable improvem
with respect to such earlier works essentially for two re
sons: we use longer series and improved estimators, see
~78!, which allow a more stable extrapolation to the critic
limit. Estimates from the analysis of the strong-coupling s
ries of the standard variablesûi , defined in Eq.~50!, are
much less precise, although consistent with those obta
from ū i .

F. Conclusions

We have studied the low-momentum behavior of the tw
point function in the critical limit by considering several a
proaches: 1/N expansion,g expansion,e expansion and
strong-coupling expansion. A summary of our results can
found in Table III.

From the analysis of our strong-coupling series we ha
obtained quite accurate estimates of the coefficientsc2, c3 of
the low-momentum expansion~47!. Asymptotic large-N for-
mulas ~58! and ~60! are clearly approached by our stron
coupling results, but only at rather large values ofN. The
same behavior was already observed for other quantities
as critical exponents@2# and the zero-momentum renorma
ized four-point coupling@26#. We have also computed th
universal functionĝ0(y) in the g expansion in fixed dimen-
sion to orderO(g4) and in thee expansion to orderO(e3).
The corresponding estimates ofc2, c3 , and SM are in rea-
sonable agreement with the strong-coupling results.

For all values ofN the coefficientsc2 andc3 turn out to
be very small and the pattern~59! is verified. Furthermore
the relation~61! is satisfied within the precision of our analy
sis. A few terms of the expansion of the two-point scali
function ĝ0(y) in powers ofy appear to be a good approx
mation in a relatively large region aroundy50, larger than
uyu&1. This is consistent with the fact that the Fourier tran
form of the two-point function has a simple pole atk25

2M2, thus leading to an analytic zero inĝ0(y) at y05
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2SM . The pattern of the coefficientsci suggests that the

singularity of ĝ0(y) closest to the origin is much furthe
which is not unexpected. Indeed we expect that the first

gularity of ĝ0(y) is the three-particle cut. In two dimension
from the exactS matrix @56# one knows that no bound state
exist, so thatycut529SM . This is also confirmed by the
exactly known two-point function of thed52 Ising model
@12#. The 1/N expansion of the coefficientsci suggests tha
ycut.29 even in three dimensions.

The few existing Monte Carlo results for the low
momentum behavior of the two-point Green’s function a
consistent with our determinations but are by far less prec
Using Refs.@57–59# one estimatesc25213(17)31024 for
self-avoiding walks, which correspond toN50. In Ref.@60#
the authors give a bound onASM for the Ising model (N
51), from which21.231023,SM21,0, which must be
compared with our estimateSM21522.5(5)31024.
Monte Carlo simulations of theXY model (N52) show that
SM.1 within 0.1% @52#, which is consistent with our
strong-coupling resultSM21523.5(5)31024.

We can conclude that in the critical region of the symm
ric phase the two-point Green’s function for allN from zero
to infinity is almost Gaussian in a large region aroundk2

50, i.e.,uk2/MG
2 u&1. The small corrections to Gaussian b

havior are dominated by the (k2)2 term in the expansion o
the inverse propagator. Via the relation~1! such low-
momentum behavior could be probed by scattering exp
ments by observing the low-angle variation of intensity.
similar low-momentum behavior of the two-point correlatio
function has been found in two-dimensionalO(N) models
@39,40,61#. Substantial differences from Gaussian behav
appear at sufficiently large momenta, whereG̃(k) behaves as
1/k22h with hÞ0 ~althoughh is rather small:h.0.03 for
0<N<3).

The behavior of the two-point function presents a d
matic change in the broken phase. ForN>2 the transverse
and longitudinal magnetic susceptibilities, i.e., the transve
and longitudinal two-point functions at zero momentum, a
diverging due to the presence of massless Goldstone bos
Thus the simple low-momentum expansion found in
symmetric phase does not hold anymore. Only for the Is
model, i.e., forN51, is there a mass gapM in the broken
phase. In this case the low-momentum expansion of the s
ing two-point function can still be written in the same for
as in the symmetric phase. However, now the deviation fr
a Gaussian behavior is much larger. The coefficientsci
should be larger by about two orders of magnitude@63#.
Moreover, by analyzing the low-temperature series publis
in Ref. @64# one getsSM50.94(1), which compared with the
value ofSM.0.9997 obtained in the symmetric phase sho
a much larger difference from the Gaussian valueSM51.
The change is even more relevant in thed52 Ising model.
Indeed in its broken phase one findsSM50.3996, c25
20.4299,c350.5256, etc., which should be compared w
the corresponding values in the symmetric phase@39# SM
50.999 196, c2527.93631024, c351.09531025, c45
23.12731027, etc. Moreover the singularity atk252M2

of G̃(k) is not a simple pole, but a cut. As a consequence
corresponding zero inĝ0(y) is not analytic, and therefore th
n-
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convergence radius of the expansion aroundy50 should be
SM .

IV. ANISOTROPY OF G„x… AT LOW MOMENTUM
AND IN THE CRITICAL REGIME

In this section we will study anisotropic effects on th
two-point function due to the lattice structure. We w
mainly consider three-dimensional lattices with cubic sy
metry. However, whenever possible, we will give expre
sions for generald-dimensional lattices with hypercubi
symmetry, so that one can recover the results for the sq
lattice and compare with perturbative series ind542e. We
will also comment briefly and present some results for
triangular, honeycomb, and diamond lattices.

A. Notations

In the following subsections we will compute the exp
nent r521h2h4 defined in Eq.~29!. It can be derived
directly from Eq. ~26! or Eq. ~28! or by studying the
weighted momentsq̄4,j5q4,j /m0 whereq4,j is defined in Eq.
~33! andm0[x. Indeed forMG→0,

q̄4,j;MG
2422 j 1r . ~80!

We will also compute the universal functionĝ4(y). In par-
ticular we will be interested in the first terms of its expansi
in powers ofy aroundy50:

ĝ4~y!511(
i 51

diy
i , ~81!

wheredi[c4,i @cf. Eq. ~25!#. The coefficientsdi can be eas-
ily obtained from the expressions of the momentsq4,m . For
MG→0, we find

q̄4,1

q̄4,0

→4~d18!~12 1
2 d1!MG

22 ,

q̄4,2

q̄4,0

→24~d18!~d110!~12 2
3 d12 2

3 c21 1
3 d2!MG

24 ,

~82!

and so on. From Eq.~82! it is easy to derive expressions fo
r i[u4,i /u4,0 whose critical limit isdi . In particular

r 1522
MG

2

2~d18!

q̄4,1

q̄4,0

. ~83!

B. Breaking of rotational invariance in the large-N limit

In the large-N limit lattice O(N) models become massiv
Gaussian theories that can be solved exactly. If one consi
theories defined on Bravais lattices one has in the largN
limit
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TABLE IV. Three-dimensionalN-vector model with nearest-neighbor interactions: lowest moments ofG(x) at N5` on the cubic, fcc,
and diamond lattice.z is the inverse of the second moment correlation length.

Moments Cubic fcc Diamond

x 1

bz

1

2bz

3

2bz

m̄2 6

z

6

z

6

z
MG

2 z z z

q̄3,0
0 0 1

6A3
S 11

z

12D
21

m̄4 120

z2 S 11
z

20D 120

z2 S 11
z

20D 120

z2 S 11
z

20D
q̄4,0 12

5z
2

3

5z
2

8

5z

q̄3,1
0 0

A3S 11
z

18
1

z2

216D S 11
z

12D
22

m̄6 5040

z3 S 11
z

10
1

z2

840D 5040

z3 S 11
z

10
1

z2

840D 5040

z3 S 11
11z

60
1

8z2

945
1

z3

10080D
q̄4,1 528

5z2 S 11
z

44D 2
132

5z2 S 11
z

44D 2
352

5z2 S 11
z

33
1

z2

528D S 11
z

12D
21

q̄6,0 12

77z
2

39

154z
2

416

231z S 12
z

78D S 11
z

12D
21

m̄8 362880

z4 S 11
3z

20
1

11z2

2160
1

z3

60480D 362880

z4 S 11
3z

20
1

37z2

7560
1

z3

60480D 362880

z4 S 11
3z

20
1

389z2

136080
1O~z3! D

q̄4,2 41184

5z3 S 11
19z

286
1

z2

3432D 2
10296

5z3 S 11
9z

143
1

z2

3432D 2
27456

5z3 S 11
z

858
1

139z2

30888
1O~z3! D

q̄6,1 240

11z2 S 11
z

140D 2
1110

77z2 S 11
13z

740D 2
23680

231z2 S 12
129z

1480
1

5z2

444
1O~z3! D
h
o

h
bi

y

ian
f

est-
ice

en-

o-
G̃21~k!5cb ~ k̄ 21MG
2 !, ~84!

where k̄ 2 is defined by Eq.~8!. The relation betweenMG
2

andb is given by the gap equation. The constantc is lattice
dependent and will not play any role in the discussion. T
function k̄ 2 has the properties mentioned at the beginning
Sec. II A and a multipole expansion of the type~10! for
lattices with cubic symmetry. For other Bravais lattices t
only difference is the presence of different multipole com
nations. Considering first lattices with~hyper! cubic symme-
try, from Eqs.~10! and ~14!, we find for MG→0

G̃21~k!5cbMG
2 $11y1MG

2 @e2,0y
21e4,0Q4~k/MG!#1•••%.

~85!

Comparing with Eqs.~20! and ~28! we get immediatelyr
52 andĝ4(y)51, i.e.,di50 for all iÞ0.

In the large-N limit one can easily verify the universalit
properties of the ratios defined in Eq.~34!. Indeed for generic
Hamiltonians in the critical limitMG→0 ~keeping the di-
mension of the latticed generic! we have
e
f

e
-

m̄2m→2mm! S )
i 50

m21

~d12i !D MG
22m , ~86!

q̄4,m

q̄4,0

→2m~m11!! S )
i 50

m21

~d1812i !D MG
22m , ~87!

and

q̄4,0→2e4,0

24d~d21!

d12
MG

22 . ~88!

Notice that the only dependence on the specific Hamilton
is in the expression ofq̄4,0. ~Exact expressions for some o
these quantities are reported for the theory with near
neighbor interactions on the cubic, diamond, and fcc latt
in Table IV and on the square lattice in Table V.! Universal-
ity is then a straightforward consequence of the indep
dence of the ratio~87! from e4,0. It should also be noticed
that q̄4,m /m̄412m;MG

2 . This shows that, as expected, anis
tropic moments are suppressed by two powers ofMG in
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TABLE V. Two-dimensionalN-vector model with nearest-neighbor interactions: lowest moment
G(x) at N5` on the square, triangular, and honeycomb lattice.z5MG

2 .

Moments Square Triangular Honeycomb

x 1

bz

2

3bz

4

3bz

m̄2 4

z

4

z

4

z
MG

2 z z z

t̄ 3,0
0 0 1

2S11
z

8D
21

m̄4 64

z2 S 11
z

16D 64

z2 S 11
z

16D 64

z2 S 11
z

16D
q̄4,0 1

z

0 0

m̄6 2304

z3 S 11
z

8
1

z2

576D 2304

z3 S 11
z

8
1

z2

576D 2304

z3 S 11
z

4
1

z2

64
1

z3

4608D S 11
z

8D 21

q̄4,1 40

z2 S 11
z

40D
0 0

t̄ 6,0
0

2
4

z

36

z S 12
z

72D S 11
z

8D 21
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agreement with the predictionr52. We stress that the uni
versality ofR4,m,n is due the fact that there is only one lea
ing irrelevant operator breaking rotational invariance.

It is interesting to notice that such a universality does
hold for momentsq̄6,m ~or for q̄2l ,m for higher values ofl )
because of the mixings we have mentioned in Sec. II A.
q̄6,m we have forT→Tc

q̄6,m

q̄6,0

→2m~m11!! S 11
e4,0

2

e6,0

8m

d112D
3S )

i 50

m21

~d11212i !D MG
22m , ~89!

which depends one6,0 and e4,0
2 , a consequence of the fac

thatQ4(k)2 contains a term of the formk2Q6(k). Thus ratios
of the form ~34! built with q̄6,m are not universal.

Let us now consider the diamond lattice. In this case
only is rotational invariance broken, but also parity symm
try. As the leading anisotropic operator isO4,0(x) the behav-
ior of the leading anisotropic corrections is identical to th
we have discussed above. Thereforer52 also in this case
Moreover the invariant ratiosR4,m,n are identical for the dia-
mond lattice and for the other Bravais lattices with cub
symmetry. Equation~87! is exact for the diamond lattice a
well.

To discuss parity-breaking effects we must consider o
moments ofG(x). In particular one finds that, forMG→0,

q̄3,0[
q3,0

m0
→

1

6A3
, ~90!
t

r

t
-

t

d

where q3,0[(xyz G(x,y,z). Thus parity-breaking effects
vanish asMG

3 , i.e.,rp53, faster than the anisotropic effec
we have considered previously.

Finally let us consider lattices that do not have cubic
variance, such as the triangular and the honeycomb one
Table V we report the large-N limit of some of the lowest
spherical and nonspherical moments ofG(x) for the models
with nearest-neighbor interactions.

For the triangular lattice one should consider the mu
pole expansion~36!. In this case the leading term breakin
rotational invariance is proportional toT6(k) and thus we
have r54. This is indeed confirmed by the fact that, f
MG→0, t̄ 6,m /m̄612m;MG

4 , where t̄ 6,m5t6,m /m0 and t6,m

is defined in Eq.~37!. As in the cubic case, it is immediate t
verify the universality of ratios of the form given in Eq.~34!
with t6,m instead ofq4,m , which is a consequence of th
uniqueness of the leading operator breaking rotational inv
ance. Universality follows from the fact that, forT→Tc ,

t̄ 6,m

t̄ 6,0

→
22m~m11!! ~m15!!

5!
MG

22m , ~91!

independently of the specific Hamiltonian.
For the honeycomb lattice one must also consi

the breaking of parity. Considering the odd mome
t3,05((x323y2x)G(x,y) @cf. Eq. ~42!#, one finds t̄ 3,0
[t3,0/m0→ 1

2. Thus, as in the diamond case, parity breaki
effects vanish asMG

3 , i.e., rp53.

C. Analysis to order 1/N

In the previous subsection we computed the exponenr
for N→` for lattices with cubic symmetry, findingr52.
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Now we want to compute the 1/N corrections, i.e., the value
of s[s45h2h4 @cf. Eq. ~29!#, which is the anomalous
dimension of the operatorO4,0(x). More generally we can
compute the exponentsh2l defined in Eq.~26! for arbitraryl .
Notice that in this way we will also obtain the 1/N correction
to r for the triangular lattice that depends onh6.

In d dimensions, we consider the following representat
of the inverse two-point function where theO(1/N) correc-
tion has been included:

b21G̃21~k!5b21ZG
21MG

2 1 k̄ 21
1

NE ddp

~2p!dD̄~p!

3S 1

p1k21MG
2

2
1

p̄21MG
2 D . ~92!

Here k̄ 2 is the inverse lattice propagator defined in Eq.~8!,
ZG is the constant defined in Eq.~52!, and

D̄21~p!5
1

2E ddq

~2p!d

1

~q1p21MG
2 !~ q̄21MG

2 !
. ~93!

The following statements can be checked explicitly in E
~92! and hold to all orders of the 1/N expansion:~i! in the
limit MG→0 the functionG̃21(k,MG) is spherically sym-
metric ~i.e., it depends only ony[k2/MG

2 , apart from an
overall factor!; ~ii ! the only nonspherically symmetric con
tribution that may appear inG̃21(k,MG) to O(MG

4 ) can be
reduced to a spherically symmetric function multiplied
Q4(k). These statements are simply a consequence of ap
ing the discrete and continuous symmetry properties to
integrals appearing in the asymptotic expansion inMG of the
relevant Feynman integrals. They prove to all orders in 1N
the validity of the expansion~28!.

To compute the anomalous dimensionh2l to order 1/N
we will use the trick we explained in Sec. II A. If one con
siders a particular Hamiltonian such thatg2l(y,MG)50 for
0< l< l̄ , then G̃21(k) has an expansion of the form~28!

with h4→h2 l̄ andĝ4(y)→ĝ2 l̄ (y). In the 1/N expansion, to
order 1/N this can be achieved by considering Hamiltonia
such that, fork→0 ~to simplify the notation from now on we
write l instead of l̄ ),

k̄ 25k21rk2l1O~k2l 12!, ~94!

wherek2l[(mkm
2l . The limit MG→0 can then be easily ob

tained by evaluating massless continuum integrals, and
ing the contribution proportional tor , which is the only term
relevant to our computation. In this limit we obtain

D̄21~p!'D0
21~p!S 12rBl

p2l

p2 D , ~95!

where

D0
21~p!5

1

2
~p2!d/2 22

G~22 d/2!G~d/221!2

~4p!d/2G~d22!
, ~96!
n

.

ly-
ll

s

k-

Bl5~42d!
G~d/212l 22!G~d22!

G~d12l 23!G~d/221!
, ~97!

and we have discarded rotationally invariant terms prop
tional to r , since they will not contribute to the final result

We must now identify the singular contribution in th
limiting form of Eq. ~92!:

b21G̃21~k!→k21rk2l1
1

NE ddp

~2p!d D0~p!F12rBl

p2l

p2 G21

3@~p1k!21r ~p1k!2l #21

'k2S 12
1

N
h1 ln kD 1rk2lS 12

1

N
h2l ,1 ln kD .

~98!

The coefficientsh1 andh2l ,1 are related to the 1/N expansion
of the exponentsh andh2l :

h5
h1

N
1OS 1

N2D , ~99!

h2l5
h2l ,1

N
1OS 1

N2D . ~100!

By simple manipulations one obtains

h152
4G~d22!

G~22 d/2!G~d/222!G~d/221!G~d/211!
,

~101!

and

h2l ,15
d~d22!

~d2214l !~d2414l !F112
G~2l 11!G~d22!

G~2l 1d23! Gh1 .

~102!

Therefore ford53 we find

s5h2h45
32

21p2N
1OS 1

N2D . ~103!

Note that the coefficient of the leading 1/N term is very
small. Thus, at least forN sufficiently large, sayN*8,
where the 1/N expansion is known to work reasonably we
corrections to the Gaussian value ofr are very small.

For d→2, h2l ,1→h1. Therefore in two dimensions and t
O(1/N), there are no corrections to the Gaussian value,
the first coefficient of the expansion of the anomalous dim
sion is zero toO(1/N). One might only observe~suppressed!
logarithmic corrections to canonical scaling for alll . It is
easy to check in perturbation theory that this holds exa
for all N>3.

The computation of the universal functionĝ4(y) is par-
ticularly involved. The result is given in Appendix A. Her
we will only give the values of the coefficientsdi of its
low-momentum expansion@cf. Eq. ~81!#. We found
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di5
d̄ i

N
1OS 1

N2D , ~104!

where d̄1520.002 064 68, d̄250.000 073 78, d̄35
20.000 004 24, etc.

D. g expansion analysis

The critical exponents and the scaling functionĝ4(y)
can also be evaluated in theg expansion. For this purpose w
calculated the one-particle irreducible two-point functi
GO4

(k,MG) defined in Eq.~22!. By a three-loop calculation
one finds

GO4
~k,MG!5Q4~k!1g0

2 N12

6
J2~k,MG!

2g0
3 ~N12!~N18!

108
@J3,1~k,MG!

14J3,2~k,MG!#1O~g0
4!, ~105!

where

J2~k,m!5E d3p

~2p!3

Q4~k2p!A~p,m!

@~k2p!21m2#2 , ~106!

J3,1~k,m!5E d3p

~2p!3

Q4~k2p!A~p,m!2

@~k2p!21m2#2 , ~107!

J3,2~k,m!5E d3p

~2p!3

A~p,m!AQ~p,m!

~k2p!21m2 , ~108!

and

A~p,m!5E d3q

~2p!3

1

@q21m2#@~q1p!21m2#

5
1

4pp
arctan

p

2m
, ~109!

AQ~p,m!5E d3q

~2p!3

Q4~q!

@q21m2#2@~q1p!21m2#
.

~110!

By renormalizingGO4
(k,MG) at k50 according to Eqs.

~22!–~24!, one obtains the corresponding renormalizat
constantZ̄4 and renormalized functionGO4 ,R(k,MG). The

critical exponents is obtained by evaluating the anomalo
dimension

gO4
~ ḡ !5b~ ḡ !

] ln~ Z̄4 /ZG!

] ḡ

5 ḡ2
5408

25515

N12

~N18!2 @11 ḡ30.0450071O~ ḡ2!#

~111!

at the fixed-point value of the coupling, i.e.,s5gO4
(g* ).
n

The scaling functionĝ4(y) is obtained from the zero
momentum renormalized functionGO4 ,R[Q4(k) f 4(g,y), by

ĝ4(y)5 f 4(g* ,y). By expanding f 4(g,y) in powers of y
aroundy50, one finds

di5 ḡ2
N12

~N18!2 d̄ i ~112!

and

d̄152
380

168 399
@11 ḡ30.1054001O~ ḡ2!#,

d̄25
3076

197 026 83
@12 ḡ30.3556291O~ ḡ2!#, ~113!

d̄352
3112

253 320 210
@12 ḡ30.6964501O~ ḡ2!#,

etc.
In order to get estimates ofs and of the coefficientsdi

from the corresponding series, we have employed the res
mation procedure used in Sec. III C. Results fors are re-
ported in Table VI, and ford1 in Table III.

E. An e-expansion analysis

To compute the exponentsh2l and ĝ4(y) in the frame-
work of thee expansion, we again calculated the renorm
ized two-point one-particle irreducible function with an in
sertion of the operatorO4(x); see Eq.~24!. To orderO(e2)
we find

s5h2h45
7

20

N12

~N18!2 e21O~e3! ~114!

and

ĝ4~y!511e2
N12

~N18!28p4@Q4~]/]k!Js~k,1!

2Q4~]/]k!Js~k,1!uk50#1O~e3!. ~115!

TABLE VI. For various values ofN, we report estimates ofs
obtained by our strong-coupling analysis, from the 1/N expansion,
from the resummation of theg expansion~see Sec. III D! @in this
case we give two numbers corresponding to the two choices: res
ming R(x) or R(x)/x2], and from theO(e2) term of thee expan-
sion.

N s.c. expansion 1/N expansion g expansion e expansion

0 0.00~1! 0.0119, 0.0141 0.0109
1 0.01~1! 0.0143, 0.0166 0.0130
2 0.02~1! 0.0156, 0.0177 0.0140
3 0.03~2! 0.0515 0.0160, 0.0179 0.0145
4 0.03~2! 0.0386 0.0158, 0.0174 0.0147
8 0.02~1! 0.0193 0.0139, 0.0148 0.0137
16 0.009~3! 0.0096 0.0098, 0.0109 0.0109
32 0.004~2! 0.0048 0.0058, 0.0059 0.0074
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The functionJs(k,m) is the finite part of the integral

J~k,m!5E ddq

~2p!d

ddp

~2p!d

3
Q4~k2p!

@q21m2#@~q1p!21m2#@~k2p!21m2#2

~116!

with the modified minimal subtraction (MS) prescription.
The expansion ofĝ4(y) in powers ofy gives

di5e2
N12

~N18!2d̂i1O~e3! ~117!

and d̂1520.003 545 00, d̂250.000 117 15, d̂35
20.000 005 99, etc.

F. A strong-coupling analysis

Anisotropy in the two-point function can be studied f
finite values ofN by analyzing the strong-coupling expa
sion of its lowest nonspherical moments.

In order to computes, the correction to the Gaussia
value ofr, we analyze the strong-coupling expansion of t
ratio q4,0/m2, which behaves as

q4,0

m2
;MG

s ;~T2Tc!
sn ~118!

for T→Tc . We recall that in the 1/N expansionn51
1O(1/N), and for N50,1,2,3 n.0.588, n.0.630,
n.0.670,n.0.705, respectively@2#. DPA’s and IA’s of the
available strong-coupling series of the ratioq4,0/m2 on both
cubic and diamond lattices turned out not to be sufficien
stable to provide satisfactory estimates ofs at any finite
value ofN.

A better analysis has been obtained by employing the
called critical point renormalization method~CPRM! @62#.
The idea of the CPRM is the following: start from two seri
D(x) andE(x), which are singular at the same pointx0 ,

D~x!5(
i

dix
i;~x02x!2d,

~119!

E~x!5(
i

eix
i;~x02x!2e,

and construct a new series by

F~x!5(
i

di

ei
xi . ~120!

The functionF(x) is singular atx51 and forx→1 behaves
as F(x);(12x)2f, where f511d2e. Therefore the
analysis ofF(x) provides an unbiased estimate of the diffe
ence between the critical exponents of the two functio
D(x) andE(x). Moreover the seriesF(x) may be analyzed
by employing biased approximants with a singularity atx0
51.
e

y

o-

s

By applying the CPRM to the strong-coupling series
q4,0 and m2, one can extract an unbiased estimate ofs by
computing the exponentf512sn from the resulting series
at the singularityx051. We analyzed this series by biase
IA’s. The estimates ofs we obtained confirm universality
between the cubic and the diamond lattice, although
analysis on the diamond lattice led in general to less sta
results. In Table VI, for selected values ofN, we report our
estimates ofs, which are essentially obtained from th
analysis on the cubic lattice. In order to derives from sn,
which is the quantity derived from the strong-couplin
analysis, we have used the values ofn available in the lit-
erature. See, e.g., Ref.@43# for an updated collection of re
sults obtained by various numerical and analytic metho
The errors we report are rough estimates of the uncerta
obtained by considering the spread of all the analyses
performed. The values ofs are very small for all values o
N, and for largeN, sayN*10, they are consistent with th
correspondingO(1/N) prediction, cf. Eq.~103!.

In order to estimate the first nontrivial coefficientd1 of
the expansion ofĝ4(y), see Eq.~81!, one may consider the
quantity r 1 defined in Eq.~83!. However, as we did for the
analysis ofci in Sec. III, it is better to consider anothe
quantity r̄ 1 which is defined so thatr̄ 150 for N5` for all
b,bc . For the cubic lattice

r̄ 1522
q4,1MG

2

22q4,0
1

MG
2

22
, ~121!

while for the diamond lattice

r̄ 152
11 2

33 MG
2 1 1

528MG
4

11 1
12 MG

2
2

q4,1MG
2

22q4,0
. ~122!

In the critical limit r̄ 1→d1. The estimates ofd1 obtained
from the analysis of the strong-coupling series ofr̄ 1 @65# are
reported in Table III. Universality between the cubic a
diamond lattice is again substantially verified, although
diamond lattice provides in most cases less precise res
The value ofd1 is very small for all values ofN. At large-N
the strong-coupling estimate ofd1 is in good agreement with
the large-N prediction~104!. The estimates are also in sati
factory agreement with the results obtained from theg ex-
pansion and thee expansion.

Finally we computerp for the diamond lattice. For a
Gaussian theoryrp53 and thusq3,0→ const forMG→0. In
general, for finite values ofN, we write rp531sp . The
exponentsp is determined from the critical behavior ofq̄3,0,
indeed q̄3,0;MG

sp . In order to estimatesp , we applied the
CPRM to the seriesq3,0 andx. We found 0<sp&0.01 for
all N>0.

G. The two-dimensional Ising model

We conclude this section by considering the tw
dimensional Ising model, for which we present an argum
showing that the anomalous dimension of the irrelevant
erators breaking rotational invariance is zero.
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Let us consider first the square lattice. In this case,
sufficiently large values ofuxu the asymptotic behavior o
G(x) on the square lattice can be written in the form@66#

G~x!'E d2p

~2p!2 eipW •xW
Z~b!

M2~b!1 p̂2
, ~123!

wherep̂25(m4 sin2(pm/2),

Z~b!5@~12z2!224z2#1/4
~11z2!1/2

z
, ~124!

and

M2~b!5
~11z2!2

z~12z2!
24, ~125!

and we have introduced the auxiliary variablez(b)5tanhb.
This shows that at large distances the breaking of rotatio
invariance is identical to that of the massive Gaussian mo
with nearest-neighbor interactions. Thereforer52 exactly.

This value ofr is confirmed by a strong-coupling analys
of the momentsq4,m using the available 21st-order stron
coupling series@39#. In particular, on the square lattice w
found q4,0/m2→1/4 for b→bc within an uncertainty of
O(1025).

A formula analogous to Eq.~123! has been conjectured i
Ref. @39# for the Ising model on triangular and honeycom
lattices. Thus, also on these lattices, the pattern of brea
of rotation invariance~and parity in the case of the hone
comb lattice! should be that of the corresponding Gauss
theories, which have been described in Sec. IV B. If the c
jecture of Ref.@39# is correct, we haver54 for the triangu-
lar lattice andrp53 for the honeycomb lattice.

Again, an analysis of the strong-coupling expansion
G(x) on the triangular and honeycomb lattices supports c
vincingly this conjecture.

H. Conclusions

For lattice models withO(N) symmetry we studied the
problem of the recovery of rotational invariance in the cr
cal limit. Anisotropic effects vanish asMG

r , whenMG→0.
The universal critical exponentr, which is related to the
critical dimension of the leading operator breaking rotatio
r

al
el

ng

n
-

f
-

l

invariance, turns out to be 2 with very smallN-dependent
corrections for the lattices with cubic symmetry. Notice th
this behavior is universal and thus should appear in all ph
cal systems that have cubic symmetry. The reader sho
note thatr is different from the exponentv, which param-
etrizes the leading correction to scaling and which is rela
to a different rotationally invariant irrelevant operator. Mo
els defined on lattices with basis, such as the diamond lat
show also a breaking of the parity symmetry. We find th
these effects vanish asMG

rp , with rp'3 for all values ofN.

We have also calculated the universal functionĝ4(y). For
y&1, we findĝ4(y)'1 with very small corrections.

In our study we considered several approaches, base
1/N, g, e, and strong-coupling expansions. All results are
good agreement.

In two dimensions we showed thatr52 for the square
lattice for all N>3 andN51. We conjecture that this is a
general result, valid for all values ofN. Similar arguments
apply to the triangular~honeycomb! lattice: we conjecture
r54 ~rp53) for all N.
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APPENDIX A: O„1/N… CALCULATIONS

In this Appendix we present a simple derivation of all t
results that are needed in order to construct explicitly
1/N, g, ande expansions up to three loops presented in S
III. Our starting point is the observation that most of the tw
and three-loop calculations needed in the relevant pertu
tive calculations are included, apart from rather trivial alg
braic dependences onN, in the one-loop calculation of the
1/N expansion for the two-point function. As we shall sho
the 1/N results can be expanded ing and e in order to re-
cover all the corresponding contributions. Let us theref
start with the evaluation of the renormalized self-energy
O(1/N) in arbitrary dimensiond and for arbitrary bare cou
pling g0 in the N-componentf4 theory.

We introduce the dressed composite propagator~geomet-
ric sum of bubble insertions in thef4 vertex!:
D21~y,g0![F1

2E ddp

~2p!d

1

p21m2

1

~p1k!21m2 1
3

Ng0
Gm42d[D r

21~y!1
3

Ng
, ~A1!

wherey[k2/m2, and we have defined the~zero-momentum subtracted! dimensionless renormalized dressed~inverse! propa-
gator:

D r
21~y![m42d

1

2E ddp

~2p!d

1

p21m2F 1

~p1k!21m2 2
1

p21m2G , ~A2!

and the four-point~large-N) coupling renormalized at zero momentum

3

Ng
5D21~0,g0!5

G~22 d/2!

2~4p!d/2
1

3m42d

Ng0
[

G~22d/2!

2~4p!d/2

N18

N ḡ
, ~A3!
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where we have rescaled the coupling for convenience, generalizing a rather standard three-dimensional prescrip
integration~A2! can be explicitly performed, and one obtains

D r
21~y!5

1

2

G~22 d/2!

~4p!d/2 F S 11
y

4D d/222

FS 22
d

2
,
1

2
,
3

2
,

y

y14D21G[ G~22 d/2!

2~4p!d/2
d r~y!, ~A4!

which is a regular function ofd for all d<4.
The renormalizedO(1/N) contribution to the self-energy@see Eq.~56!# can now be evaluated by the formal expressio

f1~y,g!5s~y,g!2s~0,g!2y
]

]y
s~y,g!uy50 , ~A5!

s~y,g!5m22d
2~4p!d/2

G~22d/2!
E ddp

~2p!d

ḡ

11 ḡd r~p2/m2!

1

~p1k!21m2 , ~A6!

and the subtractions that are symbolically indicated in Eq.~A5! must be done before performing the integration in Eq.~A6! in
order to obtain finite quantities in all steps of the derivation. To this purpose, it is convenient to perform first the a
integration, by noticing that

2~4p!d/2

G~22d/2!
E ddp

~2p!d

m22d

~p1k!21m2
f ~p2/m2!52B~d/2,22 d/2!21E

0

`

~z!d/221dz f~z!h~z,y! ~A7!

where

h~z,y!5
2

B„~d21!/2 ,1
2 …

E
0

p

du
~sin u!d22

z1y1112Azy cosu
. ~A8!

The subtraction indicated in Eq.~A5! now simply amounts to replacing in Eq.~A6!

h~z,y!→h~z,y!2h~z,0!2y
]

]y
h~z,y!uy505h~z,y!2

1

11z
1

y

~11z!2 2
4zy

d~11z!3 . ~A9!

By replacing ḡ with its large-N fixed point valueḡ* 51 in Eq. ~A3!, one finds theO(1/N) contribution to the scaling
function ĝ0(y), which in turn is simply the continuumN-vector model expression of the self-energy. This is the way Eq.~57!
is generated, by settingd53 in the general expression.

Equation~A6! is also the starting point for theg ande expansion up to three loops. It is indeed straightforward to ob
a representation of the leadingO(1/N) contributions to the self-energy as a power series ing:

f1~y, ḡ !52 ḡ2w̃2~y!1 ḡ3w̃3~y!1O~ ḡ4!, ~A10!

where we have defined the functions

w̃n~y!5~21!n
2

B~d/2,22 d/2!
E

0

`

zd/2 21dz@d r~z!#n21Fh~z,y!2
1

11z
1

y

~11z!2 2
4zy

d~11z!3G , ~A11!
Eq

,
f

e
-

to
ac-
and we exploited the trivial consequence of the definition

~A11!: w̃1(y)[0. Restoring the correct dependence onN for
arbitrary~and not only very large! values ofN in front of the
functionsw2 andw3 is now simply a combinatorial problem
whose solution leads to the complete three-loops result
f ( ḡ ,y)[MG

22G̃21(y)/G̃21(0):

f ~ ḡ ,y!511y1 ḡ2
N12

~N18!2w̃2~y!1 ḡ3
~N12!

~N18!2w̃3~y!
.

or

1O~ ḡ4!. ~A12!

We must keep in mind that the functionsw̃n(y) carry a de-
pendence on the dimensionalityd, and the scaling function
ĝ0(y) is the value taken byf ( ḡ ,y) when evaluated at the
fixed point valueḡ* of the renormalized coupling, wher
ḡ* is in turn a function of the dimensionality and it is ob
tained by evaluating the zero of theb function. We may now
choose two different strategies. The first simply amounts
fixing d to the physical value we are interested in and repl
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ing ḡ* with the numerical value~possibly evaluated by a
higher-order expansion of theb function at fixed dimension!.
We may, however, decide to expand the functionsw̃n(y) in
the parametere[42d around their value atd54, perform a
similar expansion for theb function, and then findḡ* as a
series ine @67#:

ḡ* 511
3~3N114!

~N18!2 e1O~e2!. ~A13!

The functionsw2(y) andw3(y) we have introduced in Sec
III C are strictly related tow̃2(y) and w̃3(y) calculated for
d53, indeed

w2~y!5w̃2~y!ud53 ,
~A14!

w3~y!5@ w̃3~y!22w̃2~y!#d53 .

We now present some details of the calculation to or
1/N of the scaling functionĝ4(y). The starting point is

g4~y,MG!5
1

N4
E ddV~ k̂!

Q4~k!

~k2!4 G̃21~k,MG!,

~A15!

whereddV( k̂) indicates the normalized measure on thed
21)-dimensional sphere and

E ddV~ k̂!Q4~k!25
24~d21!

~d12!2~d14!~d16!
~k2!4[N4~k2!4.

~A16!

Using Eq.~92! we get

g4~y,MG!5e4,0
1

1

N

1

N4
E ddV~ k̂!

Q4~k!

~k2!4

3E ddq

~2p!d

D̄~q!

~q1k!21MG
2

. ~A17!

From Eq.~21!, we get finally

ĝ4~y!512
1

N

1

y4E ddq

~2p!d @D~q!2f 4~q2,1!I 1~y,q2,1!

1D~q!I 2~y,q2,1! 2 ~subtr!#, ~A18!

where ‘‘subtr’’ indicates the integrand computed fory→0,
D(q) is the continuum counterpart ofD̄(q):

D21~q!5
1

2

G~22 d/2!

~4p!d/2 S q2

4
1MG

2 D ~d/2! 22

3FF22
d

2
,
1

2
,
3

2
,S 11

4MG
2

q2 D 21G , ~A19!
r

I 1~k2,q2,MG
2 !5

1

N4
E ddV~ k̂!E ddV~ q̂!

Q4~k!Q4~q!

~q1k!21MG
2

5~k2q2!3/2Fd,4~z!, ~A20!

I 2~k2,q2,MG
2 !5

1

N4
E ddV~ k̂!E ddV~ q̂!

Q4~k!Q4~q1k!

@~q1k!21MG
2 #2

~A21!

52
~k2!3

2q2 FF8d,0~z!14S q2

k2D 1/2

F8d,1~z!

1
6q2

k2 F8d,2~z!14S q2

k2D 3/2

F8d,3~z!

1S q2

k2D 2

F8d,4~z!G , ~A22!

where we have defined

z5
q21k21MG

2

2Aq2k2
, ~A23!

Fd,l~z!5
2~12d!/2l ! ~d22!!

G@~d21!/2#~d1 l 23!!

3~21! le2~d23!p i /2~z221!~d23!/4Ql 1~d23!/2
~d23!/2 ~z!.

~A24!

HereQm
n (z) is the associated Legendre function of the s

ond kind ~see Ref.@68#, Secs. 8.7 and 8.8!. Notice that for
l 50 Fd,0(z)5Aq2k2h(q2/MG

2 ,k2/MG
2 ). As expected the fi-

nal result is universal.

APPENDIX B: STRONG-COUPLING EXPANSION
OF G„x… ON THE CUBIC LATTICE

Presentingl th-order strong-coupling results for the two
point Green’s function would naively imply writing down a
many coefficients as the number of lattice sites that can
reached by anl -step random walk starting from the origi
~up to discrete lattice symmetries!. It is interesting to notice
the relationship existing between the numbernl of lattice
points ~not related by a lattice symmetry! that lie at a given
lattice distancel from the origin and the number of indepen
dent lattice-symmetric functionsQ2m(k)(k2) l 2m. One can
easily get convinced that, on a hypercubic lattice, the num
of functions Q2m

(p)(k)(k2) l 2m is the same as the number o
monomials of total degreel in thed variableski

2 that are not
related by a lattice symmetry~that is, the number of indepen
dent, homogeneous lattice-symmetric degree-l polynomials
in the ki

2). This number in turn is equal to that of the par
tions of l into d ordered non-negative integers, and this
nothing but the number of independent lattice points a
lattice distancel ~where ordering ensures independence
elimination of copies obtained by permutation!. As a corol-
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lary, the relationshippl5nl2nl 21 holds for arbitraryd on
hypercubic lattices@11#.

In the case of three-dimensional hypercubic lattices,
can show thatpl5 b l /6c11 with the exception ofl 56k11 in
which casepl5k, while nl is the integer nearest to (l
13)2/12 and the sum( i 5even

l ni is the integer nearest to (l
14)3/72. This would mean roughly (l 14)3/72 coefficients
for the l th-order of the strong-coupling expansion on t
cubic lattice. This number can be sensibly reduced~asymp-
totically by a factor 27 on the cubic lattice!, without losing
any physical information, by noticing that the inverse tw
point function, when represented in coordinate space,
volves only points that can be reached by ab l /3c-step random
walk. This fact can be traced to the one-particle irreduci
nature of the inverse correlation. As a matter of fact, inst
of the 93 coefficients needed to represent the 15th-order
tributions to G(x), only 8 coefficients are enough for th
corresponding contribution to the inverse functionG21(x),
which we construct by the following procedure~a similar
representation was used for the Ising model in a magn
field in @6#!.

We introduce the equivalence classes of lattice sites un
symmetry transformations and choose a representativey for
each class: wheneverx;y thenG(x)5G(y). We define the
‘‘form factor’’ of the equivalence class

Q~y!5(
x;y

eipx, ~B1!

and represent the Fourier transform ofG(x) according to

G̃~p!5(
y

Q~y!G~y!. ~B2!

The inverse Fourier transform enjoys the symmetries
G(x) and satisfies the relationships

G̃21~p!5(
x

eipxG21~x!5(
y

Q~y!G21~y!. ~B3!

In practice we exploit the property

Q~v !Q~y!5(
z

n~z;v,y!Q~z!, ~B4!

where

n~z;v,y!5 (
u;v,x;y

dz,u1x ~B5!

are integer numbers, and reduce the problem of evalua
G21(y) to that of solving the linear system of equations

(
v

G21~v !M ~v,z!5dz,0 , ~B6!
e

-
-

e
d
n-

ic

er

f

ng

where

M ~v,z!5(
y

G~y!n~z;v,y!. ~B7!

When expanding in powers ofb, the system takes a triangu
lar structure and, as expected, it admits a solution wh
nontrivial terms are only those corresponding to the equi
lence classes of sites that can be reached byl /3 random
steps.

Solutions forG21(x) can be found for arbitraryN. In
Table VII we only exhibit G21(x) for N50, 1, 2, 3, 4,
and 16. We choose a representative of the equivalence c
by the prescriptionx1>x2>x3>0. We may notice as a gen
eral feature that in the class represented byx1.1, x25x3
50 the first nontrivial contribution is of order 3x112 (3x1
14 whenN51). WhenN50,1 a number of seemingly non
trivial coefficients turn out to be zero.

APPENDIX C: STRONG-COUPLING SERIES
OF x AND m2 ON THE DIAMOND LATTICE

On the diamond lattice we have calculated the stro
coupling expansion ofG(x) up to 21st order. In the charac
terlike approach@42#, the possibility of reaching larger or
ders than on the cubic lattice is related to the sma
coordination number. However, longer series do not nec
sarily mean that more precise results can be obtained f
their analysis. This is essentially related to the approach
the asymptotic regime of the corresponding strong-coup
expansion, which is expected to occur later on lattices w
smaller coordination number. 21st-order series on the
mond lattice provide estimates of the exponentsg and n,
which are, as we shall see forN51,2,3, substantially con-
sistent with the results obtained by analyzing series on o
lattices@see, for example, Ref.@43# where series toO(b21)
for the cubic and bcc lattice have been presented and
lyzed#, but less precise.

On the diamond lattice we have defined a mass-gap e
mator according to the following procedure. Let us para
etrize the Cartesian coordinates of the sitesxW of the diamond
lattice in the form xW5( l ihW i1phW p , l iPZ, p50,1, hW p

5 (1/A3) (1,1,1),hW 15 (2/A3) (0,1,1),hW 2 5 (2/A3) (1,0,1),
hW 35 (2/A3) (1,1,0). One may then consider the wall-wa
correlation function defined constructing walls orthogonal
wW 5 (1/A2) (21,1,0), which is the direction orthogonal t
two among the links starting from a site. We define

Gw~ t[xW•wW !5 (
t5cst

G~xW !, ~C1!

where the sum is performed over all sites with the samt
[xW•wW 5 (2/A3) (l 12 l 2). One can prove thatGw(t) enjoys
the property of exponentiation. The mass gapm can be ex-
tracted from the long-distance behavior ofGw(t). For t@1
Gw(t)}e2mt. In view of a strong-coupling analysis, it is con
venient to use the quantity



lass

206 57CAMPOSTRINI, PELISSETTO, ROSSI, AND VICARI
TABLE VII. Coefficients of the strong-coupling expansion ofG21(x) on the cubic lattice. The representative of each equivalence c
is chosen byx1>x2>x3>0. l indicates the order.

x1 x2 x3 l N50 N51 N52 N53 N54 N516

0 0 0 0 1 1 1 1 1 1

1 0 0 1 21 21 21 21 21 21

0 0 0 2 6 6 6 6 6 6

1 0 0 3 21 2
2
3 2

1
2 2

2
5 2

1
3 2

1
9

0 0 0 4 30 26 24 114
5 22 58

3

1 0 0 5 213 2
122
15 2

35
6 2

158
35 2

11
3 2

49
45

0 0 0 6 366 4204
15

479
2

37788
175

602
3

20674
135

1 1 0 6 2 0 2
1
2 2

16
25 2

2
3 2

10
27

1 0 0 7 2197 2
33604
315 2

1123
16 2

44812
875 2

1793
45 2

132961
13365

0 0 0 8 5022 348266
105

10265
4

1882494
875

9454
5

5012914
4455

1 1 0 8 24 216 2
65
3 2

18576
875 2

176
9 2

1912
243

2 0 0 8 4 0 21 2
32
25 2

4
3 2

20
27

1 0 0 9 22889 2
3805202

2835 2
191503

240 2
5197194

9625 2
53443
135 2

2940271
40095

1 1 1 9 6 28 2
57
4 2

408
25 2

50
3 2

778
81

2 1 0 9 21 0 2
1
4 2

56
125 2

5
9 2

115
243

0 0 0 10 76062 211434604
4725

3833513
120

8484905796
336875 21078 1969903274

200475

1 1 0 10 258 2
952
3 2

24851
72 2

1878984
6125 2

35786
135 2

10005158
120285

2 0 0 10 116 224 2
583
12 2

45272
875 2

1340
27 2

49060
2187

1 0 0 11 245357 2
2874597004

155925 2
42875903

4320 2
949030894596

153278125 2
12000923

2835 2
34414485049

70366725

1 1 1 11 72 2240 2
2635

8 2
7370064
21875 2

8636
27 2

915928
6561

2 1 0 11 215 224 2
133
3 2

1142304
21875 2

4369
81 2

605717
19683

3 0 0 11 0 0 2
1
2 2

96
125 2

8
9 2

160
243

0 0 0 12 1230462 101355262012
155925

77441167
180

49050932335452
153278125

26831414
105

2184687177202
23455575

1 1 0 12 2460 2
254288

45 2
470591

90 2
49887963408

11790625 2
1379716

405 2
3960090404

5412825

2 0 0 12 1944 2896 2
43417

36 2
35397888

30625 2
423976

405 2
427970056
1082565

2 1 1 12 0 224 2
393
8 2

39096
625 2

616
9 2

35456
729

2 2 0 12 0 0 2
7
8 2

1104
625 2

64
27 2

5600
2187

3 1 0 12 0 0 2
1
8 2

192
625 2

4
9 2

400
729

1 0 0 13 2745189 2
1629512844964

6081075 2
2652479497

20160 2
11642408503972

153278125 2
45795581

945 2
470143113389

164189025

1 1 1 13 2678 2
28728

5 2
614743

96 2
903833736

153125 2
704326

135 2
600662842

360855

2 1 0 13 2476 21120 2
437317

288 2
241988968

153125 2
616348

405 2
765424036
1082565

3 0 0 13 0 224 2
1337
24 2

1500984
21875 2

5864
81 2

868672
19683

0 0 0 14 20787102 140597688722408
14189175

245838046393
40320

298587843693288
69671875

46330187578
14175

15116615635191578
16254713475

1 1 0 14 17378 2
18013984

189 2
1330017637

17280 2
43519901193056

766390625 2
1801726502

42525 2
35538833424418

6966305775

2 0 0 14 29088 220744 2
8258723

360 2
1192015283352

58953125 2
21049024

1215 2
253843671008

48715425

2 1 1 14 0 21456 2
54377

24 2
278755152

109375 2
628336

243 2
253847360

177147
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Md
2[

4

3
~coshA 3

2 m21!, ~C2!

which has the propertyMd→m for m→0 and has a regular strong-coupling series. In the large-N limit and for b<bc

Md
2/MG

2 51.
In the following we report the 21st-order strong-coupling series ofx and m2 calculated on the diamond lattice, forN

51,2,3. 27th-order strong-coupling series forN50, i.e., for the self-avoiding walk model, can be found in Ref.@45#.

1. N51

x5114 b112b21
104b3

3
1100b41

4328b5

15
1

12128b6

15
1

711328b7

315
1

132452b8

21
1

49894088b9

2835

1
230044448b10

4725
1

20986492048b11

155925
1

11593048528b12

31185
1

6239638466896b13

6081075
1

40044715794736b14

14189175

1
381115667726672b15

49116375
1

907261838473556b16

42567525
1

635228192216156408b17

10854718875
1

5223277546855685888b18

32564156625

1
815815904018756584288b19

1856156927625
1

744572898253973823856b20

618718975875
1

642020997051581736673936b21

194896477400625
1O~b22!.

~C3!

m254 b132b21
488b3

3
1

2048b4

3
1

38888b5

15
1

417664b6

45
1

10027936b7

315
1

33306368b8

315
1

971601608b9

2835

1
15453950464b10

14175
1

532482065296b11

155925
1

4939730085376b12

467775
1

196443743845456b13

6081075
1

4168605624019328b14

42567525

1
188065240470724112b15

638512875
1

561744708980235008b16

638512875
1

28352355075085440248b17

10854718875

1
57966531061027107328b18

7514805375
1

42081281751167641189216b19

1856156927625
1

615759333006052918694656b20

9280784638125

1
37696556941296724618984336b21

194896477400625
1O~b22!. ~C4!

TABLE VII. (Continued).

x1 x2 x3 l N50 N51 N52 N53 N54 N516

2 2 0 14 32 2144 2
2425

8 2
42568048
109375 2

103640
243 2

52536352
177147

3 1 0 14 22 232 2
206
3 2

1427216
15625 2

8294
81 2

4477778
59049

4 0 0 14 0 0 2
1
4 2

288
625 2

16
27 2

1280
2187

1 0 0 15 212672757 2
2597638257068408

638512875 2
3549389785799

1935360 2
64161784918165784

65143203125 2
25033873577

42525 2
305112195055173211

24138249510375

1 1 1 15 248624 2
7317712

63 2
317601607

2880 2
555516678768

6015625 2
92268604

1215 2
2363546376656

146146275

2 1 0 15 216428 2
154436

5 2
605816971

17280 2
1403163936156

42109375 2
110231638

3645 2
4917927730652

438438825

2 2 1 15 30 2232 2
8199
16 2

2141976
3125 2

20954
27 2

4066162
6561

3 0 0 15 2400 21752 2
192203

72 2
11182524776

3828125 2
10592632

3645 2
133926221584

87687765

3 1 1 15 210 248 2
1681
16 2

90832
625 2

506
3 2

953338
6561

3 2 0 15 21 0 2
13
8 2

11936
3125 2

151
27 2

50545
6561

4 1 0 15 0 0 2
1
16 2

648
3125 2

28
81 2

11840
19683
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We have analyzed the series ofx by using the@m/ l /k# first-order IA’s with

m1 l 1k12521,
~C5!

b~n22!/3c22<m,l ,k< d~n22!/3e12.

We have obtainedbc50.3697(1) andg51.238(14). An estimate ofg can be also obtained by applying the CPRM to t
seriesx2 andx, as explained in Sec. IV F. By employing biased IA’s, one findsg51.253(4). By applying the CPRM to the
seriesm2 andx, and using biased IA’s, one findsn50.645(4). These values ofg andn are slightly larger than the availabl
estimates obtained by other techniques~field-theoretical approaches giveg.1.240 andn.0.630), or strong-coupling expan
sion on other lattices, but not totally inconsistent. One should not forget that the reported error does not take into acc
systematic errors due to confluent singularities, but is just the spread of the results of the various IA’s indicated in E~C5!.

2. N52

x5114 b112b2134b3196b41
814b5

3
1743b61

24145b7

12
1

10925b8

2
1

889703b9

60
1

2387483b10

60

1
22968773b11

216
1

25617551b12

90
1

11516036093b13

15120
1

40849680041b14

20160
1

520550507027b15

96768
1

3457894675397b16

241920

1
495995794312009b17

13063680
1

2188572410969059b18

21772800
1

173608313274399461b19

653184000
1

76543471229019871b20

108864000

1
5344313242348050991b21

2874009600
1O~b22!. ~C6!

m254 b132b21162b31672b41
7534b5

3
1

26488b6

3
1

356305b7

12
1

289444b8

3
1

18326503b9

60
1

42659326b10

45

1
3125910649b11

1080
1

1176454982b12

135
1

78423473449b13

3024
1

577822206313b14

7560
1

108069034519903b15

483840

1
58770348791597b16

90720
1

24384512261505001b17

13063680
1

43660988509648999b18

8164800
1

9954936929950180901b19

653184000

1
1764942584095467281b20

40824000
1

1754883256361403082267b21

14370048000
1O~b22!. ~C7!

By performing an IA analysis of the series ofx, one findsbc50.3845(2) andg51.33(2). By applying the CPRM to the
seriesx2 andx, and employing biased IA’s, one findsg51.34(1). By applying the CPRM to the seriesm2 andx, and using
biased IA’s, one findsn50.689(8). These results are substantially consistent with the available estimates ofg obtained on
other lattices and by other approaches~see, e.g., Refs.@43# and @2#!.

3. N53

x5114 b112b21
168b3

5
1

468b4

5
1

9144b5

35
1

123456b6

175
1

65568b7

35
1

873708b8

175
1

128270568b9

9625

1
11818853472b10

336875
1

2007117038928b11

21896875
1

5262987995856b12

21896875
1

1973906542032b13

3128125
1

25696714370736b14

15640625

1
277395071474138256b15

65143203125
1

5048136975344060076b16

456002421875
1

1747312876419771883176b17

60648322109375

1
35523883350405253078656b18

476522530859375
1

3207088211587054727672352b19

16678288580078125
1

8294186293466843988864336b20

16678288580078125

1
285612671193686662161552b21

221862716796875
1O~b22!. ~C8!



57 209TWO-POINT CORRELATION FUNCTION OF THREE- . . .
m254 b132b21
808b3

5
1

3328b4

5
1

17240b5

7
1

1498496b6

175
1

4978592b7

175
1

15959296b8

175
1

391158744b9

1375

1
292871549952b10

336875
1

8170771755824b11

3128125
1

169326765636096b12

21896875
1

495146153921968b13

21896875

1
7166586778308992b14

109484375
1

1747788082514945008b15

9306171875
1

243755148694999429888b16

456002421875

1
91627122308762345759912b17

60648322109375
1

2022510678813614989101568b18

476522530859375
1

197787508407138584345236512b19

16678288580078125

1
21994072978677629556242688b20

667131543203125
1

34998691725014346631615751056b21

383600637341796875
1O~b22!. ~C9!

By performing an IA analysis of the series ofx, one findsbc50.3951(2) andg51.42(2). Wemention that singularities
approximately as far to the origin asbc have been detected by our analysis, indeed we found two singularities atb.
6 i0.39. By applying the CPRM to the seriesx2 andx,and employing biased IA’s, one obtainsg51.42(1). By applying the
CPRM to the seriesm2 andx, and using biased IA’s, one findsn50.726(4). These results are slightly larger~and less precise!
than the values obtained on other lattices~see, e.g., Ref.@43#!, or by other techniques~see, e.g., Ref.@2#!, but substantially
consistent.
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