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Crossover scaling from classical to nonclassical critical behavior
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We study the crossover between classical and nonclassical critical behaviors. The critical crossover limit is
driven by the Ginzburg numbe®. The corresponding scaling functions are universal with respect to any
possible microscopic mechanism which can v@ysuch as changing the range or the strength of the interac-
tions. The critical crossover describes the unique flow from the unstable Gaussian to the stable nonclassical
fixed point. The scaling functions are related to the continuum renormalization-group functions. We show these
features explicitly in the larg®k limit of the O(N) ¢* model. We also show that the effective susceptibility
exponent is honmonotonic in the low-temperature phase of the three-dimensional Ising model.
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Motivated by various experimental resulsee, e.g., Refs. universal behavior can be observed onlyti1l, i.e., the
[1-4]), there has recently been a revived interest in undereorrelation length is large, in the whole crossover region.
standing crossover phenomena driven by the effective rangehe problem was properly formulated by Luijten, Bdpand
of the interactions. If the interactions have a finite raRge Binder [19,20, who argued that a universal crossover de-
the limit in which the reduced temperaturgoes to zero, the scription can be obtained if one considers the simultaneous
system shows the standard short-range nonclassical behavitimits t—0, R—~ keeping the product betwedanand an
According to the Ginzburg criteriofb] this occurs whert ~ appropriate power oR fixed. A Wilson RG analysig19]
<G, wheret and G are, respectively, the reduced tempera-indicates that this limit is nontrivial and interpolates between
ture and the Ginzburg number. On the other hand, in théhe mean-field and the standard short-range behavior. These
opposite limitt>G the system shows a classical Gaussianideas have been confirmed numerically in the two-
behavior. In the intermediate region one observes a crossovdimensional Ising model20]. We will refer to the above
between these two behaviors. From the point of view of thdimit as critical crossover. Thus the critical crossover is a
Wilson renormalization-grougRG) theory, this crossover crossover from the critical nonclassical behavior to the criti-
phenomenon is generally explained by the competition otal classical behavior. Extending the arguments of F&f,
two fixed points: the Gaussian fixed point and the nonclassiwe define the appropriate crossover limit in the whdldn)
cal fixed point that determines the asymptotic behavior in theplane introducing a magnetic Ginzburg numi@g, such
neighborhood of criticality. that the system shows classical behaviorterG,, and the

These crossover phenomena are of great importance f@tandard short-range behavior in the opposite case.
the understanding of critical phenomena occurring in physi-  The main point is that in the critical crossover region the
cal systems(see, e.g., Refd2,6,3). Fisher[2] discussed ey role is played by the Ginzburg numb@r the range of
experiments on micellar solutiorfd] and argued that the the interaction is only one of the possible microscopic pa-
apparentlly nonunlversal results of the crmca_l expc_)nents MaYameters controllings. Any other mechanism leading to a
be explained in terms of a crossover behavior driven by theyange ofs can give rise to the same critical crossover when

e:‘fectnt/)e r?\?g; i?nf tr)](e |r:itrenrarc1:;uc|>nds. tCr;)srs?hver phenog;)ma aiﬂe appropriate limit is considered. We show that the critical
also observe experimental data for the suscep Y Otrossover driven byR can be reproduced starting from a

fluids and liquid mixture$3] and in polymer melt§6]. Some : ) . .
understand?ng of the crfs]sover prlcajbl)(/em is pr0\§i6d]ed by ﬁeld_standardcz;“_theo_ry .W'th short-range interactions and taklr_lg
theoretic calculationésee, e.g., Ref§7—15) an appropriate limit of the theory when the bare four-point

The most important issue concerning crossover phenomc_oupling.goes to zero. The critic_al crossover functions ex-
ena is whether one can define scaling functions that are unpreéssed in terms of the renormalized coupling are related to
versal and that describe the crossover between the classidff Standard continuum RG functions. _
(Gaussianand the nonclassical behavior. In order to give an  1he several open questions on the crossover behavior call
answer to this question, one must clarify the kind of crossfor a theoretical laboratory where the various conjectures can
over one is considering. Varying while keeping the Gin- be verified analytically. The Q) vector model in the large-
zburg numbef fixed, one observes a crossover between théN limit is ideal for this purpose. Indeed, although it main-
critical and the noncritical behavior. This is obviously non-tains many nontrivial features of the theory, it allows us to
universal and fot<G it is described by the nonuniversal perform exact calculations, and therefore an exact verifica-
Wegner expansiofiL6]. As pointed out by Bagnuls and Ber- tion of the conjectures on the crossover phenomena. Starting
villier [17] (see alsd18]), a universal behavior can only be from a lattice ON) model with long-range interactions, we
obtained in a properly defined critical limit. In other words, a calculate the crossover functions fox21<<4 and discuss
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their universality in the critical crossover region. We deriveinteraction, i.e., keeping fixed, it is convenient to introduce
the equation of state that provides a complete description 06( new Ginzburg number associated With19]:
the crossover region. '

For .the sal§e of definiteness, we con_sider tde G=R 204~ (N 24~ D R2G 9)
dimensional lattice model defined by the Hamiltonian
(we have introduced th& dependence only to make the
H:Z %J()Zi_)zj)[(ﬁ(;i)_qg(;j)]Z largeN limit more transparent Thus the comparison of
h with GxR™29(4=9) tells us whether the critical behavior is
R 1 R . nonclassical?<§) or classical (_>§).
+Ei %rd’(xi)2+mu¢(xi)4_h¢(xi) . @ Following Refs.[19,20, one may introduce the rescaled
reduced temperature
whereqﬁ(gi) areN-dimensional vectors. The spin-spin inter- 1I=1/G=t/G (10)
actionJ(x) has finite rangdRk defined by
and consider the limit—0 and R—x keepingt fixed.
1 2% ooz @) Whent—0 (t—) the nonclassicalclassical critical be-

== ——>X X). X . X
2d >:J(X) ) havior should be recovered. Extending the RG analysis of
Ref. [19] to the linet=0, we also introduce a magnetic
The specific form ofJ(x) is irrelevant for our discussion. Ginzburg numbeGecu(@*2/2(4=d gng
The normalization 0f(x) is chosen so that its Fourier trans- = _ o-3di(4—d), N (d+2)/[2(4—d)]
form II=II(k,R) has the low-momentum behavidk? Gh=R (Nu) *RGy. (1D

+0(k%. The Ginzburg criteriofi5] applied to the modell) = . - . .
tells us that the theory has a nonclassical critical behavio?h _teIIs us, in the presgnce of_a magnetic f'el_d’ in which
when regime we are: nonclassical whbreGy, and classical when
h>G,,. Correspondingly, we define a rescaled magnetic
t=r—r ,<Goy?4-9, (3)  field

2

In order to study the long-range limit, it is convenient to h=h/ Ehoch/Gh, (12)
perform a field rescaling with a corresponding rescaling of

the Hamiltonian parameters: and study the behavior of the theory when0, R— o with
EE R4 T=R% U=R' F=Rh @ h fixed. Ihe noDcIassica(blassica) behavior is obtained in
' ’ ’ ' the limit h—0 (h—).
Relations(5) and(6) suggest the following scaling behav-

KeepingR finite, the critical behavior fot—0 andh—0 is iors in the critical crossover limit foh=0-

nonclassical. For example, in the lariyelimit the critical
exponents arey=2v=2/(d-2), =0, B=1/2, §=(d Y=7G~F (1 G 13
+2)/(d—2). WhenR— one expects a mean-field critical X=X A B)=XG 13
behavior, characterized by the exponegts2v=1, =0, 7 i o~ 2
B=1/2, 6=3. This change implies a singular dependence on E=GFa(l)= "G, (14
R of the critical amplitudes, which has been derived in Refs g gy, Eq.(8) one obtains
[21,19. For example, the asymptotic behaviors of the mag-
netization, of tﬂe magnetic susceptibility, and of the correla- M EIWE/E,@FM(E)MMG/Gh for t=0. (15
tion length, fort —0 (with h=0), are expected to 4&1,19
F(X), Fe(x), and Fy(x) are expected to behave as
— — = = 4 F (X)~Xx"7, Fa(x)~x"2", andFy(x)~x* for x—0, and
= 'y 2d(1-y)/(4—d) X 3 M

X_Zi {do i)t 7R ! : ®) F(X)~Xx"1, Fa(x)~x"1, andFy(x)~x"3for x—c. The
corrections to these asymptotic behaviors should be con-
trolled by the corresponding leading correction-to-scaling

= i > x¥ (- i)yt 2VR2A-20I4=d) () exponentsA (see, e.g., Ref2] and references thergin
2dyR*5 It is crucial to notice that in the crossover region the rel-
evant new scale is provided by the Ginzburg nunBeand
M=(¢)oc tPRIZA-DI(4=0), (7)  the critical crossover limit can be expressed in term& ¢br

G;) only, i.e. without the explicit use dR. The range of the
Moreover, using the Wilson renormalization-group approactinteractions represents a physical way to v@rgccording to

of Ref.[19], we find that at=0 Eqg. (9), but it is not the only way. The critical crossover
o scaling functions are therefore expected to be universal with
M oc hV/ORA(3/6=1)/(4=d) (8)  respect to the microscopic ways one uses to control and vary

G. In other words, the critical crossover describes the unique
In order to describe the critical crossover from the nonclasflow from the unstable Gaussian to the stable nonclassical
sical to the classical behavior as driven by the range of théixed point. Starting from ap* short-range theory, for in-
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stance from the Hamiltoniafl) with R=1 fixed, one may
use the bare four-point couplingto vary G according to Eq.

(3). One then recovers the critical crossover behavior in the

limit u—0, t—0 with tT=t/Goctu™?“~9 fixed. In the con-
text of the statistical approach to polymers, the limnit:-0
keepingtoctu~ 2“9 fixed is essentially equivalent to the
so-called two-parameter mod@ee, e.g., Ref$22—-24 and
references therejnin this limit the crossover functions can
be computed in the standard continugtftheory[9,11,13.

A dimensional analysis shows thaising the subtracted bare
mass and removing the cutpfinite results can be obtained

in terms of the dimensionless variahlét?~92=1%2-2 and
no further limiting procedure is required. It is useful to in-
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~ ~ 2—d/2
~F (1) F.(t)
X X
=N K+Ld( N ) , (21)
o1+ Nu  T(1-d)
6b2’ ¢ p(4m)d2’

Equation(21) is well defined in the larg®& limit after proper
rescalings inN of the fields(i.e., $— N¢) and couplings
(i.e., u—Uu/N). The expected asymptotic behaviors are re-
produced:

F(O) [T 2(1+cttst--0) fort—0
e

troduce a renormalized couplirgg Changing variables from

T to g, one may then show that the critical crossover func-
tions expressed in terms gfare related to the standard con- _ _
tinuum RG functions. They describe the physics of stronngNhereASf__(A'_d)/(d__2) andAg=(4—d)/2 are the lead-
correlated systems in the whole range between the classicil¥ correction-to-scaling exponents rfelated to the noncl_aSS|-
and nonclassical critical point, in terms of a single physicalc® Short-ranged a”EAthe Gaussian fixed point, respectively.
parameter measuring the ratio between the interaction scalehe coefficient of the“sr correction in the expansion around

and the correlation scale. The critical crossover functions fot =0 (and in general also the other coefficients of the expan-

T Y (1+ct e+ for t— oo,

(22

physically interesting systems are well studi@j11,13 in
the fixed-dimension expansion whdrs- 3.

sion) can be obtained by performing the appropriate limit of
the nonuniversal Wegner expansion. We stress that the de-

To check explicitly these ideas, let us consider the largependence on the bare couplingin Eq. (21) can be elimi-

N limit. Before any rescaling the following saddle-point
equations hold:

, 6 o[ d%
M2+ = (t—m?) =N 2md T (16)
h
MZW, 17

whereM =(¢) is the magnetization ang=1/m is a dynami-
cally determined length scale. Fbe=0

Y=N/m?2, m?=R?m2 (18)

The critical crossover functioﬁX(T) can be obtained by
rewriting Eq.(16) for h=0 in terms oft and, and taking
the limit R— (thusG—0) with u fixed:

d Ny !
(2m)° TI(TT+GNy %)’

NUI_
6 n

T=Ny 1+ (19

where II=R?[1. An analysis of the integral in Eq(19)
shows that, for 22d<<4, the limit exists. It depends only on

the following property offI:

lim[ lim II(g/R,R)]=b.,,

q—oe R—o

(20

whereb,, is a nonvanishing constant. Its explicit value is not
relevant, since a change of this constant can be reabsorbed in

a change of normalization for. Therefore our results are
universal, apart from a rescaling bfand y, for a large class

of Hamiltonians satisfying the above condition. From Eq.

(19) one finally obtains

nated by a rescaling and a redefinitiontofMoreover, the

same equatiofmodulo the above-mentioned rescalihgan

be obtained starting from the-vector (nonlinears) model.
The analysis of experimental data in the crossover region

is usually performed by introducing effective critical expo-

nents. One can defing, by the logarithmic derivative of

F,(t). In three dimensions
dinF

X _ T\-1/2
X —1+(14ct) 2
dint Y

Yeff= — (23

wherec,=4K/L3. (1) is universal apart from a trivial
rescaling oft. Analogously one may define,; and find

5 (24
From Egs.(16) and (17) one can derive an equation of
state relating the rescaled variablesh, andM in the criti-
cal crossover limit. Simple calculations, involving the same
integral of Eq.(19), lead to the equation
MZ FI FI dr2—-1
LRSS 1
M

6N (25

which turns out to be universal apart from trivial rescalings

of T, h, and M. Moreover, it reproduces the correct
asymptotic behaviors:

h~M2(1+ctM~YA)yr[1+O(MAAY], (26)

where in the nonclassical limitt(-0 and h—0) §=(d
+2)/(d-2), B=1/2, and p=2/(d—2). In the classical
limit =3, B=1/2, andp=1. Settingt =0 in Eq.(25), one
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can derive the crossover functién, (h) defined in Eq(14).
In three dimensions the corresponding effective expoAgnt
is given by

dinh

5eﬁ5m=3+2

c F%ﬂ -1/2

We can also consider the short-range version of the model
and show that the functiof${(t)=x(Nu)¥“~ 9 satisfies
Eq. (21) with b,,—0o0. The same arguments apply to all other
critical crossover functions. This confirms that the critical
crossover functions are universal, i.e., independent of the

mechanism drivings. Ll o o o o o i
|n the Symmetric phase We Can define the Zero- | T T | T T A oot opvveome v
: > [} -8 -4 -2 0 2 4
momentum four-point coupling as 10 10 10 R 10 10 10
3N x4

(28 FIG. 1. Effective susceptibility exponent as a functiontdbr
the high- (ye) and low- (y.;) temperature phase of the three-

. . . . dimensional Ising model. Herteis the reduced temperature for the
where x, is the connected four-point correlation function at ,,;jel with Hamiltonian(36) andR is defined in Eq/(2).

zero momentum. In the larg¥-limit [25],

9= N2 e

R _ d,y
- Nu [ d% 1 ! o () —
Ng:md—4 1+ — §—=———= , (29) V(g)ﬁ(g) dg ’Y(g) ’}’eff(g) (34)
6 J (2m)° (I1+Gm?)?
o In the largeN limit
wherem?=¢ ~2. In the critical crossover limit the integral
depends only otb,,. We obtain 2y Yg)=v X g)=2+(d—4)g/g*. (35)
g(m) 1 Using the field-theoretical approad®,11,14, one can

(30 compute the effective exponents in three-dimensiona)O(

models. Results for the high-temperature phase are reported
whereNg(0)=6(4m)%3T'(2—d/2)=Ng* is the nonclassi- in Refs.[9,11]. We extended the computatid27] to the
cal critical value ofg, andcy=2K/(d—2)Lq4. The effective low-temperature phase computing for N=1. The result-
critical exponent associated wig(m) is ing curves are plotted in Fig. 1. We stress that, apart from the
small error of the resummation procedure — it should be

9(0) ~ 1+cgm* 9’

ding(m) 9 well below 1% — the curves in Fig. 1 represent the universal
Yeir(9)= —~=(d—4)[ 1-—|. (31 critical crossover exponents. Thus experimental and numeri-
dinm g cal data in the crossover region should approach these curves

in the appropriate limitmodulo a rescaling of). In this
perspective it is possible to understand the lack of universal-
4-d g ity of the results of Ref{3]: universality is recovered only in
Yei(9) =2ve(g) =1+ 2" (32)  the limitu—0. For finite values ofi one expects corrections
9 to scaling that eventually disappeanas 0. Indeed the com-
) ] — parison with the experimental data for fluids and liquid mix-
Equations(31) and (32) are now independent af andb...  tures[3] improves as the effective parametedecreases.
Notice that only in the nonclassical critical limim—0), Measurements in the critical crossover limit are difficult
Yei(9)— 0 and therefore the corresponding hyperscaling reand accurate results are scarce. Experiments on micellar so-
lation is satisfied. This fact is not unexpected because hypelutions [1] observed exponents that were very far from the
scaling is not satisfied at the Gaussian fixed point, wigere expected Ising values. The exponentvas even lower than
~(T-To)@ 92 for T-T,. the classical value/= 1. Fisher[2] interpreted the data as a
One can now easily verify that.«(g) =8(g)/g, where crossover effect, suggesting a standard scaling description. In
B(g) is the Callan-Symanzil@ function in the continuum order to explain the data, this interpretation would require
¢* theory. Analogously the high-temperature exponentsyes to be nonmonotonic in the symmetric phase. But, as Fig.
ver(9) and ve(g) are related to the standard RG functions1 shows, this is not the case for the critical crossover func-
v(g) and v(g) (see, e.g., Ref[11]) through the relations tion y. Therefore, as already observed by Bagnuls and
[26] Bervillier [30], the results of 1] cannot be explained in terms
of universal crossover functions.

On the other hand, it is interesting to note th@‘p(f) is
nonmonotonic. In three dimensions the effect is rather small

In the same limit Eqs(23), (24), and(30) imply also

Yert(9) _ y(9)
ver(9)  v(Q)’

(33
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(see Fig. 1 The minimum value ofygy(T) is you(t)|mn  WHETe the constants are given by

~0.994, so that a nonmonotonic behavior can hardly be r'(3—d/2)

seen. This type of behavior had already been observed nu- C+:W’ (38)
merically in two dimension§20]. In this case, however, the 257 7¥Y(d-2)

effect appears much larger. The nonmonotonicitygf can B B

be predicted analytically by calculating the first correction to C™=-2%91- %2%d-2)] (39

the mean-field behavior in the low-temperature phase. Ong, yhe high- and low-temperature phases, respectively. Notice

can indeed show thafeq(t) is increasing forft|—c. For a4 torg=3, ¢~ is negative so thatzy(f ) cannot be mono-
|dnstagc_e, Il?etf u231 Conglt(ﬂje:c_ th?j E”gr;raage !IS'”Q model introgsnic. In two dimensions the subleading corrections behave
uced in Ref{21] and defined by the Hamiltonian ast!Int, again with a negative coefficient. In three dimen-

L sions, in Eq.(37), logarithms appear at next next-to-leading
H=— 2 J(Xi—X;)sis; (36) order.
L We have also performed a high-statistics Monte Carlo
- _d - . ) simulation of ad=3 model of self-avoiding walks with
whereJ(x) =cR,“ for [x| <R andJ(x) =0 otherwise. Set- |ong-range interactionf31]. We obtain evidence of the ex-
ting t=(B.— B)/ B, andt=tR*¥“-9 one finds for 22d istence of a universal critical crossover scaling in the ld&Rge-
<4 limit. The resulting universal curves turn out to be in agree-
ment with the two-parameter model predictid@g,24], con-
Yer= 1+ C[t|(@=2+ O([t|974), (37)  firming the general arguments.
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