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Crossover scaling from classical to nonclassical critical behavior

Andrea Pelissetto, Paolo Rossi, and Ettore Vicari
Dipartimento di Fisica dell’Universita` and INFN, I-56126 Pisa, Italy

~Received 24 April 1998; revised manuscript received 8 September 1998!

We study the crossover between classical and nonclassical critical behaviors. The critical crossover limit is
driven by the Ginzburg numberG. The corresponding scaling functions are universal with respect to any
possible microscopic mechanism which can varyG, such as changing the range or the strength of the interac-
tions. The critical crossover describes the unique flow from the unstable Gaussian to the stable nonclassical
fixed point. The scaling functions are related to the continuum renormalization-group functions. We show these
features explicitly in the large-N limit of the O(N) f4 model. We also show that the effective susceptibility
exponent is nonmonotonic in the low-temperature phase of the three-dimensional Ising model.
@S1063-651X~98!14012-6#

PACS number~s!: 64.60.Fr, 05.70.Fh, 75.40.Cx, 75.10.Hk
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Motivated by various experimental results~see, e.g., Refs
@1–4#!, there has recently been a revived interest in und
standing crossover phenomena driven by the effective ra
of the interactions. If the interactions have a finite rangeR, in
the limit in which the reduced temperaturet goes to zero, the
system shows the standard short-range nonclassical beha
According to the Ginzburg criterion@5# this occurs whent
!G, wheret andG are, respectively, the reduced tempe
ture and the Ginzburg number. On the other hand, in
opposite limit t@G the system shows a classical Gauss
behavior. In the intermediate region one observes a cross
between these two behaviors. From the point of view of
Wilson renormalization-group~RG! theory, this crossove
phenomenon is generally explained by the competition
two fixed points: the Gaussian fixed point and the noncla
cal fixed point that determines the asymptotic behavior in
neighborhood of criticality.

These crossover phenomena are of great importance
the understanding of critical phenomena occurring in phy
cal systems~see, e.g., Refs.@2,6,3#!. Fisher @2# discussed
experiments on micellar solutions@1# and argued that the
apparently nonuniversal results of the critical exponents m
be explained in terms of a crossover behavior driven by
effective range of the interactions. Crossover phenomena
also observed in experimental data for the susceptibility
fluids and liquid mixtures@3# and in polymer melts@6#. Some
understanding of the crossover problem is provided by fie
theoretic calculations~see, e.g., Refs.@7–15#!.

The most important issue concerning crossover phen
ena is whether one can define scaling functions that are
versal and that describe the crossover between the clas
~Gaussian! and the nonclassical behavior. In order to give
answer to this question, one must clarify the kind of cro
over one is considering. Varyingt, while keeping the Gin-
zburg numberG fixed, one observes a crossover between
critical and the noncritical behavior. This is obviously no
universal and fort&G it is described by the nonuniversa
Wegner expansion@16#. As pointed out by Bagnuls and Be
villier @17# ~see also@18#!, a universal behavior can only b
obtained in a properly defined critical limit. In other words
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universal behavior can be observed only ift!1, i.e., the
correlation length is large, in the whole crossover regi
The problem was properly formulated by Luijten, Blo¨te, and
Binder @19,20#, who argued that a universal crossover d
scription can be obtained if one considers the simultane
limits t→0, R→` keeping the product betweent and an
appropriate power ofR fixed. A Wilson RG analysis@19#
indicates that this limit is nontrivial and interpolates betwe
the mean-field and the standard short-range behavior. T
ideas have been confirmed numerically in the tw
dimensional Ising model@20#. We will refer to the above
limit as critical crossover. Thus the critical crossover is
crossover from the critical nonclassical behavior to the cr
cal classical behavior. Extending the arguments of Ref.@20#,
we define the appropriate crossover limit in the whole (t,h)
plane introducing a magnetic Ginzburg numberGh , such
that the system shows classical behavior forh@Gh and the
standard short-range behavior in the opposite case.

The main point is that in the critical crossover region t
key role is played by the Ginzburg numberG: the range of
the interaction is only one of the possible microscopic p
rameters controllingG. Any other mechanism leading to
change ofG can give rise to the same critical crossover wh
the appropriate limit is considered. We show that the criti
crossover driven byR can be reproduced starting from
standardf4 theory with short-range interactions and takin
an appropriate limit of the theory when the bare four-po
coupling goes to zero. The critical crossover functions
pressed in terms of the renormalized coupling are relate
the standard continuum RG functions.

The several open questions on the crossover behavior
for a theoretical laboratory where the various conjectures
be verified analytically. The O(N) vector model in the large-
N limit is ideal for this purpose. Indeed, although it mai
tains many nontrivial features of the theory, it allows us
perform exact calculations, and therefore an exact verifi
tion of the conjectures on the crossover phenomena. Sta
from a lattice O(N) model with long-range interactions, w
calculate the crossover functions for 2,d,4 and discuss
7146 © 1998 The American Physical Society
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PRE 58 7147CROSSOVER SCALING FROM CLASSICAL TO . . .
their universality in the critical crossover region. We deri
the equation of state that provides a complete descriptio
the crossover region.

For the sake of definiteness, we consider thed-
dimensional lattice model defined by the Hamiltonian

H5(
i , j

1
2 J~xW i2xW j !@f~xW i !2f~xW j !#

2

1(
i

F 1
2 rf~xW i !

21
1

4!
uf~xW i !

42hf~xW i !G , ~1!

wheref(xW i) areN-dimensional vectors. The spin-spin inte
actionJ(xW ) has finite rangeR defined by

R25
1

2d

(xW

(xWJ~xW !
x2J~xW !. ~2!

The specific form ofJ(xW ) is irrelevant for our discussion
The normalization ofJ(xW ) is chosen so that its Fourier tran
form P[P(k,R) has the low-momentum behaviork2

1O(k4). The Ginzburg criterion@5# applied to the model~1!
tells us that the theory has a nonclassical critical beha
when

t[r 2r c!G}u2/~42d!. ~3!

In order to study the long-range limit, it is convenient
perform a field rescaling with a corresponding rescaling
the Hamiltonian parameters:

f̄[R21f, t̄[R2t, ū[R4u, h̄[Rh. ~4!

KeepingR finite, the critical behavior fort̄→0 andh̄→0 is
nonclassical. For example, in the large-N limit the critical
exponents areg52n52/(d22), h50, b51/2, d5(d
12)/(d22). WhenR→` one expects a mean-field critica
behavior, characterized by the exponentsg52n51, h50,
b51/2, d53. This change implies a singular dependence
R of the critical amplitudes, which has been derived in Re
@21,19#. For example, the asymptotic behaviors of the m
netization, of the magnetic susceptibility, and of the corre
tion length, fort̄→0 ~with h50), are expected to be@21,19#

x̄[(
i

^f̄0•f̄ i&} t̄ 2gR2d~12g!/~42d!, ~5!

j̄2[
1

2dx̄R2(i
xi

2^f̄0•f̄ i&} t̄ 22nR2d~122n!/~42d!, ~6!

M̄[^f̄&} t̄ bRd~2b21!/~42d!. ~7!

Moreover, using the Wilson renormalization-group approa
of Ref. @19#, we find that att50

M̄}h̄1/dRd~3/d21!/~42d!. ~8!

In order to describe the critical crossover from the noncl
sical to the classical behavior as driven by the range of
of

r

f

n
.
-
-

h

-
e

interaction, i.e., keepingū fixed, it is convenient to introduce
a new Ginzburg number associated witht̄ @19#:

Ḡ[R22d/~42d!~Nū!2/~42d!}R2G ~9!

~we have introduced theN dependence only to make th
large-N limit more transparent!. Thus the comparison oft̄
with Ḡ}R22d/(42d) tells us whether the critical behavior i
nonclassical (t̄ !Ḡ) or classical (t̄ @Ḡ).

Following Refs.@19,20#, one may introduce the rescale
reduced temperature

t̃[ t̄ /Ḡ}t/G ~10!

and consider the limitt̄→0 and R→` keeping t̃ fixed.
When t̃→0 ( t̃→`) the nonclassical~classical! critical be-
havior should be recovered. Extending the RG analysis
Ref. @19# to the line t50, we also introduce a magneti
Ginzburg numberGh}u(d12)/[2(42d)] and

Ḡh[R23d/~42d!~Nū!~d12!/[2~42d!]}RGh . ~11!

Ḡh tells us, in the presence of a magnetic field, in whi
regime we are: nonclassical whenh̄!Ḡh and classical when
h̄@Ḡh . Correspondingly, we define a rescaled magne
field

h̃[h̄ / Ḡh}h /Gh , ~12!

and study the behavior of the theory whenh̄→0, R→` with
h̃ fixed. The nonclassical~classical! behavior is obtained in
the limit h̃→0 (h̃→`).

Relations~5! and~6! suggest the following scaling behav
iors in the critical crossover limit forh50:

x̃[x̄ Ḡ'Fx~ t̃ !}xG, ~13!

j̃2[j̄2 Ḡ'Fj2~ t̃ !}j2G. ~14!

From Eq.~8! one obtains

M̃[M̄ Ḡ/Ḡh'FM~ h̃!}MG/Gh for t50. ~15!

Fx(x), Fj2(x), and FM(x) are expected to behave a
Fx(x);x2g, Fj2(x);x22n, andFM(x);x1/d for x→0, and
Fx(x);x21, Fj2(x);x21, andFM(x);x1/3 for x→`. The
corrections to these asymptotic behaviors should be c
trolled by the corresponding leading correction-to-scal
exponentsD ~see, e.g., Ref.@2# and references therein!.

It is crucial to notice that in the crossover region the r
evant new scale is provided by the Ginzburg numberG, and
the critical crossover limit can be expressed in terms ofG ~or
Gh) only, i.e. without the explicit use ofR. The range of the
interactions represents a physical way to varyG according to
Eq. ~9!, but it is not the only way. The critical crossove
scaling functions are therefore expected to be universal w
respect to the microscopic ways one uses to control and
G. In other words, the critical crossover describes the uni
flow from the unstable Gaussian to the stable nonclass
fixed point. Starting from af4 short-range theory, for in-
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stance from the Hamiltonian~1! with R51 fixed, one may
use the bare four-point couplingu to varyG according to Eq.
~3!. One then recovers the critical crossover behavior in
limit u→0, t→0 with t̃[t/G}tu22/(42d) fixed. In the con-
text of the statistical approach to polymers, the limitu→0
keeping t̃}tu22/(42d) fixed is essentially equivalent to th
so-called two-parameter model~see, e.g., Refs.@22–24# and
references therein!. In this limit the crossover functions ca
be computed in the standard continuumf4 theory@9,11,12#.
A dimensional analysis shows that~using the subtracted bar
mass and removing the cutoff! finite results can be obtaine
in terms of the dimensionless variableu/t22d/25 t̃ d/222, and
no further limiting procedure is required. It is useful to i
troduce a renormalized couplingg. Changing variables from
t̃ to g, one may then show that the critical crossover fun
tions expressed in terms ofg are related to the standard co
tinuum RG functions. They describe the physics of stron
correlated systems in the whole range between the clas
and nonclassical critical point, in terms of a single physi
parameter measuring the ratio between the interaction s
and the correlation scale. The critical crossover functions
physically interesting systems are well studied@9,11,12# in
the fixed-dimension expansion whend53.

To check explicitly these ideas, let us consider the lar
N limit. Before any rescaling the following saddle-poi
equations hold:

M21
6

u
~ t2m2!5NE ddk

~2p!d

m2

P~P1m2!
, ~16!

M5
h

m2 , ~17!

whereM[^f& is the magnetization andj51/m is a dynami-
cally determined length scale. Forh50

x̄5N/m̄2, m̄2[R2m2. ~18!

The critical crossover functionFx( t̃ ) can be obtained by
rewriting Eq.~16! for h50 in terms of t̃ and x̃, and taking
the limit R→` ~thusḠ→0) with ū fixed:

t̃ 5Nx̃211
Nū

6
lim

R→`
E ddk

~2p!d

Nx̃21

P̄~P̄1ḠNx̃21!
, ~19!

where P̄[R2P. An analysis of the integral in Eq.~19!
shows that, for 2,d,4, the limit exists. It depends only o
the following property ofP̄:

lim
q→`

@ lim
R→`

P̄~q/R,R!#5b` , ~20!

whereb` is a nonvanishing constant. Its explicit value is n
relevant, since a change of this constant can be reabsorb
a change of normalization fort̃ . Therefore our results ar
universal, apart from a rescaling oft̃ andx̃, for a large class
of Hamiltonians satisfying the above condition. From E
~19! one finally obtains
e

-

y
cal
l

ale
r

-

t
in

.

t̃
Fx~ t̃ !

N
5K1LdS Fx~ t̃ !

N
D 22d/2

, ~21!

K511
Nū

6b`
2

, Ld52
G~12d/2!

6~4p!d/2
.

Equation~21! is well defined in the large-N limit after proper
rescalings inN of the fields~i.e., f→ANf) and couplings
~i.e., ū→ū/N). The expected asymptotic behaviors are
produced:

Fx~ t̃ !

N
;H t̃ 22/~d22!~11c1 t̃ Dsr1••• ! for t̃→0

t̃ 21~11c2 t̃ 2DG1••• ! for t̃→`,
~22!

whereDsr5(42d)/(d22) andDG5(42d)/2 are the lead-
ing correction-to-scaling exponents related to the noncla
cal short-ranged and the Gaussian fixed point, respectiv
The coefficient of thet̃ Dsr correction in the expansion aroun
t̃ 50 ~and in general also the other coefficients of the exp
sion! can be obtained by performing the appropriate limit
the nonuniversal Wegner expansion. We stress that the
pendence on the bare couplingū in Eq. ~21! can be elimi-
nated by a rescaling and a redefinition oft̃ . Moreover, the
same equation~modulo the above-mentioned rescalings! can
be obtained starting from theN-vector~nonlinears) model.

The analysis of experimental data in the crossover reg
is usually performed by introducing effective critical exp
nents. One can definegeff by the logarithmic derivative of
Fx( t̃ ). In three dimensions

geff[2
dlnFx

dln t̃
511~11cg t̃ !21/2, ~23!

wherecg54K/L3
2 . geff( t̃ ) is universal apart from a trivia

rescaling oft̃ . Analogously one may defineneff and find

neff[2
1

2

dlnFj2

dln t̃
5

geff

2
. ~24!

From Eqs.~16! and ~17! one can derive an equation o
state relating the rescaled variablest̃ , h̃, andM̃ in the criti-
cal crossover limit. Simple calculations, involving the sam
integral of Eq.~19!, lead to the equation

M̃2

6N
1 t̃ 5K

h̃

M̃
1LdS h̃

M̃
D d/221

, ~25!

which turns out to be universal apart from trivial rescalin
of t̃ , h̃, and M̃ . Moreover, it reproduces the corre
asymptotic behaviors:

h̃;M̃ d~11c t̃M̃ 21/b!r@11O~M̃D/b!#, ~26!

where in the nonclassical limit (t̃→0 and h̃→0) d5(d
12)/(d22), b51/2, and r52/(d22). In the classical
limit d53, b51/2, andr51. Settingt̃ 50 in Eq. ~25!, one
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can derive the crossover functionFM(h̃) defined in Eq.~14!.
In three dimensions the corresponding effective exponentdeff
is given by

deff[
dlnh̃

dlnFM
5312S 11

cg

6

FM
2

N D 21/2

. ~27!

We can also consider the short-range version of the mo
and show that the functionFx

sr( t̃ )[x(Nu)2/(42d) satisfies
Eq. ~21! with b`→`. The same arguments apply to all oth
critical crossover functions. This confirms that the critic
crossover functions are universal, i.e., independent of
mechanism drivingG.

In the symmetric phase, we can define the ze
momentum four-point couplingg as

g52
3N

N12

x4

x2jd , ~28!

wherex4 is the connected four-point correlation function
zero momentum. In the large-N limit @25#,

Ng5m̃d24F11
Nū

6 E ddk

~2p!d

1

~P̄1Ḡm̃2!2G21

, ~29!

wherem̃2[j̃ 22. In the critical crossover limit the integra
depends only onb` . We obtain

g~m̃!

g~0!
5

1

11cgm̃42d
, ~30!

whereNg(0)56(4p)d/2/G(22d/2)5Ng* is the nonclassi-
cal critical value ofg, andcg52K/(d22)Ld . The effective
critical exponent associated withg(m̃) is

ceff~g![
dlng~m̃!

dlnm̃
5~d24!F12

g

g* G . ~31!

In the same limit Eqs.~23!, ~24!, and~30! imply also

geff~g!52neff~g!511
42d

d22

g

g*
. ~32!

Equations~31! and ~32! are now independent ofū andb` .
Notice that only in the nonclassical critical limit (m̃→0),
ceff(g)→0 and therefore the corresponding hyperscaling
lation is satisfied. This fact is not unexpected because hy
scaling is not satisfied at the Gaussian fixed point, wherg
;(T2Tc)

(42d)/2 for T→Tc .
One can now easily verify thatceff(g)5b(g)/g, where

b(g) is the Callan-Symanzikb function in the continuum
f4 theory. Analogously the high-temperature expone
geff(g) andneff(g) are related to the standard RG functio
g(g) and n(g) ~see, e.g., Ref.@11#! through the relations
@26#

geff~g!

neff~g!
5

g~g!

n~g!
, ~33!
el

l
e

-

-
r-

s

n~g!b~g!
dgeff

dg
5g~g!2geff~g!. ~34!

In the large-N limit

2g21~g!5n21~g!521~d24!g/g* . ~35!

Using the field-theoretical approach@9,11,12#, one can
compute the effective exponents in three-dimensional O(N)
models. Results for the high-temperature phase are repo
in Refs. @9,11#. We extended the computation@27# to the
low-temperature phase computinggeff

2 for N51. The result-
ing curves are plotted in Fig. 1. We stress that, apart from
small error of the resummation procedure — it should
well below 1% — the curves in Fig. 1 represent the univer
critical crossover exponents. Thus experimental and num
cal data in the crossover region should approach these cu
in the appropriate limit~modulo a rescaling oft̃ ). In this
perspective it is possible to understand the lack of univer
ity of the results of Ref.@3#: universality is recovered only in
the limit u→0. For finite values ofu one expects correction
to scaling that eventually disappear asu→0. Indeed the com-
parison with the experimental data for fluids and liquid m
tures@3# improves as the effective parameteru decreases.

Measurements in the critical crossover limit are difficu
and accurate results are scarce. Experiments on micella
lutions @1# observed exponents that were very far from t
expected Ising values. The exponentg was even lower than
the classical valueg51. Fisher@2# interpreted the data as
crossover effect, suggesting a standard scaling descriptio
order to explain the data, this interpretation would requ
geff to be nonmonotonic in the symmetric phase. But, as F
1 shows, this is not the case for the critical crossover fu
tion geff . Therefore, as already observed by Bagnuls a
Bervillier @30#, the results of@1# cannot be explained in term
of universal crossover functions.

On the other hand, it is interesting to note thatgeff
2 ( t̃ ) is

nonmonotonic. In three dimensions the effect is rather sm

FIG. 1. Effective susceptibility exponent as a function oft̃ for
the high- (geff) and low- (geff

2 ) temperature phase of the thre
dimensional Ising model. Heret is the reduced temperature for th
model with Hamiltonian~36! andR is defined in Eq.~2!.
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~see Fig. 1!. The minimum value ofgeff
2 ( t̃ ) is geff

2 ( t̃ )umin

'0.994, so that a nonmonotonic behavior can hardly
seen. This type of behavior had already been observed
merically in two dimensions@20#. In this case, however, th
effect appears much larger. The nonmonotonicity ofgeff

2 can
be predicted analytically by calculating the first correction
the mean-field behavior in the low-temperature phase. O
can indeed show thatgeff

2 ( t̃ ) is increasing foru t̃ u→`. For
instance, let us consider the long-range Ising model in
duced in Ref.@21# and defined by the Hamiltonian

H52(
i , j

J~xW i2xW j !sisj , ~36!

whereJ(xW )5cRm
2d for uxW u<Rm andJ(xW )50 otherwise. Set-

ting t5(bc2b)/bc and t̃ 5tR2d/(42d), one finds for 2,d
,4

geff511Cu t̃ u~d24!/21O~ u t̃ ud24!, ~37!
l,

g

ic
e
u-

e

-

where the constantsC are given by

C15
G~32d/2!

2d21pd/2~d22!
, ~38!

C252222d/2@12 3
32 2d~d22!# ~39!

in the high- and low-temperature phases, respectively. No
that ford53, C2 is negative so thatgeff

2 ( t̃ ) cannot be mono-
tonic. In two dimensions the subleading corrections beh
as t̃ 21ln t̃, again with a negative coefficient. In three dime
sions, in Eq.~37!, logarithms appear at next next-to-leadin
order.

We have also performed a high-statistics Monte Ca
simulation of a d53 model of self-avoiding walks with
long-range interactions@31#. We obtain evidence of the ex
istence of a universal critical crossover scaling in the largeR
limit. The resulting universal curves turn out to be in agre
ment with the two-parameter model predictions@22,24#, con-
firming the general arguments.
cl.
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