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Improved high-temperature expansion and critical equation of state
of three-dimensional Ising-like systems
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High-temperature series are computed for a generalized three-dimensional Ising model with arbitrary poten-
tial. Three specific ‘‘improved’’ potentials~suppressing leading scaling corrections! are selected by Monte
Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved
potentials, achieving high accuracy; our best estimates areg51.2371(4), n50.630 02(23),a50.1099(7),
h50.0364(4), b50.326 48(18). By the same technique, the coefficients of the small-field expansion for the
effective potential~Helmholtz free energy! are computed. These results are applied to the construction of
parametric representations of the critical equation of state. A systematic approximation scheme, based on a
global stationarity condition, is introduced~the lowest-order approximation reproduces the linear parametric
model!. This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison
with other theoretical and experimental determinations of universal quantities is presented.
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I. INTRODUCTION
According to the universality hypothesis, critical pheno

ena can be described by quantities that do not depend o
microscopic details of a system, but only on global prop
ties such as the dimensionality and the symmetry of the o
parameter. Many three-dimensional systems characterize
short-range interactions and a scalar order parameter~such as
density or uniaxial magnetization! belong to the Ising univer-
sality class. This implies that the critical exponents, as w
as other universal quantities, are the same for all these m
els. Their precise determination is therefore important in
der to test the universality hypothesis.

The high-temperature~HT! expansion is one of the mos
effective approaches to the study of critical phenome
Much work ~even recently! has been devoted to the comp
tation of HT series, especially forN-vector models and in
particular the Ising model. An important issue in the analy
of the HT series is related to the presence of nonanal
corrections to the leading power-law behavior. For instan
according to the renormalization-group theory~see, e.g., Ref.
@1#!, the magnetic susceptibility should behave as

x5Ct2g~11a0,1t1a0,2t
21•••1a1,1t

D1a1,2t
2D

1•••1a2,1t
D21••• !, ~1.1!

wheret[(T2Tc)/Tc is the reduced temperature. The lea
ing critical exponent g, and the correction exponen
D,D2 , . . . , areuniversal, while the amplitudesC andai , j are
not universal and should depend smoothly on any subsid
parameter that may changeTc , but does not affect the natur
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†Electronic address: Andrea.Pelissetto@roma1.infn.it
‡Electronic address: rossi@mailbox.difi.unipi.it
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of the transition. Nonanalytic correction terms to the lead
power-law behavior, represented by noninteger powers ot,
are related to the presence of irrelevant operators. For th
dimensional Ising-like systems, the existence of leading c
rections with exponentD.0.5 is well established. In order t
obtain precise estimates of the critical parameters, the
proximants of the HT series should properly allow for t
confluent nonanalytic corrections@2–8#. The so-called inte-
gral approximants@9# can, in principle, allow for them~see,
e.g., Ref.@10# for a review!. However, they require long
series to detect nonleading effects, and in practice they n
to be biased to work well. Analyses meant to effective
allow for confluent corrections are generally based on bia
approximants where the value ofbc and the first nonanalytic
exponentD is given ~see, e.g., Refs.@11–15#!. It is indeed
expected that the leading nonanalytic correction is the do
nant source of systematic error.

An alternative approach to this problem is the constr
tion of a HT expansion where the dominant confluent c
rection is suppressed. If the leading nonanalytic terms are
longer present in the expansion, the analysis technique b
on integral approximants should become much more ef
tive, since the main source of systematic error has b
eliminated. In order to obtain an improved high-temperat
~IHT! expansion, we may consider improved Hamiltonia
characterized by a vanishing coupling with the irrelevant o
erator responsible for the leading scaling corrections. T
idea has been pursued by Chen, Fisher, and Nickel@5#, who
studied classes of two-parameter models~such as the bcc
scalar double-Gaussian and Klauder models!. Such models
interpolate between the spin-1/2 Ising model and the Ga
ian model, and they are all expected to belong to the Is
universality class. The authors of Ref.@5# showed that im-
proved models with suppressed leading corrections to sca
can be obtained by tuning the parameters~see also Refs.
@8,16#!. This approach has been recently considered in
3526 © 1999 The American Physical Society
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PRE 60 3527IMPROVED HIGH-TEMPERATURE EXPANSION AND . . .
context of Monte Carlo simulations@17–20#, using latticef4

models. It is also worth mentioning the recent work@21# of
Belohorec and Nickel in the context of dilute polymer
where a substantial improvement in the determination of
critical exponentsn and v was achieved by simulating th
two-parameter Domb-Joyce model.

We consider the class of scalar models defined on
simple cubic lattice by the Hamiltonian

H52b(
^ i , j &

f if j1(
i

V~f i
2!, ~1.2!

whereb[1/T, ^ i , j & indicates nearest-neighbor sites,f i are
real variables, andV(f2) is a generic potential~satisfying
appropriate stability constraints!. The critical limit of these
models is expected to belong to the Ising universality cl
~apart from special cases corresponding to multicriti
points!. Using the linked cluster expansion technique,
calculated the high-temperature expansion to 20th order
an arbitrary potential, generalizing the existing expansi
for the standard Ising model~see, e.g., Ref.@13# for a review
of the existing HT calculations!. In this work we will essen-
tially consider and present results for a potential of the fo

V~f2!5f21l4~f221!21l6~f221!3; ~1.3!

such a potential will be assumed in the following, unle
otherwise stated. Within this family of potentials, improv
Hamiltonians can be obtained by looking for values of t
parametersl4 andl6 for which leading scaling correction
are suppressed. In particular we may keepl6 fixed and look
for the corresponding valuel4* of l4 that gives an improved
Hamiltonian. Notice that for generic choices of the Ham
tonian l4* may not exist. This is the case of theO(N) f4

theory with nearest-neighbor couplings on a cubic lattice
the large-N limit, where it is impossible to find a positive
value ofl4 achieving the suppression of the dominant sc
ing corrections. Using the estimates of the leading sca
correction amplitudes reported in Ref.@15#, one can argue
that the same is true for finiteN.3. As shown numerically
by Monte Carlo simulations@17–20#, l4* exists in the case
N51, which is the single-componentf4 model ~i.e., the
model presented above withl650). By using finite-size
techniques, Hasenbusch obtained a precise estimate ofl4* :
l4* 51.10(2) @20#. In our work we will also consider the
spin-1 ~or Blume-Capel! Hamiltonian

H52b(
^ i , j &

sisj1D(
i

si
2 , ~1.4!

where the variablessi take the values 0,61. In this case the
value ofD for which the leading scaling corrections are su
pressed isD* 50.641(8) @22#.

From the point of view of the HT expansion techniqu
the main problem is the determination of the improv
Hamiltonian. Once the improved Hamiltonian is availab
the analysis of its HT series leads, as we shall see, to m
cleaner and therefore reliable results. A precise estimat
the parameters associated with an improved Hamiltonia
crucial in order to obtain a substantial improvement of
IHT results. As shown in Refs.@17,20#, Monte Carlo simu-
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lations using finite-size scaling techniques seem to prov
the most efficient tool for this purpose. For comparison,
the case of the puref4 theory (l650), our best estimate o
l4* from the HT expansion is consistent with the abov
mentioned Monte Carlo resultl4* 51.10(2), but it isaffected
by an uncertainty of about 10%~see Sec. III!. So we decided
to follow the strategy of determining the improved Ham
tonian by Monte Carlo simulations employing finite-siz
scaling techniques. For thef4 model, this work has been
satisfactorily done by Hasenbusch@20#. For thef6 model
with l651, we performed Monte Carlo simulations in ord
to calculatel4* , obtainingl4* 51.90(4).

The comparison of the results obtained from the th
improved Hamiltonians considered strongly supports
working hypothesis of the reduction of systematic errors
the IHT estimates, and provides an estimate of the resid
errors due to the subleading confluent corrections to scal

The analysis of our 20th-order IHT series allows us
obtain very precise estimates of the critical exponentsg, n
and h. Our estimates substantially improve previous det
minations by HT and other methods.

We extended our study to the small-field expansion of
effective potential, which is the Helmholtz free energy of t
model. This expansion can be parametrized in terms of
zero-momentumn-point couplings gn in the symmetric
phase. The analysis of the IHT series provides new res
for the couplingsgn , and leads to interesting compariso
with the estimates from other approaches based on fi
theory and lattice techniques. Moreover, we improved
knowledge of the universal critical low-momentum behav
of the two-point function of the order parameter, which
relevant for critical scattering phenomena.

By exploiting the known analytic properties of the critic
equation of state, one may reconstruct the full critical eq
tion of state from the small-field expansion of the effecti
potential, which is related to the behavior of the equation
state for small magnetization in the symmetric phase. T
can be achieved by using parametric representations im
menting in a rather simple way the known analytic propert
of the equation of state. Effective parametric representati
can be obtained by parametrizing the magnetizationM and
the reduced temperaturet in terms of two variablesR andu,
setting M}Rbu, t5R(12u2), and H}Rbdh(u). In this
framework, following Guida and Zinn-Justin@23#, one may
develop an approximation scheme based on truncation
the Taylor expansion of the functionh(u) around u50.
Knowing a given number of terms in the small-field expa
sion of the effective potential, one can derive the same nu
ber of terms in the small-u expansion ofh(u), with a depen-
dence on an arbitrary normalization parameterr. One can try
to fix r so that this small-u expansion has the fastest possib
convergence. We propose a prescription based on the gl
stationarity of the truncated equation of state with respec
the arbitrary parameterr. This extends the stationarity con
dition of the linear model~i.e., the lowest-order nontrivia
approximation! discussed in Refs.@24–27#. Using the IHT
results forg, n and the first few coefficients of the smal
field expansion of the effective potential, we constructed
proximate representations of the full critical equation
state. From them we obtained accurate estimates of m
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ratios of universal amplitudes. Varying the truncation ord
of h(u), we observed a fast convergence, supporting
arguments.

For our readers’ convenience, we collected in Table X
a summary of all the results obtained in this paper. Th
they can find new estimates of most of the universal qua
ties ~exponents and ratios of amplitudes! introduced in the
literature to describe critical phenomena in thre
dimensional ~3D! Ising-like systems. The only importan
quantity for which we have not been able to give a go
estimate is the exponentv, which is related to the leading
scaling corrections. We mention that a precise estimate ov
has been reported recently in Ref.@20#: v50.845(10). It has
been obtained by a Monte Carlo study using a finite-s
scaling method.

The paper is organized as follows. In Sec. II we disc
the main features of improved Hamiltonians from the po
of view of the renormalization group. In Sec. III we descri
our Monte Carlo simulations and present the estimates ofl4*
for the potential~1.3! with l651. Section IV is dedicated to
the determination of the critical exponents from the IHT e
pansion. We present estimates of all relevant critical ex
nents ~except for v), and compare our results with othe
theoretical approaches and experiments. In Sec. V we s
the small-field expansion of the effective potential. W
present estimates of the first few coefficients of the exp
sion. We discuss the relevance of the determination of
zero-momentum four-point renormalized coupling for fie
theoretical approaches~Sec. V B!. Section VI presents a
study of the low-momentum behavior of the two-point fun
tion in the critical region. Estimates of the first few coef
cients of its universal low-momentum expansion are giv
In Sec. VII we study the critical equation of state, whi
gives a description of the whole critical region, including t
low-temperature phase. Using the estimates of the crit
exponents and of the first few coefficients of the small-fi
expansion of the effective potential, the critical equation
state is reconstructed employing approximate parametric
resentations~Sec. VII A!. In Sec. VII B we present ou
method, based on the global stationarity of the approxim
equation of state. Relevance to thee expansion is discusse
in Sec. VII C. In Sec. VII D we apply the results of Se
VII B to the computation of universal ratios of amplitude
using as inputs the results of the IHT expansion. The res
are then compared with other theoretical estimates and
experimental determinations. For the sake of comparison
also present results for the two-dimensional Ising model.

Many details of our calculations are reported in the A
pendices. Appendix A contains a detailed description of
HT calculations, i.e., the list of the quantities we have co
sidered and the description of the method we used to ge
ate and analyze the HT series. We report many details
intermediate results so that the reader can judge the qu
of the results we will present. In Appendix B we present t
notations for the critical amplitudes, and report the expr
sions of the universal ratios of amplitudes in terms of
parametric representation of the critical equation of state
Appendix C we discuss in more detail the approximat
scheme for the parametric representation of the equatio
state based on stationarity.
r
r

I
e
i-

-

d

e

s
t

-
-

dy

-
e

.

al

f
p-

te

lts
th
e

-
r
-
r-

nd
ity
e
-

e
In

of

II. IMPROVED HAMILTONIANS

As discussed in the Introduction, we will work with ‘‘im
proved’’ Hamiltonians, i.e., with models in which the lea
ing correction to scaling has a vanishing~in practice very
small! amplitude.

To clarify the basic idea, let us consider a model with tw
relevant operators~the thermal and the magnetic ones! and
one irrelevant operator. Ift, k, and m are the associated
nonlinear scaling fields, the singular part of the free ene
Fsing has the scaling form@28#

Fsing~t,k,m!5utudn f 6~kutu2(d122h)n/2,mutuD!, ~2.1!

where the functionf 6 depends on the phase of the mod
Since the operator associated withm is irrelevant,D is posi-
tive and mutuD→0 at the critical point. Therefore, we ca
expand the free energy, obtaining

Fsing~t,k,m!5utudn (
n50

`

f n,6~kutu2(d122h)n/2!mnutunD.

~2.2!

The presence of the irrelevant operator induces nonana
corrections proportional toutunD. Now, let us suppose tha
the Hamiltonian of our model depends on three parameter,
h, andl, wherer is associated with the temperature,h is the
magnetic field, andl is an irrelevant parameter. For eac
value of l and for h50, the theory has a critical point fo
r 5r c(l). The nonlinear scaling fieldst, k, andm are ana-
lytic functions of the parameters appearing in the Ham
tonian, and therefore we can write

t5t1t2g1t~l!1h2g2t~l!1O~ t3,th2,h4!, ~2.3!

k5h@11tg1k~l!1h2g2k~l!1O~ t2,th2,h4!#, ~2.4!

m5g1m~l!1tg2m~l!1h2g3m~l!1O~ t2,th2,h4!,
~2.5!

where t[r 2r c(l). Substituting these expressions into E
~2.2!, we see that, ifg1m(l)5” 0, the free energy has correc
tions of ordertnD. For the susceptibility in zero magneti
field we obtain the explicit formula@29#

x5t2g (
m,n50

`

x1,mn~l!tmD1n1t12a (
m,n50

`

x2,mn~l!tmD1n

1 (
n50

`

x3,n~l!tn, ~2.6!

where the contribution proportional tot12a stems from the
terms of orderh2 appearing in the expansion oft andm, and
the last term is the contribution of the regular part of the fr
energy. Notice that it is often assumed that the regular pa
the free energy does not depend onh. If this were the case
we would have x3,n(l)50. However, for the two-
dimensional Ising model, one can prove rigorously thatx3,0
Þ0 @30,31#, showing the incorrectness of this conjecture. F
a discussion, see Ref.@32#.

In many interesting instances, it is possible to cancel
leading correction due to the irrelevant operator by choos



th
o
-

t o
itie

t

e

s-

n

ill
e

s

o

l

e

en

of

the
unt
is
u-

all
tis-

imu-

of a

cer-

PRE 60 3529IMPROVED HIGH-TEMPERATURE EXPANSION AND . . .
l5l* such thatg1m(l* )50. In this casemtD;t11D, so
that no term of the formtmD1n, with n,m, will be present.
In particular, the leading term proportional totD will not
appear in the expansion.

In general, other irrelevant operators will be present in
theory, and therefore we expect corrections proportional ttr

with r5n11n2D1( imiD i , whereD i are the exponents as
sociated with the additional irrelevant operators. Forl5l*
the expansion will contain only terms withn1>n2.

It is important to note that by working withl5l* , we
use a Hamiltonian such that the nonlinear scaling fieldm
vanishes at the critical point. This property is independen
the observable we are considering. Therefore, all quant
will be improved, in the sense that the leading correction
scaling, proportional totD, will vanish. We will call the
Hamiltonians withl5l* ‘‘improved Hamiltonians.’’

III. DETERMINATION OF THE IMPROVED
PARAMETERS

The Hamiltonian defined by Eqs.~1.2! and ~1.3! with l6
50 was considered in Ref.@20#, where it was shown that th
leading correction to scaling cancels forl4* 51.10(2). Here
we will also consider the casel651, and determine the
correspondingl4* using a method similar to the one di
cussed in Ref.@17#.

The idea is the following. Consider a renormalizatio
group invariant observableO on a finite latticeL and letO*
be its value at the critical point, i.e.,

O* 5 lim
L→`

lim
b→bc(l4)

O~b,l4 ,L !. ~3.1!

The quantityO* is a universal number and therefore it w
be independent ofl4. The standard scaling arguments pr
dict

O„bc~l4!,l4 ,L…'O* 1a1~l4!L2v1a2~l4!L22v1•••

1b1~l4!L2v2
•••, ~3.2!

where v5D/n, v25D2 /n, D2 being the next-to-leading
correction-to-scaling exponent. Since forl45l4* , a1(l4* )
5a2(l4* )5•••50, for l4'l4* we can rewrite the previou
equation as

O„bc~l4!,l4 ,L…'O* 1~l42l4* !~a11L
2v1a21L

22v

1••• !1b1~l4* !L2v2
••• . ~3.3!

Now, suppose we know the exact valueO* , and let us define
l4

eff(L) as the solution of the equation

O„bc~l4
eff~L !!,l4

eff~L !,L…5O* . ~3.4!

From Eq.~3.3! we obtain immediately

l4
eff~L !5l4* 2

b1~l4* !

a11
Lv2v21••• . ~3.5!

Sincev2.v, l4
eff(L) converges tol4* asL→`. For the 3D

Ising universality class,v2.2v @33,34# andv.0.85 @20#.
e

f
s

o

-

-

In order to apply this method in practice we need tw
ingredients: a precise determination ofbc(l4) and an esti-
mate ofO* .

Very precise estimates ofbc(l4) can be obtained from
the analysis of the HT series of the susceptibilityx, which
we have calculated toO(b20). For l650 and 1.0<l4<1.2
the values ofbc(l4) can be interpolated by the polynomia

bc~l4!50.4056204310.00819000l420.04626355l4
2

10.01235674l4
360.0000014. ~3.6!

In particular, for l451.10, we have bc(1.10)
50.3750973(14), to be compared withbc(1.10)
50.3750966(4) of Ref.@20#. For l651 and 1.8<l4<2.0
— as we shall see, this is the relevant interval — we hav

bc~l4!50.6861219220.18274273l410.02634688l4
2

20.00102710l4
360.0000018. ~3.7!

The second quantity we need is an observableO such that
O* can be computed with high precision. We have chos
the Binder parameter

Q5
^m4&

^m2&2 , ~3.8!

wherem is the magnetization. A precise estimate ofQ was
obtained in Ref.@17# by means of a large-scale simulation
the spin-1 model. They report

Q* 50.62393~1313515!, ~3.9!

where the error is given as the sum of three contributions:
first is the statistical error; the second and the third acco
for corrections to scaling. We have tried to improve th
estimate by performing a high-precision Monte Carlo sim
lation of the Hamiltonian~1.2! for l650 and by computing
Q for l451.10, which is the best estimate ofl4* . We used
the Brower-Tamayo algorithm@35#, each iteration consisting
of a Swendsen-Wang update of the sign off and of a Me-
tropolis sweep. Since the Hamiltonian~1.2! is improved~i.e.,
the leading correction to scaling vanishes!, we expect to be
able to obtain a reliable estimate from simulations on sm
lattices for which it is possible to accumulate a large sta
tics. The results are reported in Table I.~The simulations

TABLE I. For several values of lattice sizeL and forl650, we
report the values of the parameters used in the Monte Carlo s
lation l4,run,b run, the number of Monte Carlo iterationsNiter , each
iteration consisting of a standard Swendsen-Wang update and
Metropolis sweep, and the estimate of the Binder parameterQ at
l51.10, b50.3750973. The reported error onQ is the sum of
three terms: the statistical error, and the errors due to the un
tainty of l* andbc(l).

L l4,run b run Niter Q

6 1.100 0.375 913106 0.62370~1513712!

7 1.100 0.375 783106 0.62386~1713312!

9 1.080 0.376 1783106 0.62389~1212613!

12 1.105 0.375 3053106 0.62387~1012515!
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were performed before the appearance of Ref.@20# and the
generation of the HT series, when only a very approxim
expression forl4* existed. Therefore, the runs were not ma
at the correct values ofl4 and bc . The values reported in
Table I have been obtained from the Monte Carlo data
means of a standard reweighting technique.!

There are three different sources of error: we report
statistical error, the variation of the estimate of the Bind
parameter whenl4 varies within the interval 1.0821.12
~due to corrections to scaling of orderL2v, which are not
completely suppressed, since the value used forl4 is not
exactly equal tol4* ), and the variation ofQ whenbc varies
within one error bar. The values ofL that we use are rela
tively small (L<12) and one could fear that next-to-leadin
corrections still give a non-negligible systematic deviatio
Our data do not show any evidence of such an effect, and
estimates for different values ofL are consistent. Using th
estimate obtained forL512, we get the final result

Q* 50.62388~32! ~3.10!

~the uncertainty is obtained assuming independence of
tematic and statistical errors!, which is in agreement with the
estimate~3.9! with a slightly smaller error bar.

We have next determinedl4* for the model with Hamil-
tonian ~1.2! and l651 using the method presented abov
Estimates ofl4

eff(L) are reported in Table II, from which we
conclude

l4* 51.90~4!. ~3.11!
Note that the last three points show a small upward tr

which, although consistent with a statistical effect, could b
systematic increase due to the corrections of orderL2v21v

or could be due to the fact thatQ* is only approximately
known. To exclude the latter case, we have compu
l4,6

eff (L), the solutions of Eq.~3.4! with the rhs replaced by
Q* 6sQ , sQ being the error onQ* . If the increase is asso
ciated with the uncertainty ofQ* , we should observe tha
l4,6

eff (L) have opposite trends, one increasing, the other
creasing. In the present casel4,6

eff (L) are both increasing
thereby excluding the possibility that this effect is due to
uncertainty ofQ* . With the present statistical errors we ca
not distinguish between the first two possibilities: we ha
considered as our final estimate the average of the re
obtained forL57,9,12, but we cannot exclude the possibil

TABLE II. For several values of lattice sizeL and forl651, we
report the values of the parameters used in the Monte Carlo s
lation l4,run,b run, the number of Monte Carlo iterationsNiter , each
iteration consisting of a standard Swendsen-Wang update and
Metropolis sweep, and the estimate ofleff(L), the solution of Eq.
~3.4!. The error is reported as the sum of three terms: the statis
error, and the errors due to the uncertainty ofQ* andbc(l).

L l4,run b run Niter l4
eff(L)

6 1.900 0.427 1003106 1.915~911911!

7 1.900 0.427 2523106 1.894~612112!

9 1.920 0.425 2143106 1.897~912513!

12 1.920 0.425 2943106 1.904~913216!
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that the correctl4* is slightly larger than our estimate. How
ever, the quoted error should be large enough to include
systematic increase.

As explained in the Introduction, the analysis of HT ser
for the purpose of determining universal quantities is sen
tive to nonanalytic scaling corrections. As we will discu
below, one can use this fact to obtain a rough estimate of
optimal value ofl.

Consider, for example, the zero-momentum four-po
coupling constantg4 defined by

g452
x4

x2j3 , ~3.12!

wherex, j2, andx4 are, respectively, the magnetic susce
tibility, the second-moment correlation length, and the ze
momentum four-point connected correlation function~defi-
nitions can be found in Appendix A 1!. We have chosen this
observable because it appears to be affected by large co
tions to scaling, but the method can be applied to any u
versal quantity. From the discussion of Sec. II, we have
b→bc

g4~b!5g4* 1cD~bc2b!D1••• , ~3.13!

whereg4* is a universal constant, andcD is a nonuniversal
amplitude depending on the Hamiltonian. For improv
models, as discussed before,cD50. The traditional methods
of analysis, e.g., those based on Pade` ~PA! and Dlog-Pade`
~DPA! approximants, are unable to handle an asymptotic
havior such as~3.13! unlessD is an integer number, thu
leading to a systematic error. Integral approximants allow
nonanalytic scaling corrections but, as already said, with
series of moderate length available today, they need to
biased to give correct results: without any bias they g
estimates that are similar to those of PA’s and DPA’s@14#.
At present the only analyses that are able to effectively t
into account the confluent corrections use biased appr
mants, fixing the value ofbc and of the first nonanalytic
exponentD ~see, e.g., Refs.@10–12,14,15,36# for a discus-
sion of this issue and for a presentation of the different me
ods used in the literature!. The method we use has bee
proposed in Ref.@11# and generalized in Ref.@12#. The idea
is to perform a Roskies transform~RT!, i.e., the change of
variables

z512~12b/bc!
D, ~3.14!

so that the nonanalytic terms inbc2b become analytic in
12z. Therefore, the analysis of the resulting series by me
of standard approximants should give correct results. For
models we are considering, the exponentD is approximately
1/2 @e.g., Ref.@20# reportsD50.532(6)]; for simplicity, we
have used the transformation~3.14! with D51/2.

We have analyzed the HT expansion ofg4 for the model
with Hamiltonian~1.2! andl650 for several values ofl4.
We computed PA’s, DPA’s, and first-order integral~IA1!
approximants of the series inb and of its RT inz. In Fig. 1
we plot the results as a function ofl4

21. The reported errors
are related to the spread of the results obtained from
different approximants; see Appendix A 4 for details. T
estimates obtained from the RT’ed series are independen

u-
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l4 within error bars, giving the estimateg4* .23.5, in agree-
ment with previous analyses of the HT expansion of
Ising model on various lattices using the RT or other types
biased approximants@14,15,36# ~in Sec. V B we will im-
prove this estimate by analyzing the IHT expansion!. The
independence of the result from the value ofl4 clearly indi-
cates that the RT is effectively able to take into account
nonanalytic behavior~3.13!. On the other hand, the analys
of the series inb gives results that vary withl4 more than
the spread of the approximants: for instance, the analysi
the series of the standard Ising model, corresponding tol4
5`, gives results that differ by more than 5% from th
estimate quoted above, while the spread of the approxim
is much smaller. Clearly there is a large systematic error.
important to note that the direct analysis and the RT o
coincide when 1.0&l4&1.2, i.e., in the region in which the
leading nonanalytic corrections are small. This fact confir
our claim that the observed discrepancies are an effect o
confluent corrections.

The results presented above can be used to obtain a
timate ofl4* from the HT series alone:l4* should fall in the
interval in which the direct analysis gives results compati
with those obtained from the Roskies-transformed series
we already mentioned, forl650 we obtainl4* 51.1(1),
while for l651 we getl4* 51.9(1). Thelatter estimate was
indeed the starting point of our Monte Carlo simulation. W
have also tried to estimatel4* in more direct ways, but al
methods we tried were even less precise.

A similar method for the determination of the improve
Hamiltonian from the HT series was presented in Ref.@8#.
The optimal value of the parameter~calledy in Ref. @8#! was
determined comparing the results for the critical pointbc(y)
obtained using IA1’s and DPA’s:y* is estimated from the
value at which DPA and IA1 estimates ofbc(y) agree be-
tween each other. It should be noticed that, for the dou
Gaussian model, partial differential approximants and a la

FIG. 1. Comparison of the determination ofg4 ~plotted vs.
1/l4) from HT series without~direct! and with the Roskies trans
form ~RT! for the puref4 lattice model. The dashed line marks th
more precise estimate~with its error! we derived from the analysis
of the IHT expansion.
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analysis of Nickel and Rehr@16# using a different method
gave significantly different estimates ofy* .

IV. CRITICAL EXPONENTS

The analysis in Sec. III is encouraging and supports
basic assumption that the systematic error due to conflu
singularities is largely reduced when analyzing IHT expa
sions. To further check this hypothesis we will compare
sults obtained from different improved Hamiltonians. Th
will provide an estimate of the remaining systematic er
which is not covered by the spread of the results from d
ferent approximants.

The definition of the quantities we have considered an
detailed description of the method we used to generate
analyze the HT series is presented in Appendix A.

We computedbc andg from the analysis of the HT ex
pansion of the magnetic susceptibility. We considered in
gral approximants of first, second, and third order. Afte
careful analysis we preferred the second-order integral
proximants~IA2’s!, which turned out to be the most stabl
most of the results we present in this section and in
related Appendix A 3 have been obtained by using IA2’s.
a further check of the effectiveness of the approximants e
ployed, we made use of the fact thatx ~andj2) must present
an antiferromagnetic singularity atbc

af52bc of the form
@37#

x5c01c1~b2bc
af!12a1••• , ~4.1!

wherea is the specific heat exponent,ci are constants, and
the ellipses represent higher-order singular or analytic c
rections. We verified the existence of a singularity atb.
2bc in the approximants, and calculated the associated
ponent. We also considered approximants that were bia
by requiring the presence of two symmetric singularities
b56bc @8#; the results obtained are consistent with the p
dicted behavior~4.1! ~see Appendix A 3 and related Tables!.

The exponentn was obtained from the series of th
second-moment correlation length

j25
m2

6x
;~bc2b!2n, ~4.2!

where mi are the moments of the two-point function. W
followed the procedure suggested in Ref.@38#, i.e., we used
the estimate ofbc obtained fromx to bias the analysis ofj2.
For this purpose we used IA’s biased by fixingbc . We also
considered approximants biased by forcing a pair of sin
larities at6bc .

In Table III we report the results obtained for the Ham
tonians ~1.2! with l650, l451.10 and withl651, l4
51.90, and for the Hamiltonian~1.4! with D50.641.

The errors are given as a sum of two terms: the first on
computed from the spread of the approximants; the sec
one is related to the uncertainty of the value ofl4* andD* ,
and it is evaluated by changingl4 in the range 1.0821.12
for l650 and 1.8621.94 for l651, and D in the range
0.63320.649 for the spin-1 model. There is good agreem
among the estimates ofg and n obtained from the three
improved Hamiltonians considered. This is an importa
check of our working hypothesis, i.e., that systematic err
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TABLE III. Our final estimates ofg, n, h, ands. The error is reported as a sum of two terms: the fi
one is related to the spread of the approximants; the second one is related to the uncertainty of the
l4* andD* .

g n h s

l650 1.23732~24116! 0.63015~13112! 0.0364~311! 0.0213~1311!

l651 1.23712~26131! 0.63003~13123! 0.0363~312! 0.0213~1412!

spin-1 1.23680~30112! 0.62990~1518! 0.0366~311! 0.0202~1011!
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due to confluent corrections are largely reduced. This w
also be confirmed by the results for the universal ratios
amplitudes. We determine our final estimates by combin
the results of the three improved Hamiltonians: the value
the weighted average of the three results, and the error is
smallest of the three errors. We obtain forg andn

g51.2371~4!, ~4.3!

n50.63002~23!, ~4.4!

and by the hyperscaling relationa5223n

a50.1099~7!. ~4.5!

In Appendix A 3 we also report some further checks us
the Monte Carlo estimate ofbc reported in Ref.@20# to bias
the analysis of the series. The results are perfectly consis
We mention that from the analysis of the antiferromagne
singularity @cf. Eq. ~4.1!#, we obtain the estimatea
50.105(10), which is consistent with result~4.5! obtained
assuming hyperscaling.

From the results forg and n, we can obtainh by the
scaling relationg5(22h)n. This gives h50.0364(10),
where the error is estimated by considering the errors og
and n as independent, which is of course not true. We c
obtain an estimate ofh with a smaller, yet reliable, erro
using the so-called critical-point renormalization meth
~CPRM! ~see Ref.@9# and references therein!. We obtain the
results reported in Table III, with considerably smaller e
rors. Our final estimate is

h50.0364~4!. ~4.6!

Moreover, using the scaling relations we obtain

d5
52h

11h
54.7893~22!, ~4.7!

b5
n

2
~11h!50.32648~18! ~4.8!

~the error onb has been estimated by considering the err
of n andh as independent!.

Finally, we consider the universal critical exponent, d
scribing how the spatial anisotropy, which is present
physical systems with cubic symmetry~e.g., uniaxial mag-
nets!, vanishes when approaching the rotationally invari
fixed point@39#. For this class of systems the two-point fun
tion G(x) is not rotationally invariant. Therefore, nonsphe
cal moments are, in general, nonvanishing, but near the c
ll
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nt.
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ti-

cal point they are depressed with respect to spher
moments carrying the same naive physical dimensions b
factor j2r, wherer is a universal critical exponent. From
field-theoretical point of view, space anisotropy is due
non-rotationally-invariant irrelevant operators in the effe
tive Hamiltonian, whose presence depends essentially on
symmetries of the physical system, or of the lattice formu
tion. In Table III we report the results fors[22r as ob-
tained by analyses of the first nonspherical moments@cf. Eq.
~A2!# using the CPRM. The exponents turns out to be very
small:

s50.0208~12!, ~4.9!

andr51.9792(12).
In Table IV we compare our results with some of the mo

recent estimates of the critical exponentsg, n, h, a, andb.
The table should give an overview of the state of the art
the various approaches.

Let us first note the good agreement of our IHT estima
with the very precise results of the recent Monte Carlo~MC!
simulations of Refs.@17,19,20#. The small difference with
the HT estimates of Ref.@13# ~obtained from the standar
Ising model! may be explained by the difficulty of control
ling the effects of the confluent singularities, and by a s
tematic error induced by the uncertainty on the external in
parameters (bc andD) that are used in their biased analys
The estimates of Refs.@5,7,8,16# have been obtained from
HT analysis of two families of models, the Klauder and t
double-Gaussian models, on the bcc lattice. The result
these analyses are in good agreement with our IHT estima
especially those by Nickel and Rehr@16#. The HT series for
the double-Gaussian model were analyzed also in Ref.@8#
where a higher estimate ofg was obtained. As pointed out in
Ref. @16#, the discrepancy is essentially due to the use o
higher estimate of the improvement parametery* with re-
spect to that used in Ref.@16# ~see the discussion at the en
of Sec. III!. Refs.@8,16# also report estimates ofa obtained
by analyzing the singularity of the susceptibility at the an
ferromagnetic critical point. The result agrees with our es
mate.

The agreement with the field-theoretical calculations
overall, good. The slightly larger result forg obtained in the
analyses of Refs.@44,47# @using O(g7) series@46,50## may
be due to an underestimate of the systematic error due to
nonanalyticity of the Callan-Symanzikb function. Similar
results have been obtained by Kleinert, who resummed
O(g7) expansion by a variational method@45#, still neglect-
ing confluent singularities at the infrared-stable fixed poi
We shall return to this point later. A better agreement
found with the analysis of thed53 g-expansion performed
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TABLE IV. Theoretical estimates of critical exponents. See text for explanation of symbols in the
column. For values marked with an asterisk, the error is not quoted explicitly in the reference.

g n h a b

IHT 1.2371~4! 0.63002~23! 0.0364~4! 0.1099~7! 0.32648~18!

HT ~sc! @13# 1.2388~10! 0.6315~8!

HT ~bcc! @13# 1.2384~6! 0.6308~5!

HT @16# 1.237~2! 0.6300~15! 0.0359~7! 0.11~2!

HT @38# 1.239~3! 0.63220.003
10.002

HT @8# 1.2395~4! 0.632~1! 0.105~7!

HT @7# 1.2378~6! 0.63115~30!

HT @5# 1.2385~15!

HT @4# 1.2385~25! 0.6305~15!

MC @20# 1.2367~11! 0.6296~7! 0.0358~9!

MC @17# 0.6298~5! 0.0366~8!

MC @19# 0.6294~10! 0.0374~12!

MC @40# 0.6308~10!

MC @41# 0.3269~6!

MC @42# 0.625~1! 0.025~6!

MC @43# 1.237~2! 0.6301~8! 0.037~3! 0.110~2! 0.3267~10!

e expufree @44# 1.2355~50! 0.6290~25! 0.0360~50! 0.3257~25!

e expuBC @44# 1.2380~50! 0.6305~25! 0.0365~50! 0.3265~15!

e expuBC @14# 1.240~5! 0.631~3!

d53 g exp. @44# 1.2396~13! 0.6304~13! 0.0335~25! 0.109~4! 0.3258~14!

d53 g exp. @45# 1.241* 0.6305* 0.0347~10!

d53 g exp. @46# 1.2378~6118! 0.6301~5111! 0.0355~916!

d53 g exp. @47# 1.2405~15! 0.6300~15! 0.032~3!

ERG @48# 0.618~14! 0.054*
ERG @49# 1.247* 0.638* 0.045*
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by Murray and Nickel, who allow for a more gener
nonanalytic behavior of theb function @46#. In Table IV, we
quote the results of Ref.@46# with two erros: the first one is
the resummation error, and the second one takes into acc
the uncertainty ofg* , which is estimated to be;0.01. The
results of thee expansion were obtained from theO(e5)
series calculated in Refs.@51,52#. We report estimates ob
tained by performing standard analyses~denoted as ‘‘free’’!
and constrained analyses@53# ~denoted by BC! that incorpo-
rate the knowledge of the exact two-dimensional valu
Both are essentially consistent with our IHT estimates,
present a significantly larger uncertainty. In Table IV we a
report the results obtained by approximately solving the
act renormalization-group equation~ERG!; they seem to be
much less precise. A more complete list of references p
taining to the theoretical determination of the critical exp
nents can be found in Ref.@44#. Concerning the exponents
related to the rotational symmetry, the IHT results repres
a substantial improvement of the estimates obtained by v
ous approaches~HT and field theory! presented in Ref.@39#.

Experimental results have been obtained by studying
liquid-vapor transition in simple fluids, and the differe
critical transitions in multicomponent fluid mixtures, uniaxi
antiferromagnetic materials, and micellar systems. Many
cent estimates can be found in Refs.@43,54,55#. In Table V
we report some experimental results, most of them publis
unt
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after 1990. It is not a complete list of the published resu
but it may be useful to get an overview of the experimen
state of the art.

Even if the systems studied are quite different, the res
substantially agree, although, examining them in greater
tail, as already observed in Ref.@43#, one can find small
discrepancies. Moreover, they substantially agree with
theoretical predictions discussed above, confirming the
that all these transitions are in the Ising universality class
should also be noted that the experimental results are
accurate than the theoretical estimates.

V. THE EFFECTIVE POTENTIAL

A. Small-field expansion of the effective potential
in the high-temperature phase

The effective potential~Helmholtz free energy! is related
to the~Gibbs! free energy of the model. Indeed, ifM[^f& is
the magnetization andH the magnetic field, one defines

F~M !5MH2
1

V
ln Z~H !, ~5.1!

whereZ(H) is the partition function and the dependence
the temperature is always understood in the notation.
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TABLE V. Experimental estimates of critical exponents. LV denotes the liquid-vapor transition in si
fluids, BM refers to a binary fluid mixture, MS to a uniaxial magnetic system, and MI to a micellar sys

Ref. g n h a b

LV @56# 0.110520.0270
10.0250

@57# 0.1075~54!

@58# 0.1084~23!

@59# 0.111~1! 0.324~2!

@60# 0.341~2!

@61# 0.042~6!

@62# 1.233~10! 0.327~2!

BM @63# 0.104~11!

@64# 1.09~3!

@65# 1.26~5! 0.64~2!

@66# 1.24~1! 0.606~18! 0.077~44! 0.319~14!

@67# 0.105~8!

@68# 0.324~5!, 0.329~2!

@69# 0.329~4!, 0.333~2!

@70# 0.610~6!

@71# 0.336~30!

@72# 1.228~39! 0.628~8! 0.0300~15!

MS @73# 1.25~2! 0.64~1!

@74# 0.115~4! 0.331~6!

@75# 0.11~3!

@76# 0.325~2!

@77# 0.11~3!

@78# 1.25~2! 0.315~15!

MI @79# 0.34~8!

@80# 1.18~3! 0.60~2!

@81# 1.216~13! 0.623~13! 0.039~4!

@82# 1.237~7! 0.630~12!

@83# 1.25~2! 0.63~1!

@84# 1.17~11! 0.65~4!
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The global minimum of the effective potential determin
the value of the order parameter which characterizes
phase of the model. In the high-temperature or symme
phase, the minimum is unique and located atM50. Accord-
ing to the Ginzburg-Landau theory, as the temperature
creases below the critical value, the effective potential ta
a double-well shape. The order parameter does not va
anymore and the system is in the low-temperature or bro
phase. Actually, in the broken phase the double-well shap
not correct because the effective potential must be con
@85#. In this phase it should present a flat region around
origin.

In the high-temperature phase the effective potential
mits an expansion aroundM50:

DF[F~M !2F~0!5(
j 51

`
1

~2 j !!
a2 jM

2 j . ~5.2!

The coefficients a2 j can be expressed in terms
renormalization-group invariant quantities. Introducing
renormalized magnetization
e
ic

e-
s

sh
n
is
x
e

-

w25
j~ t,H50!2M ~ t,H !2

x~ t,H50!
, ~5.3!

wheret is the reduced temperature, one may write

DF5
1

2
m2w21(

j 52
md2 j (d22)

1

~2 j !!
g2 jw

2 j . ~5.4!

Herem51/j, g2 j are functions oft only, andd is the space
dimension. In field theoryw is the expectation value of th
zero-momentum renormalized field. Fort→0 the quantities
g2 j approach universal constants~which we indicate with the
same symbol! that represent the zero-momentum 2j -point
renormalized coupling constants. By performing a furth
rescaling

w5
m(d22)/2

Ag4

z ~5.5!

in Eq. ~5.4!, the free energy can be written as

DF5
md

g4
A~z!, ~5.6!

where
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A~z!5
1

2
z21

1

4!
z41(

j 53

1

~2 j !!
r 2 j z

2 j , ~5.7!

and

r 2 j5
g2 j

g4
j 21

j >3. ~5.8!

One can show thatz}t2bM , and that the equation of stat
can be written in the form

H}tbd
]A~z!

]z
. ~5.9!

The effective potentialF(M ) admits a power-series ex
pansion also near the coexistence curve, i.e., fort,0 and
H50. If M05 limH→01M (H), for M.M0 ~i.e., for H>0)
we have

dF[F~M !2F~M0!5(
j 52

1

j !
aj~M2M0! j . ~5.10!

In terms of the renormalized magnetizationw we can rewrite

dF5
1

2
m2~w2w0!21(

j 53
md2 j (d22)/2

1

j !
gj

2~w2w0! j ,

~5.11!

where m[1/j2 and j2 is the second-moment correlatio
length defined in the low-temperature phase. Fort→02, the
quantitiesgj

2 approach universal constants that represent
low-temperature zero-momentumj-point renormalized cou-
pling constants. A simpler parametrization can be obtaine
we introduce@86#

u[
M

M0
, ~5.12!

so that

dF5
md

w2 B~u!, ~5.13!

where

w2[ lim
T→Tc2

lim
H→0

x

M2jd . ~5.14!

The scaling functionB(u) has the following expansion:

B~u!5
1

2
~u21!21(

j 53

1

j !
v j~u21! j , ~5.15!

where

v j5
gj

2

wj 22
. ~5.16!
e

if

B. Four-point zero-momentum renormalized coupling

The four-point couplingg[g4 plays an important role in
the field-theoretic perturbative expansion at fixed dimens
@87#, which provides an accurate description of the critic
region in the symmetric phase. In this approach, any univ
sal quantity is obtained from a series in powers ofg (g
expansion!, which is then resummed and evaluated at
fixed-point value ofg, g* ~see, e.g., Refs.@47,50#!. The
theory is renormalized at zero momentum by requiring

G (2)~p!5Z21@M21p21O~p4!#, ~5.17!

G (4)~0,0,0,0!5Z22Mg. ~5.18!

When M→0 the couplingg is driven toward an infrared-
stable zerog* of the corresponding Callan-Symanzikb
function

b~g![M
]g

]M U
g0 ,L

. ~5.19!

In this context a rescaled coupling is usually introduced~see,
e.g., Ref.@1#!:

ḡ5
3

16p
g. ~5.20!

An important issue in this field-theoretical approa
concerns the analytic properties ofb(g), which are relevant
for the resummation of theg expansion. Genera
renormalization-group arguments predict a nonanalytic
havior ofb(g) at g5g* @87#. One expects a behavior of th
form @2,88#

b~g!52v~g* 2g!1b1~g* 2g!21•••1c1~g* 2g!111/D

1•••1d1~g* 2g!D2 /D1••• ~5.21!

(D5vn and D2 are scaling correction exponents!. In the
framework of the 1/N expansion of O(N) f4 models, the
analysis @14# of the next-to-leading order of the Callan
Symanzikb function, calculated in Ref.@89#, shows explic-
itly the presence of confluent singularities of the form~5.21!.

In the fixed-dimension field-theoretical approach, a p
cise determination ofg* is crucial, since the critical expo
nents are obtained by evaluating appropriate~resummed!
anomalous dimensions atg* . The resummation of theg ex-
pansion is usually performed following the Le Guillou-Zinn
Justin~LZ! procedure@47#, which assumes the analyticity o
the b function. The presence of confluent singularities m
cause a slow convergence to the correct fixed-point va
leading to an underestimate of the uncertainty derived fr
stability criteria.

We have computedg* [g4* from our IHT series by cal-
culating the critical limit of the quantityg4 defined in Eq.
~3.12!. A description of our analysis can be found in Appe
dix A 4. The results are reported in Table VI. We find go
agreement among the results of the three improved Ham
nians, which lead to our final estimate:

g* 523.49~4!, ḡ* 51.402~2!. ~5.22!
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TABLE VI. Results forg4* , r 6 , r 8 , r 10, c2, and c3 derived from the analysis of the IHT series~see
Appendix A!. The error is reported as a sum of two terms: the first one is related to the spread
approximants; the second one is related to the uncertainty of the value ofl4* andD* .

g4* r 6 r 8 r 10 104c2 104c3

l650 23.499~16120! 2.051~712! 2.23~514! 214~4! 23.582~716! 0.085~6!

l651 23.491~21140! 2.050~514! 2.23~516! 213~5! 23.574~7120! 0.086~4!

spin-1 23.487~18120! 2.046~213! 2.34~513! 28~25! 23.568~1114! 0.090~4!
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Table VII presents a selection of estimates ofḡ* obtained
by different approaches.

The HT estimates of Refs.@14,15,36# were obtained by
using the RT or appropriate biased approximants in orde
handle the leading confluent correction. The larger resul
Ref. @96# could be explained by an effect of the scaling co
rections. Field-theoretical estimates are reasonably con
tent, especially those obtained from a constrained analys
the O(e4) e expansion@14#. In the d53 g-expansion ap-
proach,g* is determined from the zero ofb(g) after resum-
ming its availableO(g7) series. The results obtained usin
the LZ resummation method@44# show a slight discrepanc
from our IHT estimates. This difference can explain the a
parent discrepancy found in the determination ofg. Indeed,
the sensitivity ofg to ḡ* , quantified in Ref.@44# through
dg/dḡ* .0.18, tells us that changing the value ofḡ* from
1.411@which is the value obtained from the zero ofb(g)] to
1.402 shiftsg from 1.2396 to 1.2380, which is much clos
to the IHT estimateg51.2371(4). Similarly for n, using
dn/dḡ* .0.11 @44#, n would change from 0.6304 to 0.6294
which is quite acceptable, since a residual uncertainty du
the resummation ofn(g) is still present. The more genera
analysis of theg expansion of Ref.@46# leads to a smaller
valueḡ* 51.40, with an uncertainty estimated by the auth
to be about 1%. In Table VII we also report estimates o
tained by approximately solving the exact renormalizat
group equation@49,48# ~ERG!, and from a dimensional ex
pansion of the Green’s functions aroundd50 @91# (d exp.!.
Concerning Monte Carlo~MC! results, we mention that th
result of Ref.@90# has been obtained by studying the pro
ability distribution of the average magnetization~see also
Ref. @98# for a work employing a similar approach!. The
other estimates have been obtained from fits to data in
neighborhood ofbc . In Ref. @18# Monte Carlo simulations
were performed using the Hamiltonian~1.2! with l650 and
l451, which is close to its optimal value. A fit to the data
g4, kindly made available to us by the authors, gives
to
f

-
is-
of

-

to

s
-
n

-

e

e

estimateg* 523.41(24) @i.e., ḡ* 51.397(14)], which is in
agreement with our IHT estimate. In Ref.@92# a finite-size
scaling technique is used to obtain data for large correla
lengths, then the estimate ofg4* is extracted by a fit taking
into account the leading scaling correction. The Monte Ca
estimates of Refs.@94,95# were larger because the effects
scaling corrections were neglected, as already observe
Ref. @14#. A more complete list of references regarding th
issue can be found in Ref.@14#.

C. Higher-order zero-momentum renormalized couplings

To compute the HT series of the effective-potential p
rametersr 2 j defined in Eq.~5.8!, we rewrite them in terms of
the zero-momentum connected 2j -point Green’s functions
x2 j as

r 65102
x6x2

x4
2 , ~5.23!

r 85280256
x6x2

x4
2 1

x8x2
2

x4
3 , ~5.24!

r 1051540024620
x6x2

x4
2 1126

x6
2x2

2

x4
4 1120

x8x2
2

x4
3 2

x10x2
3

x4
4

,

~5.25!

etc. Details of the analysis of the series are reported in
pendix A 4. Combining the results reported in Table VI, w
obtain the following estimates:

r 652.048~5!, ~5.26!

r 852.28~8!, ~5.27!

r 105213~4!. ~5.28!
,
TABLE VII. Estimates of ḡ* [3g* /(16p). ~sc! and ~bcc! in the HT estimates of Ref.@15# denote simple cubic and bcc lattice
respectively. For values marked with an asterisk, the error is not quoted explicitly in the reference.

IHT HT e exp. d53 g exp. MC d exp. ERG

1.402~2! 1.408~7! ~sc! @15# 1.397~8! @14# 1.411~4! @44# 1.39~3! @90# 1.412~14! @91# 1.23~21! @48#

1.407~6! ~bcc! @15# 1.391* @44# 1.40* @46# 1.408~12! @92# 1.72* @49#

1.406~9! @14# 1.415* @93# 1.49~3! @94#

1.414~6! @36# 1.416~5! @47# 1.462~12! @95#

1.459~9! @96#

1.42~9! @97#
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TABLE VIII. Estimates ofr 2 j . For the references reporting only estimates ofg2 j ~see Refs.@90,95,97#!,
the errors we quote forr 2 j have been calculated by considering the estimates ofg2 j as uncorrelated. For
values marked with an asterisk, the error is not quoted explicitly in the reference.

IHT HT e exp. d53 g exp. MC ERG

r 6 2.048~5! 1.99~6! @36# 2.058~11! @99# 2.053~8! @44# 2.72~23! @90# 2.064~36! @48#

2.157~18! @96# 2.12~12! @44# 2.060* @93# 3.37~11! @92# 1.92* @49#

2.25~9! @100# 3.26~26! @95#

2.5~5! @97#

r 8 2.28~8! 2.7~4! @36# 2.48~28! @99# 2.47~25! @44# 2.47~5! @48#

2.42~30! @44# 2.18* @49#

r 10 213~4! 24~2! @36# 220~15! @99# 225~18! @44# 218~4! @48#

212.0~1.1! @44#
u-
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From the results forr 2 j we can obtain estimates of the co
plings

g65g2r 651130~5!, ~5.29!

g85g3r 852.96~11!3104, ~5.30!

g105g4r 10524.0~1.2!3106. ~5.31!

In the literature several approaches have been used fo
determination of the couplingsg2 j . Table VIII presents a
review of the available estimates ofr 6 , r 8, andr 10.

We also mention the estimater 105210(2) that we will
obtain in Sec. VII by studying the equation of state. T
agreement with the field-theoretic calculations based on the
expansion@44,99# and on thed53 g expansion@44# is good.
Precise estimates ofr 2 j have also been obtained in Ref.@48#
~see also Ref.@49#! by ERG, although the estimate ofg4* by
the same method is not as good. Additional results have b
obtained from HT expansions@36,96,97# and Monte Carlo
simulations@90,95# of the Ising model. The Monte Carlo
results do not agree with the results of other approac
especially those of Refs.@92,95#, which are obtained using
finite-size scaling techniques. But one should consider
difficulty of such calculations due to the subtractions th
must be performed to compute the irreducible correlat
functions. A more complete list of references regarding t
issue can be found in Refs.@23,44,99#.

VI. THE TWO-POINT FUNCTION

The critical behavior of the two-point correlation functio
G(x) of the order parameter is relevant to the description
critical scattering phenomena, which can be observed
many experiments, such as light and x-ray scattering in
ids, magnets, etc. In the Born approximation the cross s
tion G f i for particles of incoming momentumpi and outgo-
ing momentumpf is proportional to the componentk5pf
2pi of the Fourier transform ofG(x):

G f i}G̃~pf2pi !. ~6.1!

As a consequence of the critical behavior of the two-po
function G(x) at Tc ,
he

en

s,

e
t
n
s

f
in
-
c-

t

G̃~k!;
1

k22h
, ~6.2!

the cross section fork→0 ~forward scattering! diverges as
T→Tc . When strictly at criticality, Eq.~6.2! holds for all
k!L, whereL is a generic cutoff related to the microscop
structure of the statistical system, e.g., the inverse lat
spacing in the case of lattice models. In the vicinity of t
critical point, where the relevant correlation lengthj is large
but finite, the behavior~6.2! occurs forL@k@1/j. At low
momentum,k!1/j, experiments show thatG(x) is well ap-
proximated by a Gaussian~Ornstein-Zernike! behavior,

G̃~0!

G̃~k!
.11

k2

M2 , ~6.3!

where M;1/j is a mass scale defined at zero moment
~for a general discussion, see, e.g., Ref.@101#!. Corrections
to Eq. ~6.3! are present, and reflect, once more, the n
Gaussian nature of the Wilson-Fisher fixed point. The abo
mentioned experimental observations, confirmed by theo
ical studies @39,102#, show that they are small. In th
following we will improve the determination of the critica
two-point function at low momentum using IHT series.

In order to study the low-momentum universal critic
behavior of the two-point functionG(x)5^f(x)f(0)&, we
consider the scaling function

g~y!5x/G̃~k!, y[k2/M2, ~6.4!

(M[1/j andj is the second-moment correlation length! in
the critical limit k,M→0 with y fixed. The scaling function
g(y) can be expanded in powers ofy aroundy50:

g~y!511y1(
i 52

`

ciy
i . ~6.5!

Other important quantities which characterize the lo
momentum behavior ofg(y) are the critical limit of the ra-
tios

SM[Mgap
2 /M2, ~6.6!

SZ[xM2/Zgap, ~6.7!
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whereMgap ~the mass gap of the theory! andZgap determine
the long-distance behavior of the two-point function:

G~x!'
Zgap

4puxu
e2Mgapuxu. ~6.8!

The critical limits of SM and SZ are related to the negativ
zeroy0 of g(y) closest to the origin by

SM52y0 , ~6.9!

SZ5
]g~y!

]y U
y5y0

. ~6.10!

The coefficientsci can be related to the critical limit of ap
propriate dimensionless ratios of spherical moments ofG(x)
~as shown explicitly in Appendix A 1! and can be calculate
by analyzing the corresponding HT series. Some details
the analysis of our HT series are reported in Appendix A
In Table VI we report the results forl650,1 and the spin-1
model. We obtain the estimates

c2523.576~13!31024, ~6.11!

c350.87~4!31025, ~6.12!

and the bound

21026&c4,0. ~6.13!

The constantsci and SM can also be calculated by field
theoretic methods. They have been computed toO(e3) in the
framework of thee expansion@103#, and toO(g4) in the
framework of thed53 g expansion@39#. In Table IX we

TABLE IX. ci andSM21 obtained fromO(e3) series: uncon-
strained analysis~unc.! and analyses constrained in dimensionsd
51,2.

Unc. d51 d52 d51,2

104(SM21) 24.4~1.0! 23.3~8! 23.3~5! 23.24~36!

104c2 24.3~9! 23.2~8! 23.3~4! 23.30~21!

105c3 1.13~27! 0.84~22! 0.76~17! 0.69~10!

106c4 20.50~13! 20.37~10! 20.32~8! 20.27~5!
of
.

report the results of constrained analyses of theO(e3) e
expansion of ci and SM21, using exact results ind
52,1 (SM51 and ci50 in d51; two-dimensional values
will be reported in Table XI! and following the method of
Ref. @14#.

Since the constantsci are of orderO(e2), we analyzed the
O(e) series forci /e2. Errors are indicative, since the serie
are short. In Table X we compare the estimates obtained
various approaches: they all agree within the quoted erro

As already observed in Ref.@39#, the coefficients show
the pattern

ci!ci 21!•••!c2!1 for i>3. ~6.14!

Therefore, a few terms of the expansion ofg(y) in powers of
y should be a good approximation in a relatively large reg
aroundy50, larger thanuyu&1. This is in agreement with
the theoretical expectation that the singularity ofg(y) near-
est to the origin is the three-particle cut@104,103#. If this is
the case, the convergence radiusr g of the Taylor expansion
of g(y) is r g59SM . Since, as we shall see,SM.1, at least
asymptotically we should have

ci 11.
1

9
ci . ~6.15!

This behavior can be checked explicitly in the large-N limit
of the N-vector model@39#. In two dimensions, the critica
two-point function can be written in terms of the solutions
a Painleve´ differential equation@105# and it can be verified
explicitly that r g59SM . In Table XI we report the values o
SM andci for the two-dimensional Ising model.

Assuming the pattern~6.14!, we may estimateSM andSZ
from c2 , c3, and c4. Indeed from the equationg(y0)50,
wherey052SM , we obtain

SM511c22c31c412c2
21•••, ~6.16!

SZ5122c213c324c422c2
21•••, ~6.17!

where the ellipses indicate contributions that are negligi
with respect toc4. In Ref. @39# the relation~6.16! has been
confirmed by a direct analysis of the HT series ofSM . From
Eqs. ~6.16! and ~6.17! we obtainSM50.999634(4)@from
bic
TABLE X. Estimates ofSM andci . ~sc! and~bcc! denote the simple cubic and the body-centered-cu
lattice, respectively.

IHT HT e exp. d53 g exp.

c2 23.576~13!31024 23.0~2!31024 @39# 23.3~2! 31024 24.0~5! 31024

25.5~1.5!31024 ~sc! @102#
27.1~1.5!31024 ~bcc! @102#

c3 0.87~4!31025 1.0~1!31025 @39# 0.7~1! 31025 1.3~3! 31025

0.5~2!31025 ~sc! @102#
0.9~3!31025 ~bcc! @102#

c4 21026&c4,0 20.3(1)31026 20.6~2!31026

SM 0.999634~4! 0.99975~10! @39# 0.99968~4! 0.99959~6!
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which we can derive an estimate of the ratioQj
1[ f gap

1 / f 1

51.000183(2), cf. Eqs. ~B5! and ~B6!# and SZ
51.000741(7).

We can also use our results to improve the phenome
logical model proposed by Bray@103#. If we parametrize the
large-y behavior ofg(y) as @107#

g~y!215
A1

y12h/2 S 11
A2

y(12a)/(2n)
1

A3

y1/(2n)D , ~6.18!

then, by using our estimates of the critical exponents and
phenomenological function of Ref.@103#, we obtain the fol-
lowing values for the coefficients:

A1'0.918, A2'2.55, A3'23.45. ~6.19!

Estimating reliable errors on these results is practically
possible, since it is difficult to assess the systematic error
to the many uncontrolled simplifications that are used. It
however, reassuring that they are in reasonable agree
the e-expansion predictions@103#

A1'0.92, A2'1.8, A3'22.7, ~6.20!

and with the results of a recent experimental study@61#

A150.915~21!, A252.05~80!, A3522.95~80!.
~6.21!

Bray’s phenomenological expression also makes predict
for the coefficientsci . The pattern~6.15! is built into the
approach. We findc2524.231024 and c351.031025, in
good agreement with our IHT estimates. Therefore, Bra
expression provides a good description ofg(y) for small and
large values ofy. However, in the intermediate crossov
region, as already observed in Ref.@61#, the agreement is
worse: Bray’s interpolation is lower by 20–50 % than t
experimental result.

In the low-temperature phase, fory→0, the two-point
function also admits a regular expansion of the form~6.5!.
However, the deviation from the Gaussian behavior is m
larger. The leading coefficientc2

2 is larger thanc2 by about
two orders of magnitude@108#. Moreover, by analyzing the
low-temperature series published in Ref.@109# one getsSM

2

50.938(8) @and, correspondingly, Qj
2[ f gap

2 / f 2

51.032(4)]. Thus SM
2 shows a much larger deviation from

one ~the Gaussian value! than the corresponding high
temperature phase quantitySM . The two-dimensional Ising
model shows even larger deviations from Eq.~6.3!, as one

TABLE XI. Values of SM andci for the two-dimensional Ising
model in the high- and low-temperature phases.

High temperature@106# Low temperature

SM50.999196337056 SM
250.399623590999

c2520.793679606431023 c2
2520.42989191603

c350.10959910831024 c3
250.5256121845

c4520.312744631026 c4
2520.8154613925

c550.12667031027 c5
251.422603449

c6520.6299731029 c6
2522.663354573
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e
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can see from the values ofSM
2 andci

2 reported in Table XI.
Note that in the low-temperature phase of the tw
dimensional Ising model, the singularity atk252Mgap

2 of

G̃(k) is not a simple pole, but a branch point@105#. As a
consequence,g(y) is not analytic foruyu.SM

2 , and therefore
the convergence radius of the expansion aroundy50 is SM

2 .
For discussions of the analytic structure ofg(y) in the low-
temperature phase of the three-dimensional Ising model,
e.g., Refs.@108,103,104,110#.

VII. THE CRITICAL EQUATION OF STATE

A. Parametric representation

The critical equation of state provides relations among
thermodynamical quantities in the neighborhood of the cr
cal temperature, in both phases. From this equation one
then derive all the universal ratios of amplitudes involvi
quantities defined at zero-momentum~i.e., integrated in the
volume!, such as specific heat, magnetic susceptibility, e

From the analysis of IHT series we have obtained the fi
few nontrivial terms of the small-field expansion of the e
fective potential in the high-temperature phase. This p
vides corresponding information for the equation of state

H}tbdF~z!, ~7.1!

wherez}Mt2b and, using Eq.~5.9!,

F~z!5
]A~z!

]z
5z1 1

6 z31 (
m52

F2m11z2m11 ~7.2!

with

F2m215
1

~2m21!!
r 2m . ~7.3!

The functionH(M ,t) representing the external field in th
critical equation of state~7.1! satisfies Griffith’s analyticity:
it is regular atM50 for t.0 fixed and att50 for M.0
fixed. The first region corresponds to smallz in Eq. ~7.1!,
while the second is related to largez, whereF(z) can be
expanded in the form

F~z!5zd (
n50

Fn
`z2n/b. ~7.4!

Of course,Fn
` are universal constants.

To reach the coexistence curve, i.e.,t,0 andH50, one
should perform an analytic continuation in the complext
plane@1,23#. The spontaneous magnetization is related to
complex zeroz0 of F(z). Therefore, the description of th
coexistence curve is related to the behavior ofF(z) in the
neighborhood ofz0. In order to obtain a representation of th
critical equation of state that is valid in the whole critic
region, one may use parametric representations, wh
implement in a simple way all scaling and analytic prop
ties. One parametrizesM andt in terms ofR andu @24–26#:

M5m0Rbu,

t5R~12u2!, ~7.5!
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H5h0Rbdh~u!,

whereh0 andm0 are normalization constants. The functio
h(u) is odd and regular atu51 and atu50. The constanth0
can be chosen so thath(u)5u1O(u3). The zero ofh(u),
u0.1, represents the coexistence curveH50, T,Tc . The
parametric representation satisfies the requirements of r
larity of the equation of state. One expects at most an es
tial singularity on the coexistence curve@111#.

The relation betweenh(u) andF(z) is given by

z5ru~12u2!2b, ~7.6!

h~u!5r21~12u2!bdF„z~u!…, ~7.7!

u.0, and hyperscaling implies thatbd5b1g. Note that
this mapping is invertible only in the regionu,u l , where
u l5(122b)21/2 is the solution of the equationz8(u)50.
Thus the values ofu that are relevant for the critical equatio
of state, i.e., 0<u<u0, must be smaller thanu l . This fact
will not be a real limitation for us, since the range of valu
of u involved in our calculations~which will be 0<u2<u0

2

&1.40) will always be far from the limiting valueu l
2

.2.88.
As a consequence of Eqs.~7.5!, ~7.6!, and~7.7!, we easily

obtain the relationships

M

tb 5S m0

r D z,
H

tbd
5S h0

r DF~z!. ~7.8!

We can therefore treatr as a free parameter, and the scali
relations between physical variables will not depend onr,
provided thatm0 and h0 are rescaled withr. In the exact
parametric equation, the value ofr may be chosen arbitrarily
but, as we shall see, when adopting an approximation pr
dure the dependence onr is not eliminated, and it may be
come important to choose the value of this parameter p
erly in order to optimize the approximation.

From u0 one can obtain the universal rescaled sponta
ous magnetization@23#, i.e., the complex zeroz0 of F(z),

z05uz0ue2 ipb, uz0u5ru0~u0
221!2b. ~7.9!

From the functionh(u) one can calculate the universal rati
of amplitudes. In Appendix B we report the definitions of t
universal ratios of amplitudes that have been introduced
the literature, and the corresponding expressions in term
h(u).

Expandingh(u) in ~odd! powers ofu,

h~u!5u1 (
n51

h2n11u2n11, ~7.10!

and using Eq.~7.7!, one can find the relations amongh2n11
and the coefficientsF2m11 of the expansion ofF(z). The
procedure is explained in Appendix C, and the general re
is

h2n115 (
m50

n

cn,mr2mF2m11 , ~7.11!
u-
n-

e-

p-

e-

in
of

lt

where

cn,m5
1

~n2m!! )k51

n2m

~2bm2g1k21!; ~7.12!

note thatcn,n 5 1. In general,h2n11 depends ong, b, and
on the coefficientsF2m11 with m<n.

We shall need the explicit form of the first two coeffi
cients:

h35 1
6 r22g, ~7.13!

h55 1
2 g~g21!1 1

6 ~2b2g!r21F5r4. ~7.14!

B. Approximation scheme based on stationarity

In Ref. @23#, Guida and Zinn-Justin use the first few c
efficients of the small-z expansion ofF(z) to get polynomial
approximations ofh(u) that should provide a descriptio
that is reliable in the whole critical region. The approxim
tions considered are truncations of the small-u expansion of
h(r,u), i.e.,

h(t)~r,u!5u1 (
n51

t21

h2n11~r!u2n11, ~7.15!

whereh2n11(r) are given by Eq.~7.11!. We follow a similar
strategy, with a significant difference in the procedu
adopted in order to fix the value ofr.

By Eqs. ~7.11! and ~7.12!, the coefficientsh2n11(r) in-
cluded in Eq.~7.15! are written in terms of thet parameters
g, b, F5•••F2t21. In practice, only the first coefficients o
the small-u expansion ofh(u) are well determined, since w
have good estimates only for the first fewF2m11. Once the
order of the truncation has been decided, one may exploit
freedom of choosingr to optimize the approximation o
h(u). In this way one may hope to obtain a good appro
mation even for small values oft. Reference@23# proposes to
determine the optimal value ofr by minimizing the absolute
value of h2t21(r), i.e., the coefficient of the highest-orde
term considered. The idea underlying this procedure is
increase the importance of small powers ofu. Our approach
is different.

Our starting point is the independence fromr of the scal-
ing function F(z) and, as a consequence, of all univers
ratios of amplitudes that can be extracted from it. Of cour
this property does not hold anymore when we start from
truncated functionh(t)(r,u), i.e., if we compute universa
quantities from a functionF (t)(r,z) defined by

F (t)~r,z![F̃ (t)
„r,u~r,z!…, ~7.16!

where

F̃ (t)~r,u!5
rh(t)~r,u!

~12u2!bd
~7.17!

andu(r,z) is obtained by inverting Eq.~7.6!.
In order to optimizer for a given truncationh(t)(r,u), we

propose a procedure based on the physical requiremen
minimal dependence onr of the resulting universal function
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F (t)(r,z). This can be obtained by assumingr to depend on
z, i.e.,r5r (t)(z), and by requiring the functional stationarit
condition

dF (t)~r (t),z!

dr (t)
50 ~7.18!

~see Ref.@45# and references therein for a similar techniq
applied to the resummation of perturbative power exp
sions!. The nontrivial fact, even surprising at first sight,
that the solutionr (t)(z) of Eq. ~7.18! is constant. In other
words, for anyt there exists a solutionr t independent ofz
that satisfies the global stationarity condition

]F (t)~r,z!

]r U
r5r t

50. ~7.19!

This is equivalent to the fact that, for any universal ratio
amplitudes R, its approximationR(t)(r) @obtained from
F (t)(r,z)] satisfies the stationarity condition

dR(t)~r!

dr U
r5r t

50. ~7.20!

The proof of Eq.~7.19! is given in Appendix C, where we
show that the global stationarity condition amounts to req
ing r t to be a solution of the algebraic equation

F ~2b21!r
]

]r
22g12t22Gh2t21~r!50. ~7.21!

The idea behind our scheme of approximation is that,
any truncation, the stationarity condition enforces the phy
cal request that the universal ratios of amplitudes be m
mally dependent onr. To check the convergence of the a
proximation, one can repeat the computation of univer
ratios of amplitudes from the truncated functionh(t)(r t ,u)
for different values oft, as long as one has a reliable estima
of F2t21. We have noa priori argument in favor of a fas
convergence int of the universal ratios of amplitudes derive
by this procedure towards their exact values. However,
may appreciate that its lowest-order implementation, co
sponding tot52 in Eq. ~7.15!, reproduces the well known
formulas of Refs.@24–26#, which give an effective optimi-
zation of the linear parametric model. Indeed, we obt
from Eqs.~7.21! and ~7.13! the t52 solution

r25A6g~g21!

g22b
. ~7.22!

In this case the critical equation of state and all critical a
plitudes turn out to be expressible simply in terms of t
critical exponentsb andg. In particular, we found a close
form expression for allF2m11

(2) coefficients~see Appendix C
for a derivation!:

F2m11
(2) 5

~21!m

m!

g~g21!

r2
2m )

k51

m22

~2bm2g2k!. ~7.23!
-

f

-

r
i-
i-

al
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e
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n

-

Wallace and Zia@27# already noticed that the minimum
condition of Refs.@24–26# was equivalent to a condition o
global stationarity for the linear parametric model. We ha
shown that such a global stationarity can be extended
other parametric models withtÞ2, and can be used to im
prove the approximation.

The next truncation, corresponding tot53, can also be
treated analytically. Since it sensibly improves the line
parametric model in the 3D Ising case, we shall present h
a few details. By applying the stationarity condition~7.21! to
Eq. ~7.14!, we obtain

r35A~g22b!~12g12b!

12~4b2g!F5

3S 12A12
72~22g!g~g21!~4b2g!F5

~g22b!2~12g12b!2 D 1/2

.

~7.24!

Universal ratios of amplitudes may be evaluated in terms
r3; they will now depend only on the parametersb, g, and
F5. Note that the predictions of thet52 and t53 models
differ from each other only proportionally to the differenc
between the ‘‘experimental’’ value ofF5 and the value pre-
dicted according to Eq.~7.23!,

F5
(2)5

~g22b!2

72g~g21!
. ~7.25!

If we replaceF5 with F5
(2) in the t53 model results, all the

linear parametric model results are automatically reproduc
In the 3D Ising model, the two values differ by;6%, and
thus we expect comparable discrepancies for all unive
ratios of amplitudes. This can be verified from the numeri
results that we will present in Sec. VII D~see Table XII!. All
universal ratios of amplitudes obtained from thet52 trun-
cation~i.e., the linear parametric model!, using our estimates
of g andb, differ at most by a few per cent from previous
available estimates. Thet53 and higher-order approxima
tions are consistent with the latter. The apparent converge
in t of the results provides a further important support to t
scheme.

It is worth noting that the parametric representation of
equation of state induces parametric forms for such ther
dynamic functions as the free energy and the susceptibi
as discussed in detail in Appendix B 2. When we assum
truncated form of the parametric equation of state, in gen
only the corresponding free-energy function will admit
polynomial representation. A peculiar and possibly uniq
feature of our scheme is the induced truncation of the fu
tion related to the susceptibility, which turns out to be
even polynomial of degree 2t in the variableu. Appendix C
contains a more extended discussion of these and other p
erties of the approximation scheme based on the station
condition.

We have introduced our parametric representation ass
ing independent knowledge ofF5 , . . . ,F2t21. It should be
noted that our results fort53 can also be used as a pheno
enological parametrization, fitting the value ofF5 on any
known universal quantity. As we will show in Sec. VII D
the difference with the linear parametric model of Refs.@24–
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TABLE XII. Universal ratios of amplitudes obtained by taking different approximations of the parametric functionh(u). Numbers
marked with an asterisk are inputs, not predictions. The valuesrm,t are obtained as in Ref.@23#; see text for details.

h(2)(r2 ,u) h(3)(r3 ,u) h(4)(r4 ,u) h(5)(r5 ,u) h(3)(rm,3,u) h(4)(rm,4,u)

r 1.7358~12! 1.7407~14! 1.7289~83! 1.686~51! 1.6889~26! 1.651~30!

u0
2 1.3606~11! 1.3879~29! 1.372~12! 1.325~53! 1.3310~13! 1.295~27!

F0
` 0.03280~14! 0.03382~18! 0.03374~21! 0.03366~26! 0.03378~18! 0.03370~23!

uz0u 2.825~12! 2.7937~17! 2.7970~33! 2.8012~72! 2.7955~15! 2.7992~45!

U0 0.5222~16! 0.5316~21! 0.5295~29! 0.5261~60! 0.5303~19! 0.5276~39!

U2 4.826~11! 4.752~15! 4.769~22! 4.797~47! 4.764~13! 4.786~30!

U4 29.737~41! 28.918~83! 29.10~18! 29.42~48! 29.061~67! 29.31~28!

Rc
1 0.05538~13! 0.05681~16! 0.05644~32! 0.0558~10! 0.05656~14! 0.05606~53!

Rc
2 0.021976~16! 0.022488~30! 0.02235~11! 0.02211~36! 0.022387~18! 0.02220~19!

R4
1 7.9789~64! 7.804~10! 7.823~18! 7.847~40! 7.8146~85! 7.836~25!

R4
2 92.10~23! 93.91~20! 93.25~45! 91.9~1.7! 93.25~21! 92.27~83!

v3 6.0116~79! 6.0561~68! 6.041~11! 6.010~39! 6.0412~73! 6.018~20!

v4 16.320~55! 16.121~66! 16.21~11! 16.41~24! 16.239~55! 16.38~15!

Q1
2d 1.6775~19! 1.6588~27! 1.6624~44! 1.668~10! 1.6611~25! 1.6656~60!

U2R4
1 38.505~82! 37.09~15! 37.31~26! 37.64~55! 37.23~13! 37.50~35!

R4
1Rc

1 0.4419~13! 0.4434~13! 0.4416~18! 0.4377~56! 0.4420~13! 0.4392~29!

r 6 1.9389~48! * 2.048~5! * 2.048~5! * 2.048~5! * 2.048~5! * 2.048~5!

r 8 2.507~31! 2.402~39! * 2.28~8! * 2.28~8! 2.365~43! * 2.28~8!

r 10 212.612~41! 212.146~60! 210.0~1.5! * 213~4! 211.80~10! 210.98~86!
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26 is not negligible. On the other hand, our numerical e
mates fort54 show that the difference fromt53 is too
small ~compared with both theoretical and experimental p
cision! to justify the introduction of an additional phenom
enological parameterF7.

C. e expansion of the parametric representation

It is interesting to compare our results with the analysis
the parametric equation of state, which can be performe
the context of thee expansion, generalizing results presen
in Refs.@27,112#.

According to Ref.@27#, within the e expansion it is pos-
sible to choose a valuer0 such that for alln>2,

h2n11~r0!5O~en11!. ~7.26!

The calculation shows thatr05A2. We proved in Appendix
C that Eq. ~7.26! keeps holding for all choices ofr that
satisfy the relationr5r01O(e). We can nowe-expand our
globally stationary solutions for arbitraryt, obtaining

lim
e→0

r t5r0 . ~7.27!

As a consequence, any truncation satisfying the stationa
condition is an accurate description of thee-expanded para
metric equation of state up to and includingO(e t).

As a byproduct, we may extract from the linear mod
relation ~7.23!, expanded toO(e2), the coefficients of thee
expansion forF2m11, for m>2:

F2m115 (
k51

`

f mke
k. ~7.28!

We easily obtained from Eq.~7.23! the closed form results
i-

-

f
in
d

ity

l

f m15
~21!m

6m~m21!

1

2m , ~7.29!

f m25 f m1F17

27
2

m

2
2S m

3
1

1

6D (
k51

m22
1

kG , ~7.30!

reproducing known results@23#. More generally, knowing
the expansion of the coefficientsF2m11 to O(e t) for m,t is
enough to reconstruct allF2m11 for m>t with the same
accuracy.

D. Results

As input parameters for the determination of the functio
h(t)(r,u) we use the results of the IHT expansion:g
51.2371(4), n50.63002(23),r 652.048(5), r 852.28(8),
r 105213(4).

In Table XII we report the universal ratios of amplitude
derived from truncations corresponding tot52,3,4,5. We
use the standard notation for the ratios of amplitudes~see,
e.g., Ref.@113#!; all definitions can be found in Table XIII
For comparison, we also report, fort53,4, the results ob-
tained using the procedure of Ref.@23#, fixing r to the value
rm,t that minimizes the absolute value of theO(u2t21) co-
efficient. @As already noted in Ref.@23#, for t54 the mini-
mum of h7(r) is zero, while fort53, h5(r) never reaches
zero.# Such results are very close to those derived from
stationarity condition; this is easily explained by the fact th
the values ofrm,t are close tor t .

The errors reported in Table XII are related to the unc
tainty of the corresponding input parameters~considering
them as independent!. The results fort52,3,4 suggest a
good convergence and give good support for our analy
The results fort55, although perfectly consistent, are le
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TABLE XIII. Summary of the results obtained in this paper by our high-temperature calculations~IHT!,
by using the parametric representation of the equation of state~IHT-PR!, by analyzing the low-temperatur
expansion~LT!, and by combining the two approaches~IHT-PR1LT!. Notations are explained in Appendi
B.

IHT IHT-PR LT IHT-PR1LT

g 1.2371~4!

n 0.63002~23!

a 0.1099~7!

h 0.0364~4!

b 0.32648~18!

d 4.7893~22!

s 0.0208~12!

r 6 2.048~5!

r 8 2.28~8!

r 10 213~4! 210~2!

U0[A1/A2 0.530~3!

U2[C1/C2 4.77~2!

U4[C4
1/C4

2 29.1~2!

Rc
1[aA1C1/B2 0.0564~3!

Rc
2[aA2C2/B2 0.02235~11!

R4
1[2C4

1B2/(C1)35uz0u2 7.82~2!

R3[v3[2C3
2B/(C2)2 6.041~11!

R4
2[C4

2B2/(C2)3 93.3~5!

v4[2R4
213R3

2 16.21~11!

Q1
2d[Rx[C1Bd21/(dCc)d 1.662~5!

F0
` cf. Eq. ~7.4! 0.0337~2!

g4
1[g[2C4

1/@(C1)2( f 1)3# 23.49~4!

w2[C2/@B2( f 2)3# 4.75~4! @14#

Uj[ f 1/ f 25(w2U2R4
1/g4

1)1/3 1.961~7!

Q1[aA1( f 1)35R4
1Rc

1/g4
1 0.01880~8!

Rj
1[(Q1)1/3 0.2659~4!

Q2[aA2( f 2)35Rc
2/w2 0.00471~5!

Qc[B2( f 1)3/C15Q1/Rc
15R4

1/g4
1 0.3330~10!

g3
2[wv3 13.17~6!

g4
2[w2v4 77.0~8!

Qj
1[ f gap

1 / f 1 1.000183~2!

Qj
2[ f gap

2 / f 2 1.032~4! @39#

Ujgap
[ f gap

1 / f gap
2 5UjQj

1/Qj
2 1.901~10!

Qj
c[ f gap

c / f c 1.024~4!

Q2[( f c/ f 1)22hC1/Cc 1.195~10!
in
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useful for checking convergence, due to the large uncerta
of F9. In Table XIII we report our final estimates, obtaine
using h(4)(r4 ,u); all the approximations reported in Tab
XII are consistent with them, exceptt52.

We should say that the method of Guida and Zinn-Ju
to determine the optimalr leads to equivalent results, an
shows an apparent good convergence as well. However
believe that the global stationarity represents a more phys
requirement, and it is more amenable to a theoretical ana
of its convergence properties. Moreover, as we have sho
it has the linear parametric model of Refs.@24–27# as the
lowest-order approximation.

Estimates of other universal ratios of amplitudes can
obtained by supplementing the above results with the e
mates ofw2[C2/@B2( f 2)3# andQj

2[ f gap
2 / f 2 obtained by

an analysis of the corresponding low-temperature expans
ty

n

e
al
is
n,

e
ti-

n.

The results so obtained are denoted by IHT-PR1LT in Table
XIII. The low-temperature expansion ofw2 can be calculated
to O(u21) on the cubic lattice using the series published
Refs.@109,114#. The results reported in Table XIII were ob
tained by using the Roskies transform in order to reduce
systematic effects due to confluent singularities@14#.

We also consider a parametric representation of the
relation length. Following Ref.@115#, we write

j2/x5R2hna~u!, ~7.31!

jgap
2 /x5R2hnagap~u!. ~7.32!

We consider the simplest polynomial approximation toa(u)
andagap(u):
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a~u!'a0~11cu2!, ~7.33!

agap~u!'agap,0~11cgapu
2!, ~7.34!

where the constantsc andcgap can be determined by fitting
the quantitiesUj andUjgap

. Then, using Eqs.~7.31!, ~7.32!,
and the parametric representation of the equation of s
one can estimate the universal ratios of amplitudesQj

c and
Q2 defined in Table XIII. Notice that, given the equation
state, the normalizationa0 is not arbitrary, but it may be
fixed using the zero-momentum four-point couplingg4:

a05~h0 /r!1/3~m0 /r!25/3~g4* !22/3, ~7.35!

whereh0 , m0 andr have been introduced in Eqs.~7.5! and
~7.6!. Notice thata0 depends only on the ratiosh0 /r and
m0 /r, as is required of a physical quantity. Moreover, o
hasagap,05(Qj

1)2a0. In order to check the results obtaine
from the approximate expressions~7.33! and~7.34!, we also
considered the following parametric representation@102#:

j225R2nb~u!, ~7.36!

jgap
225R2nbgap~u!, ~7.37!

and the corresponding polynomial approximations trunca
to second order. The results forQj

c andQ2 obtained by this
second representation are perfectly consistent with th
from the first one. Our final estimates ofQj

c andQ2 derived
by the above method are reported in Table XIII.

In Table XIV we compare our results with other a
proaches. We find good overall agreement.

Our results appear to substantially improve the estima
of most of the universal ratios considered. In Table XIV w
have collected results obtained by high-temperature and
temperature expansions~HT,LT!, Monte Carlo simulations
~MC!, field-theoretical methods such ase expansion and
various kinds of expansions at fixed dimensiond53, and
experiments. Concerning the HT,LT estimates, we men
the recent Ref.@113#, where a review of such results is pr
sented. The agreement with the most recent Monte C
simulations is good, especially with the results reported
Ref. @122#, which are quite precise. However, we note th
the estimates ofU0 reported in Ref.@40# are slightly larger.
Moreover, there is an apparent discrepancy with the estim
of g4

2 of Ref. @133#. It is worth mentioning that the result o
Ref. @123# was obtained simulating a four-dimension
SU(2) lattice gauge model at finite temperature, who
phase transition is expected to be in the 3D Ising universa
class. Field-theoretical estimates are, in general, less pre
although perfectly consistent. We mention that the res
denoted by ‘‘d53 exp.’’ are obtained from different kinds o
expansions:g expansion@23,44,121,132#, minimal renormal-
ization withoute expansion@120,135#, expansion in the cou
pling u[3w2 defined in the low-temperature phase@126#. In
Refs.@23,44# Guida and Zinn-Justin used thed53 g ande
expansions to calculate the small-field expansion of the
fective potential and a parametric representation of the c
cal equation of state. We also mention the results~not in-
cluded in this table! of an approach based on th
approximate solution of exact renormalization equatio
te,

d

se

s

-

n

lo
n
t

te

e
ty
se,
ts

f-
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s

~see, e.g., Refs.@48,49,136#!. Some results can be found i
Ref. @136#: U2>4.29, g3

2>15.24, Q1
2d>1.61, and Uj

>1.86.
We report in Table XIV experimental results for thre

interesting physical systems exhibiting a critical point b
longing to the 3D Ising universality class: binary mixture
liquid-vapor transitions and uniaxial antiferromagnetic sy
tems. A review of experimental data can be found in R
@55#. Most of the results shown in Table XIV were reporte
in Refs.@23,122#. They should give an overview of the leve
of precision reached by experiments.

For the sake of comparison, in Table XV we report t
universal ratios of amplitudes for the two-dimensional Isi
model. The purely thermal results are taken from Ref.@105#,
where the exact two-point function has been written in ter
of the solution of a Painleve´ equation.Q1 andQ2 have been
computed by us solving numerically the differential equ
tions reported in Ref.@105#. The ratios involving amplitudes
along the critical isotherm can be obtained using the res
reported in Ref.@138#. For the quantities that are not know
exactly, we report estimates derived from the high- and lo
temperature expansions. Such estimates are quite acc
and should be reliable because the leading correction to s
ing is analytic, since the subleading exponentD is expected
to be larger than one~see, e.g., Ref.@139# and references
therein!. In particular, the available exact calculations@105#
for the square-lattice Ising model near criticality have sho
only analytic corrections to the leading power law. The
fore, the traditional methods of series analysis should w
well.
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APPENDIX A: GENERATION AND ANALYSIS OF THE
HIGH-TEMPERATURE EXPANSION FOR

IMPROVED HAMILTONIANS

1. Definitions

Before discussing the series computation, let us define
the quantities we are interested in and fix the notation.

Starting from the two-point functionG(x)[^f(0)f(x)&,
we define its spherical moments

m2 j5(
x

~x2! jG~x! ~A1!

(x[m0) and the first nonspherical moments

q4,2j5(
x

~x2! j@x42 3
5 ~x2!2#G~x! ~A2!

~wherexn[( ixi
n).
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TABLE XIV. Estimates of the quantities in Table XIII by various approaches. The experimental data are taken from Ref.@55#, unless
otherwise stated. MS denotes a magnetic system; BM a binary mixture; LV the liquid-vapor transition in a simple fluid. For values
with an asterisk, the error is not quoted explicitly in the reference.

IHT–PR HT,LT MC e exp. d53 exp. experiments

U0 0.530~3! 0.523~9! @116# 0.560~10! @40# 0.527~37! @44# 0.537~19! @44# BM 0.56~2!

0.51* @117# 0.550~12! @40# 0.524~10! @118,119# 0.540~11! @120# LV 0.50~3!

0.567~16! @40# 0.541~14! @121# MS 0.51~3!

LV @56# 0.5327
18

LV @57# 0.538~17!

U2 4.77~2! 4.95~15! @116# 4.75~3! @122# 4.73~16! @44# 4.79~10! @44# BM 4.4~4!

5.01* @102# 4.72~11! @123# 4.9* @118# 4.77~30! @121# LV 4.9~2!

4.8* @124,125# 4.72~17! @126# MS 5.1~6!

MS @73# 4.6~2!

U4 29.1~2! 29.0~3! @96# 28.6~1.5! @44# 29.1~6! @44#

Rc
1 0.0564~3! 0.0581~10! @96# 0.0569~35! @44# 0.0574~20! @44# BM 0.050~15!

0.0594~10! @121# LV 0.047~10!

R4
1 7.82~2! 7.94~12! @113# 8.24~34! @23# 7.84* @44#

R3[v3 6.041~11! 6.44~30! @113,96# 5.99~5! @86# 6.08~6! @44#

6.07~19! @44#

R4
2 93.3~5! 107~13! @96,113#

v4 16.21~11! 15.8~1.4! @86#

Q1
2d 1.662~5! 1.57~23! @127,113# 1.648~36! @44# 1.669~18! @44# BM 1.75~30!

1.67* @118,119# 1.7* @121# LV 1.69~14!

w2 4.75~4! @14# 4.77~3! @122# 4.73* @126#
4.71~5! @96,128#

Uj 1.961~7! 1.96~1! @116# 1.95~2! @122# 1.91* @124# 2.013~28! @126# BM 1.93~7!

1.96* @102# 2.06~1! @129# MS 1.92~15!

Q1 0.01880~8! 0.0202~9! @130# 0.0193~10! @40# 0.0197* @131,119# 0.01968~15! @132# LV @58# 0.0174~32!

0.01880~15! @116# LV @56# 0.023~4!

Q2 0.00471~5! 0.00477~20! @113# 0.00463~17! @40#

Qc 0.3330~10! 0.324~6! @113# 0.328~5! @122# 0.331~9! @121# BM 0.33~5!

LV 0.35~4!

g3
2 13.17~6! 13.9~4! @96# 13.6~5! @133# 13.06~12! @86#

g4
2 77.0~8! 85* @96# 108~7! @133# 75~7! @86#

Qj
1 1.000183~2! 1.0001* @113# 1.00016~2! 1.00021~3!

Qj
c 1.024~4! 1.007~3! @113#

Qj
2 1.032~4! @39# 1.031~6! @110,134#

1.037~3! @113#

Q2 1.195~10! 1.17~2! @127,113# 1.13* @124#
e
e

al
The second-moment correlation length is defined by

j2[M 225
m2

6x
. ~A3!

The coefficientsci of the low-momentum expansion of th
function g(y) introduced in Sec. VI can be related to th
critical limit of appropriate dimensionless ratios of spheric
moments, or of the corresponding weighted momentsm̄2 j
[m2 j /x. Introducing the quantities

u2 j5
1

~2 j 11!!
m̄2 jM

2 j , ~A4!
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one can define combinations ofu2 j ~that we will still call ci
to avoid introducing new symbols! having ci as a critical
limit:

c2512u41 1
20 M2, ~A5!

c35122u41u62 1
840M4, ~A6!

c45123u41u4
212u62u81 1

4725M41 1
60480M

6, ~A7!

etc. Notice that the terms proportional to powers ofM2 do
not contribute in the critical limitM→0, but they allow us to
define improved estimators@39#. Indeed, in the lattice Gauss
ian limit, defined by the two-point function

G̃~k!5
1

k̂21M2
, k̂25(

i
4 sin2~ki /2!, ~A8!

ci50 independently ofM, and not only in the critical limit
M→0.

The zero-momentum connected Green’s functions are
fined by

x2 j5 (
x2 , . . . ,x2 j

^f~0!f~x2! . . . f~x2 j 21!f~x2 j !&c ;

~A9!

in particular,x2[x.

TABLE XV. Universal ratios of amplitudes for the two
dimensional Ising model. Since the specific heat diverges loga
mically in the two-dimensional Ising model, the specific heat a
plitudesA6 are defined byCH'2A6 ln t.

g 7/4
n 1

U0[A1/A2 1
U2[C1/C2 37.69365201

Rc
1[A1C1/B2 0.31856939

Rc
2[A2C2/B2 0.00845154

Q1
2d[Rx[C1Bd21/(dCc)d 6.77828502

w2[C2/@B2( f 2)2# 0.53152607
Uj[ f 1/ f 2 3.16249504

Ujgap
[ f gap

1 / f gap
2 2

Q1[A1( f 1)2 0.15902704
Q2[A2( f 2)2 0.015900517
Qj

1[ f gap
1 / f 1 1.000402074

Qj
c[ f gap

c / f c 1.0786828
Qj

2[ f gap
2 / f 2 1.581883299

Q2[( f c/ f 1)22hC1/Cc 2.8355305

g4
1[g[2C4

1/@(C1)2( f 1)2# 14.694~2! @137,14#
r 6 3.678~2! @99#

r 8 26.0~2! @99#

r 10 275~15! @99#

v3[2C3
2B/(C2)2 33.011~6! @96,86#

v4[2C4
2B2/(C2)313v3

2 48.6~1.2! @86#
e-

2. Linked cluster expansion

We computed the high-temperature expansion by
linked cluster expansion~LCE! technique. A general intro-
duction to the LCE can be found in Ref.@140#. We modeled
the application of the LCE to O(N)-symmetric models after
Ref. @141#.

In order to perform the LCE for the most general mod
described by the Hamiltonian~1.2!, we parametrize the po
tential V(f2) in terms of the ‘‘single-site moments’’@141#

m° 2k5
G~ 1

2 N!

2kG~ 1
2 N1k!

JN2112k

JN21
,

Jk5E
0

`

dx xk exp@2V~x2!#. ~A10!

We compute our series for fixedN, leaving allm° 2k as free

parameters: each term of the series is a polynomial inm° 2k
with rational coefficients.

With the aim of computing as many terms of the series
possible, we adopted all the technical developments of R
@142#, and we introduced more improvements of our own;
this Appendix, we will only describe these; readers not
miliar with technical details of the LCE should consult Re
@141,142#.

As discussed in Ref.@142#, Sec. 3, the LCE requires
unique representation of graphs; it is convenient to imp
ment this by defining a canonical form for the inciden
matrix. The reduction to canonical form of a graph withV
vertices requires, in principle, the comparison of theV! in-
cidence matrices obtained by permutation of vertices, wh
is clearly unmanageable for large graphs; even with the
troduction of the ‘‘extended vertex ordering’’ of Ref.@142#,
this operation remains the dominant factor in the compu
tion time; therefore, we devoted a large effort to the optim
zation of this aspect of the computation. On one hand,
have perfected the extended vertex ordering, and we are
to recognize inequivalent vertices much more often. On
other hand, we search for~a subgroup of! the symmetry
group of the incidence matrix, which allows us to perfor
explicitly only one permutation for each equivalence cla
Altogether, the largest sets of vertices which are explic
permuted are of size 5 or less~except for a few hundred
diagrams requiring 6, and a handful requiring permutatio
of 7 or 8 elements!.

The next most computer-intensive operation is the co
putation of embedding numbers and color factors; it is op
mized by ‘‘remembering’’ each computed value in a tab
compatibly with available memory. This is crucial for colo
factors, which are computed recursively, and very effect
for embedding numbers.

The problem of handling integer and rational quantit
which do not fit into machine precision is solved by using t
GNU multiprecision~GMP! library. Neither multiprecision

nor polynomials inm° 2k are necessary for the most expensi
sections of the computation; therefore, they have little imp
on the computation time.

In order to speed up the handling of search and inser
into ordered sets of data, we make extensive use of A

h-
-
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trees ~height-balanced binary trees! ~cf., e.g., Ref.@143#,
Chap. 6.2.3!. AVL trees are used to manipulate graph se
multivariate polynomials, and tables of embedding numb
and of color factors.

The LCE is dramatically simplified by restricting actu
computations to the set of one-particle irreducible grap
One must, however, establish the relationship between
usual moments and susceptibilities and their irreduc
parts. For this purpose, we found it convenient to defin
generating functional of irreducible moments~irreducible
momentum-space two-point functions!:

G1pi~pW !5(
xW

exp~ ipW •xW !G1pi~xW !, ~A11!

where G1pi(xW ) is the irreducible-graph contribution to th
field-field correlation. One may then prove the relationsh

@G~pW !#215@G1pi~pW !#2122b(
i 51

d

cospi . ~A12!

By expanding both sides of Eq.~A12! in powers ofpi
2 , it is

trivial to establish all desired relationships, both for spheri
and for nonspherical moments.

We have calculatedx andm2 to 20th order, and the othe
moments of the two-point functions to 19th order. We ha
calculatedx4 to 18th order,x6 to 17th order,x8 to 16th
order, andx10 to 15th order. Using Eqs.~3.12!, ~5.23!,
~5.24!, and~5.25!, one can obtain the HT series correspon
ing to the zero-momentum four-point couplingg4 and the
quantitiesr 2 j that parametrize the effective potential.

It is useful to factorize out the leading dependence onb:

O5b r(
i 50

n

aib
i ; ~A13!

the values ofr and n are summarized in Table XVI. In the
following, we will analyze the series normalized to start w
O(b0), i.e., a01ba11••• .

We have checked our series forx2n and m2 against the
available series of the standard Ising model~see, e.g., Refs
@13,36#!; in this special case our only new result is the 18
order coefficient of the expansion ofx4:

TABLE XVI. Summary of normalization and length of our IHT
series.

O r n

x 0 20
j2 1 19
g4 2

3
2 17

r 6 0 17
r 8 0 16
r 10 0 15
c2 4 13
c3 3 13
c4 2 13
,
rs

s.
he
e
a

l

e

-

-

a18~x4!52
171450770247965944104542584

32564156625
.

~A14!

We have checked the~new! series form4 andm6 by chang-
ing variables tov5tanhb and verifying that all coefficients
become integer numbers.

It would be pointless to present here the full results for
arbitrary potential: the resulting expressions are only fit
further computer manipulation. For the three potentials

are interested in, we computedm° 2k by numerical integration
~to 32-digit precision or higher!. The coefficientsai of the
HT series forl650 and l451.1 and forl651 and l4
51.9 are reported in Tables XVII and XVIII, respectively
The series for the spin-1 model defined by Eq.~1.4!, with
D50.641, are reported in Table XIX.

3. Critical exponents

In order to determine the critical exponentg from the
nth-order series ofx (n520 in our case!, we used quasidi-
agonal first-, second-, and third-order integral approxima
~IA1’s, IA2’s, and IA3’s, respectively!.

IA1’s are solutions of the first-order linear differentia
equation

P1~x! f 8~x!1P0~x! f ~x!1R~x!50, ~A15!

where the functionsPi(x) andR(x) are polynomials that are
determined by the knownnth-order small-x expansion of
f (x). We considered@m1 /m0 /k# IA1’s with

m11m01k12>n2p,

max@ b~n2p22!/3c2q,2#<m1 ,m0 ,k< d~n2p22!/3e1q,
~A16!

where m1 ,m0 ,k are the orders of the polynomialP1 , P0,
andR, respectively. The parameterq determines the degre
of off-diagonality allowed. Since the best approximants a
expected to be those that are diagonal or quasidiagonal
considered sets of approximants corresponding toq53. For
a given integer numberp, only approximants usingn̄ terms
with n>n̄>n2p are selected by~A16!. In our analysis we
considered the valuesp50,1.

IA2’s are solutions of the second-order linear different
equation

P2~x! f 9~x!1P1~x! f 8~x!1P0~x! f ~x!1R~x!50.
~A17!

We considered@m2 /m1 /m0 /k# IA2’s with

m21m11m01k14>n2p,

max@ b~n2p24!/4c2q,2#<m2 ,m1 ,m0 ,k

< d~n2p24!/4e1q, ~A18!

where m2 ,m1 ,m0 ,k are the orders of the polynomialP2 ,
P1 , P0, and R, respectively. Again, the parameterq deter-



6168952
6035967
5890195
8662527
1774177
5489865
5166225
2125984
0024020
2695905
1669282
8738860
9134577
5375901
2084546
8373998
7389317
1028395
0179674

720
100
398
385
856
436
770
067
877
399
160
579
303
703
748
008
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TABLE XVII. IHT series for l451.1, l650, in the notation of Eq.~A13!.

i x m2 m4 m6

0 0.5308447611308816674 0 0 0
1 1.6907769625206168952 1.6907769625206168952 1.6907769625206168952 1.690776962520
2 4.8619910172171602715 10.770481113538254496 28.721282969435345322 86.16384890830
3 13.927143445449825611 48.231864289335148202 219.75546850876176116 1168.852745189
4 38.903779467013842036 188.05200645833592066 1229.8912709035843796 9662.711692897
5 108.53608309082300208 675.87104272683156690 5832.6111092485591617 61434.00094132
6 299.26769419241406575 2309.0702869335329515 24922.163253442953617 332091.0558920
7 824.59140866646260666 7605.2927810004027352 99136.392920539417813 1607441.855335
8 2256.9464691160956608 24394.253637363046531 374199.26312351789406 7181423.641015
9 6174.4168460205032479 76627.209216394784414 1356978.6661855495156 30189095.00861
10 16819.879385593690953 236799.07667260657765 4767392.0099162457155 120979394.9994
11 45803.222727034040360 721928.56294418965891 16324368.332600723787 466443860.8357
12 124363.26835432977776 2176629.7412550662641 54721422.909210908059 1742031434.215
13 337573.74963124787949 6500509.9999124014627 180180889.59217314660 6334414835.218
14 914347.51881247417342 19258195.825678901432 584286774.86828839115 22515209536.39
15 2476042.0363235919004 56653368.820414865245 1869882856.0802601457 78474598792.49
16 6694111.3933182426254 165647959.63348214176 5915646880.4853995649 268883672555.3
17 18094604.163418613844 481713425.26839816320 18526280962.623843359 907568914837.8
18 48847832.893538572297 1394159442.3995129568 57500007423.420861038 3022858145406.
19 131848611.02423050678 4017559436.5586218326 177034534120.13444060 9949496764882.
20 355511932.47075480765 11532862706.754267638

i x4 x6 x8 x10

0 20.3285640660980093563 1.0162413020868264428 26.8394260743547676540 79.348906365011205
1 24.1859963164157358115 25.898050097125655128 2286.46285381596139097 4926.0498824266722
2 230.741724996686361292 334.99400966656728040 25647.7911946128472205 136420.74020456605
3 2176.53992137927974557 3085.9534765513322166 275010.539622248383529 2448228.6617818973
4 2873.19795113342604018 22962.676420970454675 2772240.19869798230118 33066114.972427672
5 23914.7539681033628945 147391.51074600633293 26637987.3112014615524 364115447.75387624
6 216340.897140343714854 848040.97611583569625 249819302.751247368336 3432806859.5766444
7 264653.470284596876205 4484314.0227663949556 2336218289.35412445864 28624021619.321695
8 2245234.96688614286659 22168058.403461618364 22082668486.5197392127 215985650524.12674
9 2899257.84241359785957 103719954.32133484536 212019618575.926765056 1499822923734.9247
10 23206654.1029660245146 463530204.01159412237 265362330202.998798196 9707913378518.1866
11 211170819.137408319309 1992634695.4221763266 2337846725947.59204461 59157394345479.522
12 238148679.051940544866 8285182135.0991054145 21671339685352.6240713 342085313031114.78
13 2128071730.18983471414 33466763808.875455279 27957523515361.0083551 1889271366312617.3
14 2423602975.57444761466 131799942528.27775884 236629909644439.962983 10018120044594804.
15 21382909952.8269485885 507558776082.59290672 2163635571877509.11631 51230076380872446.
16 24462746050.5347000940 1915992506452.6475673 2711670345253605.66031
17 214253923929.146690502 7104558940304.9779228
18 245107295178.923296542
id

al

ap-
ard

hey
for
mines the degree of off-diagonality allowed, and we cons
ered sets of approximants corresponding toq52.

IA3’s are solutions of the third-order linear differenti
equation

P3~x! f-~x!1P2~x! f 9~x!1P1~x! f 8~x!1P0~x! f ~x!1R~x!

50. ~A19!

We considered@m3 /m2 /m1 /m0 /k# IA3’s with

m31m21m11m01k16>n2p,
- max@ b~n2p26!/5c2q,2#<m3 ,m2 ,m1 ,m0 ,k

< d~n2p26!/5e1q.

~A20!

We considered sets of approximants withq52.
Our estimate ofbc and g from each set of IA’s is the

average of the values corresponding to all nondefective
proximants listed above. The error we quote is the stand
deviation. Approximants are considered defective when t
present spurious singularities close to the real axis



5418792
7725483
7378755
3349323
6323346
5335775
8529468
4057633
0168622
0628877
4147131
8023009
9332937
8671172
2582176
0149105
2730209
6959562
3449896

664
131
508
557
042
912
580
641
221
943
746
858
540
357
775
887
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TABLE XVIII. IHT series for l451.9, l651, in the notation of Eq.~A13!.

i x m2 m4 m6

0 0.4655662671465330507 0 0 0
1 1.3005116946285418792 1.3005116946285418792 1.3005116946285418792 1.300511694628
2 3.2867727127185864813 7.2656925005834656853 19.375180001555908494 58.12554000466
3 8.2759367806706747301 28.571904795057895903 130.05174486699400177 691.5735265983
4 20.312529070243777317 97.872800052605172528 638.95885613696143199 5016.187294250
5 49.794483203882242272 309.06347996559814197 2661.2142140348739306 27994.18202892
6 120.62506581503040408 927.75225884375746610 9988.4118850888212117 132873.5780844
7 292.01512515747113432 2684.8185172507997345 34904.461272349558702 564842.7215066
8 702.16648194884216675 7566.3506306935978232 115746.99820735924226 2216511.167844
9 1687.6428772292658916 20882.094002198352809 368765.50096064887178 8184889.274850
10 4038.7968304000570954 56696.707453278695709 1138240.4288922759401 28813837.69150
11 9662.2729936573649464 151863.26982182684635 3424267.0781090006844 97595910.38306
12 23047.113364799224307 402271.59171959125975 10084793.611992545198 320214529.5055
13 54959.286082391555970 1055489.7357595885681 29174001.507844433518 1022942183.330
14 130774.53710516575464 2747201.8540323841754 83116951.940376136421 3194364390.857
15 311110.31236133784486 7100121.4902629495116 233696696.59215911285 9781470144.126
16 738903.79800753751923 18238478.826399953589 649550962.77873855718 29444730149.93
17 1754633.3818777485475 46596282.414619468624 1787187905.0885303101 87315557903.86
18 4161219.5431591307916 118476705.93261076006 4873253901.0331542961 255504682223.7
19 9867152.2571694621736 299943150.21579862108 13181855628.291951390 738841191899.2
20 23372660.203375142541 756429264.37368967452

i x4 x6 x8 x10

0 20.2477796481363361878 0.6474598784982264035 23.7217906767025756640 37.013405312193356
1 22.7685883005851708908 14.535362477178409902 2137.07512921231932765 2014.8224919025960
2 217.877560582981223820 165.70820207079800267 22380.8220701405889901 49093.219551382446
3 290.322805654272940178 1345.3663489182523069 227871.670743361006737 776123.99513244411
4 2393.02065426992610848 8820.7362245901247130 2252935.23058597306885 9238516.9347113237
5 21549.8790048885508754 49871.943864090224636 21916250.8876237147160 89671059.994338257
6 25689.6695707018226942 252682.48564411688205 212673128.761295226766 745143260.15631620
7 219795.290447377859541 1176295.0381597851008 275349625.332312049631 5475799689.5566930
8 266017.086587684140210 5118124.4639866386541 2411110139.91029709454 36408447077.502609
9 2212822.79826473961810 21072833.518843848267 22089380048.3140434305 222743859156.05535
10 2667124.90202267593913 82859426.257839273325 210003697691.834647146 1270011540667.3854
11 22042817.2956666846385 313350700.53757124062 245518090240.849158501 6816107886501.6215
12 26131769.6806946007770 1146009747.0203113140 2198194900838.32752342 34708877742973.050
13 218092493.782248051554 4071313753.6304055865 2830439274834.30354664 168778204360271.32
14 252592383.442563299219 14100289090.570869350 23363665155462.8191575 787889916506321.20
15 2150889630.61165148373 47747821664.976757633 213220617132779.560155 3546559365689180.8
16 2427911822.28715837917 158482857336.16489875 250583038860319.049950
17 21201047651.7022285867 516675010346.30966717
18 23339910306.5273359851
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Reb&bc . More precisely, we considered defective the a
proximants with spurious singularities in the rectangle

xmin<Rez<xmax, uIm zu<ymax ~A21!

wherez[b/bc . The special values ofxmin , xmax, andymax
are fixed essentially by stability criteria, and may differ
the various analysis. One should always check that, with
reasonable and rather wide range of values, the results
pend very little on the values ofxmin , xmax, andymax. The
condition ~A21! cannot be too strict, otherwise only a fe
approximants are left. In this case the analysis would be
-

a
e-

ss

robust and therefore less reliable. In the analysis of the c
cal exponents we fixedxmin50.5, xmax51.5, andymax50.5.
Sometimes we also eliminated seemingly good approxima
whose results were very far from the average of the ot
approximants~more than three standard deviations!.

As a further check of our analysis we used the fact thax
must present an antiferromagnetic singularity atbc

af52bc

with exponent 12a @37#; cf. Eq. ~4.1!. We verified the ex-
istence of a singularity atb.2bc and calculated the asso
ciated exponent. In some analyses we selected the app
mants with a pair of singularitiesbc

af and bc such thatbc

1bc
af<«bc , and extracted the estimates ofbc , g, andgaf



3016211
4504451
2417242
9782974
7175181
4665340
3768310
4869631
3630952
4117489
5048174
6542300
3112798
4136829
7644210
0866386
4402666
2717781
6457755

349
748
393
095
939
275
390
740
029
480
369
990
351
171
875
843
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TABLE XIX. IHT series for the spin-1 model atD50.641, in the notation of Eq.~A13!.

i x m2 m4 m6

0 0.5130338416658140921 0 0 0
1 1.5792223361663016211 1.5792223361663016211 1.5792223361663016211 1.579222336166
2 4.4354864269385182067 9.7223340236143130564 25.926224062971501484 77.77867218891
3 12.419491590434972647 42.346809834993589030 191.98340105778667094 1019.972539157
4 33.791261055416279831 160.98579902461367310 1043.4445460560890431 8166.356110489
5 91.841711514904201711 564.00666776024395394 4815.3070263215122748 50394.71741259
6 246.45252550898370464 1877.9601316327756011 20036.716263907461491 264816.6494431
7 661.02891687705666766 6026.3998915743002481 77637.764412960183453 1247156.197291
8 1760.2485042097784968 18829.052334178552758 285474.20654850401533 5423869.959701
9 4685.9023162918237050 57600.716340522523798 1008432.9506590528288 22201293.93974
10 12417.403239568002677 173324.21633191405061 3450900.8811683331178 86641778.65388
11 32897.780017066145091 514450.09422679607285 11508712.418722055563 325332157.4968
12 86884.987650751268743 1509919.6022647962218 37570398.804037029475 1183310452.193
13 229424.66023796502223 4389267.7826683406013 120463565.05045829114 4190401181.745
14 604434.19630362500628 12656102.176997207352 380359458.94391796446 14504931859.07
15 1592166.9939650416411 36234119.703394609364 1185138499.8785854689 49231114687.30
16 4186778.2089201191352 103100174.19850927716 3650157580.5925683557 164257098550.9
17 11008100.036706697979 291755921.33251277078 11128154630.539032580 539841179613.2
18 28904025.427069749972 821639224.91959656471 33620312241.342947618 1750686524137.
19 75884596.302083003892 2303832207.2589619187 100754983048.94595013 5610143692354.
20 199011100.35574405792 6434727599.1288912159

i x4 x6 x8 x10

0 20.2765773264173367185 0.6159505110893571460 22.9991913236448423261 25.639540414004216
1 23.4054446789491065718 15.965825500576724169 2131.09722874868945636 1673.3057480542363
2 224.570159964990933901 209.17712832988124972 22673.1181642081994199 48487.693538927944
3 2139.04496175368819963 1941.9314061871553985 236418.744278635469309 903571.05878070985
4 2676.69722203050291907 14481.161465713991310 2381670.70958440882592 12572456.840428388
5 22980.2850555040833295 92716.594093707793992 23318236.6956045245656 141625856.39478899
6 212201.170328998898251 530071.30088368454939 225054434.002489226202 1357653370.1441467
7 247288.798001661947371 2776591.5196504503986 2169364792.32951428214 11451941832.665412
8 2175521.23292975181789 13563137.626324266820 21047051748.2193837515 87035901992.179110
9 2629296.76861756838811 62579486.626554750976 26012877960.8045829709 606512902870.52199
10 22192523.1579334804197 275333754.56012219662 232454249850.587780052 3927249840355.5223
11 27458569.3308517637566 1163638939.7290930525 2166147643973.94469398 23876098793430.398
12 224861185.382016374834 4751112394.9532757501 2812614050679.29384404 137426012654323.52
13 281432521.735317351753 18826990715.719661290 23819167751639.5573175 753928052790611.90
14 2262699929.49158922336 72675832066.845002904 217330670355620.376973 3964188356224407.7
15 2836235938.80657455801 274128146369.26786810 276232334051550.698537 20070120847424617.
16 22630659142.3082426455 1012932475761.7342902 2326121067148253.92416
17 28189047799.9075180970 3674558299661.5473376
18 225252383565.446882139
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from them. As in Ref.@8#, we also considered IA’s where th
polynomial associated with the highest derivative off (x) is
even, i.e., it is a polynomial inx2. We will denote them by
baf IA’s. This ensures that ifxc is a singularity of an approx
imant, then2xc is also a singular point.

In Table XX we present the results for some values of
parametersp,q,« introduced above~when the value of« is
not explicitly shown it means that the corresponding co
straint was not implemented!. We quote the ‘‘ratio of ap-
proximants’’ Rapp ( l 2s)/t, where t is the total number of
approximants in the given set,l is the number of non-
e

-

defective approximants@passing the test~A21!#, ands is the
number of seemingly good approximants which are exclu
because their results are very far from the other appro
mants;l 2s is the number of ‘‘good’’ approximants used i
the analysis; note thats! l , and l 2s is never too small. We
found the IA2 analysis to give the most stable results, es
cially with respect to the change of the number of terms
the series considered. Therefore, we consider the IA2 res
to be the most reliable. Moreover, IA1’s are not complete
satisfactory in reproducing the antiferromagnetic singula
when its presence is not biased. In the biased analyses w
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TABLE XX. Results of various analyses of the 20th-order IHT series forx. Rapp is explained in the text. In the biased analyses forc
the value ofbc , the error is reported as a sum: the first term is related to the spread of the approximants at the central value ofbc , while
the second one is related to the uncertainty of the value ofbc and it is estimated by varyingbc .

Approx. Rapp bc g bc
af gaf

l650, l451.08 IA2q52,p50 (7822)/85 0.3760701~22! 1.23717~36! 20.376~6! 21.0~7!

IA3 q52,p50 (6221)/65 0.3760699~21! 1.23713~37! 20.377~4! 21.0~3!

bafIA3 q52,p50 (6321)/65 0.3760703~18! 1.23719~30! 20.903~10!

l650, l451.10 IA1q53,p50 30/37 0.3750945~27! 1.23684~42! 20.375~3! 20.9~3!

IA1 q53,p50,«51022 (2621)/37 0.3750955~18! 1.23699~26! 20.3760~8! 20.77~8!

IA1 q53,p50,«51023 1/37 0.3750956 1.23701 20.3754 20.81
bafIA1 q53,p50 (2422)/37 0.3750937~46! 1.23673~69! 20.887~11!

IA2 q52,p50 (7822)/85 0.3750975~18! 1.23734~29! 20.376~6! 21.0~6!

IA2 q52,p50,«51022 (6921)/85 0.3750974~21! 1.23733~35! 20.375~2! 20.9~2!

IA2 q52,p50,«51023 16/85 0.3750975~19! 1.23735~31! 20.3751~2! 20.90~4!

bafIA2 q52,p50 (5421)/85 0.3750989~31! 1.23753~46! 20.906~18!

IA2 q52,p51 (15123)/165 0.3750974~26! 1.23731~39! 20.376~4! 21.0~5!

IA2 q52,p51,«51023 25/165 0.3750975~16! 1.23735~25! 20.3751~2! 20.90~3!

IA3 q52,p50 (6221)/65 0.3750971~21! 1.23728~36! 20.375~4! 21.0~5!

IA3 q52,p50,«51023 21/65 0.3750983~12! 1.23749~19! 20.3750~2! 20.92~2!

bafIA3 q52,p50 (6321)/65 0.3750976~18! 1.23734~30! 20.902~11!

IA3 q52,p51 (9923)/100 0.3750957~55! 1.23704~98! 20.375~3! 21.0~4!

bb
c
MCIA1 q53,p50 38/48 0.3750966~4! @20# 1.23718~717!

bb
c
MCIA2 q52,p50 (11423)/115 0.3750966~4! @20# 1.23720~217!

b6b
c
MCIA2 q52,p50 (9022)/100 0.3750966~4! @20# 1.23719~317!

b6b
c
MCIA3 q52,p50 (6121)/63 0.3750966~4! @20# 1.23719~817!

l650, l451.12 IA2q52,p50 (7722)/85 0.3741203~16! 1.23748~26! 20.374~4! 21.0~6!

IA3 q52,p50 (6221)/65 0.3741199~21! 1.23742~36! 20.375~4! 21.0~3!

bafIA3 q52,p50 (6221)/65 0.3741203~17! 1.23747~29! 20.904~9!

l651, l451.86 IA2q52,p50 (8223)/85 0.4307605~22! 1.23676~30! 20.431~5! 21.1~5!

l651, l451.90 IA1q53,p50 37/37 0.4269723~81! 1.2363~11! 20.429~7! 20.7~5!

bafIA1 q53,p50 (2921)/37 0.426972~7! 1.2363~9! 20.890~16!

IA2 q52,p50 (8322)/85 0.4269779~24! 1.23711~34! 20.428~5! 21.0~5!

IA2 q52,p50,«51023 23/85 0.4269779~32! 1.23710~45! 20.4271~2! 20.90~3!

bafIA2 q52,p50 (6922)/85 0.4269791~32! 123725~48! 20.903~16!

IA2 q52,p51 (15624)/165 0.4269777~32! 1.23707~42! 20.428~5! 20.9~5!

IA2 q52,p51,«51023 31/165 0.4269777~30! 1.23708~41! 20.4271~2! 20.89~4!

IA3 q52,p50 (6321)/65 0.4269782~24! 1.23714~38! 20.429~6! 21.0~4!

bafIA3 q52,p50 (6321)/65 0.4269786~25! 1.23719~36! 20.906~10!

l651, l451.94 IA2q52,p50 (8223)/85 0.4232606~21! 1.23738~30! 20.423~6! 21.1~9!

spin-1,D50.633 IA2q52,p50 (8224)/85 0.3845065~27! 1.23683~34! 20.384~8! 21.1~1.2!
bafIA2 q52,p50 (7324)/85 0.3845076~17! 1.23698~25! 20.905~12!

spin-1,D50.641 bafIA1 q53,p50 (3023)/37 0.3856634~41! 1.2360~6! 20.887~11!

IA2 q52,p50 (7322)/85 0.3856681~33! 1.23674~38! 20.386~3! 20.9~4!

IA2 q52,p50,«51023 (3722)/85 0.3856685~17! 1.23678~23! 20.3860~3! 20.87~3!

bafIA2 q52,p50 (7324)/85 0.3856691~16! 1.23687~25! 20.905~12!

IA2 q52,p51 (14623)/165 0.3856669~53! 1.23655~69! 20.385~10! 21.2~2.0!
IA3 q52,p50 (6225)/65 0.3856686~36! 1.23678~58! 20.385~4! 21.1~5!

bafIA3 q52,p50 (6122)/65 0.3856682~38! 1.23673~60! 20.911~13!

spin-1,D50.649 IA2q52,p50 (8223)/85 0.3868365~32! 1.23660~36! 20.386~7! 21.2~1.0!
bafIA2 q52,p50 (7324)/85 0.3868377~16! 1.23676~24! 20.905~12!
t

,

bc is forced, IA1’s, IA2’s, and IA3’s give almost equivalen
results.

The results are quite stable, and the value ofgaf is always
consistent with 12a.0.89. From the results of Table XX
combining the results of the IA2 and IA3 analyses~selecting
the results denoted by IA2q52,p50 , bafIA2 q52,p50 ,
IA3 q52,p50, and bafIA3 q52,p50) we obtain the following
estimates:
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TABLE XXI. Results of the analysis of the 19th-order IHT series forj2/b. Rapp is explained in the text. The error is reported as a s
of two terms. The first term is related to the spread of the approximants at the central value ofbc , while the second one is related to th
uncertainty of the value ofbc and it is estimated by varyingbc .

Approx. Rapp n gaf

l650, l451.08 bbc
IA2 q52,p50 (5422)/70 0.63004~2111!

l650, l451.10 bbc
IA1 q53,p50 35/37 0.63012~2110!

bbc
IA2 q52,p50 51/70 0.63016~319!

b6bc
IA2 q52,p50 (5323)/55 0.63015~5110! 20.88~5!

bbc
IA3 q52,p50 28/35 0.63009~14110!

bbc
IA2 q52,p51 (8624)/132 0.63016~319!

bb
c
MCIA2 q52,p50 (4722)/55 0.63012~313!

l650, l451.12 bbc
IA2 q52,p50 (4922)/70 0.63027~319!

l651, l451.86 bbc
IA2 q51,p50 (6021)/70 0.62978~1111!

l651, l451.90 bbc
IA1 q53,p50 34/37 0.63000~2112!

bbc
IA2 q52,p50 (6122)/70 0.63003~2111!

b6bc
IA2 q52,p50 (5522)/55 0.63003~7111! 20.87~16!

bbc
IA2 q52,p51 (11324)/132 0.63003~3110!

bbc
IA3 q52,p50 (2721)/34 0.62988~17114!

l651, l451.94 bbc
IA2 q52,p50 (5522)/70 0.63023~2111!

spin-1, D50.633 bbc
IA2 q52,p50 (6721)/70 0.62998~2113!

spin-1, D50.641 bbc
IA1 q53,p50 33/37 0.62988~5115!

bbc
IA2 q52,p50 (6621)/70 0.62990~2113!

bbc
IA3 q52,p50 24/35 0.62981~12119!

spin-1, D50.649 bbc
IA2 q52,p50 (6621)/70 0.62982~2113!
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bc50.3750973~14!, g51.23732~24!

for l650, l451.10, ~A22!

bc50.4269780~18!, g51.23712~26!

for l651, l451.90, ~A23!

and

bc50.3856688~20!, g51.23680~30!

for spin-1, D50.641. ~A24!

Also also into account the uncertainty ofl4* and D* , we
arrive at the estimates of Table III. Notice that the value
bc at l451.10 andl650 is in agreement with the Mont
Carlo estimate of Ref.@20#, i.e., bc50.3750966(4)~where
according to the author the error does not include poss
systematic errors!. From the analysis of the antiferromag
netic singularity using thebafIA’s we obtain the following
estimate fora:

a50.105~10!, ~A25!

which is in good agreement with the much more prec
estimate~4.5! obtained assuming hyperscaling.

In order to determinen from the analysis of the HT serie
of j2, we followed the suggestion of Ref.@38#, i.e., to use the
estimate ofbc derived from the analysis ofx in order to bias
the analysis of the series ofj2. We analyzed the 19th-orde
f

le

e

series ofj2/b and employed biased integral approximan
(bbc

IA). For instance, biased IA2’s can be obtained from t
solutions of the equation

~12x/bc!P2~x! f 9~x!1P1~x! f 8~x!1P0~x! f ~x!1R~x!50.
~A26!

In this case we considered the approximants satisfying
conditions

m21m11m01k13>n2p,

max@ b~n2p23!/4c2q,2#<m2 ,m1 ,m0 ,k

< d~n2p23!/4e1q,

~A27!

where, as before,mi andk are the orders of the polynomial
Pi and R, respectively. We also tried doubly biased IA
(b6bc

IA2! where also a singularity at2bc is forced using
solutions of the equation

~12x2/bc
2!P2~x! f 9~x!1P1~x! f 8~x!1P0~x! f ~x!1R~x!

50. ~A28!

In Table XXI we report the results of some of the ana
ses we performed. In the case of theb6bc

IA2 analysis we
also report the exponent at the antiferromagnetic singula
which turned out to be always consistent with 12a. The
error of n is given as a sum of two terms: the first one
computed from the spread of the approximants atbc , the
second one is related to the uncertainty ofbc .
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TABLE XXII. Results for h obtained using the CPRM:~a! applied toj2 andx ~20 orders!; ~b! applied
to j2/b andx ~19 orders!. Rapp is explained in the text.

Approx. Rapp hn

l650, l451.08 ~a! bIA2 q52,p50 (9521)/115 0.02274~13!

~b! bIA2 q52,p50 38/70 0.02294~8!

l650, l451.10 ~a! bIA2 q52,p50 95/115 0.02280~14!

~a! bIA2 q52,p51 (15021)/185 0.02280~16!

~a! bIA3 q52,p50 (4721)/61 0.02280~37!

~b! bIA1 q53,p50 28/37 0.02300~8!

~b! bIA2 q52,p50 36/70 0.02301~8!

~b! bIA2 q52,p51 86/132 0.02309~12!

~b! bIA3 q52,p50 31/34 0.02311~22!

l650, l451.12 ~a! bIA2 q52,p50 97/115 0.02285~15!

~b! bIA2 q52,p50 35/70 0.02308~9!

l651, l451.86 ~a! bIA2 q52,p50 (9425)/115 0.02267~12!

~b! bIA2 q52,p50 39/70 0.02285~12!

l651, l451.90 ~a! bIA2 q52,p50 (9022)/115 0.02278~12!

~b! bIA2 q52,p50 37/70 0.02298~11!

l651, l451.94 ~a! bIA2 q52,p50 (9222)/115 0.02288~13!

~b! bIA2 q52,p50 32/70 0.02312~10!

spin-1,D50.633 ~a! bIA2 q52,p50 (8421)/115 0.02292~40!

~b! bIA2 q52,p50 36/70 0.02316~22!

spin-1,D50.641 ~a! bIA2 q52,p50 (8522)/115 0.02288~40!

~b! bIA2 q52,p50 37/70 0.02312~22!

spin-1,D50.649 ~a! bIA2 q52,p50 (8421)/115 0.02285~43!

~b! bIA2 q52,p50 37/70 0.02307~22!
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We quote as our final estimates:

n50.63015~12! for l650, l451.10, ~A29!

n50.63003~13! for l651, l451.90, ~A30!

and

n50.62990~15! for spin-1, D50.641. ~A31!

Also taking into account the uncertainty ofl4* andD* , we
arrive at the estimates of Table III. We mention that unbia
IA analyses of the 19th series ofj2/b give consistent but
less precise estimates ofbc @cf. Eqs.~A22! and ~A23!# and
n.

As a check of our results, we performed a biased anal
of x and j2 at l650 and l451.10, using the valuebc
50.3750966(4) obtained in Ref.@20# by Monte Carlo simu-
lations based on finite-size scaling techniques. Although
author of Ref.@20# says that the error onbc does not include
systematic errors, we used it as a check and found~see
Tables XX and XXI! g51.23720(217) andn50.63012(3
13) ~the first error is related to the spread of the appro
mants atbc50.3750966 and the second one to the error
bc), which are perfectly consistent with our final estimat
reported in Table III.

In order to obtain an estimate ofh without using the
scaling relationg5(22h)n, we employed the so-calle
critical-point renormalization method~CPRM!. The idea of
the CPRM is that from two seriesD(x) andE(x) which are
singular at the same pointx0 , D(x)5( idix

i;(x02x)2d
d

is

e

-
n
s

and E(x)5( ieix
i;(x02x)2e, one constructs a new serie

F(x)5( i(di /ei)x
i . The functionF(x) is singular atx51

and forx→1 behaves asF(x);(12x)2f, wheref511d
2e. Therefore, the analysis ofF(x) provides an unbiased
estimate of the difference between the critical exponents
the two functionsD(x) and E(x). The seriesF(x) may be
analyzed by employing biased approximants with a singu
ity at xc51. In order to check for possible systematic erro
we applied the CPRM to the series ofj2/b andx ~analyzing
the corresponding 19th-order series! and to the series ofj2

and x ~analyzing the corresponding 20th-order series!. We
used IA’s biased atxc51. In Table XXII we present the
results of the analysis for some values of the parametersq,p.
We obtain hn50.02294(20) atl650 and l451.1, hn
50.02287(20) at l651 and l451.9, and hn
50.02305(20) for spin-1 andD50.641. Taking again into
account the uncertainty ofl4* and D* we then obtain the
estimate reported in Table III.

The CPRM was also employed in order to estimate
exponents. It was applied to the 18th-order series ofxj2/b
and q4,0/b. The results are displayed in Table XXIII. W
find sn50.0134(8) for l650 and l451.1, sn
50.0134(9) forl651 andl451.9, andsn50.0127(6) for
spin-1 atD50.641.

4. Ratios of amplitudes

In the following we describe the analysis we employed
order to evaluate universal ratios of amplitudes, such asg4 ,
r 2 j , andci , from the corresponding HT series. In the case
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TABLE XXIII. Results for s obtained using the CPRM applied tom2 /b andq4,0/b ~18 orders!. Here we
usedxmin50.9, xmax51.1, xmax50.1. Rapp is explained in the text.

Approx. Rapp sn

l650, l451.08 bIA2 q51,p50 29/34 0.0134~8!

l650, l451.10 bIA2 q51,p50 29/34 0.0134~8!

bIA2 q52,p50 53/62 0.0133~10!

l650, l451.12 bIA2 q51,p50 28/34 0.0135~9!

l651, l451.86 bIA2 q51,p50 29/34 0.0133~9!

l651, l451.90 bIA2 q51,p50 29/34 0.0134~9!

bIA2 q52,p50 52/62 0.0132~12!

l651, l451.94 bIA2 q51,p50 28/34 0.0135~9!

spin-1,D50.633 bIA2 q51,p50 21/34 0.0127~5!

spin-1,D50.641 bIA2 q51,p50 21/34 0.0127~5!

bIA2 q52,p50 37/62 0.0128~6!

spin-1,D50.649 bIA2 q51,p50 21/34 0.0126~5!
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g, c2 , c3, andc4 we analyzed the seriesb3/2g45( i 50
17 aib

i ,
b24c25( i 50

13 aib
i , b23c35( i 50

13 aib
i , and b22c4

5( i 50
13 aib

i . In order to obtain estimates of the univers
critical limit of g4 , r 2 j , andci , we evaluated the approxi
mants of the corresponding HT series atbc ~as determined
from the analysis of the magnetic susceptibility!, and multi-
plied by the appropriate power ofbc .

For an nth-order series we considered three sets of
proximants: Pade´ approximants~PA’s!, Dlog-Pade´ approxi-
mants ~DPA’s!, and first-order integral approximan
~IA1’s!.

~1! @ l /m# PA’s with

l 1m>n22, ~A32!

max@n/22q,4#< l , m<n/21q, ~A33!

wherel ,m are the orders of the polynomials, respectively,
the numerator and denominator of the PA. The parametq
determines the degree of off-diagonality allowed. The b
approximants should be those that are diagonal or qua
agonal. So we considered PA’s selected usingq53. Our
final estimate from the PA’s is the average of the values
bc of the nondefective approximants using all the availa
terms of the series and satisfying the condition~A33! with
q52. The error we quote is the standard deviation of
results from all the nondefective approximants listed abo
We considered defective PA’s with spurious singularities
the rectangle defined in Eq.~A21! with xmin50.9 (xmin50
only in the case ofr 10), xmax51.01, andymax50.1.

~2! @ l /m# DPA’s with

l 1m>n22,
~A34!

max@~n21!/22q,4#< l , m<~n21!/21q,

wherel ,m are the orders of the polynomials, respectively,
the numerator and denominator of the PA of the series o
logarithmic derivative. We again fixedq53. The estimate
with the corresponding error is obtained as in the case
l

-
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PA’s. We considered defective DPA’s with spurious sing
larities in the rectangle withxmin50, xmax51.01 andymax

50.1; cf. Eq.~A21!.
~3! @m1 /m0 /k# IA1’s given by Eq. ~A16!. The off-

diagonality parameter was fixed to beq53, andp51. Our
final estimate is the average of the values atbc of all non-
defective approximants listed above. The error we quote
the standard deviation of the results. We considered de
tive IA1’s with spurious singularities in the rectangle an
xmin50, xmax51.001, andymax50.1.

As in the case of the critical exponents, sometimes
also eliminated seemingly good approximants whose res
were very far from the average of the other approximants
order to arrive at a final estimate, the results from PA
DPA’s, and IA’s were then combined, also taking into a
count the relative number of nondefective approximants~be-
fore combining the results we divided the apparent error
each set of approximants by the square root of the ratio
tween the number of nondefective and the total numbe
approximants!. Of course, all of the above procedure used
arrive at a final estimate is rather subjective. But we belie
it provides reasonable estimates of the quantity at hand
of its uncertainty. We report in Table XXIV the results o
each set of approximants so that the readers can judge
reliability of our final estimates. The second error in t
combined estimate is related to the uncertainty of the va
of l4* and D* ; it is estimated by varyingl4 in the range
1.08–1.12 forl650, 1.86–1.94 forl651, and D in the
range 0.633–0.649 for the spin-1 model. Errors due to
uncertainty ofbc are negligible.

We have also performed analyses of the series ofg4 for
l650 and several values ofl4 by employing the Roskies
transform@11#. The idea of the Roskies transform~RT! is to
perform biased analyses that take into account the lea
confluent singularity. For the Ising model, whereD.1/2,
one replaces the variableb in the original expansion with a
new variablez, defined by 12z5(12b/bc)

1/2. If the origi-
nal series has square-root scaling correction terms, the tr
formed series has analytic correction terms, which can
handled by standard PA’s or DPA’s. Note that in princip
IA1’s should be able to detect the first nonanalytic correct
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TABLE XXIV. Results of PA, DPA, and IA1 analyses of the series forg4 , r 2 j , andci . When results are not reported, it means that
that quantity no acceptable results were obtained from that class of approximants. The fraction subscript is the number of non
approximants over the total number of approximants. The last column contains the estimates obtained by combining the three
approximants.

PA DPA IA1 Combined

g4* l650, l451.10 23.500~60!17/21 23.491~25!16/18 23.504~18!49/73 23.499~16120!

l651, l451.90 23.487~45!17/21 23.474~46!17/18 23.498~24!57/73 23.491~21140!

spin-1,D50.641 23.486~19!20/21 23.492~88!17/18 23.491~52!53/73 23.487~18120!

r 6 l650, l451.10 2.051~13!19/21 2.058~12!11/18 2.048~7!32/73 2.051~712!

l651, l451.90 2.052~12!18/21 2.063~14!11/18 2.048~4!33/73 2.050~514!

spin-1,D50.641 2.0493~65!20/21 2.0461~24!16/18 2.0456~16!23/73 2.046~213!

r 8 l650, l451.10 2.24~9!17/18 2.21~13!17/21 2.23~5!37/69 2.23~514!

l651, l451.90 2.23~11!18/18 2.23~9!17/21 2.23~5!36/69 2.23~516!

spin-1,D50.641 2.40~8!16/18 2.31~5!17/21 2.42~13!26/69 2.34~513!

r 10 l650, l451.10 214~5!15/21 213.3~1.3!6/61 214~410!

l651, l451.90 214~5!14/21 212~4!10/61 213~510!

spin-1,D50.641 210~21!13/21 4~36!14/61 28~2510!

104c2 l650, l451.10 23.582~8!15/15 23.580~29!12/12 23.586~24!24/33 23.582~716!

l651, l451.90 23.574~7!14/15 23.574~26!12/12 23.585~38!24/33 23.574~7120!

spin-1,D50.641 23.570~12!15/15 23.562~36!11/12 23.554~28!25/33 23.568~1114!

104c3 l650, l451.10 0.087~8!12/15 0.080~10!3/12 0.084~7!26/36 0.085~610!

l651, l451.90 0.086~5!11/15 0.078~12!2/12 0.086~5!26/36 0.086~410!

spin-1,D50.641 0.095~14!14/15 0.100~12!2/12 0.090~4!30/36 0.090~410!

TABLE XXV. Details of the analysis of the 17th-order series forb23/2g4(b) with and without the use of the RT for some values ofl4

and l650. In the PA, DPA, and IA analyses with RT we usedq52 ~other approximants turned out to be much less stable!. We fixed
xmin50, xmax51.1, andymax50.25 for PA and DPA, andxmin50, xmax51.01, andymax50.25 for IA. In order to perform a homogeneou
comparison, we used the same procedure for the direct analysis without RT~except that we usedxmax51.01 andymax50.1). The fraction
subscript is the number of nondefective approximants over the total number of approximants.

l4 PA DPA IA Combined

0.5 direct 22.62~58!10/15 22.43~16!9/12 22.55~19!19/37 22.48~15!

RT 23.75~27!8/15 23.48~25!8/12 23.29~50!15/37 23.56~23!

0.7 direct 23.04~28!10/15 22.92~14!9/12 22.95~13!15/37 22.94~12!

RT 23.62~31!13/15 23.54~26!9/12 23.35~35!17/37 23.54~20!

1.0 direct 23.58~23!9/15 23.40~6!8/12 23.38~19!15/37 23.41~7!

RT 23.56~27!13/15 23.57~15!9/12 23.45~21!14/37 23.55~14!

1.1 direct 23.500~64!12/15 23.491~23!11/12 23.494~16!17/37 23.493~16!

RT 23.56~22!13/15 23.59~16!9/12 23.44~17!14/37 23.55~13!

1.2 direct 23.63~4!10/15 23.613~9!11/12 23.612~9!20/37 23.613~8!

RT 23.56~20!13/15 23.54~34!11/12 23.43~16!12/37 23.52~15!

1.5 direct 23.93~4!14/15 23.92~6!7/12 23.93~4!

RT 23.55~27!12/15 23.53~31!11/12 23.41~13!11/37 23.48~16!

2.0 direct 24.14~28!15/15 24.07~17!3/12 24.15~9!31/37 24.15~9!

RT 23.61~22!12/15 23.52~18!10/12 23.44~12!17/37 23.50~12!

3.0 direct 24.42~14!15/15 24.14~39!6/12 24.40~19!15/37 24.40~12!

RT 23.61~23!14/15 23.47~14!11/12 23.34~18!16/37 23.48~11!

` direct 24.78~10!15/15 24.57~19!10/12 24.81~16!9/37 24.75~9!

RT 23.59~20!13/15 23.47~11!10/12 23.48~16!13/37 23.50~10!
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to scaling, but they probably need many more terms of
series, and practically need to be explicitly biased as in
case of PA’s and DPA’s. Indeed the IA1 results without t
RT turn out to be substantially equivalent to those obtain
using PA’s and DPA’s. In Table XXV we report the detai
of the analysis without and with the RT for some values
l4 andl650. These results are plotted in Fig. 1.

APPENDIX B: UNIVERSAL RATIOS OF AMPLITUDES

1. Notations

Universal ratios of amplitudes characterize the behav
in the critical domain of thermodynamical quantities that
not depend on the normalizations of the external~e.g., mag-
netic! field, order parameter~e.g., magnetization!, and tem-
perature. Amplitude ratios of zero-momentum quantities
be derived from the critical equation of state. We consi
several amplitudes derived from the singular behavior of
specific heat,

CH5A6utu2a, ~B1!

the magnetic susceptibility,

x5C6utu2g, ~B2!

the spontaneous magnetization on the coexistence curve

M5Butu2b, ~B3!

the zero-momentum connectedn-point correlation functions,

xn5Cn
6utu2g2(n22)bd. ~B4!

We complete our list of amplitudes by considering t
second-moment correlation length

j5 f 6utu2n, ~B5!

and the true~on-shell! correlation length, describing th
large-distance behavior of the two-point function,

jgap5 f gap
6 utu2n. ~B6!

One can also define amplitudes along the critical isothe
e.g.,

x5CcuHu2g/bd, ~B7!

j5 f cuHu2n/bd, ~B8!

jgap5 f gap
c uHu2n/bd. ~B9!

2. Universal ratios of amplitudes from the parametric
representation

In the following we report the expressions of the univer
ratios of amplitudes in terms of the parametric representa
~7.5! of the critical equation of state.

The singular part of the free energy per unit volume c
be written as

F5h0m0R22ag~u!, ~B10!
e
e

d

f

r

n
r
e

,

l
n

n

whereg(u) is the solution of the first-order differential equa
tion

~12u2!g8~u!12~22a!ug~u!5~12u212bu2!h~u!
~B11!

that is regular atu51. One may also write

x215
h0

m0
Rgg2~u!, g2~u!5

2bduh~u!1~12u2!h8~u!

~12u212bu2!
,

~B12!

x35
m0

h0
2 R22g2bg3~u!,

g3~u!52
~12u2!g28~u!12gug2~u!

g2~u!3~12u212bu2!
, ~B13!

x45
m0

h0
3 R23g22bg4~u!,

g4~u!5
~12u2!g38~u!22~2g1b!ug3~u!

g2~u!~12u212bu2!
. ~B14!

Using the above formulas one can then calculate the uni
sal ratios of amplitudes:

U0[
A1

A2 5~u0
221!22a

g~0!

g~u0!
, ~B15!

U2[
C1

C2 5~u0
221!2g

g2~0!

g2~u0!
, ~B16!

u4[
C4

1

C4
2 5~u0

221!23g22b
g4~0!

g4~u0!
, ~B17!

Rc
1[

aA1C1

B2 52a~12a!~22a!~u0
221!2bu0

22g~0!,

~B18!

Rc
2[

aA2C2

B2 5
Rc

1

U0U2
, ~B19!

v3[R3[2
C3

2B

~C2!2 52u0g2~u0!2g3~u0!, ~B20!

v4[2
C4

2B2

~C2!3 13v3
25u0

2g2~u0!3@3g2~u0!g3~u0!2

2g4~u0!#, ~B21!

R4
1[2

C4
1B2

~C1!3 5uz0u2, ~B22!

Q1
2d[Rx[

C1Bd21

~dCc!d
5~u0

221!2gu0
d21h~1!, ~B23!
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F0
`[ lim

z→`

z2dF~z!5r12dh~1!. ~B24!

Using Eq.~7.7! one can computeF(z) and obtain the small-
z expansion coefficients of the effective potentialr 2 j in
terms of the critical exponents and the coefficientsh2l 11 of
the expansion ofh(u).

APPENDIX C: APPROXIMATION SCHEME FOR THE
PARAMETRIC REPRESENTATION OF THE EQUATION

OF STATE BASED ON STATIONARITY

The parametric form of the critical equation of state, d
scribed by Eqs.~7.5!, ~7.6!, and~7.7!, shows a formal depen
dence on the auxiliary parameterr.

However all physically relevant amplitude ratios are ind
pendent ofr, because they may be expressed in terms of
invariant functionF(z) and its derivatives, evaluated at su
special values ofz as z50, z5` and z5z0, whereF(z0)
50. Notice that, despite the apparent dependence gene
by the relationz0[z„r,u0(r)…, from the definition it follows
that z0 must necessarily be independent ofr.

We can exploit these facts to set up an approximat
procedure in which the functionh(r,u), entering the scaling
equation of state, is truncated to some simpler~polynomial!
function h(t)(r,u) and the value ofr is properly fixed to
optimize the approximation.

We found that, at any given order in the truncation, it
possible and convenient to chooser in such a way that all
the ~truncated! universal amplitude ratios are simultaneous
stationary against infinitesimal variations ofr itself.

Starting fromh(t)(r,u) we may reconstruct the function

F̃ (t)~r,u!5
rh(t)~r,u!

~12u2!b1g
. ~C1!

In order that all truncated amplitudes be simultaneously
tionary in r, it is necessary that the functionF (t)(r,z)
[F̃ (t)

„r,u(r,z)… be stationary with respect to variations ofr
for any value ofz.

We shall prove that for any polynomial truncatio
h(t)(r,u) it is possible to find a valuer t , independent ofz,
such that

]F (t)~r,z!

]r U
r5r t

50, ~C2!

a property which we shall term ‘‘global stationarity.’’
In order to prove our statement, let us rephrase the ab

condition into the form

]F̃ (t)~r,u!

]r
1

]F̃ (t)~r,u!

]u

]u

]r
50, ~C3!

where the implicit function theorem allows us to write

]u

]r
52

]z/]r

]z/]u
. ~C4!

The definitions~7.6! and ~7.7! imply
-

-
e

ted

n

a-

ve

]z

]r
5

z

r
,

]z

]u
5zS 1

u
1

2bu

12u2D . ~C5!

Moreover, it is trivial to show that

]F̃ (t)~r,u!

]r
5F̃ (t)~r,u!S 1

r
1

1

h(t)~r,u!

]h(t)~r,u!

]r D ,

~C6!

]F̃ (t)~r,u!

]u
5F̃ (t)~r,u!S 2~b1g!u

12u2 1
1

h(t)~r,u!

]h(t)~r,u!

]u D .

~C7!

Substitution of these expressions into Eq.~C3! leads to the
following form of the global stationarity condition:

@12~112g!u2#h(t)~r,u!1@11~2b21!u2#r
]h(t)~r,u!

]r

2@12u2#u
]h(t)~r,u!

]u
50. ~C8!

Let us now write downh(t)(r,u) as a power series in the od
powers ofu:

h(t)~r,u!5u1 (
n51

t21

h2n11~r!u2n11. ~C9!

The series-expanded stationarity condition then takes
form

(
n51

t21 H Fr ]

]r
22nGh2n11~r!1F ~2b21!r

]

]r

22g12n22Gh2n21~r!J u2n1150, ~C10!

with the conventionh151.
Let us now note that in the absence of truncations

above equation must be identically true, since the origi
function F(z) is totally independent ofr. This fact implies
that the coefficients of the above power-series expans
must vanish individually, and this gives us an infinite set
recursive differential equations for the functionsh2n11(r),
which must be automatically satisfied when the coefficie
h2n11(r) are properly defined.

A truncation corresponds to arbitrarily suppressing all c
efficients starting fromh2t11(r). Hence, the global station
arity condition simply amounts to requiring

H F ~2b21!r
]

]r
22g12t22Gh2t21~r!J u2t1150,

~C11!

because all other terms vanish. The resulting equation ca
solved by choosingr t such that the term in curly bracket
vanishes, independent ofu. This concludes our proof.

The effectiveness of this scheme is beautifully illustrat
by its lowest-order implementation, corresponding to the
called ‘‘linear parametric model,’’ in the context of the thre
dimensional Ising model.
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Let us truncate the exact scaling functionh(r,u) to its
cubic approximation

h(2)~r,u!5u1h3~r!u3, ~C12!

whereh3(r) is taken from Eq.~7.13!. Substitutingh3 into
the stationarity condition~C11! for t52, we find

1

3
~2b2g!r222g~12g!50, ~C13!

which leads to

r25A6g~g21!

g22b
. ~C14!

The truncated scaling function vanishes at the valueu0:

u0
2[2

1

h3~r2!
5

g22b

g~122b!
. ~C15!

In this approximation the scaling equation of state tu
out to be expressible simply in terms of the critical exp
nentsb and g. As a consequence, all the universal rat
may then be approximated to lowest order by appropr
algebraic combinations of the critical exponents.

The above results reproduce the old formulas
Schofield, Lister, and Ho@25#, who obtained expressions fo
critical amplitudes in terms of critical exponents from
minimum condition imposed on the predictions extrac
from a parametric scaling equation of state.

In the case of the linear parametric model, the global
ture of the stationarity property introduced by the above
thors was shown by Wallace and Zia@27#, who adopted a
slightly different, but essentially equivalent, formulation
the above model.

As we showed above, global stationarity can be impo
on parametric models regardless of the linearity constra
The next truncation, corresponding tot53, can also be
treated analytically. Our starting point will be

h(3)~r,u!5u1h3~r!u31h5~r!u5. ~C16!

The coefficientsh(3)(r) and h(5)(r) are reported in Eqs
~7.13! and ~7.14!. By applying the stationarity condition
~C11! to h5(r), we obtain

r35A~g22b!~12g12b!

12~4b2g!F5

3S 12A12
72~22g!g~g21!~4b2g!F5

~g22b!2~12g12b!2 D 1/2

.

~C17!

The truncated scaling function vanishes whenu takes the
valueu0, which is now given by the relation

u0
25

h3~r3!

2h5~r3!SA12
4h5~r3!

h3
2~r3!

21D . ~C18!

A general feature of truncated parametric models is
possibility of making a prediction about higher-order coe
s
-

te

y

d

-
-

d
t.

e

cientsF2n11, for n>t, in terms of lower-order coefficients
This is a natural consequence of having included by the
rametrization some information on the asymptotic behav
of F(z) for largez. In practice, we observe that eachF2n11
appears first in the coefficienth2n11, in the form of a free
constant of integration in the solution of the recursive diffe
ential equation relatingh2n11 to h2n21. Since a truncation
corresponds to settingh2n1150 starting fromn5t, this fixes
the ~truncated! value of allF2n11 starting fromF2t11.

As an important consequence of this mechanism, we
serve that truncated models deviate from the exact solu
only in proportion to the difference between exact and p
dicted coefficients, and this difference may be quite sm
even for very low-order truncations.

In order to turn the above considerations into quantitat
estimates, we need to gain further insight into the proper
of the functionsh2n11(r), especially in the vicinity of the
stationary pointr t . To this end we introduce the expansio

h2n11~r!5 (
m50

n

cn,mr2mF2m11 . ~C19!

Substituting this expansion as an ansatz into the recur
differential equations, we check thatF2m11 act as free pa-
rameters~integration constants!, while the coefficientscn,m
must obey the following algebraic recursive equations:

~n2m!cn,m5@~2b21!m2g1n21#cn21,m ~C20!

for all n.m, subject to the initial conditionscm,m51. It is
possible to find a closed-form solution to Eq.~C20!,

cn,m5
1

~n2m!! )k51

n2m

~2bm2g1k21!, ~C21!

but for our purposes the recursive equations will sometim
be more useful than their explicit solutions.

Let us define the coefficients of thez expansion of the
truncated scaling function evaluated at the stationary poi

F (t)~r t ,z!5z1 1
6 z31 (

m52
F2m11

(t) z2m11. ~C22!

By definition, F2m11
(t) coincides with its exact valueF2m11

for all m,t, while for m>t it is determined by the condition
h2m11(r t)50, which, according to Eq.~C19!, implies

(
m50

n

cn,mr t
2mF2m11

(t) 50 ~C23!

for all n>t.
We can now prove the following lemma:

(
m51

n

mcn,mr t
2mF2m11

(t) 50 ~C24!

holds for alln>t.
The proof is by induction. Let us assume the lemma

hold for a given valuen; then, as a consequence of Eq
~C24! and ~C23!, we obtain
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(
m50

n

@~2b21!m2g1n#cn,mr t
2mF2m11

(t) 50. ~C25!

Notice that the above equation also holds for the initial va
n5t21, since in that case it coincides with the global s
tionarity condition.

By use of the recursion equations~C20! we now obtain

(
m50

n

~n112m!cn11,mr t
2mF2m11

(t) 50. ~C26!

Because of the factor (n112m), the sum can trivially be
extended up ton11, hence

~n11! (
m50

n11

cn11,mr t
2mF2m11

(t) 5 (
m51

n11

mcn11,mr t
2mF2m11

(t) .

~C27!

The lhs vanishes by definition@cf. Eq. ~C23!#, hence the rhs
vanishes and the proof is completed.

The above lemma is instrumental in evaluating the diff
ence between the predictions originated by two subseq
truncations. By applying once more the definition ofF2m11

(t) ,
one can easily show that

(
m50

n

cn,m@r t11
2m ~F2m11

(t11) 2F2m11
(t) !1~r t11

2m 2r t
2m!F2m11

(t) #50

~C28!

for all n.t. Let us now expand the equation to first order
the differencer t11

2 2r t
2 , and make explicit use of the lemm

to obtain

(
m5t

n

cn,mr t
2m~F2m11

(t11) 2F2m11
(t) !>0 ~C29!

for all n.t. It is crucial thatF2m11
(t11) 2F2m11

(t) 50 for all m
,t.

The equation we obtained allows us to express~within the
approximation! all differencesF2m11

(t11) 2F2m11
(t) in terms of

the single quantity

dFt[F2t112F2t11
(t) . ~C30!

Knowledge of thecn,m and some ingenuity lead to the e
plicit solution of Eq.~C29!:

F2m11
(t11) 2F2m11

(t) >dt,m

dFt

r t
2(m2t)

, ~C31!

where, for allm.t,

dt,m5
~21!m2t

~m2t !!
~2bt2g! )

k51

m2t21

~2bm2g2k!,

~C32!

and obviouslydt,t51.
As a corollary to this result, by comparing Eq.~C29!

when t51 to Eq. ~C24! when t52, we may write down a
closed-form expression for allF2m11

(2) coefficients (m>1):
e
-

-
nt

F2m11
(2) 5

1

6m

d1,m

r2
2(m21)

, ~C33!

which completes our analysis of the linear parametric mod
One may also show thatdFt is related to the variation o

r t by the ~linearized! relation

dFt>
122b

2bt2gS (
m50

t

m2ct,mr t
2(m2t21)F2m11D ~r t11

2 2r t
2!.

~C34!

Our numerical estimates, presented in Table XII, show t
r t11

2 2r t
2 is indeed small (&0.01).

In order to evaluate amplitude ratios, as shown in App
dix B, we must also reconstruct the functionsg(u) and
g2(u), by solving Eqs.~B11! and~B12!, respectively. These
functions may be expanded in even powers ofu, with coef-
ficients that are functions ofr satisfying the same differentia
equations ash2n11, Eqs.~C10!. One may show that, for any
given truncationh(t)(r,u) and arbitrary values ofr,

g(t)~r,u!5 (
n50

` S (
m50

n

cnmr2m
F2m11

(t)

2m12D u2n12

1A~12u2!2b1g, ~C35!

whereA is an integration constant reflecting the arbitrarine
in the zero-field value of the free energy. One may also sh
that for n>t

(
m50

n

cnmr2m
F2m11

(t)

2m12
;

~21!n

~n11!! )
k50

n

~2b1g2k!,

~C36!

where the terms on the rhs are the coefficients of the Ta
expansion for (12u2)2b1g. As a consequence the constantA
may always be chosen such thatg(t)(r,u) is truncated to
O(u2t) for any arbitrary choice ofr.

In turn, one may also prove that, for anyh(t)(r,u),

g2
(t)~r,u!5 (

n50

` F (
m50

n

cnmr2m~2m11!F2m11
(t) Gu2n.

~C37!

Now, according to Eqs.~C23! and ~C24!, when we choose
for r the globally stationary valuer t , the coefficients in
square brackets vanish for alln>t. As a consequence, fo
any t the valuer t insures the truncation ofg2

(t)(r t ,u) to
O(u2t22). Thus a unique feature ofr t is the simultaneous
and consistent truncation ofh(u) andg2(u).

Notice that we might start by imposing a global statio
arity condition directly on a truncatedg2(r,u), obtaining a
different stationary value forr, and make use of Eq.~B12! in
order to reconstruct the correspondingh(u). However, in
this case, sinceh(u) must be an odd function ofu, there is
no arbitrary integration constant~which is physically a trivial
consequence of the definition of a reduced temperature! and
thereforeh(u) cannot be truncated. The resulting paramet
model is mathematically consistent, but in practice unapp
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ing, because the calculation ofu0 from the equationh(u0)
50 and the evaluation of universal amplitude ratios becom
quite cumbersome.

The above described formalism can be usefully emplo
in the context of thee expansion of the critical equation o
state. Comparison withe expansion results will also she
further light on the meaning and relevance of the res
derived by the prescription of global stationarity.

Our starting point will be the result of Wallace and Z
@27#, who showed that, when appropriate conditions are
posed on the zeroth-order approximation, the parame
form of the critical equation of state is automatically tru
cated in the powers ofu2 when expanded in the paramet
e542d. For easier comparison, note that the parameteb
introduced by Schofield@24# and used by Wallace and Zia
the same as ouru0, and the variable change fromu0 to r
poses no conceptual problem.

In our reformulation, one may state that, within thee
expansion, it is possible to choose to lowest order a valuer0
in such a way that, expanding the parametric equation
state inu ande, one finds, for alln>2,

h2n11~r0!5O~en11!, ~C38!

and this property should survive the replacementr0→r0
1O(e).

As a first application of our formalism, we can verify th
consistency of the above statements by checking that, fo
n>2, the condition

(
m50

n

cn,mr0
2mF2m115O~en11! ~C39!

implies

(
m51

n

mcn,mr0
2mF2m115O~en!. ~C40!

The proof is by induction. Assuming the property to hold f
a given n, and exploiting the fact that 2b215O(e), we
obtain

(
m50

n

@~2b21!m2g1n#cn,mr0
2mF2m115O~en11!.

~C41!

The initial condition, corresponding to the casen51, has the
explicit form

g~g21!1
1

6
~2b2g!r0

25O~e2!, ~C42!

and is a definition ofr0. Notice thatr05 lime→0r2, and in
the Ising modelr0

252.
By applying the recursion equations we then obtain

(
m50

n

~n112m!cn11,mr0
2mF2m115O~en11!. ~C43!

The sum can trivially be extended ton11 and, recalling the
hypothesis, we obtain
s

d

s

-
ic

of

all

(
m51

n11

mcn11,mr0
2mF2m115O~en11!, ~C44!

thus completing the proof. Along the same lines it is straig
forward to prove that, for alln>2,

(
m51

n

mkcn,mr0
2mF2m115O~en2k11! ~C45!

for all integersk<n. The initial condition (n5k) is trivially
satisfied for alln>2:

(
m51

n

mncn,mr0
2mF2m115O~e!. ~C46!

As a consequence, the more general statement

h2n11~r!5O~en11! ~C47!

holds for allr admitting ane expansion and possessing th
limit lim e→0r5r0.

This relation implies, in turn, that, by expanding ine the
coefficientsF2m11 for m>2 according to

F2m115 (
k51

`

f mke
k, ~C48!

when thef mk for m,k are known, then allf mk for m>k are
fully determined.

As a simple application of the above, we obtained t
following closed-form result:

f m15
~21!m

m~m21!
r0

22m lim
e→0

g21

e
, ~C49!

whereg>11 1
2 e andr05A2.

Let us now consider the linear parametric model with g
bal stationarity in the context of thee expansion:r2 satisfies
the conditionr25r01O(e), though it does not coincide
~and is not expected to! with thee-expandedr value adopted
by Guida and Zinn-Justin@23#.

Now note that for any higher-order truncation the statio
arity condition is still solved byr t5r01O(e), as shown
explicitly by the above-derived Eq.~C41!. As a consequence
any stationary truncation is an accurate description of
e-expanded parametric equation of state up toO(e t) in-
cluded. Actually, the freedom to chooser leaves such an
expansion highly underdetermined, and many other presc
tions might work, including that of fixingr ~or, alternatively,
u0) to its zeroth-order value. It is, however, certainly plea
ant to recognize that our approach based on stationarity
naturally into the set of consistent truncations. As a s
remark, note that all the coefficients of thee expansion ofr t
will, in general, be changed order by order int, and will also,
in general, be complex numbers. This fact will by no mea
affect the real character of the expanded physical amplitu
and will not even preventr andu0 from taking real values in
the actual three-dimensional calculations.
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Le Guillou, and J. Zinn-Justin~Plenum, New York, 1982!.

@3# D. S. Gaunt, inPhase Transitions, edited by M. Lévy, J. C.
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