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Crossover phenomena in spin models with medium-range interactions
and self-avoiding walks with medium-range jumps
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We study crossover phenomena in a model of self-avoiding walks with medium-range jumps, which corre-
sponds to the limitN→0 of an N-vector spin system with medium-range interactions. In particular, we
consider the critical crossover limit that interpolates between the Gaussian and the Wilson-Fisher fixed point.
The corresponding crossover functions are computed by using field-theoretical methods and an appropriate
mean-field expansion. The critical crossover limit is accurately studied by numerical Monte Carlo simulations,
which are much more efficient for walk models than for spin systems. Monte Carlo data are compared with the
field-theoretical predictions for the critical crossover functions, finding good agreement. We also verify the
predictions for the scaling behavior of the leading nonuniversal corrections. We determine phenomenological
parametrizations that are exact in the critical crossover limit, have the correct scaling behavior for the leading
correction, and describe the nonuniversal crossover behavior of our data for any finite range.
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I. INTRODUCTION

The universality of critical phase transitions is related
the presence of a diverging correlation lengthj. Whenj is
much larger than any microscopic scale characterizing
system, one observes a scaling behavior that is universal
independent of the microscopic details. However, in exp
mental situations the correlation length may not be so la
and, on the contrary, it may be comparable to some o
scale intrinsic to the system. In this case, one does not
serve the expected critical behavior, but rather a crosso
Here, we will be interested in the crossover between
standard Wilson-Fisher behavior~near the critical point! and
the mean-field behavior~far from the critical point! that is
observed by varying the temperature in systems belongin
the N-vector universality class, i.e., magnets, fluids, mu
component fluid mixtures, . . . ~the critical behavior of these
systems is reviewed, e.g., in Refs.@1,2#!. Such a crossover is
characterized by the Ginzburg numberG @3# that measures
the relevance of the magnetization~or density! space fluctua-
tions that determine the departure from the Landau me
field behavior. Ift[(bc2b)/bc is the reduced temperature
for utu.G the system shows an approximate mean-field
havior, while for utu,G one observes the standard Wilso
Fisher criticality. The crossover behavior is nonuniver
since it depends on the specific details of the system un
investigation, and is usually described in terms of pheno
enological models~see, e.g., Refs.@4–18# and reference
therein for a discussion of phenomenological models for
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ids, binary mixtures, and polymers!. However, in a specific
limit—we call it the critical crossover limit—one can defin
universal quantities that do not depend on the microsco
details.

In this paper, we will consider spin models with medium
range interactions. For instance, we may consider the Ha
tonian

H52(
x

(
y:uy2xu<R

sxsy , ~1!

wheresx is anN-component vector satisfyingsxsx51. The
crossover behavior of these systems has been extens
studied numerically@19–24,15#. By means of scaling argu
ments, it was shown@19–21# that the Ginzburg numberG is
proportional toR22d/(42d) in d dimensions. Thus, forutu
@R22d/(42d), such systems show an approximate mean-fi
behavior, while forutu!R22d/(42d), one observes the stan
dard Wilson-Fisher criticality.

Such a crossover can be described by using effective
ponents. For instance, one can define an effective susc
bility exponentgeff(t) ~often called the Kouvel-Fisher expo
nent @25#! by

geff~ t,R!52
t

xR~ t !

dxR~ t !

dt
, ~2!

where xR(t) is the susceptibility. By varying the tempera
ture, the exponentgeff(t,R) varies between 1, the mean-fie
value, andg, the Wilson-Fisher value~actually, the full
crossover behavior can be observed only forR large enough,
in lattice models forR*3!. At R fixed, the crossover behav
ior is not universal, and therefore the functiongeff(t,R) at
fixed R cannot be predicted without an explicit reference
the microscopic details of the system. In this case, if o
wishes to obtain interpolations that provide reasonably p
©2001 The American Physical Society30-1
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cise approximations, one must resort to phenomenolog
models, such as those presented in Refs.@4–17#. However,
there is a particular limit—the critical crossover limit—i
which the effective exponents become universal. If we c

sider the limit t→0,R→` with t̃[t/G;tR2d/(42d) fixed,
then geff(t,R) converges to a critical crossover expone

geff( t̃) that is universal apart from a trivial rescaling oft̃ . In
practice, at least in lattice models such as Eq.~1!, the critical
crossover functions provide a good description of the cro
over as soon as the interactions extend over a few~two or
three! lattice spacings.

The universality of the critical crossover functions can
shown explicitly in the large-N limit @26,27# and for any
value of N by performing an expansion around mean fie
@27#. Moreover, as shown in Ref.@27#, they are givenexactly
by the field-theoretical crossover curves computed within
f4 framework in Refs.@28–32#.

In this paper, we wish to check with a high-precisio
simulation the field-theoretical predictions of Ref.@27#.
Large-scale Monte Carlo results have already been obta
for the Ising model, both in two and in three dimensio
@20–23#. However, because of the difficulty of keeping u
der control the finite-size effects, only small rangesR were
simulated near the Wilson-Fisher point. Although the gene
trend of the data was consistent with the analytic fie
theoretical predictions, in the Wilson-Fisher region a hig
precision numerical test has not yet been done. The con
ered values ofR were too small and there were significa
discrepancies between numerical data and theoretical pre
tions.

Here, we address the problem for a spin model in the li
N→0, which can be described in terms of self-avoidi
walks ~SAW’s! @33–38#. The advantage of such a system
that we can now work directly in the infinite-volume lim
without finite-size effects and thus we can investigate s
tems with much larger values of the correlation length~in
this paper we reachj'500 for systems in which the inter
action extends up to 12 lattice spacings!. In the limit N→0,
the model ~1! is mapped into a model of SAW’s with
medium-range jumps, i.e., of SAW’s such that the length
each link is less than or equal toR. As usual in walk simu-
lations, we work in a monodisperse ensemble, i.e., w
walks of fixed lengthn. The lengthn replaces here the re
duced temperaturet. Medium-range SAW’s show a cross
over behavior depending onnG;nR22d/(42d). For n
!R2d/(42d), the SAW behaves as an ordinary random w
~mean-field behavior!, while in the opposite regime the sel
repulsion becomes important and one observes the stan
critical behavior. As we already stressed, for fixed values
R, such a behavior is not universal and can only be descr
phenomenologically. There is, however, a universal limit,
critical crossover limit: If we take the limitn→`,R→`
keeping ñ5nR22d/(42d) fixed, the crossover functions be
come universal, and can again be computed by using fi
theory methods.

The paper is organized as follows. In Sec. II, we introdu
the model and the basic observables we consider. In Sec
we discuss the critical crossover limit. In Sec. III A, we d
04613
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fine the limit in spin models@20–22# and review the results
of Ref. @27#. In Sec. III B, we define the crossover limit fo
walk models and derive some general results for the univ
sal crossover functions. In particular, we show that they
exactlyrelated to the crossover functions computed in fie
theory@39–41#. Moreover, by using the results of Ref.@27#,
we show that by an appropriate definition of the rangeR, the
leading corrections to the universal crossover functions s
as R2d, d being the dimension, asR→`. In Sec. IV, we
derive the expressions of the crossover functions from fi
theory generalizing the results of Ref.@40#. Details are re-
ported in the Appendix, where we also compute the fi
coefficients of the asymptotic expansion of the crosso
functions near the Wilson-Fisher point by using the fixe
dimension expansion in the zero-momentum scheme@42#
and in the dimensional regularization scheme withoute ex-
pansion@43,31,32#. In Sec. V, we briefly describe the nu
merical algorithms we use. In Sec. VI, we perform a detai
comparison of the numerical results in three dimensions w
the field-theory predictions. We find a very good agreeme
the deviations being small already when the interaction
tends over three lattice spacings. Particular care has b
devoted to the behavior of the leading corrections. We sh
that they scale asR2d as predicted in Ref.@27#. Finally, in
Sec. VII we report our conclusions and discuss some furt
applications of these results. In particular, we give pheno
enological expressions that are able to describe the cross
curves even outside the critical limit, for all rangesR we
have considered. Preliminary results appeared in Ref.@44#.

II. THE MODEL

In this paper, we consider SAW’s with medium-rang
jumps. To be specific, let us consider a hypercubic lattice
d dimensions. Given an integer numberr, let us define a
lattice domainDr(x). If x is a lattice point,Dr(x) is the set
of lattice points defined by

Dr~x!5H y:(
i 51

d

uxi2yi u<rJ . ~3!

We indicate with Vr the number of points belonging t
Dr(x) and withR the mean-square size ofDr(x). Explicitly,
we define

Vr[ (
yPDr~0!

1, ~4!

R2[
1

2dVr
(

yPDr~0!
y2. ~5!

In three dimensions,

Vr5 1
3 ~2r11!~2r212r13!, ~6!

R25
r~r11!

10

r21r13

2r212r13
. ~7!
0-2
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For r→`, Vr' 4
3 r3 andR2' 1

20 r2. In the following, we will
often characterize the size of the jumps by usingR instead of
r and thus we will writeDR ,VR ,..., instead ofDr ,Vr ,... .

Let us now define our model. We define ann-step
R-SAW as a sequence of lattice points$v0 ,...,vn% with
v05(0,...,0) andv j 11PDR(v j ), such thatv iÞv j for all
iÞ j . All walks are weighted equally. Forr51, the model
corresponds to a standard SAW with nearest-neigh
jumps.

We will consider the following observables: Ifcn,R(x) is
the number ofn-stepR-SAW’s going from 0 tox, we indi-
cate withcn,R the total number ofn-step walks and withEn,R

2

the mean-square end-to-end distance. They are define
follows:

cn,R[(
x

cn,R~x!, ~8!

En,R
2 [

1

cn,R
(

x
x2cn,R~x!. ~9!

This model of walks is related to a latticeN-vector model
with medium-range interactions in the limitN→0. Indeed,
consider the Hamiltonian

HR~s!52
N

2 (
x

(
yPDR~x!

sxsy , ~10!

where sx is an N-dimensional vector satisfyingsxsx51,
and define as usual

ZR~b![(
$s%

e2bHR~s!, ~11!

GR~x;b![^s0sx&R5
1

ZR~b! ($s%
s0sxe

2bHR~s!. ~12!

The susceptibility and the~second-moment! correlation
length are then defined as

xR~b![(
x

GR~x;b!, ~13!

jR
2~b![

1

2dxR~b! (x
x2GR~x;b!. ~14!

A standard procedure@33–38# allows us to prove that

lim
N→0

xR~b!5 (
n50

`

bncn,R , ~15!

lim
N→0

jR
2~b!xR~b!5

1

2d (
n50

`

bncn,REn,R
2 . ~16!

This equivalence will allow us to use the results available
the Hamiltonian~10! that are discussed in detail in Ref.@27#.
04613
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III. CRITICAL CROSSOVER LIMIT

In this section, we derive some general results for
critical crossover limit of medium-range SAW’s. They wi
be obtained by extending to walk models the results of R
@27#.

A. The variable-length b ensemble

Let us consider the Hamiltonian~10!, which, for R fixed,
defines a generalizedN-vector model with short-range inter
actions. For each value ofR, there is a critical point@45#
bc,R ; for b→bc,R , the susceptibility and the correlatio
length have the standard behavior

xR~b!'Ax~R!t2g @11Bx~R!tD1¯#, ~17!

jR
2~b!'Aj~R!t22n@11Bj~R!tD1¯#, ~18!

where t[(bc,R2b)/bc,R and we have neglected addition
subleading corrections. The exponentsg, n, and D do not
depend onR. In two dimensions, forN50, g and n are
known exactly@46#,

n5 3
4 , g5 43

32 , ~19!

while D is still the object of an intense debate@47–52#. In
three dimensions, forN50, the best estimates of the exp
nents have been obtained in Monte Carlo simulations:

n5H 0.587760.0006, Ref. @53#

0.5875860.00007, Ref.@54#,

g51.157560.0006, Ref.@55# ~20!

D50.51520.007
10.017 Ref. @54#.

Less precise Monte Carlo results can be found in Refs.@56–
59# and references therein. Similar, although less prec
results are obtained by using field-theory methods and fr
the analysis of enumeration series~for a list of results, see
Refs.@40,60–65# and references therein!.

On the other hand, the amplitudes are nonuniversal
depend onR. For R→`, they behave as@20,21#

Ax~R!'Ax
`R2d~12g!/~42d!, Aj~R!'Aj

`R4~22dn!/~42d!,
~21!

Bx~R!'Bx
`R2dD/~42d!, Bj~R!'Bj

`R2dD/~42d!.

Corrections to these asymptotic behaviors vanish as@27#
R2d.

The critical pointbc,R also depends onR. The expansion
of bc,R for R→` was derived in Ref.@27# in two and three
dimensions. Explicitly, forN50 andd53, we have

bc,R5
1

VR
S 11 Ī R2

3

32p2R6 ln R21
t1

R6 1
t2

R8

1O~R29 ln R2! D , ~22!
0-3
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wheret1 andt2 are constants andĪ R is a function ofR. The
nonperturbative constantst1 and t2 depend on the domain
The expression oft1 for a generic domain is reported in Re
@27#. For the domain~3!, t1'20.000 60(11). The constan
t2 will be computed numerically in Sec. VI A. The functio
Ī R is defined by

Ī R[E d3k

~2p!3

12PR~k!

PR~k!
, ~23!

where

PR~k![12
1

VR
(

xPDR~0!
eikx. ~24!

For R→`, Ī R'sR231O(R25). For the domain considere
in this paper,s'0.043 365 29. Explicit values ofĪ R are re-
ported in Table I.

Let us now define the critical crossover limit. In this cas
we consider the limitR→`,t→0, with t̃[R2d/(42d)t fixed.
It is possible to show that

x̃R[R22d/~42d!xR~b!→ f x~ t̃ !, ~25!

j̃R
2[R28/~42d!jR

2~b!→ f j~ t̃ !, ~26!

where the functionsf x( t̃ ) and f j( t̃ ) are universal apart from
an overall rescaling oft̃ and a constant factor. Equations~25!
and~26! were predicted in Refs.@20,21# by means of a scal
ing argument and were proved to all orders in an expans
around t̃ 5` in Ref. @27#.

The crossover functions have a well-defined behavio
the limiting casest̃→0 and t̃→`. For t̃→0, Eqs.~17! and
~18! imply

f x~ t̃ !'Ax
` t̃ 2g~11Bx

` t̃ D1¯ !, ~27!

f j~ t̃ !'Aj
` t̃ 22n~11Bj

` t̃ D1¯ !. ~28!

In the limit t̃→`, for generic values ofd, the crossover
functions behave as

f x~ t̃ !'
ax

t̃
@11ax t̃ 2Dmf1O~ t̃ 22Dmf!#, ~29!

TABLE I. Estimates ofR3 Ī R for several values ofr for the
domain~3!. From Ref.@27#.

r R3 Ī R
r R3 Ī R

3 0.043960387 10 0.043486698
4 0.043921767 12 0.043451767
5 0.043713672 14 0.043429899
6 0.043664053 16 0.043415345
7 0.043574469 18 0.043405187
8 0.043547206 20 0.043397824
04613
,

n

n

f j~ t̃ !'
aj

t̃
@11aj t̃ 2Dmf1O~ t̃ 22Dmf!#, ~30!

whereDmf5(42d)/2. It is important to notice that this ex
pansion is corrected by logarithms wheneverd5422/k, k
integer, and therefore in the interesting casesd52,3. Ford
53, the neglected terms in Eqs.~29! and ~30! are of order
O( t̃ 21 ln t̃) and not simply of orderO( t̃ 21). A detailed deri-
vation of these expansions and of the expressions~29! and
~30! is given in Ref.@27# for a much more general mode
than the one considered here. The constantsax , aj , ax , and
aj are given, for 2,d,4, by

ax5aj51,
~31!

ax5aj52~4p!2d/2G~12d/2!.

Additional terms can be computed exactly by using the fie
theoretical results of Refs.@28,29#, the perturbative series o
Refs. @66,60#, and the mean-field results of Ref.@27#, see
Sec. IV.

It is also possible to compute the corrections to Eqs.~25!
and ~26!. On the basis of a two-loop calculation, Ref.@27#
conjectured that, if the range is expressed in terms of
variableR defined in Eq.~5! @67#, then the corrections@68#
scale asR2d. Explicitly, in the critical crossover limit we
expect

x̃R→ f x~ t̃ !1
1

Rd hx~ t̃ !1¯ , ~32!

j̃R→ f j~ t̃ !1
1

Rd hj~ t̃ !1¯ . ~33!

For t̃→0 and t̃→`, the functionshx( t̃ ) andhj( t̃ ) have an
asymptotic behavior that is analogous to that of the unive
crossover functionsf x( t̃ ) and f j( t̃ ). In Ref.@27#, the leading
term for t̃→` was computed, obtaining

hx~ t̃ !'2
Ed

t̃
, hj~ t̃ !'2

Ed

t̃
, ~34!

whereEd is a domain-dependent constant~see Ref.@27# for
its definition!. For d53 and for the domain~3!, we have
E3'0.058 545.

B. The fixed-length ensemble

Given the previous results, it is now a completely sta
dard procedure@38# to obtain the behavior ofcn,R andEn,R

2 .
For n→` at R fixed, we obtain the standard behavior

cn,R'Cx~R!bc,R
2nng21@11Dx~R!n2D1¯#, ~35!

En,R
2 'CE~R!n2n@11DE~R!n2D1¯#, ~36!

where
0-4
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Cx~R!5
Ax~R!

G~g!
,

CE~R!5
2dAj~R!G~g!

G~g12n!
,

~37!

Dx~R!5
Bx~R!G~g!

G~g2D!
,

DE~R!5
@Bx~R!1Bj~R!#G~g12n!

G~g12n2D!
2

Bx~R!G~g!

G~g2D!
.

For R→`, using Eq. ~21!, we obtain Cx(R)
→Cx

`R2d(12g)/(42d), whereCx
`5Ax

`/G(g), with corrections
of relative orderR2d. Similar relations hold for the othe
amplitudes.

The critical crossover limit is trivially defined by remem
bering thatn is the dual variable~in the sense of Laplace
transforms! of t. Therefore, we should study the limitn
→`,R→` with ñ[nR22d/(42d) fixed. From Eqs.~25! and
~26!, we obtain that the following limits exist:

c̃n,R[cn,Rbc,R
n →gc~ ñ!, ~38!

Ẽn,R
2 [En,R

2 R28/~42d!→gE~ ñ!, ~39!

where the functionsgc(ñ) and gE(ñ) are related by a
Laplace transform tof x( t̃ ) and f j( t̃ ). Explicitly,

f x~ t !5E
0

`

du gc~u!e2ut, ~40!

f j~ t ! f x~ t !5
1

2d E0

`

du gc~u!gE~u!e2ut. ~41!

Notice that, while the knowledge ofbc,R is not required for
the definition ofgE(ñ), the critical point is needed to com
putegc(ñ).

The standard critical behavior is obtained forñ→`. In
this limit, we have

gc~ ñ!'Cx
`ñg21~11Dx

`ñ2D1¯ !, ~42!

gE~ ñ!'CE
`ñ2n~11DE

`ñ2D1¯ !. ~43!

The mean-field limit corresponds toñ→0. Using Eqs.~29!
and ~30!, we obtain

gc~ ñ!'11zcñ
Dmf1¯ , ~44!

gE~ ñ!'2dñ~11zEñDmf1¯ !, ~45!

with corrections of orderñ2Dm f. In two and three dimensions
additional logarithms appear. Ford53, the neglected correc
tions togc(ñ) in Eq. ~44! are of orderñ ln ñ. However, it can
be shown by using the field-theoretical results of Appen
A 3 that the logarithmic terms exponentiate and that one
write
04613
x
n

gc~ ñ!5ez lnñ ln ñgc ln~ ñ!, ~46!

wherez ln is a constant andgc, ln(ñ) is a function with a regu-
lar expansion in powers ofñDmf without logarithms. The be-
havior of gE(ñ) is simpler: It has a regular expansion
powers of ñDmf in all dimensions without logarithms@39#.
The constantszc andzE can be easily related toax andaj

defined in Eqs.~29! and ~30!:

zc5
ax

G~11Dmf!
, ~47!

zE5
ax1aj

G~21Dmf!
2

ax

G~11Dmf!
. ~48!

Using the explicit results~31!, we obtain in three dimension

zc5
1

2p3/2, zE5
1

6p3/2. ~49!

We wish now to compute the corrections to the univer
crossover functions. ForR→`, in the variable-length en-
semble, the corrections areO(R2d), see Eqs.~32! and~33!,
for 2,d,4. Thus, we expect that the universal crosso
functions in the fixed-length ensemble have the same be
ior. Therefore, we write

c̃n,R→gc~ ñ!1
1

Rd kc~ ñ!, ~50!

Ẽn,R
2 →gE~ ñ!1

1

Rd kE~ ñ!. ~51!

It is easy to verify by using the Euler-MacLaurin formu
that

hx~ t !5E
0

`

du kc~u!e2ut, ~52!

f j~ t !hx~ t !1 f x~ t !hj~ t !5
1

2d E0

`

du@gE~u!kc~u!

1gc~u!kE~u!#e2ut. ~53!

The asymptotic behavior of the correction functionskc(ñ)
andkE(ñ) for ñ→0 andñ→` is analogous to that ofgc(ñ)
andgE(ñ). For ñ→0, by using Eqs.~34!, ~29!, and~30!, we
obtain

kc~0!52Ed , kE~ ñ!522dEdñ1O~ ñ11Dmf!. ~54!

IV. FIELD-THEORY RESULTS IN THREE DIMENSIONS

We wish now to compute the crossover functions by
ing field-theory methods. Consider the continuumf4 theory,

H5E d3xF 1
2 ~]mf!21

r

2
f21

u

4!
f4G , ~55!
0-5
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where f is an N-dimensional vector—in our cas
N50—and introduce the Ginzburg numberG[u2/(42d) and
t[r 2r c , wherer c is the critical value ofr. Then, consider
the limit u→0,t→0, with t̃ SR[t/G5tu22/(42d) fixed. In
this limit we have

x̃[xG→Fx~ t̃ SR!, ~56!

j̃2[j2G→Fj~ t̃ SR!. ~57!

The functionsFx( t̃ SR) andFj( t̃ SR) can be computed by re
summing appropriately the perturbative series. There are
sentially two different perturbative series one can cons
er: ~a! the fixed-dimension expansion@42,28,29#, which is
at present the most precise one since seven-loop serie
available@66,60#; ~b! the so-called dimensional regulariz
tion without e expansion @43,31,32# that uses five-loop
e-expansion results@69,70#. In these two schemes, the cros
over functions are expressed in terms of vario
renormalization-group quantities. The explicit expressio
are reported in Appendixes A 1 and A 2. For our purpos
the relevant result is that the functionsFx( t̃ SR) andFj( t̃ SR)
are related by simple rescalings~SR! to the crossover func
tions we have defined before@27#. More precisely,

f x~ t̃ !5mxFx~s t̃!, f j~ t̃ !5mjFj~s t̃!, ~58!

for appropriate constantsmx , mj , ands. These relations are
shown rigorously to all orders in the expansion around
mean-field limit in Ref.@27# and provide the link between
medium-range crossover functions and field-theoretical
pressions. The constants can be easily computed by com
ing the behavior fort̃→`. In three dimensions, the func
tions Fx( t̃ SR) andFj( t̃ SR) behave as~see Appendix A 1a!

Fx~ t̃ !5
1

t̃
S 11

1

12p
t̃21/21O~ t̃ 21 ln t̃ !D ,

~59!

Fj~ t̃ !5
1

t̃
S 11

1

12p
t̃21/21O~ t̃ 21 ln t̃ !D .

By comparing these expansions with Eqs.~29! and ~30!, we
obtain

s5mx5mj5 1
9 . ~60!

We can now use the explicit results of the Appendix to o
tain predictions for the constantsAx

` , Aj
` , Bx

` , andBj
` de-

fined in Eqs.~27! and~28!. We obtain in the fixed-dimension
expansion~see Appendix A 1b!

Ax
`5mxx0s2g50.595960.0041, ~61!

Aj
`5mjj0

2s22n50.523860.0024, ~62!

Bx
`5x1sD52.1860.18, ~63!
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Bj
`5j1sD52.9260.27. ~64!

For the~universal! ratio Bx
`/Bj

` we obtain the more precis
result

Bx
`

Bj
` 50.74560.034. ~65!

Consistent, although less precise, results can be obtaine
the framework of dimensional regularization withoute ex-
pansion, see Appendix A 2b.

In a completely analogous way, we can derive from fie
theory the crossover functionsgc(ñ) andgE(ñ). Indeed, we
introduce functionsGc(ñSR) and GE(ñSR) in the following
way:

Fx~ t !5E
0

`

du Gc~u!e2ut, ~66!

Fj~ t !Fx~ t !5
1

2d E0

`

du Gc~u!GE~u!e2ut. ~67!

The functionsGc(ñSR) and GE(ñSR) can be computed per
turbatively by using the corresponding perturbative expr
sions for Fx( t̃ SR) and Fj( t̃ SR). The relevant formulas are
reported in Appendix A 3.

In the fixed-dimension expansion, using the seven-lo
results of Ref. @60#, we obtain @the six-loop result for
GE(ñSR) already appears in Ref.@40##

Gc~ ñSR!5e4pz2 ln~Kz!@114z12pgEz2260.7295z3

296.6721z42144.431z512491.95z6

25070.31z71O~z8!#, ~68!

GE~ ñSR!56ñSRF11
4

3
z1S 28p

27
2

16

3 D z216.29688z3

225.0573z41116.135z52594.717z6

13273.16z71O~z8!G , ~69!

whereK is a nonperturbative constant and

z5
1

24p S ñSR

p D 1/2

. ~70!

Explicitly,

ln K5144p2D31 1
2 ln~16p!2 34

9 , ~71!

whereD3 is a nonperturbative constant reported in Appen
A 1 a. Numerically, using the estimate ofD3 reported in Ap-
pendix A 1a, we haveK55.44(5).

These perturbative expressions can be resummed by u
the fact that the series are Borel summable@71–74#. The
technical details are reported in Appendix A 3. The resu
mation is very precise forz&1, with errors smaller than
0-6
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0.2%. For larger values ofz the resummation errors increas
and the numerical integration becomes unstable: In prac
we have not been able to compute numerically the cross
functions using Eqs.~A87! and~A89! for z*5. However, in
this region the crossover functions are already well appro
mated by the asymptotic expansions~A93! and ~A94!. The
resummed expressions are well fitted by the followi
simple formulas:

Gc~ ñSR!5~1150.793 65z1508.5428z215929.475z3

110 937.03z4!0.078 75, ~72!

GE~ ñSR!56ñSR~117.611z112.051 35z2!0.175 166.
~73!

The expression forGE(ñSR) was proposed in Ref.@54# and it
was obtained from a detailed Monte Carlo study of t
Domb-Joyce model@75#. We find that the perturbative re
sults are very well described by these expressions, with
crepancies of less than 0.3% forz,2. For larger values ofz,
the differences are slightly larger, of the order of 1%, wh
is, in any case, of the same order of the error of our
summed results. Note that the expressions~72! and ~73! ex-
actly reproduce the small-z behaviors~68! and ~69! up to
terms of orderO(z2).

The relation between the field-theory functions andgc(ñ)
and gE(ñ) is straightforward. From Eqs.~58! and ~60!, we
have

gc~ ñ!5lcGc~rñ!, gE~ ñ!5lEGc~rñ!, ~74!

with

lE5 1
9 , lc51, r59. ~75!

Using the results of Appendix A 3, we can easily derive
timates for the constantsCx

` , CE
` , Dx

` , andDE
` defined in

Eqs. ~42! and ~43!. In the fixed-dimension expansion, w
have

Cx
`50.64060.005, ~76!

CE
`52.45760.011, ~77!

Dx
`51.4560.10, ~78!

DE
`55.0360.48. ~79!

If we consider the universal ratioDx
`/DE

` we obtain the more
precise result

Dx
`

DE
` 50.28860.016. ~80!

We mention that from the very precise Monte Carlo resu
of Ref. @54#, we would obtainCE

`'2.450 andDE
`'5.57, in

reasonable agreement with our results.
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V. ALGORITHMS

The SAW with nearest-neighbor jumps can be very e
ciently simulated by means of nonlocal algorithms@76,77#.
None of them can be generalized to the case at hand,
thus we have resorted to the dimerization algorithm~DA!
@78,79#. Although the CPU time needed to generate a w
increases more than any power of its length@76#, the prefac-
tors are so small that we can reach quite large lengths
should be noticed that other algorithms could have proba
performed better. For instance, we could have used
pruned-enriched Rosenbluth method of Ref.@80#.

Before defining the DA, let us introduce the simpl
sampling algorithm~SSA!. The SSA is the simplest algo
rithm for the generation of SAW’s. It builds a walk recu
sively. Once ann-stepR-SAW $v0 ,...,vn% is generated, an
(n11)-stepR-SAW is obtained by choosing at random
new pointvn11 in DR(vn)\$vn%. If the new walk is self-
avoiding it is kept, otherwise then-stepR-SAW is discarded
and the procedure starts again from scratch generating a
n-stepR-SAW. Since adding one step and checking for se
avoidance requires@81# O(1) operations, the CPU time
needed to generate ann-step walk is

TCPU~n!'
bc,mf

2n

cn
(

m51

n

cmbc,mf
m , ~81!

wherebc,mf[1/(VR21). In the limitn→` with R fixed and
large, using Eqs.~35! and ~22!, we obtain

TCPU~n!;Rdgn~2g11!eanR2d
, ~82!

where a is defined by bc,mf /bc,R'12aR2d. For our
model,a'0.035. The computer time increases exponentia
with n although the factor in the exponential goes to zero
R2d.

The SSA is quite efficient in generating short walk
However, far from the Gaussian region it becomes too sl
because of the exponentially increasing time needed to g
erate a walk. A better algorithm is the DA@78,79#. Numeri-
cally, we find DA to perform better than SSA forn*VR .
The DA is again a recursive algorithm. To generate ann-step
walk one generates twon/2-step walks and concentrate
them. If the resulting walk is self-avoiding, it is kept, othe
wise the twon/2-step walks are discarded and the proced
is repeated again. The algorithm is recursive: in order
generate the walks of lengthn/2, the DA is used again unti
n/2,nc . If n/2,nc , we generated the walks using the SS
In our implementation we chosenc'VR . The behavior of
the DA in the limitn→` at R fixed was studied in Ref.@76#.
By using the results of Sec. III, one finds

TCPU~n!;Rq1nq2 expF ~g21!

2 ln 2
ln2~nR2d~12g!/~42d!!G ,

~83!

whereq1 and q2 are exponents that depend on the spec
model and on the implementation of the algorithm.

Let us now discuss how to estimateEn,R
2 and cn,R from

the simulation. EstimatingEn,R
2 is completely straightfor-
0-7
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TABLE II. Monte Carlo results. Herebmf5(VR21)21.

r n ln En
2 ln(cnbmf

2n) r n ln En
2 ln(cnbmf

2n)
2 20 4.094106~9! 21.570800~12!

30 4.556891~21! 22.52151~4!

40 4.886886~17! 23.48884~3!

80 5.68682~3! 27.42459~6!

160 6.49153~6! 215.39944~14!

320 7.29966~12! 231.45439~30!

640 8.10973~24! 263.67150~64!

1280 8.92194~54! 2128.2124~16!

3 120 6.50585~3! 25.20178~6!

160 6.82940~15! 27.06537~30!

240 7.28750~5! 210.81482~13!

320 7.61466~26! 214.58095~62!

480 8.07689~10! 222.13565~27!

960 8.87276~19! 244.87624~56!

1920 9.67317~37! 290.4588~12!

3840 10.47830~81! 2181.7297~31!

4 1200 9.39403~32! 230.4356~12!

1280 9.46739~15! 232.4988~5!

1920 9.92722~12! 249.0221~4!

2560 10.25489~28! 265.5637~10!

3840 10.71901~22! 298.6670~8!

5120 11.04855~54! 2131.7917~21!

7680 11.51585~45! 2198.0564~17!
on
ed

e
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f
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10240 11.8470~11! 2264.3489~44!

15360 12.31571~93! 2396.9388~36!

30720 13.1234~22! 2794.8075~75!

5 600 8.88068~10! 28.81049~25!

1040 9.484413~43! 215.51334~13!

1200 9.64205~17! 217.95699~50!

2080 10.25375~8! 231.42686~26!

2400 10.41268~28! 236.3313~10!

4160 11.03218~14! 263.3411~6!

8320 11.81856~25! 2127.2624~11!

16640 12.61152~54! 2255.2014~24!

33280 13.4103~11! 2511.1808~48!

66560 14.2166~31! 21023.251~12!

6 500 8.93513~4! 24.61781~8!

800 9.43841~8! 27.52107~20!

1000 9.67871~6! 29.46419~16!

1600 10.18886~14! 215.31451~40!

2000 10.43242~10! 219.22308~33!

3200 10.94927~23! 230.97376~82!

4000 11.19612~18! 238.81610~66!

8000 11.96920~31! 278.0846~13!

16000 12.75136~54! 2156.7110~27!

32000 13.5400~11! 2314.0585~56!
all.
the

ee-

The
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e
th

ns

-
d-
ward. To estimatecn,R we have used the acceptance fracti
for the elementary moves of the two algorithms. Inde
given ann-stepR-SAW, the probability of obtaining an (n
11)-step walk using the SSA is simplycn11bc,mf /cn .
Thus, if we know in a given SSA simulation the numberNn
of generated walks of lengthn, we can estimatecn using the
recursion relation

cn5cn21bc,mf
21 Nn

Nn21
, ~84!

with the initial conditionc15bc,mf
21 .

Analogously, given twoR-SAW’s of lengthn, the prob-
ability that their concatenation is anR-SAW is simply
c2n /cn

2. Therefore, if we know in a given DA simulation th
numberNn of generated walks of lengthn, we can compute
cn using

cn5cn/2
2 Nn

Nn/2
~85!

for n>nc and then Eq.~84!.
Note that in a dimerization simulation in which we ge

erate walks of maximal lengthnmax, we obtain at the same
time estimates of the observables also for a set of sma
values ofn, i.e., for n5nmax/2, nmax/4, . . . . These results
are of course correlated, especially in the mean-field reg
where the rejection rate at each step is small. However,
,

er

n
or

our global observables, the correlation should be sm
Analogously, when we use the SSA, we can compute
observables for all values ofn, although in this case the
results are strongly correlated.

VI. NUMERICAL RESULTS

We have performed an extensive simulation using thr
dimensional walks withn<66 560 and 2<r<12. Notice
that the values ofr are particularly large: forr512, in the
spin language, each spin interacts with 2624 neighbors.
advantage of working with SAW’s is the absence of finit
size effects—we work in the infinite-volume limit—and th
possibility of reaching large values of the correlation leng
@82#. The raw data for the largest values@83# of n and several
values ofr are reported in Tables II and III.

In Sec. VI A, we will determinebc,R from our numerical
data and we will explicitly check the theoretical predictio
for the large-R behavior ofbc,R of Ref. @27# presented in
Sec. III A. In Sec. VI B, we will compute the critical cross
over functions and we will compare them with the fiel
theoretical results of Sec. IV.

A. Determination of bc,R

In order to computebc,R we define

beff,R~n![F cn,R

gc,th~ ñ!G
21/n

, ~86!
0-8
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where gc,th(ñ) is the theoretical crossover function: in o
numerical determination ofbeff,R(n) we will use @84# Eqs.
~74! and~A106!. By using Eqs.~35! and~42!, we obtain for
n→`

beff,R~n!5bc,RF12
1

n
lnS Cx~R!R6~g21!

Cx
` D

1
1

n11D @Dx~R!2Dx
`R6D#1¯G . ~87!

TABLE III. Monte Carlo results. Herebmf5(VR21)21.

r n ln En
2 ln(cnbmf

2n)

7 100 7.500434~17! 20.543304~13!
200 8.214646~25! 21.164668~26!
400 8.93561~4! 22.44010~5!
800 9.66443~6! 25.03235~11!

1600 10.40211~9! 210.26761~23!
3200 11.14984~16! 220.79866~51!
6400 11.90757~25! 241.9304~10!

12800 12.67547~43! 284.2725~21!
25600 13.45153~68! 2169.0420~42!
51200 14.2366~14! 2338.6733~87!

8 750 9.80702~3! 23.29563~5!
1500 10.53428~5! 26.74019~10!
3000 11.27031~7! 213.67826~20!
6000 12.01591~12! 227.61282~42!

12000 12.77156~19! 255.55008~85!
24000 13.53685~34! 2111.5009~17!
48000 14.31143~59! 2223.4866~35!

9 1040 10.34095~12! 23.35462~21!
2080 11.06434~17! 26.8409~4!
4160 11.79586~27! 213.8574~9!
8320 12.5369~4! 227.9440~18!

16640 13.2868~6! 256.1807~36!
33280 14.0491~10! 2112.7270~71!
66560 14.8188~20! 2225.901~14!

10 1500 10.89765~8! 23.66081~13!
2000 11.19598~5! 24.91804~11!
3000 11.61839~11! 27.44241~26!
4000 11.91986~8! 29.97288~22!
6000 12.34684~17! 215.04661~52!
8000 12.65209~13! 220.12732~44!

16000 13.39353~20! 240.49032~91!
32000 14.14511~32! 281.2802~18!
64000 14.90648~72! 2162.9324~51!

12 1500 11.21510~8! 22.19646~10!
2000 11.50974~10! 22.95223~16!
3000 11.92649~14! 24.47024~21!
4000 12.22324~16! 25.9926~4!
6000 12.64352~20! 29.0463~4!
8000 12.94315~25! 212.1053~8!

12000 13.36771~30! 218.2350~9!
16000 13.67113~37! 224.3704~16!
32000 14.40765~57! 248.9504~31!
04613
Using the asymptotic expansions~21! and the relations~37!,
we obtain forR→`

beff,R~n!5bc,RF11
a1

nR3 1
a2R6D23

n11D 1¯G , ~88!

wherea1 anda2 areR-independent constants. This expre
sion shows the advantage of the definition~86! over the com-
mon one in which one simply considers (cn,R)21/n. Indeed,
with our choice, the 1/n correction vanishes forR→` while
the 1/n11D remains approximately constant (D' 1

2 ); with
the other one, we would have corrections of order ln(nR26)/n
and R6D/n11D. This improved behavior is particularly im
portant, since for largeR we are quite far from the Wilson
Fisher point, and thus a reduction of the scaling correcti
is essential in order to obtain precise estimates ofbc,R . In
order to determinebc,R , we have performed fits of the form
@85#

beff,R~n!VR5bc,RVR1
a

n
1

bR6D

n11D , ~89!

assumingD5 1
2 . We have repeated the fit several times, co

sidering each time only the data satisfyingn>nmin . The final
results, reported in Table IV, correspond to the smallestnmin
for which x2/d.o.f.'1 ~d.o.f. is the number of degrees o
freedom!. Notice that, by rescalingb by R3, the coefficients
a andb should becomeR-independent asR increases. This is
evident for a and indeed we can roughly estimatea'
20.015(5) forR→`. This allows us to compute the leadin
correction toCx(R). We have

Cx~R!'Cx
`R6~12g!~11kxR231¯ !, ~90!

where kx52a. The results forb are less stable, but stil
reasonably compatible with a constant for largeR. In order to
understand the systematic errors due to the truncation~89!,
we have repeated the fit with an additional correction:

beff,R~n!VR5bc,RVR1
a

n
1

bR6D

n11D 1
cR6

n2 . ~91!

The results forbc,R do not differ significantly from those o
the fit with c50, except forr512, where the difference is
approximately three combined error bars. Therefore, our
nal estimates should be quite reliable. As an additio
check, we have compared our results with the theoret
prediction~22!. If we indicate withbc,R

(exp) the expansion~22!
neglecting terms of orderR28, we define

t2,eff[R8S bc,R

bc,R
~exp!21D . ~92!

If we have correctly determinedbc,R , t2,eff should converge
to the constantt2 as R→`, with corrections of order
log10R2/R. The plot oft2,eff is reported in Fig. 1. A fit of the
form t2,eff5t21b/R gives
0-9
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TABLE IV. Determination ofbc,R for several values ofr. The reported results are obtained by fitting t
numerical data withn.nmin . Fit ~a!: VRbeff,R(n)5VRbc,R1a/n1bR3/n1.5. Fit ~b!: VRbeff,R(n)5VRbc,R

1a/n1bR3/n1.51cR6/n2.

r nmin VRbc,R a b c

Fit ~a!

2 40 1.152388~1! 0.0725~4! 0.1044~16!

3 80 1.0656569~3! 0.0142~3! 0.0360~5!

4 150 1.0342660~1! 20.0040~3! 0.0174~3!

5 260 1.0199238~1! 20.0111~1! 0.0100~1!

6 400 1.0125749~1! 20.0138~4! 0.0066~2!

7 800 1.00840580~4! 20.0164~3! 0.0053~1!

8 1500 1.00588845~3! 20.0174~4! 0.0044~1!

9 1040 1.00427552~9! 20.0140~10! 0.0026~2!

10 3000 1.00320022~5! 20.0167~13! 0.0031~3!

12 2000 1.00192307~7! 20.0080~11! 0.0010~1!

Fit ~b!

2 10 1.152388~1! 0.0711~1! 0.1211~3! 20.01139~6!

3 15 1.0656574~3! 0.0121~1! 0.0442~1! 20.00182~1!

4 40 1.0342661~1! 20.0057~1! 0.0217~1! 20.000589~6!

5 70 1.0199239~1! 20.0130~1! 0.132~1! 20.000274~3!

6 100 1.0125750~1! 20.0158~4! 0.0090~2! 20.000152~6!

7 140 1.00840566~10! 20.0159~4! 0.0062~1! 20.000081~3!

8 300 1.00588839~5! 20.0176~5! 0.0055~2! 20.000071~3!

9 250 1.00427551~10! 20.0153~10! 0.0037~2! 20.000037~3!

10 450 1.00320011~4! 20.0143~5! 0.0030~1! 20.000028~1!

12 400 1.00192275~6! 20.0028~5! 0.0006~1! 20.000003~1!
n

ing
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t:
c-
t2520.008 14~21!, ~93!

b50.002 77(19), including all data withr>3.

B. Determination of the critical crossover functions

We wish now to determine the critical crossover functio
in three dimensions. We begin by studying the functionc̃n,R ,

FIG. 1. Estimates oft2,eff vs 1/R. The reported points
correspond tor53,4,5,6,7,8,10,12. The line is the best fi
t2,eff520.0081410.00277/R. The errors on the data take into a
count the error onbc,R and on the constantt1 .
04613
s

cf. Eq. ~38!. The function is reported in Fig. 2~upper graph!
together with the theoretical prediction obtained by us
Eqs.~74! and~72!. Note that there is no free parameter in t
theoretical curve. We observe a very good agreement, e
cially in the Wilson-Fisher region. Systematic deviations a
observed for smaller values ofñ. In order to understand the
role of the deviations, we report in Fig. 2~lower graph! the
same data, but now we exclude all points withn,VR/2. The
agreement is now perfect for allr>3. We thus clearly see
that the crossover behavior requiresn@Rd. In particular,
mean-field behavior is always observed forn!R2d/(42d) if R
is sufficiently large, but it is described by the critical cros
over curves only ifRd!n!R2d/(42d).

In order to see the corrections to scaling, in Fig. 3
report the ratioc̃n,R /gc,th(ñ), which should converge to 1 a
R→`. Corrections to scaling are clearly evident, points w
different values ofR lying on different curves that indee
converge to 1 asR→`. These corrections are predicted
scale asR2d. To check this behavior, we considered

Dc;n,R[R3S c̃n,R

gc,th~ ñ!
21D , ~94!

which should converge tokc(ñ)/gc(ñ) in the crossover limit.
Using the expected asymptotic behavior ofkc(ñ) andgc(ñ),
Dc;n,R converges to a constant both forñ→0 andñ→`. For
ñ→0, kc(0)/gc(0)52E3'20.059.

The numerical results are reported in Fig. 4, where
0-10
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error onDc;n,R has been computed by considering the er
on bc,R , cn,R , and on the theoretical curve@86#. A reason-
ably good scaling is observed, confirming the results of R
@27#. Also the predictionkc(0)/gc(0)'20.059 is fully com-
patible with the data.

In order to perform a more precise check, we have a
considered the quantity

Qn,R[
cn,R

2

c2n,R
, ~95!

that converges togc(ñ)2/gc(2ñ) in the critical crossover
limit. For Qn,R we do not need the value ofbc,R and thus a
source of error is avoided. In Fig. 5, we showQn,R together
with the theoretical prediction and

DQ;n,R[R3S Qn,Rgc,th~2ñ!

gc,th~ ñ!2 21D . ~96!

The errors onDQ;n,R have been computed as we did f
Dc;n,R . The agreement between the numerical data and

FIG. 2. Estimates of log10 c̃n,R vs ñ5nR26. The reported points
correspond tor53,4,5,6,7,8,10,12. The line is the field-theoretic
prediction. In the upper graph we report all points, in the lower o
only those satisfyingn.VR/2.
04613
r

f.

o

he

theoretical prediction is very good. Also,DQ;n,R shows a
nice scaling behavior confirming that the corrections scale
R2d.

Let us finally discuss the effective exponentgeff(n,R). A
standard definition would be

geff~n,R![11n
d ln c̃n,R

dn
. ~97!

However, this definition is not easy to use in numerical sim
lations since it involves the derivative with respect ton.
Here, we will use the definition

geff~n,R![11
1

ln 2
lnS c̃2n,R

c̃n,R
D , ~98!

which interpolates between the SAW valueg51.1575 and
the mean-field valueg51. The results are reported in Fig.
together with the theoretical prediction. The agreemen
very good. Note that in the Wilson-Fisher region the nume
cal data are well approximated by the field-theoretical p

l
e

FIG. 3. Estimates ofc̃n,R /gc,th(ñ) vs ñ5nR26. The reported
points correspond tor53,4,5,6,7,8,10,12. The errors only take in
account the error onc̃n,R .

FIG. 4. Estimates ofDc;n,R vs ñ5nR26. The reported points
correspond tor53,4,5,6,7,8,10,12.
0-11
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diction only forr*4. For smaller values ofr, the corrections
are important, as was already noticed in the Ising mo
simulations@22,23#.

The analysis we have performed forcn,R can be repeated

FIG. 5. Estimates ofQn,R ~upper graph! and of DQ;n,R ~lower
graph! vs ñ5nR26. The reported points correspond tor
53,4,5,6,7,8,10,12. The continuous line in the upper graph is
theoretical prediction.

FIG. 6. Estimates ofgeff(n,R) vs ñ5nR26. The reported points
correspond tor52,3,4,5,6,7,8,10,12. The continuous line is t
theoretical prediction.
04613
el
for En,R

2 . In this case, however, the errors are smaller sin
the critical crossover functions do not depend onbc,R . In
Fig. 7 ~upper graph!, we report our results forẼn,R

2 together
with the predictiongE,th(ñ) obtained by using the field
theory result~73! and the relations~74! and ~75!. Note that
there is no free parameter in the theoretical curve. The ag
ment is very good, although one can see clearly the prese
of corrections to scaling.

We wish now to compute the correction curvekE(ñ). For
this purpose we consider

DE;n,R[R3S Ẽn,R
2

gE,th~ ñ!
21D , ~99!

which converges tokE(ñ)/gE(ñ) as R→`. The plot of
DE;n,R is reported in Fig. 7~lower graph!, where we have
taken into account only the error onẼn,R

2 . A good scaling
behavior is observed confirming the theoretical prediction
the corrections. Moreover, this nice scaling behavior is a
an indication that the approximation~73! can be considered
at our level of precision practically exact. Note also that t
prediction kE(0)/gE(0)520.059, cf. Eq.~54!, is in good
agreement with our data.

e

FIG. 7. Estimates ofẼn,R
2 /(6ñ) ~upper graph! and of DE;n,R

~lower graph! vs ñ5nR26. The reported points correspond tor
53,4,5,6,7,8,10,12. The continuous line in the upper graph is
theoretical prediction.
0-12
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Let us finally discuss the effective exponentneff . As we
did for geff , instead of

neff~n,R![n
d ln En,R

2

dn
, ~100!

we will consider

neff~n,R![
1

2 ln 2
ln10S E2n,R

2

En,R
2 D , ~101!

which is easier to compute numerically. A graph of th
quantity is reported in Fig. 8. It shows the expected behav
for ñ→0 it converges to1

2, while for ñ→` it converges to
nSAW'0.588. The agreement with the perturbative pred
tion is quite good in the random-walk region. On the oth
hand, asñ increases the corrections increase, in agreem
with similar results obtained for the Ising model@22,23#.

VII. CONCLUSIONS

In this paper, we have studied the critical crossover lim
for a model of walks and we have verified numerically t
following statements, predicted by field-theoretical a
mean-field methods@27#.

~i! The critical crossover functions in medium-range mo
els coincidewith the field-theoretical crossover curves. T
nonuniversal constants can be determined by computing
corrections to the mean-field behavior.

~ii ! The asymptotic behavior ofbc,R for R→` can be
computed exactly in lattice models up to corrections of re
tive order R28 by determining the first corrections to th
mean-field limit and exploiting the field-theoretical model

~iii ! The corrections to the critical crossover functions d
crease asR2d onceR is defined as in Eq.~5!.

Our numerical results can also be used to determine p
nomenological expressions that describe the data for all
ues ofR. Here, different procedures can be used. One
consider the phenomenological model of Ref.@87# ~with the
modifications discussed in Ref.@27# to make it compatible

FIG. 8. Estimates ofneff(n,R) vs ñ5nR26. The reported points
correspond tor52,3,4,5,6,7,8,10,12. The continuous line is t
theoretical prediction.
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with the theoretical predictions!, or the essentially equivalen
model discussed in Ref.@9#, or one can use the procedu
proposed in Ref.@27#. The idea is to write

c̃n,R5gc~ ñ!1R23kc~ ñ!,
~102!

Ẽn,R
2 5gE~ ñ!1R23kE~ ñ!,

and use a simple parametrization for the correction ter
Here, we approximate

k~ ñ!5g~ ñ!
20.0591añ1/21bñ

11cñ1/21dñ
~103!

both for kc and kE , where we have used the asympto
behavior~54!. The parametersa, b, c, andd are determined
by fitting the numerical data. The best results are obtai
for a5261, b521.06, c51830, d587 ~function kc! and
a5223, b50.8505,c5972,d532 ~functionkE!. These fit-
ting functions provide phenomenological expressions t
correctly describe our data for all values ofr. The corre-
sponding effective exponents are reported in Fig. 9 and sh
the typical behavior that has been found in simulations of
Ising model. We have also included in the figure the curv

FIG. 9. The effective exponentsgeff ~upper curve! and neff

~lower curve! vs ñ5nR26, obtained from the phenomenologica
expressions~102! and ~103!, for several values ofr.
0-13
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corresponding tor5 3
2 , to show that forr small the phenom-

enological expressions show a nonmonotonic behavior th
not present in the critical crossover curve.

We mention a different approach to the crossover d
cussed by Nickel@88,54#, in which the crossover curves ar
expressed in terms of a quantity that has a universal crit
limit: For polymers the interpenetration ratio is considere
while for spin systems the four-point renormalized coupli
would be the variable of choice. This method has the adv
tage of providing a better description of the nonuniver
deviations in the Wilson-Fisher region.

Although our main motivation was the understanding
spin models, the results of this paper are also relevant in
context of polymers. Indeed, as is well known@37,38#, non-
interacting SAW’s describe the universal behavior of h
mopolymers in dilute solutions above theQ temperature. In
the polymer context, however, it is more interesting to co
sider a different model with medium-range interactions. S
posing, for simplicity, to be in the continuum~off-lattice!,
we can define a SAW in the following way. A SAW wit
medium range interactions is a collection of po
$v0 ,...,vn%, v iPRd, such that uv i2v i 11u5r and uv i
2v j u.a for all iÞ j . In this case, the relevant scale isr/a
and the crossover limit is obtained forr/a→`, n→`, with
ñ[n(r/a)22d/(42d) fixed. For this model, the critical cross
over functions can also be computed using Eq.~74!, although
with different nonuniversalr-independent constantslE , lc ,
and r. Thus, the results presented here are relevant for
description of polymeric systems in which the macromole
lar persistence is much larger than the molecular scale
practice, we expect the description to be reasonably accu
whenr/a*3.

APPENDIX A: CRITICAL CROSSOVER FUNCTIONS
FROM FIELD THEORY

In this appendix, we will compute the critical crossov
functions for the polymer case using field-theory methods
Appendix A 1, we will use the approach of Refs.@28,29#,
while in Appendix A 2 we will present the results obtaine
using the method of Refs.@43,31,32#. The first approach pro
vides the most precise estimates and it will be applied
Appendix A 3 to obtain numerical results for polymers ge
eralizing Ref.@40#.

1. Crossover functions in the fixed-dimension expansion

a. General results

In this section we report the critical crossover functio
using the approach of Refs.@28,29#. We start from the ex-
pressions forFx ( t̃ ) andFj( t̃ ):

Fx~ t̃ !5x* expF2E
y0

g

dx
g~x!

n~x!W~x!G , ~A1!

Fj~ t̃ !5~j* !2 expF22E
y0

g

dx
1

W~x!G , ~A2!
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where t̃ is related to the zero-momentum four-point reno
malized couplingg by

t̃ 52t0E
g

g*
dx

g~x!

n~x!W~x!
expF E

y0

x

dz
1

n~z!W~z!G ,
~A3!

g(x), n(x), and W(x) are the standard renormalization
group~RG! functions,g* is the critical value ofg defined by
W(g* )50, andx* , j* , t0 , and y0 are normalization con-
stants.

The expressions~A1!, ~A2!, and ~A3! are valid for any
dimensiond,4. The first two equations are always well d
fined, while Eq.~A3! has been obtained with the addition
hypothesis that the integral overx is well defined when the
integration is extended up tog* . This hypothesis is verified
when the system becomes critical at a finite value ofb and
shows a standard critical behavior. In our case,N50, this is
true for all 1<d,4.

We normalize the couplingg as in Refs.@66,89# so that in
the perturbative limitg→0,t→`, we have

g'
4

3~4p!d/2 GS 22
d

2D t̃ ~d24!/2[ldt̃ ~d24!/2. ~A4!

This implies that fory0→0, we havet0'(y0 /ld)2/(d24) and
(j* )2t0'x* t0'1. With this normalization, in three dimen
sions the previous equations can be written as

Fx~ t̃ !5~6pg!2 expF2E
0

g

dxS g~x!

n~x!W~x!
1

2

xD G , ~A5!

Fj~ t̃ !5~6pg!2 expF22E
0

g

dxS 1

W~x!
1

1

xD G , ~A6!

and

t̃ 5
1

~6pg!2 S 12
3g

2
1

g2

4
log10gD1D31

1

~6p!2 E
0

g dx

x2

3H g~x!

n~x!W~x!
expF E

0

x

dzS 1

n~z!W~z!
1

2

zD G1
2

x
2

3

2
2

x

4J ,

~A7!

whereD3 is a nonperturbative constant given by

D352
1

~6p!2 F 1

~g* !22
3

2g*
1 1

4 ln g* G
2

1

~6p!2 E
0

g* dx

x2 H g~x!

n~x!W~x!

3expF E
0

x

dzS 1

n~z!W~z!
1

2

zD G1
2

x
2

3

2
2

x

4J .

~A8!
0-14
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Numerically, D350.002 473(6). Expressions for a genera
N-vector model and in two dimensions can be found in R
@27#.

For t̃→`, in three dimensions we obtain

Fx~ t̃ !5
1

t̃
F11

1

12p
t̃21/22

1

288p2 t̃
ln~36p2 t̃ !

2
59

2592p2

1

t̃
1

D3

t̃
1O~ t̃ 23/2 ln t̃ !G , ~A9!

Fj~ t̃ !5
1

t̃
F11

1

12p
t̃21/22

1

288p2 t̃
ln~36p2 t̃ !

2
11

468p2

1

t̃
1

D3

t̃
1O~ t̃ 23/2 ln t̃ !G . ~A10!

b. Asymptotic behavior near the Wilson-Fisher point

Let us now compute the asymptotic behavior of the cro
over functions fort̃→0. This requires the determination o
the expansion of the various RG functions in the limitg
→g* . As it has been extensively discussed in the literat
@42,90–92,60,88,93–97#, these functions are singular atg
5g* . General arguments predict a behavior of the fo
@91,95#

W~g!52v~g* 2g!1w1~g* 2g!21w2~g* 2g!D2 /D

1w3~g* 2g!111/D1¯ , ~A11!

g~g!5g1g1~g* 2g!1g2~g* 2g!21g3~g* 2g!D2 /D

1g4~g* 2g!1/D1¯ , ~A12!

n~g!5n1n1~g* 2g!1n2~g* 2g!21n3~g* 2g!D2 /D

1n4~g* 2g!1/D1¯ . ~A13!

This nonanalytic behavior makes the determination of
corrections extremely difficult. For instance, since one
pectsD2 /D to be close to 2@98#, it is practically impossible
to determinew1 and w2 in the b function since these two
terms are essentially degenerate. The only subleading c
ficients that can be reliably determined areg1 and n1 . In-
deed, sinceD' 1

2 andD2 /D'2, the next-to-leading correc
tion behaves as (g* 2g)'2, so thatg8(g) andn8(g) should
be reasonably smooth forg→g* .

The computation is straightforward and we only report
final results. The crossover functions can be expanded ft̃
→0 as

Fx~ t̃ !5x0 t̃ 2g@11x1 t̃ D1x2 t̃ 1x3 t̃ D21x4 t̃ 2D1¯#,
~A14!

Fj~ t̃ !5j0
2 t̃ 22n@11j1 t̃ D1j2 t̃ 1j3 t̃ D21j4 t̃ 2D1¯#.

~A15!
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We obtain for the leading term and the first correction

x05~6pg* !2 t̃ g expH 2E
0

g*
dxF g~x!

n~x!W~x!
1

2

x

1
g

D~g* 2x!G J , ~A16!

j0
25~6pg* !2 t̃ 2n expH 22E

0

g*
dxF 1

W~x!
1

1

x

1
1

v~g* 2x!G J , ~A17!

x152
g* g1

D~11D!
t̃2D, ~A18!

j152
2g*

gD~11D!
t̃2D@gn1~11D!2ng1D#, ~A19!

where

t̂5
g

~6pg* !2 expH E
0

g*
dxF 1

n~x!W~x!
1

2

x
1

1

D~g* 2x!G J .

~A20!

In order to estimate these constants, we use the seven-
results of Ref.@60# and the resummation technique of Re
@89#. Errors due to the resummation are determined by us
the general procedure of Ref.@95#. In order to computex0

andj0
2, we perform resummations keepingg* , g, n, andD

as free parameters~the dependence onD cancels inx0 andj0
2

if one uses the explicit expression fort̃ !. We obtain finally

x050.421660.000624~g21.1575!20.1~g* 21.395!,
~A21!

j0
250.356560.000210.4~g21.1575!20.1~g* 21.395!

28~n20.587 58!, ~A22!

t̂5@0.9960.00410.9~g21.1575!28~g* 21.395!

29~D20.515!#31023, ~A23!

where the first error is related to the uncertainty in the
summation, while the other terms indicate the variation
the estimate with changes in the values of the critical ex
nents and ofg* . To obtain the final results, we must decid
which estimates to use forg, n, D, andg* . In principle, we
could use the values that have been determined from
resummation of the perturbative expansions in three dim
sions @61#, i.e., g* 51.41360.006, g51.159660.0020, n
50.588260.0011, andD50.47860.010. However, we be-
lieve the Monte Carlo estimates of the critical exponents
be more reliable, and thus we have used the values repo
in Eq. ~20!. The field-theoretic estimate ofg* is probably
0-15
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also not reliable since it differs from the estimates obtain
using different methods. Indeed, from thee expansion one
estimatesg* 51.39660.020@99#, while the extrapolation of
exact-enumeration series givesg* 51.38860.005 @100#:
One observes a systematic discrepancy, which we believ
be due to the nonanalytic structure of theb function that is
not properly taken into account in the analysis@101#. This
problem should also appear in our analysis since we use
same resummation technique. In the reanalysis of Ref.@55#
of the perturbative series for the exponentg, it was shown
that the systematic error could be reduced, obtaining fie
theory estimates in close agreement with the Monte C
results, if one usesg* '1.395. Therefore, we useg*
51.39560.015, where the error is such to include all es
mates. Our final estimates are

x050.421660.0029, ~A24!

j0
250.356560.0016, ~A25!

t̂5~0.9960.21!31023. ~A26!

To computex1 andj1 , we analyze the series of the deriv
tive of g(g) andn(g). We obtain

g152g8~g* !520.107160.001310.007~g* 21.395!,
~A27!

n152n8~g* !520.065960.001820.011~g* 21.395!.
~A28!

The ratio g1 /n1 has already been computed in Ref.@60#
finding

g1

n1
51.3160.0521.7~g* 21.39!, ~A29!

which, however, differs significantly from our result,

g1

n1
51.6260.0520.4~g* 21.395!. ~A30!

Using the estimates of the critical exponents reported
Eq. ~20! and, as before,g* 51.39560.015, we obtain

x156.860.8, ~A31!

j159.161.1. ~A32!

Notice that a significant fraction of the error is due to t
uncertainty ont̂ . The error is largely reduced if we consid
the ratiox1 /j1 . We obtain

x1

j1
50.74560.034. ~A33!

Notice that, if we use the estimate~A29!, we would obtain
x1 /j1'0.56. The ratiox1 /j1 can also be computed in thee
expansion using theO(e2) series of Ref.@102#:
04613
d
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n

x1

j1
512

e

8
2S l

12
1

31

256D e21O~e3!, ~A34!

wherel'1.171 854. We obtainx1 /j150.8560.10, where
the error is purely indicative because of the shortness of
series.

2. Crossover functions in dimensional regularization
without e expansion

a. General results

In this section, we will study the critical crossover fun
tions using the minimal renormalization scheme proposed
Refs.@43,31,32#. We start from the expressions@31,32#

Fx~ t̃ !5x* F~u!21 expF2E
ui

u

dx
gM~x!

nM~x!WM~x!G ,
~A35!

Fj~ t̃ !5~j* !2 expF22E
ui

u

dx
1

WM~x!G , ~A36!

where t̃ is related to the minimal-subtraction renormaliz
couplingu by

t̃ 52t0E
u

u*
dx

2P~x!

WM~x!
expF E

ui

x

dz
1

nM~z!WM~z!G .
~A37!

HeregM(x), nM(x), andWM(x) are the standard RG func
tions computed in dimensional regularization,P(x) and
F(x) are functions defined in Refs.@31,32# that will be ex-
plicitly given below, andu* is the critical value ofu defined
by WM(u* )50. The constantsx* , j* , t0 , and ui are ob-
tained by requiring that, fort̃→0, Fx( t̃ ) and Fj( t̃ ) behave
as in Eq.~59!. The RG functions have been computed
five-loop order in Refs.@69,70#. Explicitly, we have@103#

WM~u!5WM~u,1!, ~A38!

nM~u!5
1

21h2~u!
, ~A39!

gM~u!5@22h3~u!#nM~u!, ~A40!

where
0-16
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WM~u,e!52eu1 4
3 u22 7

6 u31
296012112z~3!

1728
u41

219664812816p/52223872z~3!2357120z~5!

62208
u5

1
13177344267584p42317440p6/21121029376z~3!12506752z~3!2142261504z~5!159383296z~7!

1990656
u6

1O~u7!, ~A41!

h2~u!52 1
3 u1 5

36 u22
37

144
u32

2310602352p4/523264z~3!

62208
u4

2
3166528142688p4/5139680p6/2111528704z~3!2446976z~3!2155296z~5!

2985984
u51O~u6!, ~A42!

h3~u!5 1
36 u22 1

108u31 125
5184u

41
27705621408p4/518832z~3!

1492992
u51O~u6!. ~A43!
t
rs
b

e
n-

n
re
th

a
t

ss-
i-

tant
The
int.
ally

-

To compute the functionsP(u) andF(u), let us first recall
the relation between the bare couplingu0 and the renormal-
ized couplingu,

u05mA3
21uZu~u!Zw~u!22, ~A44!

Zu~u!Zw~u!225expH 2E
0

u

du8F 1

WM~u8!
1

2

u8G J .

~A45!

Herem is the renormalization scale andAd is a constant tha
depends on the specific renormalization scheme. Of cou
physical results should not depend on it. This fact can
easily verified by noticing thatAd can be absorbed in th
definition of m, and that, by construction, all physical qua
tities are independent ofm. However, different choices ofAd
give rise to different perturbative series providing differe
results at the intermediate stages of the calculation. This f
dom may be used as a further check of the uncertainty of
final results. In Refs.@31,32# the authors use

Ad5SdG~32d/2!G~d/221!,
~A46!

Sd5
2

~4p!d/2G~d/2!
,

a choice that makes the one-loop corrections vanish in m
observables. However, in order to understand the size of
systematic errors, we will also useAd5Sd andAd54Sd .

The functionsF(u) andP(u) are obtained from

F~u![Zw~u!F0@A3
21uZu~u!Zw~u!22#, ~A47!

Zw~u!5expF E
0

u

du8
h3~u8!

WM~u8!G , ~A48!

and

P~u![Zw2~u!21P0@A3
21uZu~u!Zw~u!22#, ~A49!
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Zw2~u!5expF E
0

u

du8
h2~u8!

WM~u8!G , ~A50!

whereF0(x) and P0(x) can be derived from the five-loop
results of Refs.@29,32#:

F0~x!511
1

7776p2 x228.8329131027x3

16.1724131028x4

24.7399331029x51O~x6!, ~A51!

P0~x!511
1

24p
x2

1

288p2 x211.8178531025x3

21.2451831026x4

11.0109731027x51O~x6!. ~A52!

WhenAd is given by Eq.~A46!, we have

F~u!512 23
1944u

225.525 1031023u324.016 3331023u4

21.929 5431023u51O~u6!, ~A53!

P~u!512 1
6 u1 1

72 u220.031 827 9u310.032 666 4u4

20.064 406 5u51O~u6!. ~A54!

b. Asymptotic behavior near the Wilson-Fisher point

In order to compute the asymptotic behavior of the cro
over functions fort̃→0, we need the expansion of the var
ous RG functions in the limitu→u* . It has been argued
@104# that the scheme we are presenting has an impor
advantage over the approach described in Appendix A 1:
RG functions are expected to be analytic at the critical po
The reason is that the RG functions are essenti
dimension-independent, whileu* depends one being the
solution of WM(u* ,e)50. Notice, however, that this argu
0-17
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ment does not exclude the presence of singular terms fu
50 since this scheme is essentially four-dimensional. A
swering this question is in any case nontrivial since it
quires a nonperturbative definition of the RG functions.
the following we will assume the following analytic expa
sions:

WM~u!52v~u* 2u!1w1~u* 2u!21¯ , ~A55!

gM~u!5g1g1~u* 2u!1¯ , ~A56!

nM~u!5n1n1~u* 2u!1¯ , ~A57!

F~u!5 f * 1 f 1~u* 2u!1¯ , ~A58!

P~u!5p* 1p1~u* 2u!1¯ . ~A59!

Expanding the crossover functions fort̃→0 as in Eqs.~A14!
and~A15!, we obtain the following for the leading term an
the first correction:

x05
~ku* !2

f *
t̂g expH 2E

0

u*
dxF gM~x!

nM~x!WM~x!
1

2

x

1
g

D~u* 2x!G J , ~A60!

j0
25~ku* !2 t̂2n expH 22E

0

u*
dxF 1

WM~x!
1

2

x

1
1

v~u* 2x!G J , ~A61!

x152u* F f 1

f *
1

g1

D
2

g

11D S n1

n
1

p1

p* D G t̂2D, ~A62!

j15u*
2n

11D S p1

p*
2

n1

Dn D t̂2D, ~A63!

where

t̂5
2p* n

~ku* !2 expH E
0

u*
dxF 1

nM~x!WM~x!
1

1

x
1

1

D~u* 2x!G J .

~A64!

The normalizationk is related to the choice ofAd in Eq.
~A45! by

k54p~112q3!,

qd5
SdG~32d/2!G~d/221!2Ad

2~42d!Ad
. ~A65!

The estimate of critical quantities requires a resummation
the perturbative series. For this purpose we will use
large-order behavior of the coefficients@105,106# given by

ck;k! ~2 1
2 !kkb@11O~1/k!#, ~A66!

and the numerical method of Refs.@89,95#.
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We have first of all determinedu* . We obtainu* 51.1
60.1. Although this result is consistent with the estimate
Ref. @31#, u* 51.09260.012, the error bar is much large
However, using our algorithm@95#, we have been unable t
understand how the error can be so small. On the other h
as we shall see later by comparing our results with the e
mates of the preceding section and by checking their in
pendence onAd , our error bars look reasonable and at mo
overestimated by a factor of 2. In the following, we repo
various estimates keepingu* as a free variable. We have

g1520.14060.01020.01~u* 21.1!, ~A67!

n1520.08960.01020.02~u* 21.1!, ~A68!

f * 5H 0.99160.00420.02~u* 21.1!

0.98760.00620.02~u* 21.1!

0.98360.00620.02~u* 21.1!,
~A69!

p* 5H 0.93260.00620.05~u* 21.1!

0.82560.01520.15~u* 21.1!

0.67060.04020.30~u* 21.1!,
~A70!

f 15H 0.02660.00710.03~u* 21.1!

0.03960.01210.04~u* 21.1!

0.05160.01810.06~u* 21.1!,
~A71!

p15H 0.074960.01510.03~u* 21.1!

0.18260.01210.02~u* 21.1!

0.39960.03010.13~u* 21.1!.
~A72!

For f * , p* , f 1 , andp1 we report three estimates correspon
ing to A35S3 , 1/4p, and 4S3 , respectively. Notice that in
most cases the uncertainty onu* is negligible compared to
the resummation errors. We obtain finally

x050.420~15!,0.422~19!,0.447~42!, ~A73!

j0
250.358~15!,0.363~19!,0.395~38!, ~A74!

x156.7~4.2!,6.5~4.1!,5.4~3.4!, ~A75!

j1510.1~6.3!,9.2~5.7!,6.7~4.2!, ~A76!

where the three different estimates correspond toA35S3 ,
1/4p, and 4S3 , respectively. As before, a more precise es
mate is obtained if one considersx1 /j1 . We obtain

x1

j1
50.66~13!,0.71~10!,0.81~7!. ~A77!

As expected, these results are independent of the value oA3
within error bars. Notice that the difference among the e
mates of the same quantity is of the same order of the e
bars, thereby confirming the correctness of our error e
mates. The final results are also in good agreement w
although less precise than, the results presented in the
ceding section. Notice that the estimate ofx1 /j1 obtained
0-18
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here is compatible with the estimate obtained in Appen
A 1 b. Instead, the result of Ref.@60# is somewhat too small

3. Polymer critical crossover functions

Let us now compute the critical crossover functions
terms ofñ. We will only consider the approach described
Appendix A 1, since it appears to be the most precise o
From Eq.~40! we have

Gc~ ñ!5E
c2 i`

c1 i` d t̃

2p i
eñt̃Fx~ t̃ !. ~A78!

Changing variables fromt̃ to g, we obtain

Gc~ ñ!5x* t0E
C

dg

2p i
eñt̃ ~g!

g~g!

n~g!W~g!

3expF E
y0

g

dz
12g~z!

n~z!W~z!G , ~A79!

where C may be taken as a circle of the formg5R(1
1e2 if), 2p<f<p, with R fixed satisfying 0,R,g* /2.

To compare with the results of Ref.@40# we introduce
their notations,

b~g!5
2n~g!W~g!

g~g!
, ~A80!

j ~g!52S 12
1

g~g! D , ~A81!

J~g!5S 12
g

g* D ~12g!/D

expH 2E
0

g

dxF j ~x!

b~x!
1

g21

D~g* 2x!G J ,

~A82!

A~g!5expH E
0

g

dxF22 j ~x!

b~x!
1

2

x
1

1

D~g* 2x!G J ,

~A83!

E0~g!5E
g*

g

dxS 12
x

g* D 1/D A~x!

x2b~x!
, ~A84!

whereg andD are the standard critical exponents. Then,
obtain

Gc~ ñ!52E
C

dg

2p i

J~g!

b~g!
expF ñ

18p2 E0~g!G . ~A85!

In order to have the same definitions of Refs.@39,40#, let us
also introduce

z5
Añ

24p3/2. ~A86!

We obtain finally

Gc~z!5E
C

dg

p i

J~g!

b~g!
e32pz2E0~g! ~A87!
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Expanding the previous expression forz→0, we obtain the
perturbative expansion~68!.

The computation ofGE(z) is analogous. Starting from

GE~ ñ!5
1

Gc~ ñ!
E

c2 i`

c1 i` d t̃

2p i
eñt̃Fx~ t̃ !Fj~ t̃ !, ~A88!

we obtain for the swelling factor@40# SE(z)5GE(z)/(6ñ),

SE~z!5
1

16pz2G0~z!
E

C

dg

p i

J~g!K~g!

b~g!E~g!
e32pz2E0~g!,

~A89!

where

k~g!52S 2n~g!

g~g!
21D , ~A90!

K~g!5S 12
g

g* D ~g22n!/D

3expH 2E
0

g

dxF k~x!

b~x!
1

g22n

D~g* 2x!G J , ~A91!

E~g!5
1

g2 S 12
g

g* D g/D

expH 2E
0

g

dxF 1

b~x!
1

1

x

1
g

2D~g* 2x!G J . ~A92!

From the previous expressions we can compute
asymptotic behavior ofGc(z) andSE(z) for z→`. We have

Gc~z!5gc0z2~g21!~11gc1z22D1gc2z221gc3z22D21¯ !,

~A93!

SE~z!5sE0z4n22~11sE1z22D1sE2z221sE3z22D21¯ !.

~A94!

These expansions can be related to the expansions ofFx( t̃ )
andFj( t̃ ) for t̃→0. Using the results of Appendix A 1b, we
have

gc05
x0

G~g!
~24p3/2!2~g21!52.11760.020, ~A95!

sE05
j0

2G~g!

G~g12n!
~24p3/2!2~2n21!51.54960.007,

~A96!

gc15
x1G~g!

G~g2D!
~24p3/2!22D50.02960.005, ~A97!

sE15F ~x11j1!G~g12n!

G~g12n2D!
2

x1G~g!

G~g2D!G~24p3/2!22D

50.10160.016. ~A98!
0-19
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If we consider the ratiogc1 /sE1 , the error is largely reduced
and we have

gc1

sE1
50.28860.016. ~A99!

The constantssE0 and sE1 have already been computed
Ref. @40#, finding sE0'1.5310 andsE1'0.1204, in reason-
able agreement with our results. The constantssE0 and sE1
have also been determined by a Monte Carlo simulation
the Domb-Joyce model@54#, obtaining

sE05 lim
v→0

BR~v!'1.546 54, ~A100!

sE15 lim
v→0

bR~v!'0.114 98, ~A101!

whereBR(v) andbR(v) are defined in Ref.@54#.
We have computed the functionsGc(z) andSE(z) using

the numerical technique presented in Ref.@40#. In the resum-
mation we have used the seven-loop results of Ref.@60# that
allow the extension of the series expansions ofj (g) andk(g)
by one order. If

j ~g!5(
n

j ngn, k~g!5(
n

kngn, ~A102!

we derive from Ref.@60#

j 750.099 688 8, k7520.001 906 71. ~A103!

The results forGc(z) are well fitted by

Gc~z!5~1150.793 65z1508.5428z215929.475z3

110 937.03z4!0.07875. ~A104!

For z→0, this expression givesGc(z)'114z, in agreement
with the perturbative expansion~68!, while for z→` we
have

Gc~z!52.08z2g22@110.089z211O~z22!#.
~A105!
. A

ys

J.

g

04613
f

This expansion is in reasonable agreement with Eq.~A93!,
keeping into account thatD' 1

2 . However, while the leading
term is close to the estimate~A95!, the correction differs
significantly from Eq.~A97!. A simpler expression, that is
however, more accurate in the Wilson-Fisher region, is

Gc~z!5~1138.0952z1276.844z211073.17z3!0.105.
~A106!

For z→`, it behaves as

Gc~z!'2.08z2g22~110.027z21!, ~A107!

in agreement with the asymptotic expansion~A93! and the
numerical values~A95! and ~A97!.

For SE(z) we find that the expression reported in Re
@54#,

SE~z!5~117.6118z112.051 35z2!0.175 166, ~A108!

fits the data extremely well and correctly reproduces
asymptotic behavior forz→0 andz→`. A different inter-
polation appears in Ref.@104#, based on the five-loop com
putations of Schloms and Dohm@31#. Settingz56.95z̃ in the
formulas of Ref.@104# in order to reproduce the correct be
havior for z→0, we obtain

SE~z!5~117.4074z110.913z2!0.18, ~A109!

in good agreement with Eq.~A108!. Another interpolation
formula was proposed in Ref.@9#, motivated again by per-
turbative field theory. The swelling factorSE(z) is obtained
by solving the equation

SE~z!2.82152SE~z!0.197553.3261z. ~A110!

Other phenomenological representations are reported
Refs.@40#, @107#, @75#.

Finally, from the results reported in Ref.@58#, we can
estimate the ratiogc1 /sE1 . We find gc1 /sE1'0.26, in rea-
sonable agreement with Eq.~A99!. Let us finally notice that
if we use the estimate~A29! we would obtaingc1 /sE1
'0.23.
.
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Blöte, Physica A281, 112 ~2000!.
@16# E. Luijten and H. Meyer, Phys. Rev. E62, 3257~2000!.
@17# L. Lue and S. B. Kiselev, J. Chem. Phys.114, 5026~2001!.
@18# V. A. Agayan, M. A. Anisimov, and J. V. Sengers, Phys. R

E 64, 026125~2001!.
@19# K. K. Mon and K. Binder, Phys. Rev. E48, 2498~1993!.
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